TWI379423B - Thin film solar cell module of see-through type and method of fabricating the same - Google Patents

Thin film solar cell module of see-through type and method of fabricating the same Download PDF

Info

Publication number
TWI379423B
TWI379423B TW96149686A TW96149686A TWI379423B TW I379423 B TWI379423 B TW I379423B TW 96149686 A TW96149686 A TW 96149686A TW 96149686 A TW96149686 A TW 96149686A TW I379423 B TWI379423 B TW I379423B
Authority
TW
Taiwan
Prior art keywords
electrode
layer
light
film solar
photoelectric conversion
Prior art date
Application number
TW96149686A
Other languages
Chinese (zh)
Other versions
TW200929561A (en
Inventor
jian shu Wu
Te Chi Wong
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96149686A priority Critical patent/TWI379423B/en
Publication of TW200929561A publication Critical patent/TW200929561A/en
Application granted granted Critical
Publication of TWI379423B publication Critical patent/TWI379423B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

1379423 P63960018TW 2623 8twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於〆種太陽能電池(Photovoltaic)模組及 ' 其製造方法’且特別是有關於一種透光型薄膜太陽能電池 * 模組及其製造方法。 【先前技術】 _ .太陽能是一種具有永不耗盡且無污染的能源,在解決 目前石化能源所面臨的污染與短缺的問題時,一直是最受 _目的焦點。其中,又以太陽能電池(solar cell)可直接將太 陽能轉換為電能,而成為目前相當重要的研究課題。 目前,在太陽能電池市場中,使用單晶石夕與多晶石夕的 電池約佔百分之九十以上。但是,這些太陽能電池需使用 居度約150微米至350微米的梦晶片作為材料,其成本較 高。再者,由於太陽能電池的原材料採用高品質的矽晶錠, • 近年來因使用量的明顯成長,已日漸不足。因此,薄膜太 陽能電池(thin film so丨ar cell)的研發乃成為新的發展方 向。而且,薄膜太陽能電池具有低成本、容易大面積生產, - 且模組化製程簡單等優點。 、 • _:參照®卜其是繪示習知—種薄膜太陽能電池模組 的不思圖。薄膜太陽能電池模组15〇包括玻璃基板152、 透明電極154、光電轉換層156以及金屬電極158。其中, 透月電極1M配置於玻璃基板⑺上。光電轉換層⑸是 X對應翻電極154位置偏移—距離的方式配置於透明電 5 1379423 P63960018TW 26238twf.doc/n 極154上。另外,金屬電極158是以對應光電轉換層i56 位置偏移一距離的方式配置於光電轉換層156上,且與下 方的透明電極154接觸。在薄膜太陽能電池模組15〇中, 光電轉換層通常是由p型半導體、本質(intrinsic)半導體、 -n型半導體堆疊形成P+n之結構,光線由玻璃基板152下 方入射進來,透過光電轉換層156吸收產生電子及電洞 對,經由内建電場將電子與電洞對分離而形成電壓與電 φ 流,再經由導線傳輸至負載使用。為了提昇電池的效率, 習知薄膜太陽能電池模組15〇會將透明電極154的表面製 成金字塔形(pyramid)結構或粗紋化(textured)結構(未繪 示)’以減少光的反射量。光電轉換層通常使用非晶 (amorphous)矽薄膜’但因為其能隙通常介於17至18 eV 之間,只能吸收波長小於gOOnm之太陽光,為了增加光的 利用’通常會再堆疊一層微晶(miCr〇_Crystalline 〇Γ nano-crystalline)碎薄膜,形成 p_i_n/p小n 之堆疊型(tandem) 太陽能電池’微晶矽之能隙通常介於丨.1至1.2 eV之間, 鲁 可以吸收波長小於llOOnm之太陽光。 早期’太陽能電池的造價昂貴且製作不易,而僅能應 - 用於太空等待殊領域中。現今,太陽能電池的應用已可擴 • 展至一般的民宅、高樓建築,甚至露營車、移動式小冰箱, 都可以利用它可轉換太陽光為電能的特性普遍地隨處運 用。但是在一些特定應用上面,矽晶圓太陽能電池並不適 合’例如需有透光性之玻璃帷幕,與其他太陽能電池結合 建築物(building integrated photovoltaic,BIPV)之應用。透 6 1379423 P63960018TW 26238twf.d〇c/n 光型薄膜太陽能電池(thin film solar cell of see-through type) 在這些應用當中具有節能與美觀等優點,且更符合人性居 住的需求。 a目前,在一些美國專利上已有揭露關於透光型薄膜太 陽能電池及其製造方法的相關技術。1379423 P63960018TW 2623 8twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a solar photovoltaic module and a method of manufacturing the same, and more particularly to a light-transmitting film Solar cell* module and its manufacturing method. [Prior Art] _ Solar energy is an energy source that never runs out and is free of pollution. It has always been the focus of attention when solving the problems of pollution and shortage faced by petrochemical energy. Among them, the solar cell can directly convert solar energy into electrical energy, which has become a very important research topic at present. At present, in the solar cell market, the use of single crystal stone and polycrystalline stone batteries accounted for more than 90%. However, these solar cells require the use of a dream wafer having a residence temperature of about 150 to 350 micrometers as a material, which is costly. Furthermore, since the raw materials of solar cells are made of high-quality twin crystal ingots, they have become increasingly scarce in recent years due to the apparent growth in usage. Therefore, the development of thin film so丨ar cells has become a new development direction. Moreover, the thin film solar cell has the advantages of low cost, easy large-area production, and simple modular process. • _: Reference® is a diagram of a conventional thin film solar cell module. The thin film solar cell module 15A includes a glass substrate 152, a transparent electrode 154, a photoelectric conversion layer 156, and a metal electrode 158. Among them, the moon-transparent electrode 1M is disposed on the glass substrate (7). The photoelectric conversion layer (5) is disposed on the transparent electric 5 1379423 P63960018TW 26238twf.doc/n pole 154 in such a manner that X corresponds to the positional offset-distance of the flip electrode 154. Further, the metal electrode 158 is disposed on the photoelectric conversion layer 156 so as to be offset by a distance corresponding to the position of the photoelectric conversion layer i56, and is in contact with the lower transparent electrode 154. In the thin film solar cell module 15 ,, the photoelectric conversion layer is generally formed of a p+ semiconductor, an intrinsic semiconductor, and an n-type semiconductor stack to form a P+n structure, and the light is incident from the lower side of the glass substrate 152, and is photoelectrically converted. The layer 156 absorbs electrons and holes, and separates the electrons from the hole pair via the built-in electric field to form a voltage and electric φ stream, which is then transmitted to the load via the wire. In order to improve the efficiency of the battery, the conventional thin film solar cell module 15 制成 makes the surface of the transparent electrode 154 into a pyramid structure or a textured structure (not shown) to reduce the amount of light reflection. . The photoelectric conversion layer usually uses an amorphous tantalum film 'but because its energy gap is usually between 17 and 18 eV, it can only absorb sunlight with a wavelength less than gOOnm. In order to increase the utilization of light, it is usually stacked again. Crystalline (miCr〇_Crystalline 〇Γ nano-crystalline) broken film, forming a p_i_n/p small n stacked type (tandem) solar cell 'microcrystalline 矽 energy gap usually between 丨.1 to 1.2 eV, Lu can Absorbs sunlight with a wavelength less than llOOnm. In the early days, solar cells were expensive and difficult to manufacture, and they could only be used in the field of space waiting. Nowadays, the application of solar cells can be extended to ordinary residential buildings, high-rise buildings, even campers and mobile small refrigerators, and can be used to convert sunlight into electric energy. However, in some specific applications, germanium wafer solar cells are not suitable for applications such as glass curtains that require light transmission, and other integrated building photovoltaic (BIPV) applications. 6 1379423 P63960018TW 26238twf.d〇c/n thin film solar cell of see-through type has the advantages of energy saving and aesthetics in these applications, and is more in line with the needs of human habitation. A Currently, related art for a light-transmitting type thin film solar cell and a method of manufacturing the same are disclosed in some U.S. patents.

在美國專利第6,858,461號(US 6,858,461 Β2)中,提出 一種部分透明的太陽能電池模組(,,PARTIALLY TRANSPARENT PHOTOVOLATIC MODULES”)。如圖 2 所示,太陽能電池模組110包括透明基板114、透明導電 層U8、背面電極122以及位於透明導電層118與金屬電 極122之間的光電轉換層。同樣地,光線會由透明基板 下方照射進去。在此太陽能電池模組110中,會利用雷射 切割(laser scribing)方式移除部分金屬電極丨22與光電轉換 層,而形成至少一條溝渠(groove)14〇,以使太陽能電池模 · 110可達到部分透光的目的。但是,由於雷射切割方法 是在高溫下進行,因此容易使金屬電極122產生金屬顆粒 或炫融而堆積在溝渠内部,造成上、下電極短路(sh〇rt); 或者非晶矽光電轉換層於高溫下在溝渠側壁產生再結晶, 形成低阻值之微晶矽,使得漏電流增加,進而影響製程 率(yield)與太陽電池之效率。另一方面,在透明導電層 表面通常會製成金字塔型結構或粗紋化表面結構,以θ提曰 電池的效率,如此當光線由透明基板114下方照射進去^ 會產生散射,以致使透光率未能有效提高。 、 承上述,為了使太陽能電池達成某一程度的透光率, 7 1379423 P6396001STW 26238twf.d〇c/n Γ,需ϋ更f極與光電_層_除。請參照表 1 1為曰本MakMax TAIY0 K0GY0公司之多種透光型 明顯°由表1可知’為了提高透光率,很 二 j除相當大面積的金屬電極触電轉換層如此 降 -來使得最大輸出、效率和填滿係數(fill ,F巧會下 〇A partially transparent solar cell module (PARTIALLY TRANSPARENT PHOTOVOLATIC MODULES) is proposed in U.S. Patent No. 6,858,461 (U.S. Patent No. 6,858,461, filed on Jan. 2). As shown in FIG. 2, the solar cell module 110 includes a transparent substrate 114 and is transparently conductive. The layer U8, the back electrode 122, and the photoelectric conversion layer between the transparent conductive layer 118 and the metal electrode 122. Similarly, the light is irradiated from below the transparent substrate. In the solar cell module 110, laser cutting is utilized ( Laser scribing) removes part of the metal electrode 22 and the photoelectric conversion layer to form at least one groove 14 〇 so that the solar cell module 110 can achieve partial light transmission. However, since the laser cutting method is It is carried out at a high temperature, so that it is easy for the metal electrode 122 to generate metal particles or smelt and accumulate inside the trench, causing the upper and lower electrodes to be short-circuited (sh〇rt); or the amorphous germanium photoelectric conversion layer is generated at the sidewall of the trench at a high temperature. Crystallization, the formation of low-resistance microcrystalline germanium, which increases the leakage current, which in turn affects the yield and solar cell efficiency. On the other hand, a pyramid-shaped structure or a rough-textured surface structure is usually formed on the surface of the transparent conductive layer, and the efficiency of the battery is increased by θ, so that when the light is irradiated from below the transparent substrate 114, scattering occurs, so that light is transmitted. The rate has not been effectively improved. According to the above, in order to achieve a certain degree of light transmittance of the solar cell, 7 1379423 P6396001STW 26238twf.d〇c/n Γ, need to change the f pole and photoelectric_layer _ divided. Please refer to the table 1 1 is a variety of light transmission type of M本 MakMax TAIY0 K0GY0 company. It can be seen from Table 1 'In order to improve the light transmittance, it is very difficult to remove the metal electrode electric shock conversion layer from a considerable area to maximize the output and efficiency. And fill the coefficient (fill, F will be 〇

表1 型號 KN-38 _ KN-45 KN-60 尺寸(mm) 980X950 980X950 980X950 透光率(%) 10 5 <1 最大輸出(W) 3B.0 45.0 58.0 Vpm (V) 5B.6 64.4 68.0 Ipm (A) 0.648 0.699 0.853 Voc (V) 91.8 91.8 91.8 Isc (A) 0.972 1.090 1.140 效率(%) 4.1 4.8 6.2 FF 0.43 0.45 0.55Table 1 Model KN-38 _ KN-45 KN-60 Size (mm) 980X950 980X950 980X950 Transmittance (%) 10 5 <1 Maximum output (W) 3B.0 45.0 58.0 Vpm (V) 5B.6 64.4 68.0 Ipm (A) 0.648 0.699 0.853 Voc (V) 91.8 91.8 91.8 Isc (A) 0.972 1.090 1.140 Efficiency (%) 4.1 4.8 6.2 FF 0.43 0.45 0.55

另外,美國專利第4,795,500號(US 4795500)提出一種 太陽能電池元件(’1>1101'0乂01^1[1€0£¥10£”)。如圖3所 示,太陽能電池元件包括透明基板1、透明導電層3、光電 轉換層4、金屬電極5以及光阻8。此太陽能電池元件在金 屬電極5與光電轉換層4中,或甚至包括在透明導電層3 8 1379423 P639600 i 8TW 26238twf.doc/n 中,會形成孔洞(hole)0,以達到透光的目的。然而,此 利需使用到黃光製程,其相關設備相當昂責,如此會增加 ί二H,若此專利❹雷射切割方式以直接形^洞 6,則同樣會造成金屬顆粒污染以及短路_,而影響製程 良率。 曰 【發明内容】 有鑑於此’本發明的目的就是在提供一種透 =陽能電池餘及錢造方法,㈣提高電賴組的透光 ^且可避Μ知製程所造成短路與漏電流的問題,進而 可提向製程良率與太陽能電池效率。 出-觀光型_场能電轉組的製造 =。首先,在不透明基板上形成第—電極材料層。然後, 二示部分第-電極材料層,以形成可將第—電極材料層分 狀電極材料層且的多條第-丫方向切割道:以 隔電極與二維排列之= 第-雷:Lr 電轉換層’覆蓋不透明基板、 層,:Π 型電極。隨後’移除部分光電轉換 曰以於第一電極上方形成相對平行第一 極表面之多條第三 9 1379423 P63960018TW 26238twf.doc/n 條弟二X方向切割道,裸露出該不透明基板, 極材料層分隔成第二梳型電極與二維排列之多數 ,狀紅電極。之後,移除部分第二X方向切割道以及 2Y方向切割道所裸露的不透明基板,以在不透明基板 中形成多個孔洞。 ^上述之透光型薄膜太陽能電池模組的製造方法 I,在移除部分綠轉換層以形成第二丫方向切割道時, 於第—x方向切割道中形成多條第三X方向切割 道。苐一、第二、第三丫方向切割道以及第一、第二、第 ς X方向_道是利用雷射切财式製備。而且,上述之 ^光型薄膜太陽能電池模組的第一電極材料層為一透明導 2化物層,其材質例如是氧化鋅、二氧化錫、氧化銦錫 或氧化銦。第-電極材料層也可以是_金屬層,其材質例 =銘、銀、銅、域其他適合之金屬或合金。光電轉換 t-單層結構或-堆疊層結構。光電轉換層的材質例如 疋非結晶魏其合金、硫化鶴、銅銦鎵二砸、銅鋼二碼、 碲化録或錢材料。第二電極材料層為為—透明導 2層,其材質例如是氧化鋅、二氧化锡、氧化銦錫或氧化 鋼0 本發明另提出-種透光型薄膜太陽能電池模组,发且 有彼此串聯的多顆電池,配置於不透明基板上。在料雷 池之間具有多個貫穿該不透明基板之孔洞。透光型薄 陽能電池歡包括第-電極、第二電極以及光電轉換声。 其中,第-電極配置在不透明基板上’且第一電極是:第 1379423 P63960018TW 26238twf.doc/n -梳型電極與二維排列之多個 極配置在第一電極上方 二組成。弟二電 -她妯而丨―々, 乐一電極疋由第二梳型電極盥 -維排歹]之多個塊狀第二電極組成,第 :: :第二電極彼此之間裸露出部分的前述第:電:速 W刀的不透明基板、或前述孔洞 第-梳型電極是以左右方式配置,而型電極與 塊狀電極是以平行位移方切 塊狀電極與第二 於第-電極與第二電極之;。光電::層配置 多個光電轉換材料層所組成。 、θ疋一、..卜列之 透明太陽能€频_第—電極為— .材質例如是氧化鋅、二氧化錫、氧 化銦錫或德銦。第1極也可以是― , 乳 、銅,或其他適合之金屬或合:。;電;: 堆==電轉換層的材質例如 3 /汉,、σ金硫化鎘、銅銦鎵二硒、 ::=::Γ,第二電極為為-透爾二 :層其材貝例如疋氧化鋅、二氧化锡、氧化銦錫或氧化 的製造方m又種透光型薄膜㈣能電池模組 的“方纟百先,在不透明基板上形成第-電極材料屏。 然後,移除部分第-電極材料層,以形成可將曰 料層分隔成多個帶狀電極材料層的多條第—γ方== 道’以及呈二維排列之多個第一χ方向切割窗口 ^ 電極材料層成為多個第一窗型電極。接著,形成光電=換 1379423In addition, a solar cell element ('1>1101'0乂01^1[1€0£¥10£") is proposed in U.S. Patent No. 4,795,500 (U.S. Patent No. 4,795,500). As shown in Fig. 3, the solar cell element includes a transparent substrate. 1. Transparent conductive layer 3, photoelectric conversion layer 4, metal electrode 5 and photoresist 8. This solar cell element is in metal electrode 5 and photoelectric conversion layer 4, or even included in transparent conductive layer 3 8 1379423 P639600 i 8TW 26238twf. In doc/n, a hole 0 is formed to achieve the purpose of light transmission. However, this benefit requires the use of a yellow light process, and the related equipment is quite blame, so that it will increase ί二H, if the patent is thunder The direct cutting method of the hole cutting method will also cause metal particle contamination and short circuit _, which will affect the process yield. 曰 [Summary of the Invention] In view of the above, the object of the present invention is to provide a transparent battery. And the method of making money, (4) improving the light transmission of the electric ray group and avoiding the problems of short circuit and leakage current caused by the process, and thus improving the process yield and solar cell efficiency. Out-sight type _ field energy transfer Manufacturing =. First, not Forming a first electrode material layer on the substrate. Then, a portion of the first electrode material layer is formed to form a plurality of first-turn direction dicing electrodes of the first electrode material layer and the separator electrode material layer: Two-dimensional arrangement = first-ray: Lr electrical conversion layer 'covers opaque substrate, layer, Π-type electrode. Then 'remove part of the photoelectric conversion 曰 to form a plurality of parallel first-pole surfaces above the first electrode 3 9 1379423 P63960018TW 26238twf.doc/n The second X-direction cutting channel exposes the opaque substrate, and the pole material layer is divided into a second comb-shaped electrode and a plurality of two-dimensional arrays, and the red electrode is removed. The opaque substrate exposed in the two X-direction dicing streets and the 2Y-direction dicing streets to form a plurality of holes in the opaque substrate. ^ The manufacturing method I of the above-mentioned light-transmitting thin film solar cell module is to remove part of the green conversion layer When the second 丫 direction scribe line is formed, a plurality of third X-direction dicing streets are formed in the ninth-direction scribe line. The first, second, third 丫 direction cutting lanes and the first, second, and ςX directions The first electrode material layer of the above-mentioned light-type thin film solar cell module is a transparent conductive material layer, and the material thereof is, for example, zinc oxide, tin dioxide, indium oxide. Tin or indium oxide. The first electrode material layer may also be a metal layer, the material of which is = metal, copper, copper, other suitable metal or alloy. Photoelectric conversion t-single layer structure or - stacked layer structure. The material of the layer is, for example, a non-crystalline Weiqi alloy, a sulfided crane, a copper indium gallium dichloride, a copper steel two-code, a ruthenium or a money material. The second electrode material layer is a transparent conductive layer, and the material thereof is, for example, oxidized. Zinc, tin dioxide, indium tin oxide or oxidized steel 0 The present invention further proposes a light-transmissive thin film solar cell module in which a plurality of cells connected in series are arranged on an opaque substrate. There are a plurality of holes extending through the opaque substrate between the mine cells. The light-transmissive thin solar cell includes a first electrode, a second electrode, and photoelectric conversion sound. Wherein, the first electrode is disposed on the opaque substrate and the first electrode is: 1379423 P63960018TW 26238twf.doc/n - the comb electrode and the plurality of electrodes arranged in two dimensions are disposed above the first electrode.弟二电--She 妯 丨 々 々 乐 乐 乐 乐 乐 乐 乐 乐 乐 乐 乐 乐 乐 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二The opaque substrate of the electric: speed W blade or the hole-comb-type electrode is disposed in a left-right manner, and the electrode and the block electrode are parallel-displaced square-cut electrodes and second to the first electrode With the second electrode; Photoelectric:: Layer configuration A plurality of layers of photoelectric conversion materials. θ疋一, .. 卜列的透明光光frequency_第—electrode is — The material is, for example, zinc oxide, tin dioxide, indium tin oxide or germanium indium. The first pole can also be ― , milk, copper, or other suitable metal or combination:. ;Electric;: Heap == material of the electrical conversion layer such as 3 / Han, σ gold cadmium sulfide, copper indium gallium diselenide, ::=::Γ, the second electrode is -Tor For example, bismuth zinc oxide, tin dioxide, indium tin oxide or oxidized manufacturing, m light-transmissive film (four) energy battery module "square 纟 first, on the opaque substrate to form the first electrode material screen. Then, shift Except for a portion of the first electrode material layer to form a plurality of first γ-squares==channels that can separate the tantalum layer into a plurality of strip-shaped electrode material layers, and a plurality of first-direction directional cutting windows in a two-dimensional arrangement^ The electrode material layer becomes a plurality of first window electrodes. Then, photoelectricity is formed = 1374432

P63960018TW 26238twf.doc/n 層,以覆蓋第-窗型電極與不透明基板 光電轉換層,以於第一窗型電極上方形成4平3气 方向切割道的多條第二γ方向切割道。之後,於 層上形成第二電極獅層。繼之,移除部分第極粗 ,以形成曝露出第一窗型電極表面之 道,以及於第—x方向切割窗口中形 日^^_窗口 ’使第二電極材料層成為多個 裸路出不剌基板的第二g型電極。之後,移二 向切割窗口所裸露的該不透縣板,以在 ^The P63960018TW 26238twf.doc/n layer covers the first-window type electrode and the opaque substrate photoelectric conversion layer to form a plurality of second γ-direction dicing streets of the 4-flat 3-gas direction scribe line above the first window type electrode. Thereafter, a second electrode lion layer is formed on the layer. Then, the portion of the first pole is removed to form a track exposing the surface of the first window electrode, and the shape of the second window material is made into a plurality of bare paths in the first-to-x direction cutting window. The second g-type electrode of the substrate is not produced. After that, move the two-way cutting window to the exposed county board to

形成多個孔洞。 处乃丞攸T 在上述之透光型薄膜太陽能電池模組的製造方法 中,於移除部分絲電轉闕以形成該㈣二丫方向切割 道^•可進步於第一x方向切割窗口中形成多條第三又 方向切割窗口。 在上述^透光型薄膜太陽能電池模組的製造方法 ^第第_、第二γ方向切割道以及第一、第二、第 三X方向,割窗D是利用雷射切割方式製備。而且,上述 之透光型賴太陽能電池模組的第―電極材料層為一透明 導電,化物層’其材質例如是氧化辞、二氧化錫、氧化銦 錫或氧化銦。第-電極材料層也可以是—金屬層,其材質 例如是Ί銀、銅、鉬或其他適合之金屬或合金。光電轉 換,為-早層結構或—堆疊層結構。光電轉換層的材質例 如疋非、纟。s日㊉及其合金、硫化錢、銅銦鎵二碰、銅銦二石西、 碲化锡或有機材料。第二電極材料層為—透明導電氧化物 12 1379423 P63960018TW 26238twf.doc/n 層’ ί:質例㈣氧化鋅、二氧化錫、氧化銦錫或氧化銦 有在種透光型薄膜太陽能電池模組,直且 串聯且^方向彼此並聯的多數顆‘ ⑽#多數崎穿不透明基板之貫孔。透 ^ 池模組包括不透明基板、第一電極、第 :電;以及光電轉換層。其中,不透明基板,具= :塊二t=rr基板上,且第-電極是由多數 處具有多個第-切割窗D。第二電極配= 是由多概狀第二_極組 f月过塊狀第一⑲電極具有多個第二 I述=3,7切職處彳_應且如構成前述貫 式配i 電極與第—窗型電極是以平行位移方 式配置。另外,光電轉換層配置於第—電極 間。=轉=層是由多個窗形光電轉換材料層所組成。 透明敎陽能電池模組㈣—電極為一 透月¥電氧化_,其材f例如是氧化鋅、化 m。:電極也可以是—金屬 =二=他適合之金屬或合金。光電轉換 層結構。光電轉換層的材質例如 =非、、·。日日敎其合金、硫化錢、鋼銦鎵u姻二碼、 銦 ί外’第二電極為為-透明導電氡化 物層其材質例如疋氣化辞、二氧化錫、氧化銦錫或氡化 13 Π 79423 P63960018TW 26238twf.d〇c/n 本發明之透光型薄膜太陽能電池模組及其 法,在製作第一電極時已同時形成二方向的切割道或_ 窗口 ’因此可使得㈣備的透光㈣膜太陽能電池模々 會存在有㈣溫的雷射_餘而導致短路與 題,進而可提高製程良率與太陽能電池效率。另外^ 於^透光型_太陽能電池模組,本發明之透光型薄^ 太陽能電池模組具❹個貫穿不透縣板的貫孔 、 為透明氧㈣電極表面製歧轉形結粗 ^ 成光散射,目此可大祕以㈣透解。 ^ 明如下。 祕為St月ί上?和其他目的、特徵和優點能更明顯 .牛車乂佳貫施例,並配合所附圖式,作詳細說 【實施方式】 9為依照本發明之—實施例所繪示之透光型 溥膜太IW此電池模組的製造方法之 4至圖9的子圖(a)、(a,)八 ,丨L ”思圖。八中,圖 曰&刀別疋繪示上視示意圖,子圖⑻ 不> 口。_ί面線ΙΙ-ΙΙ之剖面示意圖。 1=、==叫)、圖9(15)、_,)與圖9(〇,本 二雷W 4膜太陽能電池模組彻是由彼此串聯的 多個電池(cell) 401所組志。、人, r 470、光電轉換層414與電池401是由第一電極 排列成陣列。列與列的多個電池:〇 ,成。這些電池401 夕调軍池401之間以X方向切割道 1379423 P63960018TW 26238twf.doc/n 422、408分隔開;行與行的多個電池4〇1之間則藉由γ方 向切割道420與Υ方向切割道406分隔開。 換言之’ X方向切割道408、422可將第一電極470 以及第二電極480分隔成數列,裸露出不透明基板4〇2。γ 方向切割道420則將第二電極480分隔開成數行,其裸露 出部分的第一電極470以及部分的不透明基板402。Υ方 向切割道406則將第一電極470分隔開成數行,裸露出不 透明基板402。並且’ X方向切割道422與Υ方向切割道 420所裸露的不透明基板402中具有多個貫穿其兩個表面 402a與402b的孔洞450。 更具體地說,透光型薄膜太陽能電池模組4〇〇包括不 透明基板402以及配置於其上方之第一電極470、光電轉 換層414與第二電極480。其中,第一電極470是直接配 置在不透明基板402上,其是由X向切割道408以及Y方 向切割道406所切割出的梳型電極412與二維排列之多數 個塊狀電極410所組成。第一電極470之材質為透明導電 氧化物薄膜或是金屬層。TCO之材質例如是氧化鋅 (ZnO)、二氧化錫(Sn〇2)、氧化銦錫(no)或氧化銦(In2〇3)。 金屬層之材質例如是鋁(A1)、銀(Ag)、鉬(Mo)、銅(Cu)或其 他適合之金屬或合金。 第二電極480是配置在第一電極470上方,其是由X 向切割道422以及Y方向切割道422切割出的梳型電極 426與二維排列之多數個塊狀電極424所組成。而且,梳 型電極412、426是以左右方式配置,而塊狀電極41〇、424 15 1379423 P63960018TW 26238twf.doc/n 是以平行位移方式配置。第二電極48〇 氧化物薄膜。TCO之材質例如是氧化鋅 銦錫(ITO)或氧化銦(ιη2〇3)。 另外,光—換層414是配置於第一電極 带 極·之間’而光電轉換層414是由二維排列之 轉換材料層所組成。光電轉換層414可A plurality of holes are formed. In the above method for manufacturing a light-transmitting thin film solar cell module, a part of the wire turns is removed to form the (four) two-way cutting path, which can be formed in the first x-direction cutting window. The third direction is the cutting window. In the above-described method for manufacturing a light-transmissive thin film solar cell module, the first and second gamma-direction dicing streets and the first, second, and third X directions, the slitting window D is prepared by a laser cutting method. Further, the first electrode material layer of the light-transmitting solar cell module is a transparent conductive material, and the material layer is made of, for example, oxidized, tin dioxide, indium tin oxide or indium oxide. The first electrode material layer may also be a metal layer made of, for example, silver, copper, molybdenum or other suitable metal or alloy. Photoelectric conversion, which is an early layer structure or a stacked layer structure. The material of the photoelectric conversion layer is 疋, 纟, 纟. s day 10 and its alloy, sulfurized money, copper indium gallium two touch, copper indium dilithisite, antimony tin or organic materials. The second electrode material layer is - transparent conductive oxide 12 1379423 P63960018TW 26238twf.doc / n layer ' ί: quality examples (four) zinc oxide, tin dioxide, indium tin oxide or indium oxide in the light-transmissive thin film solar cell module Most of the '(10)#, which are straight and connected in series and in parallel with each other, are pierced through the through holes of the opaque substrate. The transparent pool module includes an opaque substrate, a first electrode, a first electricity, and a photoelectric conversion layer. Wherein, the opaque substrate has a = 2 block on the t=rr substrate, and the first electrode has a plurality of first-cut windows D from a plurality of portions. The second electrode is configured to be a multi-matrix second _ pole group, and the first 19 electrode has a plurality of second I = 3, 7 cut positions _ _ and constitute the aforementioned compliant i-electrode The first and the window-shaped electrodes are arranged in a parallel displacement manner. Further, the photoelectric conversion layer is disposed between the first electrodes. The = turn = layer is composed of a plurality of window-shaped photoelectric conversion material layers. The transparent solar cell module (4)—the electrode is a month of electro-oxidation _, and the material f is, for example, zinc oxide or m. The electrode can also be - metal = two = the metal or alloy it is suitable for. Photoelectric conversion layer structure. The material of the photoelectric conversion layer is, for example, =, , , . The alloy of the alloy, the vulcanized money, the steel indium gallium, the indium, the second electrode is the transparent conductive telluride layer, such as helium gas, tin dioxide, indium tin oxide or antimony. 13 Π 79423 P63960018TW 26238twf.d〇c/n The light-transmissive thin film solar cell module of the present invention and the method thereof have simultaneously formed two-direction dicing streets or _windows at the time of fabricating the first electrode, thus enabling (4) The light-transmissive (four) film solar cell module will have a (four) temperature laser _ remaining and cause short circuit and problem, which can improve process yield and solar cell efficiency. In addition, the light-transmissive type solar cell module of the present invention has a through-hole that penetrates through the county plate, and is transparent to the surface of the transparent oxygen (four) electrode. Light scattering, this can be a secret to (4) through the solution. ^ See below. The secret is St. ί上? and other purposes, features and advantages can be more obvious. The ox car is better than the example, and with the accompanying drawings, the detailed description [Embodiment] 9 is drawn according to the embodiment of the present invention.透明 透光 太 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Diagram of the top view, subgraph (8) not > mouth. _ 面 面 ΙΙ ΙΙ ΙΙ ΙΙ 剖面 剖面 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 The W 4 film solar cell module is completely composed of a plurality of cells 401 connected in series with each other. The human, r 470, the photoelectric conversion layer 414 and the battery 401 are arranged in an array by the first electrodes. Columns and columns A plurality of batteries: 〇, 成. These batteries 401 between the squadrons 401 are separated by X-direction cutting lanes 1379423 P63960018TW 26238twf.doc/n 422, 408; between rows and rows of batteries 4〇1 The gamma-direction dicing streets 420 are separated from the Υ-direction dicing streets 406. In other words, the 'X-direction dicing streets 408, 422 can separate the first electrode 470 and the second electrode 480 into a series. The opaque substrate 4 〇 2 is exposed. The γ-direction scribe line 420 separates the second electrode 480 into a plurality of rows, which expose a portion of the first electrode 470 and a portion of the opaque substrate 402. The Υ-direction scribe line 406 then the first electrode The 470 is divided into rows to expose the opaque substrate 402. And the opaque substrate 402 exposed by the X-direction scribe line 422 and the Υ-direction scribe line 420 has a plurality of holes 450 extending through the two surfaces 402a and 402b thereof. More specifically The light-transmissive thin film solar cell module 4 includes an opaque substrate 402 and a first electrode 470 disposed thereon, a photoelectric conversion layer 414 and a second electrode 480. The first electrode 470 is directly disposed on the opaque substrate. 402, which is composed of a comb-shaped electrode 412 cut by the X-cutting lane 408 and the Y-direction cutting lane 406 and a plurality of block electrodes 410 arranged in two dimensions. The material of the first electrode 470 is a transparent conductive oxide. Thin film or metal layer. The material of TCO is, for example, zinc oxide (ZnO), tin dioxide (Sn〇2), indium tin oxide (no) or indium oxide (In2〇3). The material of the metal layer is, for example, aluminum (A1). ),silver( Ag), molybdenum (Mo), copper (Cu) or other suitable metal or alloy. The second electrode 480 is disposed above the first electrode 470, which is cut by the X-cutting lane 422 and the Y-direction cutting lane 422. The comb-shaped electrode 426 is composed of a plurality of block electrodes 424 arranged in two dimensions. Moreover, the comb-shaped electrodes 412 and 426 are arranged in a left-right manner, and the block electrodes 41〇, 424 15 1379423 P63960018TW 26238twf.doc/n are Parallel displacement mode configuration. The second electrode 48 is an oxide film. The material of the TCO is, for example, zinc oxide indium tin (ITO) or indium oxide (ιη2〇3). Further, the light-changing layer 414 is disposed between the first electrode strips and the photoelectric conversion layer 414 is composed of a two-dimensionally arranged conversion material layer. The photoelectric conversion layer 414 can

疊層結構。光電轉換層414的材質例如是非 金、琉化編(CdS)、銅銦鎵二碼(CuInGaSe2,CIGS)、鋼鋼 二砸(cuInSe2 ’ CIS)、締化録(CdTe)、有機材料或上述材料 堆疊之多層結構。Laminated structure. The material of the photoelectric conversion layer 414 is, for example, non-gold, ruthenium (CdS), copper indium gallium two (CuInGaSe2, CIGS), steel bismuth (cuInSe2 'CIS), cadastral (CdTe), organic material or the like. Stacked multilayer structure.

之材質為透明導電 、二氧化錫、氧化 在上述的切割道中,用來分割第一電極470的γ方向 切割道406被光電轉換層414以及第二電極48〇所覆蓋。 用來分副第二電極480的Υ方向切割道420則裸露出部分 的第一電極470以及不透明基板402。用來分割第一電極 470的X方向切割道408以及用來分割第二電極48〇的γ 方向切割道422的位置對應且裸露出不透明基板402。 特別值得注意的是,在本發明中,X方向切割道422、4〇6 與Υ方向切割道420不僅裸露出不透明基板402,而且所_ 裸露的不透明基板402中還具有多個貫穿兩個表面402a 與402b的孔洞450。 這一些孔洞440在不透明基板402的表面402a的尺 寸,與其貫穿到表面402b的尺寸可以相同如或不相同。例 如’這一些孔洞440的尺寸可以是從不透明基板402的表 面402a延伸到表面402b的逐漸變大,或逐漸變小。此外, 1379423 P63960018TW 26238twf.doc/n 不透明基板402上的孔洞44〇的圖案並無待別的限制其 在不透明基板402表面402a與402b上的圖案可以呈現各 種的形狀,如圓形、方形、矩形、三角形、多角形等,或 • 呈不規則狀。 — , 由於本實施例之透光型薄膜太陽能電池模組400具有 可曝露出不透明基板402的X方向切割道422、4〇6以及 Y方向切割道420且不透明基板4〇2中具有多個孔洞衫… φ 因此,當光線(太陽光)由不透明基板402表面402a上方的 第二電極480照射進去時,可通過χ方向切割道422與γ 方=切割道420以及不透明基板4〇2中的孔洞,而使^光 型薄膜太陽能電池模組400達到更高之透光特性。相較於 驾知透光型溥膜太陽能電池模組,本實施例之透光型薄膜 太陽能電池模組400可大為提高元件的透光率。 另一方面,如圖9(c)所示,由於第一電極會由光電轉 換層414所包覆’因此形成χ方向切割道422時,高溫的 #射切割製程並不會使的第二電極所產生的殘留而與第一 電極接觸’進而導致短路(sh〇rt)問題;或者非晶石夕光電轉 換層於高溫下在溝渠側壁產生再結晶,形成低阻值之微晶. .石夕,使得漏電流增加,進而影響製程良率(yield)與太陽電 池之效率。 以下,以圖4至圖9詳細說明本實施例之透光型薄膜 太陽能電池模組400的製造方法。 、 首先’請參照圖4(a)與圖4(b) ’提供一不透明基板 402。此不透明基板4〇2的材質例如是金屬薄板、塑膠基 17 1379423 P63960018TW 26238twf.doc/n 板、陶竞基板或其他合適之不透明材質。或其他 透明材質。接著’在不透明基板術上形成— 侧。電極材料層彻為-透明導電氧化 & 金屬層。TCO之材質例如是氧化辞(Zn〇)、)二^^The material is transparent conductive, tin dioxide, and oxidation. In the above dicing street, the γ-direction dicing street 406 for dividing the first electrode 470 is covered by the photoelectric conversion layer 414 and the second electrode 48A. The meandering scribe line 420 for dividing the second electrode 480 exposes a portion of the first electrode 470 and the opaque substrate 402. The position of the X-direction scribe line 408 for dividing the first electrode 470 and the γ-direction scribe line 422 for dividing the second electrode 48A correspond to and expose the opaque substrate 402. It is particularly noteworthy that in the present invention, the X-direction dicing streets 422, 4〇6 and the Υ-direction dicing streets 420 not only expose the opaque substrate 402, but also have a plurality of opaque substrates 402 extending through the two surfaces. Holes 450 of 402a and 402b. The dimensions of the holes 440 in the surface 402a of the opaque substrate 402 may be the same as or different from the dimensions of the surface 402b. For example, the size of the holes 440 may be gradually increased from the surface 402a of the opaque substrate 402 to the surface 402b, or may become smaller. In addition, 1379423 P63960018TW 26238twf.doc/n The pattern of the holes 44〇 on the opaque substrate 402 is not otherwise limited. The patterns on the surfaces 402a and 402b of the opaque substrate 402 can assume various shapes such as a circle, a square, and a rectangle. , triangles, polygons, etc., or • are irregular. The light transmissive thin film solar cell module 400 of the present embodiment has X-direction dicing streets 422, 4〇6 and Y-direction dicing streets 420 that expose the opaque substrate 402 and has a plurality of holes in the opaque substrate 4〇2. Swollen... φ Therefore, when light (sunlight) is irradiated from the second electrode 480 above the surface 402a of the opaque substrate 402, the holes in the χ-direction cutting path 422 and the γ-square=cutting path 420 and the opaque substrate 4〇2 can be passed. The light-emitting thin film solar cell module 400 achieves higher light transmission characteristics. Compared with the light-transmissive solar cell module, the light-transmitting thin film solar cell module 400 of the present embodiment can greatly improve the light transmittance of the device. On the other hand, as shown in FIG. 9(c), since the first electrode is covered by the photoelectric conversion layer 414' thus forming the χ-direction dicing street 422, the high-temperature #射-cutting process does not cause the second electrode. The resulting residue is in contact with the first electrode, which in turn causes a short circuit (sh〇rt) problem; or the amorphous austenite photoelectric conversion layer recrystallizes at the sidewall of the trench at a high temperature to form a low-resistance crystallite. This increases the leakage current, which in turn affects the yield of the process and the efficiency of the solar cell. Hereinafter, a method of manufacturing the light-transmitting thin film solar cell module 400 of the present embodiment will be described in detail with reference to Figs. 4 to 9 . First, please refer to Fig. 4(a) and Fig. 4(b)' to provide an opaque substrate 402. The material of the opaque substrate 4〇2 is, for example, a metal thin plate, a plastic base 17 1379423 P63960018TW 26238 twf.doc/n plate, a Tao Jing substrate or other suitable opaque material. Or other transparent material. Then 'on the opaque substrate, the side is formed. The electrode material layer is completely transparent conductive oxide & metal layer. The material of TCO is, for example, oxidized (Zn〇), two ^^

(SnCy、氧化姻錫(IT0)或氧化銦(Ιη2〇3^金屬層之材質例 如是鋁(Α1)、銀(Ag)、鉬(Mo)、銅(Cu)或其他適合之金屬或 合金。電極材料層404的形成方法例如是可利用化學氣相 沈積法(CVD method)、濺鍍法(sputteringmeth〇d)或其他合 適的方法來製備。 八 ° 當然,為了提昇電池的效率,亦可對電極材料進行粗 紋化(textured)表面處理,以減少光的反射量。粗紋化表面 處理會使造成凹凸不平的表面使光線產生散射 (scattering),減少入射光之反射,與增加入射光在光電轉 換層中之行進距離,其通常會將電極材料的表面製成V字 型溝槽、金字塔形(pyramid)結構(未繪示)或逆金字塔形。(SnCy, oxidized sulphur tin (IT0) or indium oxide (the material of the Ιη2〇3^ metal layer is, for example, aluminum (Α1), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metal or alloy. The method of forming the electrode material layer 404 can be prepared, for example, by a chemical vapor deposition method (CVD method), a sputtering method, or other suitable method. Eight degrees Of course, in order to improve the efficiency of the battery, The electrode material is subjected to a textured surface treatment to reduce the amount of light reflection. The rough grained surface treatment causes the uneven surface to scatter light, reduce the reflection of incident light, and increase the incident light. The distance traveled in the photoelectric conversion layer, which typically forms the surface of the electrode material into a V-shaped groove, a pyramid structure (not shown), or an inverse pyramid shape.

然後’請參照圖5(a)與圖5(b) ’移除部分電極材料層 404,以形成多條Y方向切割道406與相交這些γ方向切 割道406的多條X方向切割道408。其中,在僅形成γ方 向切割道406時,可將電極材料層404分隔成多個帶狀電 極材料層(未繪示)。在形成Y方向切割道406與X方向切 割道408之後,可使電極材料層404分隔成梳型電極412 與二維排列之多數個塊狀電極410,以構成電池模組的第 一電極470。承上述,Y方向切割道406與X方向切割道 408的形成方法,例如是利用雷射切割(laser scribing)製程 1379423 P6396001 ^TW 26238twf.doc/n 來移除部分電極材料層404而形成。 之後’請參照圖6(a)與圖6(b),在不透明基板402上 方形成一層光電轉換層414。此光電轉換層414會覆蓋住 . 不透明基板402、塊狀電極410與部分梳型電極412。光電 . 轉換層414可以是單層結構或堆疊層結構。光電轉換層414 的材質例如是非結晶矽及其合金、硫化鎘(Cds)、銅銦鎵二 磁(CuInGaSe2 ’ CIGS)、銅銦二硒(Qjnse2,CIS)、碲化鎘 丨(CdTe)、有機材料或上述材料堆疊之多層結構。光電轉換 層414的形成方法例如是可利用化學氣相沈積法、濺鍍法 或其他合適的方法來製備。另外,要說明的是,上述之非 結晶f合金是指,在非結晶矽中加入氫原子(H)、氟原子 (F)、氣原子(C1)、鍺原子(Ge)、氧原子(〇)、碳原子(q或氮 原子(N)等原子。若在非結晶矽中加入氫原子、氟原子、氯 j子,可以修補矽薄膜中的缺陷,而得到較佳的薄膜品質; 右在非結晶矽中加入鍺原子,則可以使矽薄膜能隙變小, 吸收較長波長的太陽光線;若在非結晶矽中加入氧原子、 石反原子、氮原子,則可以使矽薄膜能隙變大,吸收較短波 長的太陽光線。 接著,諝參照圖7(a)與圖7(b),移除部分光電轉換層 4以升>成多條Y方向切割道416。這些Y方向切割道 416相對平行¥方向切割道406且裸露出下方的塊狀電極 41〇。上述,γ方向切割道416的形成方法例如是利用雷 射切割製程移除部分光電轉換層414而形成。 田 隨後,請參照圖8(a)與圖8(b),在不透明基板4〇2上 1379423 P63960018TW 26238hvf.doc/n 方形成一層電極材料層418。此電極材料層418會 光電轉換層4M、電極與不透明基板4〇2。電極材料層 418 A 一透明導電氧化物(TCO)薄膜。TCO之材質例如^ 氧化鋅(ZnO)、二氧化錫(Sn〇2)、氧化銦錫(IT⑺或氧化= .(Ιη2〇3)。電極材料層418的形成方法例如是可利用化學氣 相沈積法、濺鍍法或其他合適的方法來製備。 、 繼之,請參照圖9(a)、圖9(b)、圖9(b,)與圖9(c),形 • 成多條y方向切割道420與相交於這些Y方向切割道420 的多條X方向切割道422。在一實施例中,γ方向切割道 420 /α著γ方向斷開電極材料層且X方向切割道 沿著X方向斷開電極材料層418,使得電極材料層418分 隔成梳型電極426與二維排列之多數個塊狀電極424,以 構成電池模組的第二電極彻。在另一實施例中,γ方向 切割道420斷開電極材料層418,而χ方向切割道422並 未斷開電極材料層418,如圖9(a,)所示,而將電極材料層 418分隔成多個境狀電極似與塊狀電極概,,以構成電 鲁池模組的第二電極48〇。換言之,χ方向切割道422並未 斷開電極材料層418,而是使得圖9(a)中的二維排列之多 ,=免狀電極424中,Υ方向上的多個並排的塊狀電極424 .還透過連接425來電性連接,而梳型電極426的梳部也 透過連接部425,連接’以分別構成圖㈣所中的塊狀電極 424,以及426,。連接部425的形狀與數量並不以圖式為 限,其可以是各種的形狀或數量,只要X方向切割道422 並未斷開電極材料層彻都是本發明涵蓋的範圍。χ方向 20 1379423 P63960018TW 26238twf.doc/n 切割道422是,移除X方向切割道4〇8中之部分電極材料 層418與部分光電轉換層414,至曝露出不透明基板4〇2 表面而形成。另外,Y方向切割道420是,藉由移除丫方 向切割道416中的部分電極材料層418,直至曝露出電極 410以及不透明基板402表面而形成的。 在又一實施例中,如圖9(b,)所示,Y方向切割道42〇 還可以是,移除部分電極材料層418與光電轉換層414, 直至曝露出電極410表面,而形成於相對γ方向切割道q6 位置偏移處。同樣地,γ方向切割道42〇與又方向切割道 422可以利用雷射切割製程,移除部分電極材料層418與 部分光電轉換層414而形成。 之後’在X方向切割道422以及γ方向切割道42〇所 裸露的不透明基板402中形成多個孔洞45〇。這一些孔洞 450的圖案並無特別的限制,在不透明基板4〇2表面4〇仏 與402b上的圖案可以呈現各種的形狀,如圓形、方形、矩 形、多角形、溝渠狀等,或呈不規則狀。此外,從不透明 • 基板402的表面40仏貫穿到表面402b的這一些孔洞450 的尺寸可以相同或不相同。例如可以是從不透明基板4〇2 . 的表面402a延伸到表面402b的這一些孔洞45〇的尺寸逐 漸變大或變^形成孔洞45〇的方法例如是使用雷射切割 法’利用其高溫將基板移除’亦可以使用侧方式移除基 板0 承上述,在進行上面的各個步驟之後,即可完成本實 鈀例之透光型薄膜太陽能電池模組4〇〇。在使用時,光線(太 21 1379423 P63960018TW 26238twf.doc/n 陽光)460是從第二電極480照射進來’部分的光線經由各 電池401的光電轉換層414吸收,產生光電轉換作用,以 產生電壓;而另一部份的光線460則穿過X方向切割道422 以及Y方向切割道420 ’再通過不透明基板402的孔洞 450,到達不透明基板402表面402b處。 此外’本實施例之透光型薄膜太陽能電池模組4〇〇還 可利用其他方式來製備。承上述,在光電轉換層414中形 成Y方向切割道416(如圖7(a)與圖7(b)所示)時,可一併形 成垂直Y方向切割道416的多條X方向切割道(未繪示), 以使光電轉換層414成為多數個塊狀光電轉換層(未繪 示)。接下來,後續的步驟與上述實施例相同,於此不贅述。 本發明除了上述實施例之外,尚具有其他的實施型 態。 圖10至圖15為依照本發明之另一實施例所繪示之透 光型薄膜太陽能電池模組的製造方法之流程示意圖。其 :,圖10至圖15的子圖(a)是繪示上視示意圖,子圖(b) 疋繪不沿剖面線1_1’之剖面示意圖,子圖(c)是繪示沿剖面 線ΙΙ-Π之剖面示意圖。在圖至圖15中,與圖4至圖9 相同的構件省略可能重複的說明。 首先,請參照圖15(a)、圖15(b)與圖15(c),本實施例 之透光型薄膜太陽能電池模組5〇〇具有在χ方向彼此串聯 且在Υ方向彼此並聯的多顆電池501。而且,在這些電池 5〇L之間具有具有曝露出不透明基板502之多條Χ方向切 割囪口 524。當光線(太陽光)560由不透明基板502上方照 22 1379423 P63960018TW 26238twf. doc/n 射進去時,可通過X方向切割窗口 524,而使透光型薄膜 太陽能電池模組500達到透光的目的。 透光型薄膜太1%能電池模組5〇〇包括不透明基板5〇2 以及配置於其上方之第—電極57G、第二電極與光電 . 轉換層512。其中,不透明基板502具有多個孔洞550。第 一電極570是直接配置在不透明基板5〇2上,其是由平行 排列之具有多個切割窗508的多塊窗形電極510所組成。 第一電極570為一透明導電氧化物薄膜或是金屬層。TC〇 之材質例如是氧化辞(ZnO)、二氧化錫(Sn〇2)、氧化銦錫 (ιτο)或氧化銦(in2〇3)。金屬層之材質例如是鋁(A1)、銀 (Ag)、鉬(Mo)、銅(Cu)或其他適合之金屬或合金。第二電 極580是配置在第一電極570上方,其是由平行排列之具 有多個切割窗524的多塊窗形電極526所組成。而且,窗 型電極510、526是以平行位移方式配置。第二電極58〇 為一透明導電氧化物薄膜。TCO之材質例如是氧化鋅 (ZnO)、二氧化錫(Sn〇2)、氧化銦錫(no)或氧化銦(In2〇3)。 | 另外’光電轉換層512是配置於第一電極570與第二電極 580之間,而光電轉換層512是由平行排列之具有多個切 割窗516的多個窗形光電轉換材料層所組成。光電轉換層 512可以是單層结構或堆疊層結構。光電轉換層512的材 ‘質例如是非結晶矽及其合金、硫化鎘(CdS)、銅銦鎵二硒 (CuInGaSe2,CIGS)、銅銦二硒(CuInSe2,CIS)、碲化鎘 (CdTe)、有機材料或上述材料堆疊之多層結構。切割窗516 與切割窗508以及切割窗524均對應於不透明基板502的 23 1379423 P63960018TW 26238twf.doc/n 多個孔洞550 ’因此,可構成多個貫孔555。貫孔555的形 狀並無特別的限制,其可以是各種的形狀,如圓形、方形、 矩形、多角形,或不規則狀等。 這一些礼洞550在不透明基板502的表面502a的尺 寸’與其貫穿到表面502b的尺寸,可以相同如或不相同。 例如,這一些孔洞550的尺寸可以是從不透明基板5〇2的 表面502a延伸到表面502b的逐漸變大,或逐漸變小。此 外,不透明基板502上的孔洞550的圖案並無特別的限制, 其在不透明基板502表面502a與502b上的圖案可以呈現 各種的形狀,如圓形、方形、矩形、多角形等,或呈不規 則狀。 由於’本實施例之透光型薄膜太陽能電池模組5〇〇具 有多個貫孔555,其可使電池模組增加透光率。因此,相 較於習知透光型薄膜太陽能電池模組,本實施例之透光型 薄膜太陽能電池模組可大為提高元件的透光率。另外,如 圖l5(c)所示’由於第一電極,會由光電轉換層si2所包 覆’因此可避免在形成X方向切割窗口 524時,高溫的雷 射切割製程會使第二電極58〇產生金屬顆粒或炫融而與第 一電極570接觸造成短路與漏電流問題,進而影響製程良 率與太陽能電池之效率。 以下,以圖1〇至圖15詳細說明本實施例之透光型薄 膜太陽能電池模組500的製造方法。 首先,請參照圖1〇⑻與圖1〇⑻,提供一不透明基板 此不透月基板5〇2的材質例如是金屬薄板、塑膠基 24 丄 丄Then, a portion of the electrode material layer 404 is removed by referring to Figs. 5(a) and 5(b) to form a plurality of Y-direction dicing streets 406 and a plurality of X-direction dicing streets 408 intersecting the γ-direction dicing streets 406. Wherein, when only the gamma-direction dicing street 406 is formed, the electrode material layer 404 can be divided into a plurality of strip-shaped electrode material layers (not shown). After forming the Y-direction dicing street 406 and the X-direction dicing street 408, the electrode material layer 404 can be separated into a comb-shaped electrode 412 and a plurality of two-dimensionally arranged bulk electrodes 410 to constitute a first electrode 470 of the battery module. In the above, the Y-direction dicing street 406 and the X-direction dicing street 408 are formed by, for example, removing a portion of the electrode material layer 404 by a laser scribing process 1379423 P6396001 TW 26238twf.doc/n. Thereafter, referring to Figs. 6(a) and 6(b), a photoelectric conversion layer 414 is formed over the opaque substrate 402. The photoelectric conversion layer 414 covers the opaque substrate 402, the bulk electrode 410, and the partial comb electrode 412. Photoelectricity The conversion layer 414 may be a single layer structure or a stacked layer structure. The material of the photoelectric conversion layer 414 is, for example, amorphous iridium and its alloy, cadmium sulfide (Cds), copper indium gallium (CuInGaSe2 'CIGS), copper indium diselenide (Qjnse 2, CIS), cadmium telluride (CdTe), organic A multilayer structure in which the material or the above materials are stacked. The method of forming the photoelectric conversion layer 414 can be prepared, for example, by chemical vapor deposition, sputtering, or other suitable methods. In addition, the above-mentioned amorphous f alloy means that a hydrogen atom (H), a fluorine atom (F), a gas atom (C1), a germanium atom (Ge), and an oxygen atom are added to the amorphous germanium. ), an atom such as a carbon atom (q or a nitrogen atom (N). If a hydrogen atom, a fluorine atom, or a chlorine ion is added to the amorphous ruthenium, the defect in the ruthenium film can be repaired to obtain a better film quality; The addition of germanium atoms to the amorphous germanium can reduce the energy gap of the germanium film and absorb the longer-wavelength solar light. If an oxygen atom, a stone anti-atom, or a nitrogen atom is added to the amorphous germanium, the germanium film gap can be made. Increasingly, the shorter-wavelength solar rays are absorbed. Next, referring to Figs. 7(a) and 7(b), a portion of the photoelectric conversion layer 4 is removed to cut into a plurality of Y-direction scribe lines 416. These Y directions The dicing street 416 cuts the track 406 with respect to the parallel direction of the ike direction and exposes the underlying bulk electrode 41. The above-described method of forming the gamma directional scribe line 416 is formed, for example, by removing a portion of the photoelectric conversion layer 414 by a laser cutting process. Please refer to FIG. 8(a) and FIG. 8(b), on the opaque substrate 4〇2, 1379432 P639 A layer of electrode material 418 is formed on the surface of the electrode material layer 418. The electrode material layer 418 is a photoelectric conversion layer 4M, an electrode and an opaque substrate 4 〇 2. The electrode material layer 418 A is a transparent conductive oxide (TCO) film. The material is, for example, zinc oxide (ZnO), tin dioxide (Sn〇2), indium tin oxide (IT (7) or oxidation = (Ιη2〇3). The electrode material layer 418 is formed by, for example, chemical vapor deposition, Sputtering or other suitable method to prepare. Then, refer to Figure 9 (a), Figure 9 (b), Figure 9 (b) and Figure 9 (c), shape • Cut in multiple y directions The track 420 intersects a plurality of X-direction dicing streets 422 intersecting the Y-direction dicing streets 420. In one embodiment, the gamma-direction dicing streets 420 / a break the electrode material layer in the gamma direction and the X-direction scribe lines along the X direction The electrode material layer 418 is broken such that the electrode material layer 418 is divided into a comb electrode 426 and a plurality of block electrodes 424 arranged in two dimensions to form a second electrode of the battery module. In another embodiment, the gamma direction The scribe line 420 breaks the electrode material layer 418, and the χ direction scribe line 422 does not break the electrode material layer 418, such as As shown in Fig. 9(a), the electrode material layer 418 is divided into a plurality of tangential electrodes and a block electrode to form a second electrode 48A of the electric cell module. In other words, the χ direction scribe line 422 does not break the electrode material layer 418, but causes the two-dimensional arrangement in FIG. 9(a) to be large, and in the free electrode 424, a plurality of side-by-side block electrodes 424 in the x-direction are also connected through the connection 425. The combing connection is made, and the comb portion of the comb-shaped electrode 426 is also connected through the connecting portion 425 to form the block electrodes 424 and 426 in Fig. 4, respectively. The shape and number of the connecting portions 425 are not limited to the drawings, and may be of various shapes or numbers as long as the X-direction dicing streets 422 are not broken with the electrode material layer. Χdirection 20 1379423 P63960018TW 26238twf.doc/n The scribe line 422 is formed by removing a portion of the electrode material layer 418 and the portion of the photoelectric conversion layer 414 in the X-direction scribe line 4〇8 to expose the surface of the opaque substrate 4〇2. In addition, the Y-direction scribe line 420 is formed by removing a portion of the electrode material layer 418 in the 切割-direction scribe line 416 until the surface of the electrode 410 and the opaque substrate 402 are exposed. In still another embodiment, as shown in FIG. 9(b), the Y-direction dicing street 42 may further remove part of the electrode material layer 418 and the photoelectric conversion layer 414 until the surface of the electrode 410 is exposed, and is formed on The position of the track q6 is offset relative to the gamma direction. Similarly, the gamma directional scribe line 42 〇 and the directional scribe line 422 can be formed by removing a portion of the electrode material layer 418 and a portion of the photoelectric conversion layer 414 using a laser cutting process. Thereafter, a plurality of holes 45 are formed in the opaque substrate 402 exposed in the X-direction dicing street 422 and the γ-direction dicing street 42. The pattern of the holes 450 is not particularly limited, and the patterns on the surfaces 4〇仏 and 402b of the opaque substrate 4〇2 may take various shapes such as a circle, a square, a rectangle, a polygon, a ditch, etc., or Irregular. Moreover, the dimensions of the holes 450 that are opaque from the surface 40 of the substrate 402 to the surface 402b may be the same or different. For example, the method may be such that the size of the holes 45 延伸 extending from the surface 402a of the opaque substrate 4 〇 2 to the surface 402 b gradually becomes larger or smaller, or the hole 45 形成 is formed, for example, by using a laser cutting method The removal of the substrate can also be carried out using a side-by-side method. After performing the above steps, the light-transmissive thin film solar cell module 4 of the present palladium example can be completed. In use, light (Tai 21 1379423 P63960018TW 26238twf.doc/n sunlight) 460 is a portion of the light that is incident from the second electrode 480 through the photoelectric conversion layer 414 of each battery 401 to generate a photoelectric conversion effect to generate a voltage; The other portion of the light 460 passes through the X-direction scribe line 422 and the Y-direction scribe line 420' through the aperture 450 of the opaque substrate 402 to the surface 402b of the opaque substrate 402. Further, the light-transmitting thin film solar cell module 4 of the present embodiment can be produced by other means. According to the above, when the Y-direction dicing streets 416 are formed in the photoelectric conversion layer 414 (as shown in FIGS. 7(a) and 7(b)), a plurality of X-direction dicing streets of the vertical Y-direction dicing streets 416 can be collectively formed. (not shown), so that the photoelectric conversion layer 414 becomes a plurality of bulk photoelectric conversion layers (not shown). Next, the subsequent steps are the same as those of the above embodiment, and are not described herein. The present invention has other embodiments in addition to the above embodiments. 10 to FIG. 15 are schematic flow charts showing a method of fabricating a light transmissive thin film solar cell module according to another embodiment of the present invention. The sub-figure (a) of FIG. 10 to FIG. 15 is a schematic diagram of a top view, the sub-graph (b) is not a cross-sectional view taken along the section line 1_1′, and the sub-picture (c) is a section along the section line. - Schematic diagram of the section. In the drawings to FIG. 15, the same members as those of FIGS. 4 to 9 are omitted from the description. First, referring to FIG. 15(a), FIG. 15(b) and FIG. 15(c), the light-transmitting thin film solar cell module 5 of the present embodiment has a series connection in the x direction and a parallel connection in the x direction. A plurality of batteries 501. Further, between the batteries 5 〇 L, there are a plurality of Χ direction cutting sheds 524 having exposed opaque substrates 502. When the light (sunlight) 560 is incident from the opaque substrate 502, the light-transmissive thin film solar cell module 500 can be made to transmit light by cutting the window 524 in the X direction. The light-transmissive film too 1% energy battery module 5 includes an opaque substrate 5〇2 and a first electrode 57G disposed thereon, a second electrode, and a photoelectric conversion layer 512. The opaque substrate 502 has a plurality of holes 550. The first electrode 570 is disposed directly on the opaque substrate 5〇2, which is composed of a plurality of window electrodes 510 having a plurality of cutting windows 508 arranged in parallel. The first electrode 570 is a transparent conductive oxide film or a metal layer. The material of TC〇 is, for example, oxidized (ZnO), tin dioxide (Sn〇2), indium tin oxide (ITO) or indium oxide (in2〇3). The material of the metal layer is, for example, aluminum (A1), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metal or alloy. The second electrode 580 is disposed above the first electrode 570 and is comprised of a plurality of window electrodes 526 having a plurality of cutting windows 524 arranged in parallel. Further, the window electrodes 510, 526 are arranged in a parallel displacement manner. The second electrode 58 is a transparent conductive oxide film. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (Sn〇2), indium tin oxide (no) or indium oxide (In2〇3). Further, the photoelectric conversion layer 512 is disposed between the first electrode 570 and the second electrode 580, and the photoelectric conversion layer 512 is composed of a plurality of window-shaped photoelectric conversion material layers having a plurality of cutting windows 516 arranged in parallel. The photoelectric conversion layer 512 may be a single layer structure or a stacked layer structure. The material of the photoelectric conversion layer 512 is, for example, amorphous iridium and its alloy, cadmium sulfide (CdS), copper indium gallium diselenide (CuInGaSe2, CIGS), copper indium diselenium (CuInSe2, CIS), cadmium telluride (CdTe), A multilayer structure in which an organic material or the above materials are stacked. The cutting window 516 and the cutting window 508 and the cutting window 524 each correspond to the opaque substrate 502 23 1379423 P63960018TW 26238 twf.doc/n plurality of holes 550 ' Thus, a plurality of through holes 555 can be formed. The shape of the through hole 555 is not particularly limited and may be various shapes such as a circle, a square, a rectangle, a polygon, or an irregular shape. The size 550 of the plurality of holes 550 may be the same as or different from the size of the surface 502a of the opaque substrate 502 and the size of the surface 502b. For example, the holes 550 may be sized to gradually increase from the surface 502a of the opaque substrate 5〇2 to the surface 502b, or may become smaller. In addition, the pattern of the holes 550 on the opaque substrate 502 is not particularly limited, and the patterns on the surfaces 502a and 502b of the opaque substrate 502 may take various shapes such as a circle, a square, a rectangle, a polygon, etc., or Regular form. Since the light-transmitting thin film solar cell module 5 of the present embodiment has a plurality of through holes 555, it can increase the light transmittance of the battery module. Therefore, the light transmissive thin film solar cell module of the present embodiment can greatly improve the light transmittance of the device compared to the conventional light transmissive thin film solar cell module. In addition, as shown in FIG. 15(c), 'because the first electrode is covered by the photoelectric conversion layer si2', it is avoided that the high-temperature laser cutting process causes the second electrode 58 to be formed when the X-direction cutting window 524 is formed. The ruthenium generates metal particles or glaze and contacts the first electrode 570 to cause short circuit and leakage current problems, thereby affecting the process yield and the efficiency of the solar cell. Hereinafter, a method of manufacturing the light-transmitting type thin film solar cell module 500 of the present embodiment will be described in detail with reference to Figs. First, please refer to FIG. 1(8) and FIG. 1(8) to provide an opaque substrate. The material of the moon-impermeable substrate 5〇2 is, for example, a metal thin plate or a plastic base.

P639600J 8TW 26238twf.d〇c/n = 其=適之不透明材質。接著,在不透明 材料層5G4。電極材料層504為― ί Zn〇nt_或是金屬層°TC〇之㈣例如是氧化 一氧化錫(Sn02)、氧化銦錫(IT〇)或 ㈣)。金屬層之材質例如是銘()二銦 銅(Cu)或其他適合之金屬或合金。 ^ 〇j 然後,請參照圖11⑷、圖11(b)與圖u⑷,在電極材 料層504中’形成可將電極材料層5()4分隔成多個帶狀電 極材料層的多條Y方向切割道鄕,以及呈二維排列之多 方向切割窗口 5〇8β γ方向切割道獨與乂方向切割 窗口 50!可將電極材料層綱成為多塊窗型電極51〇。 接著,請參照圖12(a)、圖12(b)與圖12(c),在不透明 基板502上方形成一層光電轉換層512。此光電轉換層5以 會覆蓋住不透明基板502與窗型電極51〇〇 之後,請參照圖13(a)、圖13(b)與圖13(c),移除部分 光電轉換層512,以形成多條γ方向切割道$ μ與多條X 方向切割窗口 516。其中,多條γ方向切割道514是形成 於窗型電極510上方,且相對平行γ方向切割道5〇6 ; X 方向切割窗口 516是形成於X方向切割窗 口 508中,且呈 二維排列。 在此步驟製程中’亦可以移除部分光電轉換層512, 而僅形成多條Y方向切割道514,但未形成圖13(a)、圖 13(b)與圖13(c)之X方向切割窗口 516。上述實施例之圖 形未繪示於此,因其為熟習此領域技術人員可知。 25 1379423 P63960018TW 26238twf.d〇c/n 繼之 确> 圖M(a)、圖Μ(ΐ5)與圖M⑹,在不透明 土板502上方形成-層電極材料層52Q。此電極材料層汹 會覆蓋住光電轉換層512、f型電極與不透明基板 5〇2。電極材料層520為—透料電氧化物(Tc〇)薄膜。了⑺ 之材質例如是氧化鋅(Zn〇)、二氧化擊〇2)、氧化銦錫 (叮〇)或氧化銦(in2〇3)。P639600J 8TW 26238twf.d〇c/n = its = suitable opaque material. Next, in the opaque material layer 5G4. The electrode material layer 504 is - Zn Zn nt _ or the metal layer TC 〇 (4) is, for example, oxidized tin oxide (SnO 2 ), indium tin oxide (IT 〇 ) or (d)). The material of the metal layer is, for example, indium (Cu) or other suitable metal or alloy. ^ 〇j Then, referring to FIG. 11 (4), FIG. 11 (b) and FIG. u (4), a plurality of Y directions capable of separating the electrode material layer 5 () 4 into a plurality of strip electrode material layers are formed in the electrode material layer 504. The cutting ball 鄕, and the multi-directional cutting window in a two-dimensional arrangement, the 〇8β γ-direction dicing road and the 乂-direction cutting window 50! The electrode material layer can be formed into a plurality of window electrodes 51 〇. Next, referring to Fig. 12 (a), Fig. 12 (b) and Fig. 12 (c), a photoelectric conversion layer 512 is formed over the opaque substrate 502. After the photoelectric conversion layer 5 covers the opaque substrate 502 and the window electrode 51, please refer to FIGS. 13(a), 13(b) and 13(c) to remove a portion of the photoelectric conversion layer 512. A plurality of γ-direction dicing streets $μ and a plurality of X-direction cutting windows 516 are formed. Wherein, the plurality of γ-direction dicing streets 514 are formed above the window-shaped electrodes 510 and cut in the parallel γ-directions 5〇6; the X-direction cutting windows 516 are formed in the X-direction cutting windows 508 and arranged in two dimensions. In this step process, part of the photoelectric conversion layer 512 can also be removed, and only a plurality of Y-direction dicing streets 514 are formed, but the X directions of FIGS. 13(a), 13(b) and 13(c) are not formed. The window 516 is cut. The drawings of the above embodiments are not shown here, as they are known to those skilled in the art. 25 1379423 P63960018TW 26238twf.d〇c/n Following the OK > Figure M(a), Figure Μ(ΐ5) and Figure M(6), a layer of electrode material layer 52Q is formed over the opaque earth plate 502. This electrode material layer 覆盖 covers the photoelectric conversion layer 512, the f-type electrode and the opaque substrate 5〇2. The electrode material layer 520 is a dielectric oxide (Tc) film. The material of (7) is, for example, zinc oxide (Zn 〇), ruthenium dioxide (2), indium tin oxide (yttrium) or indium oxide (in 2 〇 3).

隨後,請參照圖15(a)、圖15(b)與圖15⑷,形成多條 Y方向切割道522與多條X方向切割窗口 524,以使電極 材料層520成為多個窗型電極526。其中,γ方向切割道 522是藉由移除部分電極材料層52〇與部分光電轉換層 512 ’直至曝露出窗型電極51〇表面而形成。χ方向切割窗 口 524疋藉由移除X方向切割窗口 516中的部分電極材料 層52〇,裸露出下方的不透明基板5〇2而形成。Subsequently, referring to Figs. 15(a), 15(b) and 15(4), a plurality of Y-direction dicing streets 522 and a plurality of X-direction dicing windows 524 are formed so that the electrode material layer 520 becomes a plurality of window electrodes 526. Here, the γ-direction dicing street 522 is formed by removing a portion of the electrode material layer 52 and a portion of the photoelectric conversion layer 512' until the surface of the window electrode 51 is exposed. The χ direction cutting window 524 形成 is formed by removing a portion of the electrode material layer 52 中 in the X-direction dicing window 516, exposing the underlying opaque substrate 5 〇 2 .

承上述,若上一步驟為僅形成多條γ方向切割道 514,則在此步驟製程中X方向切割窗口 524需以移除XIn the above, if the previous step is to form only a plurality of γ-direction dicing streets 514, the X-direction cutting window 524 needs to be removed in this step.

方向切割窗口 516中的部分電極材料層52〇與部分光電轉 換層512而形成。 接著,移除X方向切割窗口 516所裸露的不透明基板 5〇2,以在其尹形成貫穿兩個表面5〇2a、5〇2b的孔洞55〇。 不透明基板502的多個孔洞550,與切割窗516與切割窗 5〇8以及切割窗524對應,而構成多個貫孔555。形成孔洞 55〇的方法例如是使用雷射切割法,利用其高溫將基板移 除,亦可以使用蝕刻方式移除基板。 在進行上面的各個步驟之後,即可完成本實施例之具 26 1379423 P63960018TW 26238twf.doc/n 有多個貫孔555的透光型薄膜太陽能電池模組5〇{^ 综上所述,本發明之透光型薄膜太陽能電池模組及其 製造方法,在製作第一電極時已同時形成二方向的切巧^ 或切割窗口,因此可使得所製備的透光型薄膜太陽能電池 •模組不會存在有因高溫的雷射切割製程而導致短路與漏 流的問題,而影響製程良率與太陽能電池效率。另^,相 較於^透光型薄膜太陽能電池模組,本發明之透光型薄 • 膜太?能電池模組具有可曝露出不透明基板的開口,可大 為提高電池模組的透光率。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限J本發明,任何熟習此技藝者’在不脫離本發明之 和犯圍内,當可作些許之更動與潤飾,因此本發明之 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1,繪示習知-種薄膜太陽能電池模組的示意圖。 圖2,繪示習知一種太陽能電池模組的示意圖。 圖3疋繪示習知一種太陽能電池元件的示意圖。 膜太:依照本發明之實施例麟示之透光型薄 膜太1%此電池杈組的製造方法之流程示意圖。其中,圖4 至圖8的?圖⑷精示上視示意圖,子晴是綠示沿剖面 = 1-1之口 面不意圖;圖9的子圖⑷與⑹是綠示兩種不 貝施例的上視示意圖,子圖(b)和子圖(b,)是沿剖面線 所緣不之兩種不同實施例的剖面示意圖’子圖⑷是綠示儿 27 1379423 P63960018TW 26238twf.doc/n 剖面線ΙΙ-ΙΓ之剖面示意圖。 圖10至圖15為依照本發明之另一實施例所繪示之透 光型薄膜太陽能電池模組的製造方法之流程示意圖。其 ‘ 中,圖10至圖15的子圖(a)是繪示上視示意圖,子圖(b) - 是繪示沿剖面線Ι-Γ之剖面示意圖;圖11至圖15的子圖(C) 是繪示沿剖面線ΙΙ-ΙΓ之剖面示意圖。 【主要元件符號說明】 ® 1、114、402、502 :不透明基板 3、 118 :透明導電層 4、 156 :光電轉換層 5、 158:金屬電極 6 :孔洞 8 :光阻 110 :太陽能電池模組 122 :背面電極 • 140:溝渠 150 :薄膜太陽能電池模組 152 :玻璃基板 • 154 :第一電極 • 400、500 :透光型薄膜太陽能電池模組 401、501 :電池 404、418、504、520 :電極材料層 406、416、420、506、514、522 : Y 方向切割道 408、422 : X方向切割道 28 1379423 P63960018TW 26238twf.doc/n 410、424、424’ 、426’ :塊狀電極 412、426 :梳型電極 414、512 :光電轉換層 425 :連接部 450、550 :孔洞 460、560 :光線 470、570 :第一電極 480、580 :第二電極 510、526 :窗型電極 508、516、524 :切割窗口 555 :貫孔A portion of the electrode material layer 52 in the direction cutting window 516 is formed with a portion of the photoelectric conversion layer 512. Next, the opaque substrate 5〇2 exposed in the X-direction cutting window 516 is removed to form a hole 55〇 through the two surfaces 5〇2a, 5〇2b in its Yin. The plurality of holes 550 of the opaque substrate 502 correspond to the cutting window 516 and the cutting window 5〇8 and the cutting window 524 to form a plurality of through holes 555. The method of forming the holes 55 is, for example, using a laser cutting method to remove the substrate by its high temperature, and the substrate can also be removed by etching. After performing the above various steps, the light-transmissive thin film solar cell module having the plurality of through holes 555 of the present invention can be completed. The present invention is described above. The light-transmissive thin film solar cell module and the manufacturing method thereof have two-way chopping or cutting windows simultaneously formed when the first electrode is fabricated, so that the prepared light-transmitting thin film solar cell module can not be There are problems with short-circuit and leakage due to high-temperature laser cutting processes, which affect process yield and solar cell efficiency. In addition, compared with the light-transmissive thin film solar cell module, the light-transmissive thin film-free solar cell module of the present invention has an opening for exposing an opaque substrate, which can greatly improve the light transmission of the battery module. rate. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and anyone skilled in the art can make some modifications and refinements without departing from the scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional thin film solar cell module. 2 is a schematic view showing a conventional solar cell module. FIG. 3A is a schematic view showing a conventional solar cell element. Membrane: A flow chart of a method for manufacturing a battery pack according to an embodiment of the present invention. Among them, Figure 4 to Figure 8? Figure (4) shows the schematic diagram of the upper view, the sub-clear is the green surface along the section = 1-1, but the sub-pictures (4) and (6) of Figure 9 are the top view of the two types of non-Bei Shi, the sub-graph ( b) and subgraph (b,) are schematic cross-sectional views of two different embodiments along the section line. The subgraph (4) is a schematic diagram of the cross section of the green display 27 1379423 P63960018TW 26238twf.doc/n section line ΙΓ-ΙΓ. 10 to FIG. 15 are schematic flow charts showing a method of fabricating a light transmissive thin film solar cell module according to another embodiment of the present invention. In the ', the sub-figure (a) of FIG. 10 to FIG. 15 is a schematic diagram of the top view, the sub-figure (b) - is a schematic cross-sectional view along the section line Ι-Γ; the sub-picture of FIG. 11 to FIG. 15 ( C) is a schematic diagram showing the section along the section line ΙΙ-ΙΓ. [Main component symbol description] ® 1, 114, 402, 502: opaque substrate 3, 118: transparent conductive layer 4, 156: photoelectric conversion layer 5, 158: metal electrode 6: hole 8: photoresist 110: solar cell module 122: Back electrode • 140: Ditch 150: Thin film solar cell module 152: Glass substrate • 154: First electrode • 400, 500: Transmissive thin film solar cell module 401, 501: Battery 404, 418, 504, 520 : electrode material layers 406, 416, 420, 506, 514, 522: Y-direction dicing streets 408, 422: X-direction dicing streets 28 1379423 P63960018TW 26238twf.doc/n 410, 424, 424', 426': bulk electrodes 412 426: comb-shaped electrodes 414, 512: photoelectric conversion layer 425: connecting portions 450, 550: holes 460, 560: light rays 470, 570: first electrodes 480, 580: second electrodes 510, 526: window electrodes 508, 516, 524: cutting window 555: through hole

2929

Claims (1)

13794231379423 101-3-6 •申請專鄉l ,..丄·一種,型薄膜太陽能電池模組的製造 在一不透縣板上形H電崎糾.括·ft部分該第—電極材料層,以形成可將該第一 電極 材料層分喊乡數娜狀電極材觸的多 ’以及相交_㈣—γ方向切割道的多數 =向切割道’使該第—電極材料層分隔成-第電 極與二維排列之多數個第一塊狀電極; 形成-光電轉換層,覆蓋該不透明基板、該 極與部分該第一梳型電極; 一罘冤 移除部分該光電轉換層,以於該些第一電極上方 相對平行該些第-γ方向切割道的多數條第二¥方向切割 道; 。 形成一第二電極材料層,覆蓋該光電轉換層、該些第 一電極與該不透明基板; 一101-3-6 • Application for a hometown l,..丄·A type of thin-film solar cell module is fabricated on a plate that is not permeable to the plate. Forming a plurality of '' and a plurality of intersecting_(four)-γ-direction dicing lines of the first electrode material layer, and dividing the first electrode material layer into - the first electrode a plurality of first block electrodes arranged in two dimensions; forming a photoelectric conversion layer covering the opaque substrate, the pole and a portion of the first comb electrode; and removing a portion of the photoelectric conversion layer for the a plurality of second directional cutting passages above the electrode that are parallel to the γ-direction directional cutting lanes; Forming a second electrode material layer covering the photoelectric conversion layer, the first electrodes and the opaque substrate; 移除部分該第二電極材料層與部分該光電轉換層,以 形成曝露出該些第一塊狀電極表面以及該不透明基板表面 之多數條第三Y方向切割道,以及於該些第一 X方向切割 道中形成多數條第二X方向切割道,裸露出該不透明基 板’使該第二電極材料層分隔成一第二梳型電極與二維排 列之多數個第二塊狀電極;以及 移除部分該些第二X方向切割道以及該些第三γ方向 切割道所裸露的該不透明基板,以在該不透明基板中形成 多數個孔洞,該些孔洞的側壁暴露出該不透明基板,其中 30 101-3-5 ‘ϋίϊ圍的该第一電極的側壁以及上表_該光電轉 wi·如I清專利範圍第1項所述之透光型薄膜太陽能電 該法’其中在移除部分該光電轉換層以形成 = 向切割道時,更包括於該些第—X方向切割 t ,成f數條第三X方向切割道’該些第三X方向切割 k/、忒些第一 X方向切割道的位置對應且重疊。 ㈣f如申清專利範圍第2項所述之透光型薄膜太陽能電 私、、’且的製造方法’其中該些第三乂方向切割道是利用雷 射切割方式製備。 曰 《如巾清專利範圍第i項所述之透光型薄膜 2組的製造方法,其中該些第…第二、第三丫方向^ 及。m、第二x方向切割道是利用雷射切割方 式製備。 …5.如申請專利範圍第1項所述之透光型薄膜太陽能電 ,板組的製造方法,其中該第—電極材料層為—透明導電 氧化物層或是金屬層。 …6.如中請專利範圍第5項所述之透光型薄膜太陽能電 f模組的製,方法’其中該透明導電氧化物層的材質包括 氧化辞、二氧化錫、氧化銦錫或氧化銦;金屬層的材質包 括鋁、銀、鋼、鉬或其合金。 …7.如申請專概11第1項所述之透光型薄膜太陽能電 池輪組的製造方法’其巾該光電轉換層為-單層結構或-堆疊層結構。 31 101-3-6 101-3-6 •如申請專利範固第 池模組的製造方法, 石<7 »廿人ΛRemoving a portion of the second electrode material layer and a portion of the photoelectric conversion layer to form a plurality of third Y-direction dicing streets exposing the first bulk electrode surface and the opaque substrate surface, and the first X Forming a plurality of second X-direction dicing streets in the directional cutting track, exposing the opaque substrate 'separating the second electrode material layer into a second comb-shaped electrode and a plurality of second block electrodes arranged in two dimensions; and removing the portion The second X-direction dicing street and the opaque substrate exposed by the third γ-direction dicing streets to form a plurality of holes in the opaque substrate, the sidewalls of the holes exposing the opaque substrate, wherein 30 101- 3-5 'ϋ ϊ 的 该 该 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该When the layer is formed to the scribe line, the method further includes cutting the t in the X-th direction, and forming a number of the third X-direction dicing streets. The third X-direction cuttings k/, the first X-direction dicing streets Bit Corresponds to and overlaps. (4) The method of manufacturing a light-transmissive thin-film solar cell according to claim 2, wherein the third-direction directional cutting track is prepared by a laser cutting method.曰 The manufacturing method of the light-transmitting film group 2 according to item ii of the patent application scope, wherein the second and third directions are the same. m. The second x-direction scribe line is prepared by laser cutting. The method for manufacturing a light-transmissive thin-film solar electric device according to claim 1, wherein the first electrode material layer is a transparent conductive oxide layer or a metal layer. 6. The method of manufacturing a light-transmitting thin film solar electric f module according to the fifth aspect of the patent, wherein the material of the transparent conductive oxide layer comprises oxidized, tin dioxide, indium tin oxide or oxidation Indium; the material of the metal layer includes aluminum, silver, steel, molybdenum or alloys thereof. The manufacturing method of the light-transmitting type thin film solar battery wheel set according to the above-mentioned item 11 of the first aspect, wherein the photoelectric conversion layer is a single layer structure or a stacked layer structure. 31 101-3-6 101-3-6 • If you are applying for a patented Fangu module, the stone method <7 »廿人Λ 固弟1項所述之透光型薄膜太陽能電 其中該光電轉換層的材質包括非結晶 鋼銦二砸、碲化錫或 9.如申請專利範固第1 項所述之透光型薄膜太陽能電The light-transmissive thin-film solar power according to the above-mentioned item, wherein the material of the photoelectric conversion layer comprises amorphous steel indium bismuth, antimony telluride or 9. light-transmissive thin film solar energy as described in claim 1 Electricity 其中在該不透明基板中形成該些孔 洞的方法包括雷射切割法或蝕刻法。 — 12. 如_請專利範圍第i項所述之透光型薄膜太陽能 電池模組的製造方法,其中該第二梳型電極之多數個梳部 之間以及Y方向並排之該些第二塊狀電極之間分別以多數 個連接部連接。 13. —種透光型薄膜太陽能電池模組,其具有彼此串 聯的多數顆電池配置於一不透明基板上,在該些電池之間 具有多數個貫穿該不透明基板之孔洞\該模組包括: 該不透明基板,具有該些孔洞’該些孔洞的侧壁暴露 出該不透明基板; 一第一電極,配置在5亥不透明基板上,且該第一電極 是由一第一梳型電極與二維排列之多數個第一塊狀電極組 32 101-3-6 成; 第二電極 θ, % 名置在該第一電極上方,且該第二電極 型電極與二維排列之多數塊狀第二電極組 部八电極與該些塊狀第二極彼此之間裸露出 。刀nr塊狀電極、部分該不透明基板、或該些孔洞, 切要該第二梳型電極與該第—梳型電極是以左右方 里·第一塊狀電極疋以平行位移方式配 置,以及A method in which the holes are formed in the opaque substrate includes a laser cutting method or an etching method. The method for manufacturing a light-transmitting thin film solar cell module according to the invention, wherein the second comb-shaped electrode has a plurality of comb portions and the second blocks juxtaposed in the Y direction The electrodes are connected by a plurality of connecting portions. 13. A light transmissive thin film solar cell module having a plurality of cells connected in series with each other disposed on an opaque substrate, wherein a plurality of holes extending through the opaque substrate between the cells are included: An opaque substrate having the holes, wherein the sidewalls of the holes expose the opaque substrate; a first electrode disposed on the 5 opaque substrate, and the first electrode is arranged by a first comb electrode and two-dimensionally a plurality of first block electrode groups 32 101-3-6; a second electrode θ, % is placed above the first electrode, and the second electrode type electrode and a plurality of block-shaped second electrodes arranged in two dimensions The eight electrodes of the group and the second poles of the block are exposed to each other. a knives nr bulk electrode, a portion of the opaque substrate, or the holes, wherein the second comb-shaped electrode and the first comb-shaped electrode are arranged in a parallel displacement manner in a left-right direction and a first block-shaped electrode ,, and f光電轉換層’配置於該第-電極與該第二電極之 間’該光電轉換層是由二維排列之多數個光電轉換材料層 所組成,其中 同周圍的該第—電極的側壁以及上表面被該光 電轉換層所覆蓋’且該些孔湖圍_光電轉換層的側壁 以及上表面被該第二電極所覆蓋。 14. 如申#專利範圍第13項所述之透光型薄臈太陽能f photoelectric conversion layer 'disposed between the first electrode and the second electrode'. The photoelectric conversion layer is composed of a plurality of photoelectric conversion material layers arranged in two dimensions, wherein the sidewalls of the first electrode and the surrounding The surface is covered by the photoelectric conversion layer and the side walls and the upper surface of the hole lake-photoelectric conversion layer are covered by the second electrode. 14. Translucent thin solar energy as described in item 13 of the patent scope of Shen # 電池模組’其中該第_電極為—透明導電氧化物層或一金 屬層。 15. 如申請專概圍第14項所述之透光型薄膜太陽能 電池模組’ ^中該透明導電氧化物層的材f包括氧化辞、 二氧化錫、氧化銦錫或氧化銦;該金屬層的材質包括鋁、 銀、銅、飽或其合金。 16. 如申請翻範圍第13項職之透光型薄膜太陽能 電池模組’其巾該光電轉換層為—單層結構或—堆疊声結 構。 33 1379423 101-3-6 17. 如申請專利範圍第13項所述之透光型薄膜太陽能 電池模組’其中該光電轉換層的材質包括非結晶矽及其合 金、硫化鎘、銅銦鎵二硒、銅銦二硒、碲化鎘或有機材料。 18. 如申請專利範圍第13項所述之透光型薄膜太陽能 電池模组,其中該第二電極為一透明導電氧化物層。 19. 如申請專利範圍第18項所述之透光型薄膜太陽能 電池模組,其中透明導電氧化物層的材質包括氧化鋅、2 氧化錫、氧化銦錫或氧化銦。 一The battery module 'where the _th electrode is a transparent conductive oxide layer or a metal layer. 15. The material f of the transparent conductive oxide layer in the light-transmissive thin film solar cell module described in the above-mentioned item 14 includes the oxidized word, tin dioxide, indium tin oxide or indium oxide; The material of the layer includes aluminum, silver, copper, saturating or alloys thereof. 16. For a light-transmissive thin-film solar cell module of the 13th position, the photoelectric conversion layer is a single-layer structure or a stacked acoustic structure. The light transmissive thin film solar cell module of the invention of claim 13 wherein the material of the photoelectric conversion layer comprises amorphous bismuth and its alloy, cadmium sulfide, copper indium gallium Selenium, copper indium diselenide, cadmium telluride or organic materials. 18. The light transmissive thin film solar cell module of claim 13, wherein the second electrode is a transparent conductive oxide layer. 19. The light transmissive thin film solar cell module according to claim 18, wherein the transparent conductive oxide layer is made of zinc oxide, tin oxide, indium tin oxide or indium oxide. One 20. 如申請專利範第18項所述之透光型薄膜太陽能 電池模組,其中該第二梳型電極之多數個梳部之間以及^ 方向並排之該些第二塊狀電極之間分取多數個連接部連 接0 括 21.—種透光型薄膜太陽能電池模組的製造方法, 包 在不透明基板上形成一第一電極村料層;20. The light-transmitting thin film solar cell module according to claim 18, wherein a plurality of comb portions of the second comb-shaped electrode and the second block electrodes are juxtaposed between the second comb-shaped electrodes A method for manufacturing a light-transmissive thin film solar cell module, comprising a plurality of connection portions, wherein a first electrode village layer is formed on the opaque substrate; 部分該第—電極材料層,以形成可將該第一電極 材料層h隔成多數辦狀電極材料層的多數條第— ^道^及該些第—Y方向切割道且呈二維排列之多數 切割窗口’使該第-電極材料層成為多數個 以及====些㈠娜的側壁 移除部分料換層,以㈣ 形成相對平行該些第—方向切割道的多數二 34 1379423 101-3-6 切割道; 於該光電轉換層上形成—第二電極材料層;以及 ί二ϊ極材料層與部分該光電轉換層,以 割道,以及於該些第一 X方向切弟一方向 ,^ ^ 乃向切割自口中形成多數個裸靄 出該不透明基板的第二Χ方向切割窗口,使該第二電極材 料層成為多數個第二窗型電極;以及a portion of the first electrode material layer is formed to form a plurality of strips of the first electrode material layer h which are separated into a plurality of electrode material layers, and the first-Y direction cutting channels are arranged in two dimensions. The majority of the cutting window 'make the first electrode material layer a plurality and the ==== some (a) of the side wall removal part of the material exchange layer, to (4) form a plurality of relatively parallel to the first direction of the directional cutting road 34 1479423 101 a -3-6 dicing street; forming a second electrode material layer on the photoelectric conversion layer; and a λ2 ϊ 材料 material layer and a portion of the photoelectric conversion layer, culling, and cutting the first X direction Direction, ^ ^ is formed by cutting a plurality of second tangential cutting windows of the opaque substrate from the mouth, so that the second electrode material layer becomes a plurality of second window electrodes; 移除該些第二X方向蝴窗口所裸露_不透明基 板,以在該不透明基板中形成多數個孔洞,該些孔洞的侧 壁暴露出該不透明基板’且該些孔洞周圍的該第一電極的 側壁以及上表面被该光電轉換層所覆蓋,且該些孔洞周圍 的該光電轉換層的側壁以及上表面被該第二電極所覆蓋。Removing the exposed opaque substrate of the second X-direction butterfly window to form a plurality of holes in the opaque substrate, the sidewalls of the holes exposing the opaque substrate and the first electrode around the holes The sidewall and the upper surface are covered by the photoelectric conversion layer, and sidewalls and an upper surface of the photoelectric conversion layer around the holes are covered by the second electrode. 22·如申請專利範圍第21項所述之透光型薄膜太陽能 電池模組的製造方法,其中在移除部分該光電轉換層以形 成該些第二Υ方向切割道時,更包括:於該些第一 χ方向 切割窗口中形成多數條第三X方向切割窗口,該些第三χ 方向切割窗口與該些第一 X方向切割道的位置對應且重 23·如申請專利範圍第21項所述之透光型薄膜太陽能 電池模組的製造方法,其中該些第一、第二、第三γ方向 切割道以及該些第一、第二、第三X方向切割窗口是利用 雷射切割方式製備。 24·如申請專利範圍第21項所述之透光型薄膜太陽能 電池模組的製造方法,其中該第一電極材料層為一透明導 35 101-3-6 電氧化物層或一金屬層。 25. 如申請專利範圍帛μ項所述之透光型薄膜太陽 =模_製造方法’其中該透明導電氧化物層的材質包 斯氧化鋅、—氧化錫、氧化銦錫或氧化銦;該金屬層的材 貝包括銘、銀、銅、或其合金。 26. 如申請專利範圍帛21項所述之透光㈣膜太陽能 電池模組的製造方法,其巾該光電轉換層為—單層結構或 一堆疊層結構。 27. 如中請專魏圍第21項·之透光㈣膜太陽能 ^也模組的製造方法,其中該光電轉換層的材質包括非結 曰a矽及其合金、硫化鎘、銅銦鎵二硒、銅銦二硒、碲化鎘 或有機材料。 2,.如_請專鄕圍第21項所狀透光型薄膜太陽能 “池模組的製造方法’其中該第二電極材料層為一透明導 電氧化物層。 29.如申请專利範圍第28項所述之透光型薄膜太陽能 板組的製造方法·’其中該透明導電氧化物層的材質包 括氧化鋅、三氧化錫、氧化銦錫或氧化麵。 、扣.如申請專利範圍第21項所述之透光型薄膜太陽能 造方法’其中在該不透明基板中形成該些孔 洞的方法包括雷射切割法或蝕刻法。 / 31. —種透光型薄膜太陽能電池模組,其具有在χ方 向彼此串‘且在γ方向彼此並聯的多數顆電池,且在該些 電池之間具有多數個貫穿—不透明基板之貫孔 ,該模組包 36 1379423 101-3-6 括: 露出==:具有多數個孔洞,該些孔洞的側壁 曰-第-電極,配置在該不透明基板上,且該第一電極 疋由多數個錄第-窗形電極組成,該些塊 極在對應於該些孔洞處具有多數個第一切割窗口;H θ 士 極,配置在該第—電極上方,J該第二電極The method for manufacturing a light-transmitting thin film solar cell module according to claim 21, wherein when the portion of the photoelectric conversion layer is removed to form the second meandering scribe lines, the method further comprises: a plurality of third X-direction cutting windows are formed in the first χ direction cutting windows, and the third 方向 direction cutting windows correspond to positions of the first X-direction dicing streets and are heavy. 23, as claimed in claim 21 The manufacturing method of the light-transmitting thin film solar cell module, wherein the first, second, and third γ-direction dicing streets and the first, second, and third X-direction cutting windows are laser cutting preparation. The method of manufacturing a light-transmitting thin film solar cell module according to claim 21, wherein the first electrode material layer is a transparent conductive layer 35 101-3-6 an oxide layer or a metal layer. 25. The light-transmissive film according to the scope of the patent application, wherein the transparent conductive oxide layer is made of zinc oxide, tin oxide, indium tin oxide or indium oxide; The layers of the material include inscriptions, silver, copper, or alloys thereof. 26. The method for fabricating a light-transmitting (tetra) film solar cell module according to claim 21, wherein the photoelectric conversion layer is a single layer structure or a stacked layer structure. 27. For example, please refer to the manufacturing method of the light-transmissive (four) film solar energy module of Weiwei. The material of the photoelectric conversion layer includes non-crusted a矽 and its alloy, cadmium sulfide and copper indium gallium. Selenium, copper indium diselenide, cadmium telluride or organic materials. 2,. For example, please refer to the method for manufacturing a transparent thin film solar energy "pool module" of the 21st item, wherein the second electrode material layer is a transparent conductive oxide layer. 29. The method for manufacturing a light-transmitting thin-film solar panel according to the invention, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin trioxide, indium tin oxide or an oxidized surface. The light transmissive thin film solar energy manufacturing method includes a method of forming the holes in the opaque substrate, including a laser cutting method or an etching method. 31. A light transmissive thin film solar cell module having a plurality of cells that are in series with each other and are connected in parallel with each other in the gamma direction, and have a plurality of through holes of the through-opaque substrate between the cells, the module package 36 1379423 101-3-6 includes: exposure ==: a plurality of holes, the sidewall 第-electrode of the holes are disposed on the opaque substrate, and the first electrode 组成 is composed of a plurality of recorded window-shaped electrodes corresponding to the holes Have A first plurality of cutting window; H θ persons electrode, disposed in the first - upper electrodes, J the second electrode 疋由夕數轉狀第二窗形電極組成,該些塊狀第二窗形 極具有多數個第二切割窗口,其與該些㈣與該些第 割窗口相對應且共同構成該些貫孔,其巾 與該第:窗型電極是以平行位移方式配置;以及d電極 光電轉換層,配置於該第一電極與該第二電極之 該光輯換層是由乡數個絲光電轉換材料層 成,其中 該些貫孔周圍的該第一電極的側壁以及上表面被該光The second window-shaped electrode has a plurality of second window-shaped electrodes, and the plurality of second-shaped window-shaped electrodes have a plurality of second cutting windows corresponding to the (four) and the first cutting windows, and jointly form the through-holes The towel and the window-type electrode are arranged in a parallel displacement manner; and the d-electrode photoelectric conversion layer is disposed on the first electrode and the second electrode, and the light-interchange layer is a plurality of wire photoelectric conversion materials. Laying, wherein the side walls and the upper surface of the first electrode around the through holes are covered by the light 暴 電轉換層所覆蓋’且該些貫孔關的該光電轉換層的側壁 以及上表面被該第二電極所覆蓋。 如U專概圍第31項所狀透光型薄膜太陽能 ^莫组’其中該第—電極為—透明導電氧化物層或一金 屬層。 33·如申請專利範圍第η項所述之透光型薄膜太陽能 ,模、’且’其巾该翻導電氧化物層的材質包括氧化辞、 二乳化錫、氧化銦锡魏㈣;該金屬層的材質包括紹、 銀、鋼、鉬或其合金。 37 101-3-6 101-3-6 電 構 34.如申請專利範圍第31項所述之透光型薄膜太陽能 池模組,其中該光電轉換層為一單層結構或一堆疊層結 带# if .如申請專利範圍第31項所述之透光型薄膜太陽能 莫組,其中該光電轉換層的材質包括非結晶矽及其合 、*、硫化鎘、銅銦鎵二硒、銅銦二硒、碲化鎘或有機材料。 雷如申料利範圍第31項所述之透光型薄膜太陽能 模組,其中該第二電極為一透明導電氧化物層。 ^7.如申請專利範圍第%項所述之透光型薄膜太陽能 電,模組’其中該透明導電氧化物制材f包括氧化鋅、 一氧化錫、氡化銦錫或氧化銦。The side wall and the upper surface of the photoelectric conversion layer which are covered by the storm conversion layer and covered by the through holes are covered by the second electrode. For example, in the case of U, the light-transmissive thin-film solar cell of the above-mentioned item 31 is in which the first electrode is a transparent conductive oxide layer or a metal layer. 33. The light-transmissive thin film solar energy according to claim n, wherein the material of the turned-on conductive oxide layer comprises an oxidized word, a second emulsified tin, and an indium tin oxide (IV); Materials include Shao, silver, steel, molybdenum or alloys. The light transmissive thin film solar cell module according to claim 31, wherein the photoelectric conversion layer is a single layer structure or a stacked layer The invention relates to the light-transmissive thin-film solar energy group described in claim 31, wherein the material of the photoelectric conversion layer comprises amorphous ruthenium and its combination, *, cadmium sulfide, copper indium gallium diselenide, copper indium two Selenium, cadmium telluride or organic materials. The light-transmissive thin film solar module of claim 31, wherein the second electrode is a transparent conductive oxide layer. [7] The light-transmitting type thin film solar energy according to the invention of claim 100, wherein the transparent conductive oxide material f comprises zinc oxide, tin oxide, indium tin oxide or indium oxide. 3838
TW96149686A 2007-12-24 2007-12-24 Thin film solar cell module of see-through type and method of fabricating the same TWI379423B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149686A TWI379423B (en) 2007-12-24 2007-12-24 Thin film solar cell module of see-through type and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149686A TWI379423B (en) 2007-12-24 2007-12-24 Thin film solar cell module of see-through type and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW200929561A TW200929561A (en) 2009-07-01
TWI379423B true TWI379423B (en) 2012-12-11

Family

ID=44864534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149686A TWI379423B (en) 2007-12-24 2007-12-24 Thin film solar cell module of see-through type and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI379423B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130118569A1 (en) * 2011-11-14 2013-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming thin film solar cell with buffer-free fabrication process
US9634176B2 (en) * 2013-05-29 2017-04-25 Kaneka Corporation Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
US9401438B2 (en) 2013-11-13 2016-07-26 Industrial Technology Research Institute Solar cell module and solar cell thereof
CN104638040A (en) * 2013-11-13 2015-05-20 财团法人工业技术研究院 solar battery pack

Also Published As

Publication number Publication date
TW200929561A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
TWI330891B (en) Thin film solar cell module of see-through type
US7982127B2 (en) Thin film solar cell module of see-through type
KR101028971B1 (en) Intergrated Thin-Film Solar Cell and Manufacturing method thereof
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
KR101070199B1 (en) Thin film type Solar Cell and Method for manufacturing the same
WO2011001735A1 (en) Thin-film solar battery and method for producing the same
KR20090068110A (en) Thin film type solar cell and method for manufacturing the same
CN102668120A (en) Solar photovoltaic device and a production method for the same
KR101053790B1 (en) Solar cell and manufacturing method thereof
KR20100021045A (en) Thin film type solar cell and method for manufacturing the same
TWI379423B (en) Thin film solar cell module of see-through type and method of fabricating the same
JP2013537364A (en) Photovoltaic power generation apparatus and manufacturing method thereof
AU2011260301A1 (en) Photovoltaic component for use under concentrated solar flux
JP2003124481A (en) Solar battery
TW201724538A (en) Thin film type solar cell and method of manufacturing the same
KR20110015998A (en) Solar cell and method for manufacturing the same
KR101081251B1 (en) Solar cell and method of fabricating the same
KR20110001795A (en) Solar cell and method of fabricating the same
KR20110037678A (en) Thin film type solar cell module and manufacturing method thereof
JPH1126795A (en) Manufacture of integrated thin film solar cell
CN104254926B (en) Photovoltaic apparatus
KR20130115463A (en) Thin film solar cell module
CN101499438B (en) Translucent thin-film solar cell module and manufacturing method thereof
KR20120136982A (en) Method for manufacturing solar cell and apparatus for manufacturing solar cell
JP6004946B2 (en) Solar cell and solar cell module