TWI378024B - - Google Patents

Download PDF

Info

Publication number
TWI378024B
TWI378024B TW97147598A TW97147598A TWI378024B TW I378024 B TWI378024 B TW I378024B TW 97147598 A TW97147598 A TW 97147598A TW 97147598 A TW97147598 A TW 97147598A TW I378024 B TWI378024 B TW I378024B
Authority
TW
Taiwan
Prior art keywords
film
biaxially stretched
moldable
equation
biaxially
Prior art date
Application number
TW97147598A
Other languages
Chinese (zh)
Other versions
TW201022016A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW97147598A priority Critical patent/TW201022016A/en
Publication of TW201022016A publication Critical patent/TW201022016A/en
Application granted granted Critical
Publication of TWI378024B publication Critical patent/TWI378024B/zh

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

1378024 九、發明說明: 【發明所屬之技術領域】 並制系有關於一種可成型之雙軸延伸聚酿薄膜及 方ϋ指—種在熱成型製程後具有優良成型性 之雙軸延伸聚酯薄膜及其製造方法。 ' 【先前技術】 聚醋薄膜(PQlyester Film)係為一種優良的塑腰薄 版’在應用上可作為電腦周邊材料,如鍵盤、面板保護膜、 =背光膜組之電子絕緣材料等用途,並適合用於電腦磁 f荨磁性基材;另—方面聚g旨薄膜更可應用於食品包裳、 鍍金屬薄膜、電氣絕緣材、文具或其他多種民生及工業用 途_ 〇 一般而言’聚S旨薄膜具有非常優秀的材料特性,例 如丄其伸張力強及耐衝擊力優異、具有高溶點,可應用於 較高的溫度範圍’故聚0旨薄膜可適用於保護材料或基板材 料的範疇。再者,聚酯薄膜的透明度高、富光澤,且其表 面光滑而可大量應用於標籤、貼合或印刷等用途;聚酿薄 膜更有良好对壓特性’可用為絕緣材料,如電線被覆、絕 緣膠帶、馬達變壓器或電容器等元件;尤其聚醋薄膜不溶 於有機溶劑,具有非常好的耐酸及耐油特性。 在.1953年’雙軸向拉伸聚酯薄膜的工業化生產被研 究開發且成功的應用在各種領域。雙向拉伸聚酯薄膜 (Biaxial oriented p〇lyester nim,B〇pET)具有優良 6 1378024 的物理和化學特性,在電子、電器、磁記錄、包裝、製版 印刷和感光材群方面均具有相當廣泛㈣途。、 薄膜目前成為各種高性能應用的主 要匕裝材料,更兩階的產品也已廣泛的 (_如於背光馳的增亮光學膜基材、偏光板用^^ 級保護膜與離賴、觸控面板的ΙΤ0基材等等;然而習知 2雙轴延伸聚酯薄膜由於其應用上皆要求極佳的尺 I定:Α = ΪΓ。。熱處理3°分鐘後熱收縮率要小於1%, Τ0基材更要求小於〇.3%,因此在延伸製程上通常合將^ 酉旨溥膜延伸至極限後再作高於2〇〇。〇的熱處理,使二· =伸聚S旨溥關減縮性降至最小,但如此雙軸延伸製程 旨薄膜其再延伸性極差所以成型性不佳,且其^有 :二=ryrevive)的缺點。由於目前聚醋薄膜用 ' amt程必縣進行油墨印刷後啊烘烤至少 〜道製程’·為了使原先設計圖案保持完整性,其雙轴延 機械軸方向⑽與橫轴方向⑽的熱收 Λ 太大’但目前所生產的聚醋薄膜熱收縮 ^差,、太大造成最終成型態樣有相當明顯 罝,故導致成㈣程的品質無法提^ 〃 外人=古本發明人有感上述缺失之可改善,提出一種設 汁S里且有致改善上述缺失之本發明。 【發明内容】 本發明之主要目的,在於提供一種可成型之雙抽延伸 7 1378024 聚酯薄膜及且费袢士 佳的成型-提升成型製薄膜具有較 軸延伸糊膜之製::法本驟種可成型之雙 供一未延伸之聚合物f ^驟.步驟一:提 薄膜在機械轴方向=之聚合物 軸延伸薄膜;步驟三··將步驟二 二率,形成單 向(TD)横延伸—第二預定倍率, 申賴,橫轴方 在橫向延伸方向形成—弓^又由延伸薄膜,·且 (bcmngregi〇n)小於 成弓开4 伸薄膜進行-熱處理步驟,而文MD=:在 的熱收縮率差小於3.0%,且再延伸性大於 化 之雙軸延伸聚酯薄膜。 ;.σ可成型 、去,以下有益的效果:本發明提出之製造方 藓此^1—紅外線加熱器分布於橫幅寬方向; =在延伸U生—弓形的溫度分佈使得抑制橫向 =的】形,lngreglon),進而提高薄膜的物性 二、,寺別疋本發明為用於模具成型的加工製程;其需 要在成型前印刷上所設計的圖案,此印刷至少為㈠道製 2 ’為了使印刷上去的圖案在多道供烤後仍能保持圖案的 完整性’因此該雙轴延伸聚g旨薄膜的熱縮均—性格外嚴 謹’即在機械軸方向(MD)與橫軸方向(TD)必須具有相 近的熱縮性,以大幅提升整體品質穩定性。 為使能更進一步瞭解本發明之特徵及技術内容,請參 8 ^/8024 閱以下有關本發明之詳細說明與附 供參考與說明用,並非用來對本發明加圖式僅提 【實施方式】 睛參考第-圖,本發明係提供 ,薄膜的製造方法,該製造方法所製造==延伸 來酉旨缚膜具有相當優良的成型性, 廉=由延伸 I;::均勻’亦__在熱二:= 包非常適合於熱成型等製程。上述之製造方法 步驟一:提供一未延伸之聚合物薄膜。 2物薄膜可為經由縮聚反應所得到的原料藉由ς =融;擠出及鎮片等步驟加以製成。然而二 同的單體及共聚成分進行聚合反應以製造聚 口物原料,例如將聚氧化乙烯對二苯 ^poimhyieneterephthaiate)與至少—共聚成分而混 二成的聚合物原料’而上述的共聚成分係選自酸類,如間 笨一曱酸或已二酸’·醋類,如萘基醋;醇類,如二乙 烯乙二醇、聚乙烯乙二醇等;又如苯二甲酸二甲醋(謝) 或對苯二甲酸(PTA)和卜3一丙二醇(1,3一_聚合而 得的聚合物,但上述組成僅為說明之用,並非用以限制本 發明。換句話說,本發明所提出的製造方法可適用於各種 不同的聚合物薄膜’並將其製成具有高成型性的雙轴延伸 聚酯薄膜。 9 1378024 步驟二:將該未延伸之聚合物薄膜在機械軸方向 (^achine direction,MD)縱延伸第一預定倍率,以形 成單轴延㈣膜。在此步料係將上狀聚合㈣膜進^ 機械軸方向(MD)的延伸,亦即為平行於薄膜行進方向的 延伸,其中該第一預定倍率係介於2 5至4 〇倍之間。 _ 步驟三:將步驟二之單軸延伸薄臈在橫軸方向 (transverse direction,TD)橫延伸第二預定倍率,形 •巧軸延伸薄膜。此步驟中即是將已形成的單軸延伸薄膜 在橫軸方向上進行拉伸,亦即為垂直於薄膜行進方向的延 伸其中上述之第二預定倍率係介於3. 〇至5. 〇倍之間, -且延伸區末端設Ή卜線加熱器,以在橫幅寬方向形成一 •弓形的溫度分布狀態,使該薄膜之幅寬中心區與兩末端區 的溫度差於。5至5(TC;即兩末端區之溫度高於中心區之溫 度為5至50 C,藉此可以抑制並控制在橫軸方向進行拉伸 時所產生的弓形區(bowlngregl〇n),以使所生產的 鲁延伸聚醋缚膜具有相當優良的均一物性;而在步驟二及步 驟三完成之後,即可形成雙轴向延伸的聚醋薄膜。y . 接著步騾四:將該雙軸延伸聚酯薄膜進行一埶處理牛 =。此熱處理步驟係提供高溫18〇至24〇t ;熱處理時間 至10秒’讓上述的雙袖延伸聚醋薄膜產生結晶化的結 構,^除薄膜的内應力以減小薄膜的熱收縮率進而提高並 尺寸安定性。 ° /、 然而,在步驟二之後(即將聚合物薄膜在MD方向上 延伸之後),或步驟四之後(即將聚合物薄膜進行雙向轴 1378024 延伸之後)更進—步包 adhesion),該步驟係將含1步驟(加—丨丨此coating 佈於該薄膜上,藉由橫向延伸機的水溶液塗料塗 的目的在於改善雙軸延伸度小於lum。此-步驟 如表面處理所使用的:::=佈:的接著性,例 伸聚酯薄膜的加工性質。 、,夜進而提咼雙軸延 高度= = = 後,本發明可以得到-種具有 成么特_雙軸延伸聚酉旨薄膜,其特徵在於: ;&,斤1V玄雙袖延伸聚醋薄膜在兩個方向上的執縮性相各 接近,使得該雙轴延伸聚醋薄膜在 型步驟: 個方向上 I、換句說,當該雙軸延伸聚酯薄膜在射屮点刑 ,,在機械财向與橫軸方向具有相當接近成Γ 外,該雙軸延伸聚醋薄膜具有U倍以上的再延伸性 此即可大幅提高該雙軸延伸聚醋薄膜的可成型性質。該雔 軸延伸聚酉旨缚膜在全幅寬方向的折射率差於"^至^ 之間,如此可減少後續塗佈硬度層所產生的干涉彩色纹, „進-步之量測後’該聚酯薄膜之薄膜厚度方 射率(Nz)大於!.50 ;雙軸配向度因子⑽1378024 IX. Description of the invention: [Technical field to which the invention pertains] A biaxially stretched polyester film having a formability of a biaxially stretched polystyrene film and a square finger which has excellent formability after a thermoforming process And its manufacturing method. [Prior Art] PQlyester Film is an excellent plastic waist thin plate which can be used as computer peripheral materials such as keyboard, panel protective film, electronic insulating material for backlight film group, etc. It is suitable for computer magnetic f荨 magnetic substrate; the other aspect is more suitable for food packaging, metallized film, electrical insulation, stationery or other various people's live and industrial applications _ 〇 generally speaking The film has excellent material properties, such as excellent tensile strength and impact resistance, high melting point, and can be applied to a higher temperature range. Therefore, the film can be applied to the protection material or substrate material. . Furthermore, the polyester film has high transparency and luster, and its surface is smooth and can be used in a large number of applications such as labeling, lamination or printing; the poly-dyed film has better pressure-compression characteristics, which can be used as an insulating material, such as wire coating, Insulating tape, motor transformer or capacitor components; especially polyester film is insoluble in organic solvents, has very good acid and oil resistance. In 1953, the industrial production of biaxially stretched polyester film was researched and developed and successfully applied in various fields. Biaxial oriented p〇lyester nim (B〇pET) has excellent physical and chemical properties of 6 1378024, and is widely used in electronics, electrical appliances, magnetic recording, packaging, plate making and photosensitive materials. way. Films have become the main armor materials for various high-performance applications, and more two-stage products have been widely used (such as brightening optical film substrates for backlighting, and ^^ protective films for polarizing plates. The ΙΤ0 substrate of the control panel, etc.; however, the conventional 2 biaxially stretched polyester film requires an excellent ruler for its application: Α = ΪΓ. The heat shrinkage rate after heat treatment is less than 1% after 3 minutes. The Τ0 substrate is more required to be less than 〇.3%, so in the extension process, it is usually extended to the limit and then higher than 2 〇〇. The heat treatment of 〇 二 = 伸 伸 溥 溥The shrinkage reduction is minimized, but such a biaxially stretched process has the disadvantage that the film has a very poor re-extension property, so that the moldability is poor, and it has: two = ryrevive. Since the current polyester film is printed with 'amt Chengbu County, ink is baked at least ~ process". In order to maintain the original design pattern integrity, the biaxial extension of the mechanical axis direction (10) and the horizontal axis direction (10) heat shrinkage Too big', but the polystyrene film produced at present has a poor heat shrinkage, which is too large, resulting in a fairly obvious flaw in the final shape. Therefore, the quality of the (four) process cannot be improved. 〃 Outsiders = ancient inventors feel the above-mentioned deficiency It can be improved to propose a method of setting the juice S and improving the above-mentioned deficiency. SUMMARY OF THE INVENTION The main object of the present invention is to provide a moldable double-extraction extension 7 1378024 polyester film and a gentle-molded shape-lifting film having a relatively axially extending paste film:: A moldable double-supply-unextended polymer is obtained. Step 1: Lifting the film in the direction of the mechanical axis = the polymer axis extending the film; Step 3··Step 2, forming a unidirectional (TD) transverse Extending—the second predetermined magnification, sufficiency, the horizontal axis is formed in the lateral extension direction—the bow is further extended by the film, and (bcmngregi〇n) is smaller than the bowing and stretching film-heat treatment step, and the text MD=: The biaxially stretched polyester film having a difference in heat shrinkage ratio of less than 3.0% and greater reproducibility. ; σ can be shaped, go, the following beneficial effects: the manufacturing method proposed by the present invention is that the infrared heater is distributed in the width direction of the banner; = the temperature distribution in the extended U-arch is such that the lateral direction is suppressed , lngreglon), and further improve the physical properties of the film. Second, the temple is the processing process for mold forming; it needs to print the designed pattern before molding, the printing is at least (1) made 2' in order to make printing The pattern that is up still maintains the integrity of the pattern after multiple passes. 'Therefore, the biaxially extending polyg is the heat shrinkage of the film - exceptionally rigorous' in the machine axis direction (MD) and the horizontal axis direction (TD) Must have similar heat shrinkage to significantly improve overall quality stability. In order to further understand the features and technical contents of the present invention, reference should be made to the following description of the present invention and the accompanying drawings and description, The present invention provides a method for producing a film, which is manufactured by the method of manufacture, which has a relatively good formability, is inexpensive, is extended by I, and is uniformly "also __ Heat 2: = package is very suitable for processes such as thermoforming. The above manufacturing method Step 1: Provide an unstretched polymer film. The film of the second substance can be prepared by a step of extrusion, sintering, and the like, which are obtained by a polycondensation reaction. However, the same monomer and copolymerization component are subjected to polymerization to produce a raw material of a mouthstock, for example, a polyethylene terephthalate (poimhyieneterephthaiate) and at least a copolymerized component and a mixture of the polymer raw materials, and the above-mentioned copolymerization component is It is selected from the group consisting of acids, such as stupid acid or adipic acid, vinegars, such as naphthyl vinegar, alcohols, such as diethylene glycol, polyethylene glycol, etc.; a polymer obtained by polymerizing terephthalic acid (PTA) and terpene propylene glycol (1,3-polymer), but the above composition is for illustrative purposes only and is not intended to limit the invention. In other words, the invention The proposed manufacturing method can be applied to a variety of different polymer films' and made into a biaxially stretched polyester film having high formability. 9 1378024 Step 2: The unstretched polymer film is oriented in the mechanical axis direction ( ^achine direction, MD) longitudinally extending the first predetermined magnification to form a uniaxially elongated (four) film. In this step, the upper polymerization (4) film is extended in the machine axis direction (MD), that is, parallel to the film. Extension of direction, where the first The predetermined magnification is between 25 and 4 times. _ Step 3: The uniaxially extending thinner of the second step is transversely extended by a second predetermined ratio in the transverse direction (TD), and the shape is extended. 〇至5. 〇 。 5 5 已 已 已 单 已 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Between the times, and the end of the extension zone is provided with a wire heater to form an arcuate temperature distribution in the width direction of the banner, so that the temperature difference between the central portion of the film and the two end regions is different. 5 to 5 (TC; that is, the temperature of the both end regions is higher than the central region by 5 to 50 C, whereby the arcuate region (bowlngregl〇n) generated when stretching in the horizontal axis direction can be suppressed and controlled, so that the production is performed. The Lu extended polyester lining film has a fairly good uniform physical property; after the completion of the second step and the third step, a biaxially stretched polyester film can be formed. y. Next step 4: the biaxially stretched polyester The film is treated one time. The heat treatment step is Provide high temperature 18〇 to 24〇t; heat treatment time to 10 seconds' to make the above-mentioned double-sleeve stretched polyester film to crystallize the structure, remove the internal stress of the film to reduce the thermal shrinkage of the film and improve the dimensional stability ° /, However, after step two (i.e., after the polymer film is extended in the MD direction), or after step four (that is, after the polymer film is extended by the bidirectional axis 1378024), the step is further A one-step process (addition of this coating cloth to the film, by aqueous coating of a transverse stretcher) is intended to improve the biaxial elongation to less than lum. This-step is used for the surface treatment: ::: = cloth: the adhesion, for example, the processing properties of the polyester film. After the night and then the double-axis extension height ===, the present invention can obtain a film having a singularity-biaxially-extending concentrating film, which is characterized by: &, 1V Xuan double sleeve extension vinegar The shrinkage phase of the film in both directions is close to each other, so that the biaxially stretched polyester film is in the form of one direction: I, in other words, when the biaxially stretched polyester film is shot at the shot, In the mechanical and financial direction and the horizontal axis direction, the biaxially stretched polyester film has U times more re-expansion, which can greatly improve the formability of the biaxially stretched polyester film. The refractive index difference of the 雔-axis extending polythene film in the full width direction is between "^ to ^, which can reduce the interference color pattern generated by the subsequent coating hardness layer, „after the measurement of the step-step The film thickness of the polyester film (Nz) is greater than !.50; biaxial alignment factor (10)

onen她on factor)介於〇. 〇7與〇. 15之間,其配 因子定義如方程式1所示: X 方程式1 : 配向度因子⑽F),讀)/Nz,其中Nz為薄膜厚度 1378024. 方向之折射率,心與Ny分別為機械轴方向及橫軸方向的 折射率。 2、該雙軸延伸聚酯薄膜之弓形區(b〇wing regi〇n) 小於等於1. 5%。其中弓形區係以方程式2所計算: 方程式2 : 弓形區(bowing region) = (b/W)x 1〇〇%, &其中W為橫軸方向(TD)寬度,β為最大凹陷深度。 月多考第一圖’在δ亥溥膜進行橫軸方向(⑺)的延伸時, 會產生-個弓形區(b〇wing regi〇n),該弓形區(匕⑽㈣ =1〇η)可由上述的方程式2計算所得,而本製程延伸區 力?器分布於橫幅寬方向形成-弓形的 又刀 U寬甲心區與兩末端區的溫度差於5至5〇 在=端區高^心區5〜5Gt,藉此可以抑制並控制 拉伸時所產生的弓形區(Μ—·) 職財Π:二軸延伸聚㈣膜在通 向性Μ㈣聚醋薄膜具有相當均勾的熱性質 Γ (orientati〇n degree) ° 檢測造可成'之雙轴延伸㈣薄膜的特徵的 大小熱r2D率= 軸儀延Λ聚酷膜片裁成MD2咖咖250願 小時後其尺寸後放置9代的供箱,6 計算··在更測其尺寸,其令熱收縮率係以方程式3所 1378024. 方程式3 : 熱收縮率=(供烤前尺寸—烘烤後尺寸/供尺寸) X 100%。 • 再延伸倍率··係利用批式同時雙軸延伸機在16(TC (膜 片熱成型的溫度)與1〇〇%/s (膜片熱成型的速率)之最大延 伸倍率。 折射率:利用菱鏡耦合儀量測MD與TD折射率。 Φ 成1性.熱成型機以加熱板加熱至300至350°C下 10至20秒進行5至i〇mm高度的模具中成型。 以下將利用上述之製程以不同的參數製作雙軸延伸 - 务· ®曰薄膜’並量測該些薄膜的特性。 - 第一實驗組(EX. 1) 係使用IV = 〇· 62 g/L之聚對苯二曱酸乙二醋 (polyethylene terephthalate,PET)樹脂材料,先將 上述材料以180。(:進行五分鐘的乾燥步驟、接著進行壓出 ® 製程,以280°C進行ll〇〇ym的材料壓出,之後以1〇〇c, 速度20 m/s的冷卻氣體將壓出樹脂以7°c/s的速度進行 冷卻。接著是雙向的延伸步驟··首先係為機械軸方向(MD) 的縱延伸,其在90°C的條件下進行延伸率3. 〇倍的機械軸 方向延伸,之後為橫軸方向(TD)的橫延伸,而在橫軸方 向延伸之前先it行95°C下預熱步驟,接下來進行延伸率 3· 5倍的橫軸方向延伸。延伸區紅外線加熱器所產生的弓 形溫度幅寬中心區與兩末端區的溫度差為1〇。〇;接著進行 200°C、六秒鐘的熱處理步驟。 1378024 第二實驗組(EX. 2) 第二實驗組係重複第一實驗組之參數及步驟流程,而 第一貫驗組與第一實驗組不同之處在於延伸區紅外線加 熱器所產生的弓形的溫度幅寬中心區與兩末端區的溫度 差為20°C。 第三實驗組(EX. 3) 第二實驗組係重複第一實驗組之參數及步驟流程,而 第三實驗組與第一實驗組不同之處在於延伸區紅外 熱器所產生的弓形的溫度幅寬中心區與兩末端區的溫度 差為5 C。 第四實驗組(EX.4) 第四實驗組係重複第一實驗組之參數及步驟流程,而 用第:::組與第-實驗組不同之處在於本實驗組= 用二次伸區紅外線加熱器所產生的溫度差。換句話 四貫驗組係為-對照組,其製程條件 聚酯薄膜的製造流程。 死之又軸延伸 第五實驗組(EX. 5) 第五貫驗組係重複第—實驗 第五實驗組虚第一實驗, 之參數及步驟流程,而 …第貫驗、组不同之處在於該機械轴方向 14 1378024 (MD)的縱延伸倍率改變為3·3倍 橫延伸倍率改變為3 5户。 尹、轴方向(TD )的 第六實驗組(ΕΧ. 6) 弟〃、貫驗組係重複第一實 第六實驗組與第-實驗組不同之卢在二丈及步驟流程,而 的橫延伸倍率改變為3 〇倍。&在於錢輛方向⑽ 商 在平面的公差小於1%者則評比為”佳,, < 其圖案 2圖案在平面的公差大於1%者則評比為,,差”二::: 性可由成型後的結構特徵加以分類再者成型 未出現破膜現象且成型直角之半徑在0.5至丨公^後f 之間者,成型性則評比為”佳” A (_) 出現破膜現象且成型直角之半徑在15公餐^射出成型後 成型性則評比為,,差’’。從表一可:―:以上者’ 驗組及第五至第六實驗組採用本較製造::至 =峨醋薄膜之成型表現均較第四實驗. ς未使用紅外線加熱器所產生的弓形的溫度)為佳,故本 1月f提出之雙軸延㈣㈣膜的製造方法可以大幅提 伸^旨薄膜的成型性,其中第一至第三實驗組係 :、一二曰所提出之製造方法之較佳實施態樣,亦即第一至 ί三實驗組的成型性表現較第五與第六實驗組為佳。接 者,從表-的薄膜特性進行討論,該雙軸延伸聚醋薄膜在 15 ^/8024 全幅寬方向的MD與TD折射率差小於〇. 〇5,而該聚‘ 在9(TC、六小時之條件下的熱收縮率小於3%,祺 經方程式1計算之後的值最佳小於等於(g ) 1 °° 經由進一步之量測後,該聚酯薄膜之薄膜厚度方向之折二 率(Nz)大於1. 50,雙軸配向度因子(biaxial orientation factor)介於 〇. 07 與 〇. 15 之間。 表一 EX.1 EX.2 EX.3 EX.4 EX.5 EX.6Onen her on factor) between 〇. 〇7 and 〇. 15, the definition of the factor is as shown in Equation 1: X Equation 1: Alignment factor (10) F), read) / Nz, where Nz is the film thickness of 1378024. The refractive index of the direction, the center of the heart and Ny are the refractive indices of the mechanical axis direction and the horizontal axis direction, respectively. 5%。 The biaxially extending polyester film of the bow area (b〇wing regi〇n) is less than or equal to 1.5%. The arcuate region is calculated by Equation 2: Equation 2: Bowing region = (b/W) x 1〇〇%, &W; where W is the transverse axis direction (TD) width and β is the maximum concave depth. In the first picture of the monthly multi-test, when the δ 溥 溥 film is extended in the horizontal axis direction ((7)), an arcuate region (b〇wing regi〇n) is generated, and the arcuate region (匕(10)(4)=1=1〇) can be Calculated in Equation 2 above, and the process extension force? The device is distributed in the width direction of the banner to form a bow-shaped U-shaped core area and the temperature difference between the two end regions is 5 to 5 〇 in the end region, and the core region is 5 to 5 Gt, thereby suppressing and controlling the stretching. The resulting arcuate zone (Μ—·) Π Π 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四Axis extension (four) characteristics of the film size of the thermal r2D rate = axis instrument delay Λ Λ 膜 裁 MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD Let the heat shrinkage rate be in accordance with Equation 3, 1378024. Equation 3: Heat shrinkage ratio = (for pre-bake size - post-bake size / for size) X 100%. • Re-expansion ratio · The maximum stretching ratio of 16 (TC (temperature of film thermoforming) and 1〇〇% / s (rate of thermoforming of the diaphragm) using a batch simultaneous biaxial stretching machine. The MD and TD refractive index are measured by a lens coupler. Φ is one-degree. The thermoforming machine is heated in a hot plate to 300 to 350 ° C for 10 to 20 seconds for molding in a mold of 5 to i mm height. Using the above-mentioned process to make biaxial extensions with different parameters, and measuring the properties of the films. - The first experimental group (EX. 1) used IV = 〇 · 62 g / L For polyethylene terephthalate (PET) resin materials, the above materials are first 180. (: a five-minute drying step followed by an extrusion-out process, ll 〇〇 y at 280 ° C The material is extruded, and then the extruded resin is cooled at a rate of 7 ° C / s with a cooling gas of 1 〇〇 c and a speed of 20 m / s. Then a two-way extension step is first introduced as the mechanical axis direction (MD) Longitudinal extension, which is extended at a temperature of 90 ° C. 3. 〇 times the mechanical axis direction extension, followed by a horizontal The axial direction (TD) is transversely extended, and before the horizontal axis direction is extended, the preheating step at 95 ° C is performed, followed by the extension of the lateral axis direction of the elongation of 3.5 times. The temperature difference between the central region of the arcuate temperature and the two end regions is 1 〇. 接着; followed by a heat treatment step of 200 ° C for six seconds. 1378024 The second experimental group (EX. 2) The second experimental group repeats the first The parameters of the experimental group and the procedure of the steps, and the difference between the first test group and the first experimental group is that the temperature difference between the central portion of the arcuate temperature region and the end portion of the arc heater generated by the extended area infrared heater is 20 °C. The third experimental group (EX. 3) The second experimental group repeats the parameters of the first experimental group and the procedure of the steps, and the third experimental group differs from the first experimental group in the temperature of the arcuate shape generated by the infrared heater of the extended region. The temperature difference between the central region of the width and the two end regions is 5 C. The fourth experimental group (EX.4) The fourth experimental group repeats the parameters and the procedure of the first experimental group, and uses the ::: group and the first - The experimental group differs in this experimental group = using the secondary extension infrared The temperature difference generated by the heater. In other words, the four-test group is the control group, and the manufacturing process of the polyester film is in the process condition. The fifth experimental group of the dead axis extension (EX. 5) Repeat the first experiment—the fifth experiment of the experiment, the parameters of the first experiment, the parameters and the procedure of the steps, and the difference between the first test and the group is that the longitudinal extension ratio of the mechanical axis direction 14 1378024 (MD) is changed by 3.3 times. The horizontal extension ratio was changed to 35. The sixth experimental group of Yin and Axis direction (TD) (ΕΧ. 6) The younger the sixth experimental group and the first experimental group were different from the first experimental group. The two-step process and the step-by-step process were changed to 3 times. & in the direction of the money (10) quotient in the plane tolerance of less than 1% is rated as "good,, < its pattern 2 pattern in the plane tolerance is greater than 1%, then the ratio is, poor" two::: After the forming, the structural features are classified and no rupture occurs. The radius of the forming right angle is between 0.5 and 丨, and the formability is evaluated as “good”. A (_) rupture and molding The radius of the right angle is 15 gongs ^ after molding, the moldability is evaluated as, the difference ''. From Table 1 can be: ―: The above's test group and the fifth to sixth experimental groups use this comparative manufacturing:: to = 峨 vinegar film formation performance is better than the fourth experiment. ς not using the infrared heater to produce the bow The temperature is better. Therefore, the manufacturing method of the biaxially oriented (four) (four) film proposed in this January can greatly improve the formability of the film, and the first to third experimental groups are: The preferred embodiment of the method, that is, the first to third experimental groups, is better than the fifth and sixth experimental groups. Receiver, from the sheet-film characteristics discussed, the biaxially stretched polyester film has a MD and TD refractive index difference of less than 〇. 〇5 in the full width direction of 15 ^/8024, and the poly' is at 9 (TC, VI) The heat shrinkage rate under the condition of less than 3% is less than or equal to (g) 1 °° after the calculation of Equation 1 by further measurement, the film thickness direction of the polyester film is reduced. Nz) is greater than 1.50, and the biaxial orientation factor is between 〇. 07 and 〇. 15. Table I EX.1 EX.2 EX.3 EX.4 EX.5 EX.6

MD 延伸溫 度(°c ) 延伸倍 預熱溫 度(t ) 90 3.0 95 90 3.0 95 90 3.0 95 90 3.0 95 90 3.3 95 90 3.0 95 製程 參數MD extension temperature (°c) extension preheating temperature (t) 90 3.0 95 90 3.0 95 90 3.0 95 90 3.0 95 90 3.3 95 90 3.0 95 Process parameters

TD 預熱時 間(sec) 30 30 30 30 30 30 延伸溫 度(°C ) 延伸倍 率 100 3.5 100 3.5 100 3.5 100 3.5 100 3.5 100 3.0 20 10 幅中心與兩] 端溫度差. (°C ) 16 1378024 熱處理溫度 (°C ) 200 200 200 200 200 200 薄 膜 特 性 厚度(y m ) 188 188 188 188 175 225 弓形區(¾) +0.5 + 1.2 -0.8 -3.0 -0.5 +0.1 BOF 0.0085 0.0098 0.0099 0.035 0.012 -0.011 △ N 0.015 0.048 0.02 0.052 0.014 0.01 熱縮性 (%) MD 0.5 0.51 0.53 0.72 0.62 0.5 TD 0.48 0.45 0.46 0.45 0.48 0.52 再延伸倍 率 1.9 1.9 1.9 1.9 1.75 2.1 成型性 佳 佳 佳 佳 一般 佳 印刷品質 一佳 好 好 差 佳 佳TD warm-up time (sec) 30 30 30 30 30 30 Extension temperature (°C) Extension ratio 100 3.5 100 3.5 100 3.5 100 3.5 100 3.5 100 3.0 20 10 Temperature difference between the center and the two ends. (°C ) 16 1378024 Heat treatment temperature (°C) 200 200 200 200 200 200 Film characteristic thickness (ym) 188 188 188 188 175 225 Bow area (3⁄4) +0.5 + 1.2 -0.8 -3.0 -0.5 +0.1 BOF 0.0085 0.0098 0.0099 0.035 0.012 -0.011 △ N 0.015 0.048 0.02 0.052 0.014 0.01 Heat shrinkage (%) MD 0.5 0.51 0.53 0.72 0.62 0.5 TD 0.48 0.45 0.46 0.45 0.48 0.52 Re-extension ratio 1.9 1.9 1.9 1.9 1.75 2.1 Formability Jiajia Jiajia generally good printing quality is good and bad Jia Jia

而表二則為將第一實驗組(EX. 1)所製成的雙軸延伸 聚酉口旨薄膜與市售的商品進行成型性質的比較表。第一比較 產品(Comp. 1)為未延伸之PET薄膜,其厚度為25〇#爪 (Shlnk〇ng公司所生產);第二比較產品(c〇町為雙 轴延伸之PET薄膜(TGyGbQ公司所生產,型號:A43〇〇 ); 第二比較產品(C〇mp.3)為雙轴延伸之pET薄膜(T〇y〇b〇 ^司所生產1號:誦3)。同樣的,從表二中可以得知 提出之製造方法可料效改善傳統之雙轴延伸 型特性’其係利用全幅寬方向的_折 〇 1之間及弓形區(b〇—叫咖)小 以的特性,藉此可提高聚酿薄膜的可成型性及 17 1378024 提升成型製程的整體穩定度。藉由第一實驗組(Εχ ι)所 製成的雙軸延伸聚酯薄膜與第二比較產品(c〇mp 2)及第 二比較產品(Comp. 3)的熱縮性比值之比較可以得知,第 一只驗組(EX. 1 )之熱縮性比值最小,故就雙軸延伸聚酯 薄膜而言,第一實驗組(EX」)之成品具有最佳的成型性 及成型製程之品質穩定度;另外,本發明提出的製造方法 所製成的薄骐同樣具有一定的耐熱性及抗化學性,使該雙 軸延伸聚酯薄膜具有較佳的應用特性。 表二 EX.1 Comp. 1 Comp.2 Comp.3 厚度( 11 m) 188 250 188 188 △ Ν 0.015 0.002 0.05 0.05 BOF 0.0957 0.004 0.1718 0.0852 熱縮性 MD 0.48 >8 0.2 0.5 Μ (%) TD 0.5 > 8 0.18 0.2 膜 再延伸倍率 1.9 5. 0 1.2 2.0 特 性 成型性 佳 佳 差 佳 成型製程穩定度 佳 佳 差 差 耐熱性 佳 差 佳 佳 抗化學性 佳 差 佳 佳 印刷品質 佳 差 佳 差 印刷後的干涉斑 不明顯 無 明顯 明顯 18 &上所述,本發明具有下列諸項優點: 1、本發明所提出之製造方法在延伸區末端設一紅外 雖熱器分布於橫幅寬方向,以形成一弓形的溫度分布狀 使遠薄膜之幅寬中心區與兩末端區的溫度差於5至50 #即兩末端區高於中心區5至5〇。匸,藉此可以抑制並控制 計曾方向進行拉伸時所產生的弓形區(bowing region )的 伸於等於h5%,另—方面’本製程所製作的雙轴延 小於旨薄膜在,c、六小時之條件下的熱收縮率 向的熱收縮率差小於1%;另—方面全幅寬方 膜的成型性,更·^差G· G1至G. 1之間’其即可大幅提高薄 更可以提升整體的成型品質。 明,】二上輯僅為本發明之較佳實蘭,非音簡限本發 圍’故舉凡運_明說明書;:= 化’均同理皆包含於本發明之權利保護=所 【圖式簡單說明】 醋薄膜之流程圖 意圖。 第一圖係本㈣之可·之雙輪延伸聚 第二圖係本發明之薄膜生成弓形區之示 【主要元件符號說明】 W 橫軸方向寬度 β 最大凹陷深度 19The second table is a comparison table of the molding properties of the biaxially stretched polythene film produced by the first experimental group (EX. 1) and a commercially available product. The first comparative product (Comp. 1) is an unstretched PET film having a thickness of 25 〇# claw (manufactured by Shlnk〇ng Co., Ltd.); the second comparative product (c〇町 is a biaxially stretched PET film (TGyGbQ Co., Ltd.) Produced, model: A43〇〇); The second comparative product (C〇mp.3) is a biaxially extended pET film (T〇y〇b〇^ Division produces No. 1: 诵3). Similarly, from It can be seen in Table 2 that the proposed manufacturing method can improve the characteristics of the conventional biaxially extended type, which utilizes the characteristics of the full width direction of the 〇 〇 1 and the bow area (b 〇 叫 咖 小 ). Thereby, the formability of the fiber-reinforced film and the overall stability of the 17 1378024 lifting process can be improved. The biaxially stretched polyester film made by the first experimental group (Εχ ι) and the second comparative product (c〇) Comparing the heat shrinkage ratio of mp 2) and the second comparative product (Comp. 3), it can be known that the heat shrinkage ratio of the first test group (EX. 1) is the smallest, so the biaxially stretched polyester film is The finished product of the first experimental group (EX" has the best formability and quality stability of the molding process; in addition, the present invention The thin enamel made by the proposed manufacturing method also has certain heat resistance and chemical resistance, so that the biaxially stretched polyester film has better application characteristics. Table 2 EX.1 Comp. 1 Comp.2 Comp.3 Thickness (11 m) 188 250 188 188 △ Ν 0.015 0.002 0.05 0.05 BOF 0.0957 0.004 0.1718 0.0852 Heat shrinkability MD 0.48 >8 0.2 0.5 Μ (%) TD 0.5 > 8 0.18 0.2 Film re-expansion ratio 1.9 5. 0 1.2 2.0 Characteristics Formability Excellent Jiajia Good Forming Process Stability Excellent Defects Good Heat Resistance Good Jiajia Chemical Resistance Good Jiajia Printing Quality Good Differences Good Post-Impact Interference Spots Are Not Obviously Obviously 18 & The present invention has the following advantages: 1. The manufacturing method of the present invention has an infrared heat spreader disposed at the end of the extension region in the width direction of the banner to form an arcuate temperature distribution such that the width of the distal film is wide. The temperature difference between the zone and the two end zones is 5 to 50 #, that is, the two end zones are 5 to 5 inches higher than the center zone, thereby suppressing and controlling the bow zone generated when stretching is performed. The extension of the region is equal to h5%, and the other aspect is that the biaxial extension produced by the process is smaller than the heat shrinkage ratio of the film under the condition of c and six hours, and the difference of the heat shrinkage ratio is less than 1%; The formability of the full-width wide square film, and the difference between G·G1 and G. 1 can greatly improve the overall molding quality. Ming, the second episode is only the preferred real orchid of the present invention, and the non-sounding limit is limited to the hairpin 'when the deeds are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Brief description of the formula] The flow chart of the vinegar film is intended. The first figure is the two-wheel extension of the present invention. The second figure shows the formation of the arcuate region of the film of the present invention. [Main component symbol description] W Horizontal axis direction width β Maximum depression depth 19

Claims (1)

、申請專利範圍: 下步驟·· -種可成型之雙轴延伸㈣㈣之製造方法Patent application scope: The following steps: · A moldable biaxial extension (4) (4) Manufacturing method 將該未延伸之聚合物薄膜在機械軸 ne direction,MD)縱延伸—第 轴方向 預定倍 率,形成單軸延伸薄膜; ε 步,三:將步驟:之單軸延伸薄膜在橫軸方向 4:1伸$一預疋倍率,形成雙軸延伸薄膜;且於 鉍向延伸方向形成一弓形的溫度分布; 步驟四:將該雙軸延伸薄膜.進行-180 i 24(rc,, I 1〇秒之熱處理步驟;藉此生成在全巾i寬方向的 MD與TD折射率差G G1至,雙軸配向度因子 (biaXlal 〇rientati〇n factor )介於 〇· 〇7 與 0· 15 之間,弓形區(bowing regi〇n)小於等於丨5% 可成型之雙軸延伸聚酿薄膜, 其中雙軸配向度因子係以方程式丨所計算, 方程式1 : 配向度因子⑽F)=(NX+Ny)/Νζ,其+ Νζ為薄膜厚度 方向之折射率,Νχ與Ny分別為機械軸方向及橫軸 方向的折射率; 其t弓形區係以方程式2所計算, 方程式2 : 弓形區(bowing region) =(B/W)x 1〇〇%,其中你 為橫軸方向(TD)寬度’B為最大凹陷深度。 、如申請專利範圍第1項所述之可成型之雙轴延伸聚酯 薄膜之製造方法,其中步驟三中形成該弓形的溫度分 布係將該薄膜之幅寬中心區與兩末端區形成5至5〇 °C的溫度差。 如申睛專利範圍第2項所述之可成型之雙軸延伸聚酯 薄膜之製造方法,其中該溫度分布係將兩末端區之溫 度高於中心區之溫度為5至5〇°C。 、如申請專利範圍第3項所述之可成型之雙軸延伸聚酯 薄膜之製造方法,其中步驟二中的該第一預定倍率係 介於2· 5至4. 0倍之間。 、如申請專利範圍第3項所述之可成型之雙軸延伸聚酯 ’專膜之製造方法,其中步驟三中的該第二預定倍率係 介於3. 0至5. 0倍之間。 、如申請專利範圍第3項所述之可成型之雙軸延伸聚酯 薄膜之製造方法,其中步驟二之後更包括—將含有無 機氧化物的水溶液塗料塗佈於該單軸延伸薄膜上之 步驟。 Ή請專利範圍第3項所述之可成型之雙軸延伸聚賴 4膜之製造方法,其中步驟四之後更包括一將含有無 機氧化物的水溶液塗料塗佈於該雙軸延伸薄膜 步驟。: 、 、-種可之雙軸延伸以旨_,其具有以下特性: 在全幅寬方向的MD與TD折射率差於0.01至〇 . ^/8024. 雙軸配向度因子(biaxial orientation factor)介 於0. 07與〇. 15之間,其中雙軸配向度因子係以方程 式1所計算, 方程式1 : 配向度因子(BOF)=(Nx+Ny)/Nz,其中Nz為薄膜厚度 方向之折射率,Nx與Ny分別為機械軸方向及橫軸 方向的折射率;以及 弓形區(bowing region)小於等於1. 5%,其中弓形 區係以方程式2所計算, 方程式2 : 弓形區(bowing region) =(B/W)x 1〇〇%,其中 w 為檢轴方向(TD)寬度,B為最大凹陷深度。 、=申請專利範圍第8項所述之可成型之雙軸延伸聚酯 薄膜,其中該雙軸延伸聚酯薄臈之再延伸倍率大^ 1. 7 倍。 ° 〇、如申請專利範圍第8項所述之可成型之雙軸延伸聚 酯薄膜,其中該雙軸延伸聚酯薄膜之薄膜厚度方向之 折射率(Nz)大於1. 50。 1、如申請專利範圍第8項所述之可成型之雙軸延伸聚 酯薄膜,其中該雙軸延伸聚酯薄膜之雙軸配向度因; (biaxial orientati〇n factor)介於 〇 〇7盥 〇 15 之間。: /、. 2 申請專利範圍第8項所述之可成型之雙軸延伸聚 酉曰薄膜,其中該雙軸延伸聚酯薄臈在9(rc、六小時之 22 1378024. 條件下的熱收縮率小於3%。 、匕如申請專利範圍第8項所述之可成型之雙軸延伸聚 酉曰薄膜,其中该雙軸延伸聚酯薄膜之機械軸方向(仙) 的(stretch ratio)與橫軸方向(TD) 丄 小時之條件下的熱收縮率差小於1%·)讀,、 14The unstretched polymer film is longitudinally extended in the mechanical axis ne direction, MD) to a predetermined ratio in the axial direction to form a uniaxially stretched film; ε step, three: step: the uniaxially stretched film in the horizontal axis direction 4: 1 stretches a pre-twisting magnification to form a biaxially stretched film; and forms an arcuate temperature distribution in the direction of the zigzag extension; Step 4: the biaxially stretched film. Performs -180 i 24 (rc,, I 1 sec. a heat treatment step; thereby generating a MD and TD refractive index difference G G1 to the width direction of the full towel i, and a biaxial alignment factor (biaXlal 〇rientati〇n factor) between 〇· 〇7 and 0·15, The bowing zone (bowing regi〇n) is less than or equal to 丨 5% of the formable biaxially extended polymer film, wherein the biaxial orientation factor is calculated by the equation ,, Equation 1: Alignment factor (10)F)=(NX+Ny) /Νζ, where + Νζ is the refractive index in the thickness direction of the film, Νχ and Ny are the refractive indices in the direction of the mechanical axis and the direction of the horizontal axis, respectively; the t-bow region is calculated by Equation 2, Equation 2: bowing region =(B/W)x 1〇〇%, where you are the horizontal axis (TD) width 'B is the maximum depth of the recess. The method for manufacturing a moldable biaxially stretched polyester film according to claim 1, wherein the temperature distribution of the arc in the third step is formed by forming a central portion of the width of the film and the end regions of the film to 5 5 ° ° C temperature difference. The method for producing a moldable biaxially stretched polyester film according to claim 2, wherein the temperature distribution is such that the temperature of the both end regions is higher than the temperature of the central portion by 5 to 5 °C.倍之间之间。 The first predetermined ratio of the second predetermined ratio is between 2.5 and 4.0 times. 5倍之间。 The second predetermined ratio of the second step is between 3.0 and 5.0 times. The method for producing a moldable biaxially stretched polyester film according to claim 3, wherein the second step further comprises the step of applying an aqueous solution containing an inorganic oxide to the uniaxially stretched film. . The method for manufacturing a moldable biaxially stretched poly film as described in claim 3, wherein the step 4 further comprises the step of applying an aqueous solution containing an inorganic oxide to the biaxially stretched film. : , , - can be biaxially extended with the purpose of _, which has the following characteristics: MD and TD refractive index difference in the full width direction of 0.01 to 〇. ^ / 8024. Biaxial orientation factor (biaxial orientation factor) Between 0. 07 and 〇. 15, where the biaxial alignment factor is calculated by Equation 1, Equation 1: Alignment factor (BOF) = (Nx + Ny) / Nz, where Nz is the refraction of the film thickness direction Rate, Nx and Ny are the refractive indices of the mechanical axis direction and the horizontal axis direction, respectively; and the bowing region is less than or equal to 1.5%, wherein the arcuate region is calculated by Equation 2, Equation 2: Bowing region ) = (B/W) x 1〇〇%, where w is the width of the axis of detection (TD) and B is the maximum depth of the depression. And the moldable biaxially stretched polyester film described in claim 8 wherein the biaxially stretched polyester sheet has a refolding ratio of 1.4 times. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. 1. The moldable biaxially stretched polyester film according to claim 8, wherein the biaxially oriented polyester film has a biaxial alignment degree; (biaxial orientati〇n factor) is between 〇〇7盥〇15 between. : /,. 2 The moldable biaxially-extending polythene film described in claim 8 wherein the biaxially stretched polyester crucible is heat-shrinkable at 9 (rc, six hours 22 1378024. The ratio of less than 3%, such as the moldable biaxially-extending polythene film described in claim 8, wherein the biaxially stretched polyester film has a mechanical axis direction (stretch ratio) and a horizontal The difference in thermal shrinkage under axial conditions (TD) 丄 hours is less than 1%.) Read, 14 、如申請專利範㈣8項所述之可成型之雙軸延伸聚 醋缚膜’其中該雙軸延伸聚自旨薄膜係從單獨的聚對苯 -f Si ( polyethylene terephthalate > PET) > 或結合至少-共聚成份㈣成的共聚物所獲得。 、如申請專利範,! 4項所述之可成型之 =薄膜,其中該共聚成份至少選自酸類、:類: 23The moldable biaxially stretched polyester film as described in claim 4, wherein the biaxially stretched film is from a separate poly(p-phenylene)-p Si (polyethylene terephthalate > PET) > It is obtained by combining at least a copolymer of the copolymerized component (IV). Such as applying for a patent,! Formable in accordance with item 4 = film, wherein the copolymer component is at least selected from the group consisting of acids, classes: 23
TW97147598A 2008-12-08 2008-12-08 Biaxial oriented polyester film with improved formability and manufacturing method thereof TW201022016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147598A TW201022016A (en) 2008-12-08 2008-12-08 Biaxial oriented polyester film with improved formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147598A TW201022016A (en) 2008-12-08 2008-12-08 Biaxial oriented polyester film with improved formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201022016A TW201022016A (en) 2010-06-16
TWI378024B true TWI378024B (en) 2012-12-01

Family

ID=44832884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147598A TW201022016A (en) 2008-12-08 2008-12-08 Biaxial oriented polyester film with improved formability and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201022016A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
JP4962661B2 (en) 2010-06-22 2012-06-27 東洋紡績株式会社 Liquid crystal display device, polarizing plate and polarizer protective film
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
EP2711765B1 (en) 2011-05-18 2018-07-04 Toyobo Co., Ltd. Liquid crystal display device, use of polarizer, use of protective film
WO2015037527A1 (en) * 2013-09-10 2015-03-19 東洋紡株式会社 Liquid crystal display device, polarization plate, and polarizer protective film
EP3617783B1 (en) 2017-04-28 2023-01-25 LG Chem, Ltd. Optical modulation device

Also Published As

Publication number Publication date
TW201022016A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI378024B (en)
TWI549804B (en) Biaxially oriented polyethylene terephthalate film
JP6627218B2 (en) Biaxially oriented polyester film
WO2021199896A1 (en) Biaxially stretched film
KR20190088058A (en) Multilayer laminated film and processed products using the same
JP5674227B2 (en) Polyester film for in-mold transfer
JP6641767B2 (en) A method for producing a heat shrinkable film.
JP6760066B2 (en) Biaxially oriented polyester film
US9206294B2 (en) Acrylic resin film having good transparency and impact resistance and method for manufacturing same
TWI723064B (en) Polymer compositions and substrates for high temperature transparent conductive film applications
JP2004269766A (en) Biaxially oriented polyester film
JP2016089150A (en) Polyester film for manufacturing optical film
JP6907519B2 (en) Biaxially oriented polyester film
JP2015010121A (en) Biaxially oriented polyester film for molding
WO2010024068A1 (en) Process for production of void-containing resin moldings and void-containing resin moldings obtained by the process
KR101731384B1 (en) Polyester optical film and manufacturing method thereof
JP2009029074A (en) Biaxially oriented laminated polyester film for molding
KR20190078121A (en) Polyester film for molding and manufacturing method thereof
TWI828805B (en) Polyester film and polarizing plate containing the polyester film
JP6609940B2 (en) Polyester film for optical film production
JP2012140498A (en) Biaxially oriented polyester film for concurrent deep drawing and transfer
JP5974328B2 (en) Biaxially oriented polyester film for in-mold transfer
JP2010260275A (en) Laminated polyester film for in-mold transfer foil
JP2021161151A (en) Biaxial oriented film
JP2611425B2 (en) Method for producing low shrinkage polyester film