WO2015037527A1 - Liquid crystal display device, polarization plate, and polarizer protective film - Google Patents

Liquid crystal display device, polarization plate, and polarizer protective film Download PDF

Info

Publication number
WO2015037527A1
WO2015037527A1 PCT/JP2014/073451 JP2014073451W WO2015037527A1 WO 2015037527 A1 WO2015037527 A1 WO 2015037527A1 JP 2014073451 W JP2014073451 W JP 2014073451W WO 2015037527 A1 WO2015037527 A1 WO 2015037527A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizer protective
protective film
liquid crystal
polarizing plate
Prior art date
Application number
PCT/JP2014/073451
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 藤田
村田 浩一
向山 幸伸
佐々木 靖
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020217029721A priority Critical patent/KR102491441B1/en
Priority to KR1020237002136A priority patent/KR20230015521A/en
Priority to CN201480050003.4A priority patent/CN105531610B/en
Priority to JP2014543689A priority patent/JPWO2015037527A1/en
Priority to KR1020167008518A priority patent/KR20160053955A/en
Publication of WO2015037527A1 publication Critical patent/WO2015037527A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present invention relates to a polarizer protective film used for a polarizing plate in a liquid crystal display device.
  • a polarizing plate used in a liquid crystal display device is usually composed of a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like and sandwiched between two polarizer protective films.
  • PVA polyvinyl alcohol
  • TAC triacetyl cellulose
  • Patent Documents 1 to 3 it has been proposed to use a polyester film instead of the TAC film so that the polarizing plate can be made thin so that high durability can be maintained even if the thickness is small as a polarizer protective film.
  • the polyester film is superior to the TAC film in durability, but unlike the TAC film, it has birefringence. Therefore, when it is used as a polarizer protective film, there is a problem that the image quality is deteriorated due to optical distortion. That is, since the polyester film having birefringence has a predetermined optical anisotropy (retardation), when used as a polarizer protective film, a rainbow-like color spot is generated when observed from an oblique direction, and the image quality is deteriorated. . Therefore, Patent Documents 1 to 3 take measures to reduce retardation by using a copolyester as the polyester.
  • Patent Document 4 discloses that a rainbow-like color unevenness can be solved by using a white light emitting diode as a backlight light source and further using an oriented polyester film having a certain retardation as a polarizer protective film. .
  • the polarizer protective film has good dimensional stability because it passes through many heat treatment steps such as a step of producing a polarizing plate or a step of combining the obtained polarizing plate with a liquid crystal cell.
  • the shrinkage rate of the polyester film after non-restraining heat treatment at 120 ° C. for 30 minutes is preferably 5% or less in both the film MD direction and the TD direction.
  • the polyester film used as the polarizer protective film has been improved from various viewpoints, but the present inventors have found that there is room for further improvement. That is, the present inventors, when a polarizing plate adopting a polyester film improved so far as a polarizer protective film is arranged so as to have a crossed Nicols relationship with another polarizing plate, We discovered the existence of a new problem that leakage may occur and visibility may deteriorate. Then, this invention makes it a subject to provide the polarizer protective film which consists of a polyester film which can suppress the above-mentioned slight light leakage.
  • the polarizer protective film which is a polyester film whose absolute value of the angle
  • the polarizer protective film according to Item 1 wherein the retardation of the polyester film is 4000 to 30000 nm, and the Nz coefficient is 1.7 or less.
  • Item 3. Item 3.
  • Item 4. Consists of a structure in which a polarizer protective film is laminated on both sides of the polarizer, 4.
  • the polarizing plate, wherein the polarizer protective film on at least one side is the polarizer protective film according to any one of Items 1 to 3.
  • a polarizing plate in which the polarizer protective film according to any one of Items 1 to 3 is laminated on one side of the polarizer.
  • a liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
  • the backlight source is a white light source having a continuous emission spectrum;
  • the polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer, Item 4.
  • the polarizer according to any one of Items 1 to 3, wherein at least one of the polarizer protective films of the polarizing plate arranged on the incident light side and at least one of the polarizer protective films of the polarizing plate arranged on the outgoing light side are A liquid crystal display device which is a protective film.
  • the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side and the polarizer protective film on the outgoing light side of the polarizing plate arranged on the outgoing light side are described in any one of Items 1 to 3.
  • Item 7. A liquid crystal display device according to Item 6, which is a polarizer protective film.
  • Item 8. A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates, The backlight source is a white light source having a continuous emission spectrum; 6.
  • a liquid crystal display device, wherein the polarizing plate is the polarizing plate according to item 5.
  • the liquid crystal display device when two polarizing plates are arranged in a crossed Nicols relationship, it is possible to suppress slight light leakage that has conventionally occurred.
  • the liquid crystal display device has excellent visibility, which is suitable for thinning, not only causing rainbow spots, but also reducing the deterioration of visibility due to leakage of the light. Can be provided.
  • FIG. 1 shows an example of the result of measuring the heat shrinkage rate of a film by 360 degrees at intervals of 5 degrees with the film flow direction being 0 degree. In this example, each maximum heat shrinkage is about 15 degrees.
  • FIG. 2 shows the angle as the X axis and the heat shrinkage rate as the Y axis in order to obtain the angle at which the heat shrinkage rate is maximized with an accuracy of 1 degree interval or more from the heat shrinkage rate measured at intervals of 5 degrees.
  • FIG. FIG. 3 schematically shows the interval between the clips used in the method 1 for reducing the inclination of the heat shrinkage rate.
  • FIG. 4 shows the relationship between the distance in the longitudinal direction of the tenter and the tenter temperature that can be used in the method 4 for reducing the inclination of the thermal shrinkage rate.
  • the polarizer protective film of the present invention is a polyester film, and is referred to as an inclination in a direction in which the thermal shrinkage rate with respect to the flow direction or width direction of the film is maximized (hereinafter simply referred to as an inclination of the thermal shrinkage rate). Is preferably 15 degrees or less.
  • the absolute value of the slope of the heat shrinkage rate is preferably 12 degrees or less, more preferably 10 degrees or less, still more preferably 8 degrees or less, still more preferably 6 degrees or less, particularly preferably. 4 degrees or less, most preferably 2 degrees or less. Since the absolute value of the slope of the heat shrinkage rate is preferably as small as possible, the lower limit is 0 degree.
  • Patent Document 5 discloses a polarizer protective film made of a polyester film having a thermal shrinkage rate of 5% or less in both the MD direction and the TD direction.
  • the direction in which the thermal contraction rate is maximum is inclined with respect to the film flow direction or the film width direction even if the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction are small. If so, the problem of leakage of polarized light occurs.
  • Patent Document 5 also discloses that the angle formed by the in-plane slow axis and the film TD direction and the variation thereof are reduced at both ends of the film, thereby preventing the color shift and color spot of the liquid crystal display.
  • the in-plane slow axis direction of the film and the inclination of the thermal contraction rate are not always parallel, the problem of leakage of polarized light occurs even if the film has a controlled in-film slow axis.
  • the polyester film used for the polarizer protective film of the present invention can be obtained from any polyester resin.
  • the type of the polyester resin is not particularly limited, and any polyester resin obtained by condensing dicarboxylic acid and diol can be used.
  • dicarboxylic acid component examples include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, , 5-Naphthalenedicarboxylic acid, diphenylcarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracene dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Hexahydroterephthalic acid, hexahydroisophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglu
  • diol component examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1 , 3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, etc. Can be mentioned.
  • the dicarboxylic acid component and the diol component constituting the polyester resin can be used alone or in combination of two or more.
  • Suitable polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and more preferably polyethylene terephthalate and polyethylene naphthalate.
  • other copolymer components may be included.
  • These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching.
  • polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and a large retardation can be obtained relatively easily even if the film is thin.
  • the thermal shrinkage rate of the polyester film is preferably 5% or less in all directions.
  • the thermal shrinkage rate in all directions of the polyester film is measured as follows.
  • a polyester film is cut into a square shape with a side of 21 cm and left in an atmosphere of 23 ° C. and 65% RH for 2 hours or longer.
  • draw a circle with a diameter of 80mm centered on the center and use a two-dimensional image measuring machine (for example, QUICK IMAGE made by MITUTOYO) to set the diameter in 5 degree intervals with the film flow direction as 0 degree. taking measurement.
  • QUICK IMAGE made by MITUTOYO
  • the polyester film is heat-treated at 85 ° C. for 30 minutes in water, then the moisture adhering to the film surface is wiped off, air-dried, and then left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more. Thereafter, the diameter of the circle is measured at intervals of 5 degrees as described above.
  • the diameter before heat treatment is Lo
  • the diameter in the same direction after heat treatment is L
  • the heat shrinkage rate in each direction is determined according to the following formula.
  • the center of the circle has a heat shrinkage rate of 0%, and the heat shrinkage rate increases as the distance from the center of the circle increases.
  • the circumference indicates an angle with the film flow direction being 0 degree. Therefore, 90 degrees is parallel to the film width direction.
  • the maximum value of the heat shrinkage rate obtained by the above measuring method is preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and most preferably 0.5% or less.
  • the lower limit of the heat shrinkage rate is not particularly limited, but is 0.01% or more, for example.
  • the thermal contraction rate is measured at intervals of 5 degrees, and the direction in which the thermal contraction rate is maximized is obtained with an accuracy of 1 degree according to the following procedure. That is, the measurement result of the heat shrinkage rate (result of the heat shrinkage rate in the range of ⁇ 90 ° to 85 °) is an angle with the horizontal axis as the film flow direction as shown in FIG. Plot as shrinkage. At this time, values of -180 degrees to -95 degrees and 90 degrees to 175 degrees are also interpolated (a thermal contraction rate of -90 degrees corresponds to a thermal contraction ratio of 90 degrees, and a thermal contraction ratio of 0 degrees is -180 degrees). Corresponding to the degree of heat shrinkage). Next, an approximate curve connecting the plots is drawn, and the direction in which the thermal contraction rate is maximized is read with an accuracy of 1 degree, and this is defined as ⁇ . Note that ⁇ 90 degrees ⁇ ⁇ ⁇ 90 degrees.
  • the direction ⁇ in which the heat shrinkage rate is maximum is in the range of ⁇ 45 ° to 45 °, the value is defined as the slope of the heat shrinkage rate.
  • the direction ⁇ in which the thermal contraction rate is maximum is 45 degrees or more and ⁇ 45 degrees or less, it is understood that the direction is inclined with respect to the film width direction, not the film flow direction, and ⁇ 90 degrees ( ⁇ is 90 ° + ⁇ (when ⁇ is ⁇ 45 ° or less) and the inclination of the heat shrinkage rate.
  • the difference between the maximum value and the minimum value of the heat shrinkage rate is 0.1% or less, the heat shrinkage rate is almost equal in all directions, and there is no inclination in the heat shrinkage rate. It is considered.
  • Light leakage evaluation method For light leakage, two polarizing plates are arranged in a crossed Nicols relationship, and the maximum transmittance of light having a wavelength of 550 nm to 600 nm passing through them is measured.
  • the light transmittance can be measured using any spectrophotometer.
  • the maximum transmittance to be measured is preferably 0.02% or less, more preferably 0.015% or less.
  • the polyester film used for the polarizer protective film preferably has a retardation of 4000 to 30000 nm. If the retardation is 4000 nm or more, rainbow spots that may occur when the liquid crystal display device is observed from an oblique direction are suppressed, and good visibility can be ensured.
  • the preferable retardation of the polyester film is 4500 nm or more, more preferably 5000 nm or more, still more preferably 6000 nm or more, still more preferably 8000 nm or more, and still more preferably 10,000 nm or more.
  • 4000 to 30000 nm means that 4000 nm is included as the lower limit value and 30000 nm is included as the upper limit value, but a range not including it is also assumed.
  • the upper limit of the retardation of the polyester film is not particularly limited, but is, for example, 30000 nm. Even if a polyester film having a retardation higher than that is used, the effect of improving the visibility is not substantially obtained, and as the retardation increases, the thickness of the film is considerably increased, and the handling property as an industrial material is lowered. Because there is a risk of doing.
  • the retardation value of the oriented polyester film is obtained by the following procedure.
  • the orientation axis direction of the film is determined using a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments).
  • the refractive index (ny) in the orientation axis direction and the refractive index (nx) in the direction orthogonal to the orientation axis direction in the film plane are measured at a measurement wavelength of 589 nm.
  • ) of the difference (anisotropy) of the refractive index in these biaxial directions is obtained, and the retardation value is obtained by multiplying it by the thickness of the film.
  • the retardation of the film can be measured using a commercially available automatic birefringence measuring apparatus such as KOBRA-21ADH (Oji Scientific Instruments).
  • the refractive index of the film can be measured using a commercially available measuring instrument such as an Abbe refractometer (NAGO-4T, manufactured by Atago Co., Ltd.).
  • the polyester film used for the polarizer protective film preferably has an Nz coefficient represented by
  • the Nz coefficient can be obtained as follows.
  • the orientation axis direction of the film is obtained using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), and the biaxial refractive index (ny, nx, However, ny> nx) and the refractive index (nz) in the thickness direction are determined by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
  • the Nz coefficient can be obtained by substituting nx, ny, and nz obtained in this way into an expression represented by
  • the Nz coefficient exceeds 1.7, when the polyester film is used as a polarizer protective film in both the pair of polarizing plates (for example, arranged on the incident light side).
  • the polarizer protective film on the incident light side of the polarizing plate and the polarizer protective film on the outgoing light side of the polarizing plate arranged on the outgoing light side are polyester films
  • the Nz coefficient is more preferably 1.65 or less, and still more preferably 1.63 or less, from the viewpoint of suppressing the occurrence of such rainbow spots.
  • the lower limit value of the Nz coefficient is 1.2. This is because it is difficult in terms of manufacturing technology to obtain a film of less than 1.2.
  • the lower limit value of the Nz coefficient is preferably 1.3 or more, more preferably 1.4 or more, and further preferably 1.45 or more.
  • the plane orientation coefficient represented by (nx + ny) / 2-nz is made to be not more than the specific value, thereby ensuring a pair of polarizing plates In both cases, rainbow spots can be eliminated when a polyester film is used as a polarizer protective film.
  • the values of nx, ny, and nz are obtained by the same method as for the Nz coefficient.
  • the degree of plane orientation of the oriented polyester film is preferably 0.13 or less, more preferably 0.125 or less, and still more preferably 0.12 or less.
  • the plane orientation degree is preferably 0.08 or more, and more preferably 0.1 or more. If the degree of plane orientation is less than 0.08, the film thickness varies, and the retardation value may be non-uniform in the film plane.
  • the polyester film has a ratio (Re / Rth) of retardation (Re) to thickness direction retardation (Rth) of preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.6 or more. . This is because as the ratio of the retardation to the thickness direction retardation (Rth) (Re / Rth) is larger, the birefringence action is more isotropic, and the occurrence of iridescent color spots due to the observation angle is less likely to occur. In a complete uniaxial (uniaxial symmetry) film, the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is 2.
  • the upper limit of the ratio of retardation in the thickness direction (Re / Rth) is preferably 1.2 or less, more preferably 1 or less.
  • the ratio of the retardation to the retardation in the thickness direction (Re / Rth) does not need to be 2, and 1.2 or less is sufficient. Even if the ratio is 1.0 or less, it is possible to satisfy the viewing angle characteristics (180 degrees left and right, 120 degrees up and down) required for the liquid crystal display device.
  • the thickness unevenness of the film is small.
  • the thickness unevenness of the polyester film is preferably 5% or less, more preferably 4.5% or less, still more preferably 4% or less, and particularly preferably 3% or less. preferable.
  • the thickness of the polyester film is not particularly limited, but is usually 15 to 300 ⁇ m, preferably 15 to 200 ⁇ m. When the film thickness is less than 15 ⁇ m, the anisotropy of the mechanical properties of the film becomes remarkable, and tearing, tearing, and the like may occur. A particularly preferable lower limit of the thickness is 25 ⁇ m. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 300 ⁇ m, the thickness of the polarizing plate becomes too thick, which is not preferable. From the viewpoint of practicality as a polarizer protective film, the upper limit of the thickness is preferably 200 ⁇ m. A particularly preferable upper limit of the thickness is 100 ⁇ m, which is about the same as a general TAC film.
  • the polyester film desirably has a light transmittance of 20% or less at a wavelength of 380 nm from the viewpoint of suppressing deterioration of an optical functional dye such as iodine dye contained in the polarizer.
  • the light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays.
  • the light transmittance is measured in a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, a spectrophotometer V-7100 manufactured by JASCO Corporation).
  • the transmittance at a wavelength of 380 nm of the oriented polyester film can be controlled to 20% or less by appropriately adjusting the type and concentration of the ultraviolet absorber to be blended and the thickness of the film.
  • the ultraviolet absorber used in the present invention a known ultraviolet absorber can be appropriately selected and used. Specific examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • organic ultraviolet absorber examples include, but are not limited to, benzotriazole, benzophenone, and cyclic imino ester, and any combination thereof. From the viewpoint of durability, a benzotoazole system or a cyclic imino ester system is particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
  • benzophenone ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2 ′ -Dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- (2′-hydroxy-3′-tert-butyl-5 ′ Methylphenyl) -5-chlorobenzotriazole, 2- (5-chlor
  • cyclic imino ester UV absorber examples include 2,2 ′-( 1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazine-4 -One, 2-phenyl-3,1-benzoxazin-4-one, etc. These ultraviolet absorbers may be used alone or in combination of two or more.
  • the oriented polyester film has a multilayer structure of three or more layers, and the UV absorber is added to a layer other than the outermost layer of the film (that is, an intermediate layer).
  • additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants.
  • a polyester film does not contain a particle
  • “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
  • an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin on at least one side of the polyester film.
  • the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer.
  • the coating solution used for forming the easy-adhesion layer is preferably an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin.
  • coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982.
  • coating solutions include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
  • the easy-adhesion layer can be obtained by applying the coating solution on one or both sides of an unstretched film or a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and stretching in the lateral direction.
  • the final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesion with the resulting polarizer may be insufficient. On the other hand, when the coating amount exceeds 0.2 g / m 2 , blocking resistance may be lowered.
  • the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
  • the average particle size of the fine particles is preferably 2 ⁇ m or less. When the average particle diameter of the particles exceeds 2 ⁇ m, the particles easily fall off from the coating layer.
  • particles to be included in the easy adhesion layer for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride,
  • examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
  • the average particle size of the particles is determined by taking a photograph of the particles with a scanning electron microscope (SEM), the maximum size of 300 to 500 particles (magnification so that the size of one smallest particle is 2 to 5 mm) The distance between the two most distant points) is measured, and the average value can be calculated.
  • SEM scanning electron microscope
  • the coating solution can be applied using a known method. Examples include reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method and the like. These methods can be performed alone or in combination.
  • the polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion with the polarizer.
  • Various functional layers i.e., hard coat layer, antiglare layer, antireflection layer, for the purpose of preventing reflection, glare suppression, scratch control, etc., on the surface opposite to the surface on which the polarizer of the polyester film is disposed, It is also preferable to provide one or more functional layers selected from the group consisting of a low reflection layer, a low antireflection layer, an antireflection antiglare layer, and an antistatic layer on the oriented polyester surface.
  • the oriented polyester film preferably has an easy adhesion layer on the surface thereof.
  • the refractive index of the easy-adhesion layer it is preferable to adjust the refractive index of the easy-adhesion layer so that it is close to the geometric mean of the refractive index of the functional layer and the refractive index of the oriented polyester film.
  • the refractive index of the easy-adhesion layer can be adjusted by a known method.
  • the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
  • the polyester film used as the polarizer protective film can be manufactured according to a general method for manufacturing a polyester film.
  • the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter.
  • the method of performing heat processing is mentioned.
  • a uniaxially stretched film or a biaxially stretched film may be used.
  • the means for controlling the absolute value of the inclination in the direction in which the thermal contraction rate with respect to the film flow direction or the width direction is maximum is not particularly limited, but it is preferable to pay attention to the following points. That is, in the cooling section after the heat treatment step in the tenter, there are contraction stress accompanying stretching and thermal stress accompanying cooling that could not be removed by heat fixation. Further, since the film at the end is restrained by the clip, the film at the center is relatively stretchable, and therefore there is a bias in the distribution of stress in the film flow direction and the width direction in the cooling section. These are the main causes and the inclination of the heat shrinkage rate occurs. Based on such circumstances, specific means for reducing the inclination of the heat shrinkage rate will be exemplified below.
  • Method 1 for reducing the slope of thermal shrinkage In the cooling section after heat setting, the clip interval is narrowed in the film flow direction, the stress in the film flow direction in the tenter cooling section can be made uniform, and the inclination of the heat shrinkage rate can be reduced. Therefore, in order to reduce the inclination of the heat shrinkage rate, it is preferable to appropriately adjust the temperature zone in which the clip interval is narrowed. Since it varies depending on the film composition and film production conditions, it is not particularly limited, but when the temperature is too high, the film at the left end (when the film is viewed from above) with respect to the flow direction has a positive direction of thermal shrinkage. (The right end increases in the negative direction).
  • the temperature for narrowing the clip interval to an appropriate range, the stress in the flow direction in the tenter cooling section can be made uniform, and the inclination of the thermal contraction rate can be reduced.
  • the relaxation rate that narrows the clip interval in the film flow direction is also important. Since it differs depending on the film composition and film production conditions, it is not particularly limited, but the relaxation rate is preferably 0.01 to 3%, more preferably 0.05 to 1.5%. When the relaxation rate is too high, the film is not completely shrunk and the flatness is poor, which is not preferable. Moreover, when the relaxation rate is too low, the effect of reducing the slope of the heat shrinkage rate is reduced.
  • the relaxation rate can be calculated by the following equation using the distance between the centers of the clips as shown in FIG.
  • Method 2 for reducing the slope of the heat shrinkage rate In the cooling section after heat setting, the film end can be separated from the clip and released from restraint by the clip, and the stress in the width direction in the tenter cooling section can be made uniform. Moreover, the stress of the flow direction in a tenter cooling area can be made uniform by adjusting the tension
  • the method for separating the film edge from the clip is not particularly limited, but a conventionally known method may be used. Specific examples include a method of cutting a film from a clip and a method of opening a clip.
  • the method of cutting the film from the grip is arbitrary, and examples thereof include cutting using a shear blade or fusing using a laser. A combination of these methods can also be carried out.
  • the film temperature when separating the film edge from the clip is desirably 50 ° C to 300 ° C.
  • the film temperature is too low with respect to the glass transition temperature Tg of the film, the slope of the heat shrinkage rate is reduced. It becomes difficult. Therefore, it is desirable to cut and separate the film from the clip at a temperature higher than (glass transition temperature Tg ⁇ 20 ° C.) and lower than (melting point Tm ⁇ 10 ° C.).
  • the film temperature here is a value measured by a radiation thermometer.
  • the appropriate tension varies depending on the film composition, thickness, and film production conditions, and is not particularly limited, but is preferably 0.01 to 3 kg / mm 2 , more preferably 0.1 to 2 kg / mm 2 . If the tension is too high, the film at the left end with respect to the flow direction has a larger thermal contraction rate in the positive direction (the right end increases in the negative direction). On the other hand, if the tension is too low, the film at the left end with respect to the flow direction has a larger thermal contraction rate in the negative direction (the right end increases in the positive direction). However, these tendencies are when the angle is evaluated based on the flow direction, and when the width direction is used as a reference, the positive and negative tendencies are reversed.
  • the heat shrinkage rate in the width direction is too high, the slope of the heat shrinkage rate becomes large. Therefore, it is preferable to adjust the rail pattern before separating the film end from the clip, and to adjust the relaxation rate and temperature for narrowing the clip interval in the film width direction as described above. In this way, by setting the tension within an appropriate range, the stress in the flow direction in the tenter cooling section can be made uniform, and the inclination of the thermal contraction rate can be reduced.
  • Method 3 for reducing the slope of the heat shrinkage rate In the same way as the reduction method 2, the film temperature at the exit of the tenter is higher than a predetermined temperature (that is, the glass transition temperature Tg-20 ° C.) and lower than the predetermined temperature (melting point Tm-70 ° C.). The shrinkage of the shrinkage rate can be reduced. In this case, since the effect depends on the room temperature, it is desirable to control the room temperature.
  • the inclination of the heat shrinkage rate can also be reduced by adjusting the temperature setting of the cooling process after the tenter heat setting.
  • the heat fixing temperature to the tenter outlet temperature it is preferable to be ⁇ 15 / X to ⁇ 100 / X (° C./m) along the longitudinal direction of the tenter.
  • X represents the tenter outlet width (m). Therefore, for example, when the tenter outlet width is 2 m, it is preferable to lower the temperature in a range of ⁇ 7.5 ° C. to ⁇ 50 ° C. every time 1 m is advanced in the tenter longitudinal direction. Since the temperature indicates the temperature per tenter outlet width, this is hereinafter referred to as temperature setting per unit width.
  • the tenter outlet temperature is usually preferably set to Tg or lower.
  • the temperature setting per unit width is -100 / X (° C / m) or less in the longitudinal direction, the inclination of the heat shrinkage rate exceeds 15 degrees, which is not preferable.
  • the temperature setting is -15 / X (° C / m) or more Although the inclination of the heat shrinkage rate can be sufficiently reduced, it is not preferable because the tenter equipment investment becomes excessive.
  • Method 5 for reducing the slope of the heat shrinkage rate Even with a film having a thermal contraction rate, the roll once wound is subjected to, for example, an offline annealing treatment at 80 ° C. to 120 ° C. for 10 seconds to 90 minutes, so that the thermal contraction rate can be reduced.
  • an offline annealing treatment it is preferable to adjust the temperature and time of annealing treatment sufficiently.
  • in-line annealing between the conventionally known tenter outlet and the take-up roll.
  • These reduction methods 1 to 5 may be carried out by any one method or in combination.
  • the inclination of the heat shrinkage rate can be made 15 degrees or less.
  • the polyester film is subjected to a heat treatment step after being longitudinally stretched and laterally stretched, and both edges are cut into mill rolls and slits as necessary to form slit rolls.
  • the term “both edges” means that the length of the entire width of the film is 100%, preferably from 1% to 10%, more preferably from 1% to 5% from both ends of the film.
  • the both ends here are the same as the both ends of the film before cutting demonstrated about the said reduction method 2.
  • the oriented polyester film having the specific retardation and Nz coefficient described above can be obtained by adjusting the conditions during film formation (for example, the draw ratio, the draw temperature, the thickness of the film, etc.). For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the higher the retardation. On the other hand, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the lower the retardation.
  • the longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 145 ° C, more preferably 90 to 140 ° C.
  • the longitudinal draw ratio is preferably 1.0 to 3.5 times, more preferably 1.0 to 3.0 times.
  • the transverse draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.5 times.
  • the ratio between the longitudinal draw ratio and the transverse draw ratio it is preferable to control the ratio between the longitudinal draw ratio and the transverse draw ratio. If the difference between the vertical and horizontal draw ratios is too small, it is difficult to increase the retardation, which is not preferable. It is also preferable to set the stretching temperature low in order to increase the retardation.
  • the temperature of the subsequent heat treatment is preferably 100 to 250 ° C, more preferably 180 to 245 ° C.
  • the Nz coefficient In order to set the Nz coefficient to the above specific value, it is preferable to control the ratio of the longitudinal draw ratio and the transverse draw ratio, and it is preferable to use a uniaxially stretched film. In order to reduce the Nz coefficient, it is also preferable to add a copolymer component in order to increase the molecular weight of the polymer and to decrease the crystallinity. Furthermore, in order to control the Nz coefficient of the film within a specific range, the total stretching ratio and the stretching temperature can be appropriately set. For example, the lower the total draw ratio and the higher the drawing temperature, the lower the Nz coefficient can be obtained.
  • the total draw ratio In order to set the plane orientation degree to the above specific value, it is preferable to control the total draw ratio. If the total draw ratio is too high, the degree of plane orientation becomes too high, which is not preferable. It is also preferable to control the stretching temperature in order to reduce the degree of plane orientation. By increasing the difference between the longitudinal draw ratio and the transverse draw ratio, setting the total draw ratio low, and setting the draw temperature high, the Nz coefficient and the degree of plane orientation can be made to be below specific values.
  • the stretching temperature and the stretching ratio have a great influence on the thickness unevenness of the film, it is preferable to optimize the film forming conditions from the viewpoint of the thickness unevenness.
  • the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes very bad in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
  • the blending of the ultraviolet absorber into the oriented polyester film can be carried out by combining known methods. For example, using a kneading extruder, the dried UV absorber and polymer raw material are blended to prepare a master batch in advance, and blended by a method of mixing the predetermined master batch and polymer raw material during film formation. be able to.
  • the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and economically blend it.
  • a kneading extruder is used, and the extrusion temperature is preferably from 1 to 15 minutes at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. Extrusion for 1 minute or less makes it difficult to uniformly mix the UV absorber.
  • a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
  • the blending of the ultraviolet absorber into the intermediate layer of the oriented polyester film having a multilayer structure of three or more layers can be carried out by the following method. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film.
  • a three-layer manifold or a merging block for example, a merging block having a square merging portion
  • a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated
  • An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less. When the filter particle size of the filter medium exceeds 15 ⁇ m, removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • Polarizing plate has a configuration in which a polarizer made of a polyvinyl alcohol film dyed with iodine is sandwiched between two polarizer protective films, and at least one of the two polarizer protective films is It is preferable that the absolute value of the inclination of the heat shrinkage rate is a polyester film in a specific range. Moreover, in one Embodiment, it is preferable that a polarizing plate is the structure by which the polarizer protective film was laminated
  • the specific polyester film is preferably used as a polarizer protective film for both of the pair of polarizing plates.
  • the pair of polarizing plates means a combination of a polarizing plate disposed on the incident light side with respect to the liquid crystal and a polarizing plate disposed on the outgoing light side with respect to the liquid crystal. That is, the polyester film is preferably used for both the incident light side polarizing plate and the outgoing light side polarizing plate.
  • the said polyester film should just be laminated
  • the polyester film is used as a polarizer protective film on the incident light side of the polarizing plate on the incident light side, and used as a polarizer protective film on the outgoing light side of the polarizing plate on the outgoing light side. Is done.
  • an arbitrary polarizer protective film for example, a TAC film
  • a protective film It is possible not to provide a protective film.
  • the polyester film is used as the polarizer protective film on the liquid crystal cell side of the polarizing plate arranged on the incident light side and the polarizer protective film on the liquid crystal cell side (that is, incident light side) of the polarizing plate arranged on the outgoing light side.
  • the polarizer protective film at these positions may be a polarizer protective film other than the polyester film (for example, a TAC film, an acrylic film, or a norbornene-based film). It is preferable to use a film having no birefringence as represented. These films also preferably have a small absolute value of the slope of the heat shrinkage rate.
  • a liquid crystal display device is composed of a rear module, a liquid crystal cell, and a front module in order from the side facing the backlight light source toward the image display side (viewing side or outgoing light side).
  • the rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side.
  • the polarizing plate is disposed on the side facing the backlight light source in the rear module, and is disposed on the image display side (viewing side or outgoing light side) in the front module.
  • the liquid crystal display device includes at least a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates as constituent members.
  • the liquid crystal display device of the present invention may have other constituent members other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film and the like as appropriate.
  • the configuration of the backlight may be an edge light method using a light guide plate, a reflection plate or the like as a constituent member, or a direct type.
  • the backlight light source is preferably a white light source having a continuous broad emission spectrum.
  • the continuous broad emission spectrum means an emission spectrum in which there is no wavelength at which the light intensity becomes zero in a wavelength region of at least 450 nm to 650 nm, preferably in the visible light region.
  • a white light source having a continuous broad emission spectrum for example, a white LED can be exemplified, but the present invention is not limited thereto.
  • the white LED usable in the present invention includes a phosphor type, that is, an element that emits white light by combining a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor and a phosphor, or an organic light emitting diode (Organic light). -Emitting diode (OLED).
  • a phosphor type that is, an element that emits white light by combining a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor and a phosphor, or an organic light emitting diode (Organic light).
  • organic light emitting diode Organic light.
  • -Emitting diode OLED
  • Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor.
  • white light-emitting diodes consisting of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and have a luminous efficiency. Therefore, it is suitable as the backlight light source of the present invention. Since the white LED has low power consumption, the liquid crystal display device of the present invention using the white LED contributes to energy saving.
  • fluorescent tubes such as cold-cathode tubes and hot-cathode tubes that have been widely used as backlight light sources have a discontinuous emission spectrum whose emission spectrum has a peak at a specific wavelength. Therefore, since it is difficult to obtain the effect of suppressing rainbow spots, it is not preferable as the light source of the liquid crystal display device of the present invention.
  • the physical property evaluation methods in the examples are as follows.
  • (1) Thermal contraction rate and inclination The polyester film cut out from each cut-out part of the slit roll was cut into a square shape with a side of 21 cm and left for 2 hours or more in an atmosphere of 23 ° C. and 65% RH.
  • a circle with a diameter of 80 mm centered on the center of the polyester film was drawn, and the diameter was measured at 5 intervals with the flow direction of the film as 0 degree using a two-dimensional image measuring machine (QUICK IMAGE manufactured by MITUTOYO).
  • the film flow direction was set to 0 degree, and on the upper surface of the film, clockwise (rightward) was set as a positive angle, and counterclockwise (leftward) was set as a negative angle.
  • the diameter was measured, it was measured in all directions in the range of -90 to 85 degrees.
  • the polyester film was heat-treated at 85 ° C. for 30 minutes in water, and then moisture adhering to the film surface was wiped off and air-dried, and then left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more. Thereafter, the diameter of the circle was measured at intervals of 5 degrees as described above.
  • the diameter before heat treatment was Lo
  • the diameter in the same direction after heat treatment was L
  • the heat shrinkage rate in each direction was determined according to the following formula.
  • Maximum heat shrinkage The maximum value among the heat shrinkage rates in all directions is defined as the maximum heat shrinkage rate.
  • Each slit roll (L, C, R) was sampled at three points in the film width direction (center, three points at both ends) and evaluated in the same manner, and the average value of the three maximum heat shrinkage rates was determined as the maximum heat shrinkage rate. Values are listed in Table 1. In this example, the maximum heat shrinkage rate of each slit roll was 5% or less at the center and at the three ends.
  • the slope of the heat shrinkage rate was measured as follows. As shown in FIG. 2, the measured values ( ⁇ 90 ° to 85 °) are plotted with the horizontal axis representing the angle and the vertical axis representing the heat shrinkage corresponding to the angle, ⁇ 180 ° to ⁇ 95 °, 90 ° to The value of 175 degrees was interpolated. (The thermal contraction rate of -90 degrees corresponds to the thermal contraction ratio of 90 degrees, and the thermal contraction ratio of 0 degrees corresponds to the thermal contraction ratio of -180 degrees.) Next, draw an approximate curve connecting the plots The direction with the highest rate was read with an accuracy of 1 degree and defined as ⁇ . However, ⁇ 90 degrees ⁇ ⁇ ⁇ 90 degrees.
  • the two polarizing plates were arranged such that the respective polyester films were positioned outside the polarizer. Then, using a spectrophotometer V7100 manufactured by JASCO, the maximum light transmittance of light having a wavelength of 550 nm to 600 nm that was transmitted through the two polarizing plates was measured. The measurement results were evaluated as follows. ⁇ : Maximum light transmittance is 0.02% or less ⁇ : Maximum light transmittance is 0.02% or more
  • the biaxial refractive index anisotropy ( ⁇ Nxy) was determined by the following method.
  • the orientation axis direction of the film is obtained, and a 4 cm ⁇ 2 cm rectangle is cut out so that the orientation axis direction becomes the long side, for measurement
  • a sample was used.
  • the biaxial refractive index (nx, ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
  • ) of the difference between the biaxial refractive indexes was defined as the refractive index anisotropy ( ⁇ Nxy).
  • the thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm.
  • Retardation (Re) was determined from the product ( ⁇ Nxy ⁇ d) of refractive index anisotropy ( ⁇ Nxy) and film thickness d (nm).
  • ) and ⁇ Nyz (
  • a polyester film prepared by the method described later is attached to one side of a polarizer made of PVA and iodine so that the polarization axis of the polarizer and the orientation axis of the polyester film are perpendicular to each other, and the opposite surface
  • a TAC film manufactured by Fuji Film Co., Ltd., thickness: 80 ⁇ m
  • the obtained polarizing plate was placed on both sides of the liquid crystal so that each polarizing plate was in a crossed Nicols relationship to produce a liquid crystal display device.
  • Each polarizing plate was arrange
  • a white LED composed of a light emitting element in which a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor were combined was used as a light source (Nichia Chemical, NSPW500CS).
  • the liquid crystal display device was visually observed from the front and oblique directions, and the presence or absence of rainbow spots was determined as follows.
  • a ′ When observed from an oblique direction, very thin rainbow spots are observed depending on the angle.
  • B When observed from an oblique direction, a thin iridescence is observed depending on the angle.
  • C When observed from an oblique direction, rainbow spots are observed.
  • D When observed from the front direction and the oblique direction, rainbow spots are observed.
  • Tear strength is 50 mN or more ⁇ : Tear strength is less than 50 mN
  • the obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
  • PET (B) 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity Was 0.62 dl / g) and 90 parts by mass were mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the whole dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal group-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol (relative to the entire glycol component) was prepared as a glycol component.
  • PET (Polarizer protective film 1) After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by a conventional method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III) and dissolved at 285 ° C. .
  • the unstretched film on which this coating layer was formed was guided to a tenter stretching machine, and the film was guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at a temperature of 225 ° C. for 30 seconds and then cooled to 130 ° C. with a shear blade at 2% from both ends.
  • the film was wound with a tension of 5 kg / mm 2 and both edges were cut and removed to obtain a mill roll made of a uniaxially oriented PET film having a film thickness of about 50 ⁇ m. This mill roll was divided into three equal parts to obtain three slit rolls (L, C, R). In addition, the slit roll located on the left with respect to the film flow direction was L, the slit roll located on the right was R, and the center was C.
  • (Polarizer protective film 4) An unstretched film produced by the same method as that for the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched twice in the traveling direction by a roll group having a difference in peripheral speed. After that, the film was stretched 4.0 times in the width direction in the same manner as the polarizer protective film 1, and then the film cooled to 140 ° C.
  • Polarizer protective film 6 Three slit rolls (L, C) made of a uniaxially oriented PET film having a film thickness of about 75 ⁇ m, stretched 1.0 times in the running direction and 3.5 times in the width direction in the same manner as the polarizer protective film 1 , R).
  • Table 1 shows the absolute value of the inclination of the heat shrinkage rate, the maximum value of the heat shrinkage rate, and the results of light leakage evaluation for the polarizer protective films 1 to 20.
  • film means the above polarizer protective film.
  • Table 2 shows the results of rainbow-eye observation and tear strength measurement of the liquid crystal display devices manufactured as described above using the polarizer protective films 1 to 20.
  • the present invention when two polarizing plates are arranged so as to have a crossed Nicols relationship, slight light leakage is suppressed and suitable for obtaining a liquid crystal display device having excellent visibility. It is possible to provide a polarizer protective film made of a polyester film. Therefore, the industrial applicability of the present invention is extremely high.

Abstract

Provided is a polarizer protective film comprising a polyester film which is capable of inhibiting the leakage of light, even in cases when two polarization plates are disposed in a crossed Nicols state. This polarizer protective film comprises a polyester film. The absolute value of the gradient of the thermal shrinkage of said polyester film in a film flow direction or width direction is not more than 15˚.

Description

液晶表示装置、偏光板及び偏光子保護フィルムLiquid crystal display device, polarizing plate and polarizer protective film
 本発明は、液晶表示装置内の偏光板に用いる偏光子保護フィルムに関する。 The present invention relates to a polarizer protective film used for a polarizing plate in a liquid crystal display device.
 液晶表示装置(LCD)に使用される偏光板は、通常ポリビニルアルコール(PVA)等にヨウ素を染着させた偏光子を2枚の偏光子保護フィルムで挟んだ構成であり、偏光子保護フィルムとしては通常トリアセチルセルロース(TAC)フィルムが用いられている。近年、LCDの薄型化に伴い、偏光板の薄層化が求められるようになっている。しかし、このために保護フィルムとして用いられているTACフィルムの厚みを薄くすると、充分な機械強度を得ることが出来ず、また透湿性が悪化するという問題が発生する。また、TACフィルムは非常に高価であり、安価な代替素材が強く求められている。 A polarizing plate used in a liquid crystal display device (LCD) is usually composed of a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like and sandwiched between two polarizer protective films. In general, a triacetyl cellulose (TAC) film is used. In recent years, with the thinning of LCDs, there has been a demand for thinner polarizing plates. However, if the thickness of the TAC film used as the protective film is reduced for this purpose, sufficient mechanical strength cannot be obtained and moisture permeability deteriorates. Further, TAC films are very expensive, and there is a strong demand for inexpensive alternative materials.
 そこで、偏光板の薄層化のため、偏光子保護フィルムとして厚みが薄くても高い耐久性が保持できるよう、TACフィルムの代わりにポリエステルフィルムを用いることが提案されている(特許文献1~3)。 Therefore, it has been proposed to use a polyester film instead of the TAC film so that the polarizing plate can be made thin so that high durability can be maintained even if the thickness is small as a polarizer protective film (Patent Documents 1 to 3). ).
 ポリエステルフィルムは、TACフィルムに比べ耐久性に優れるが、TACフィルムと異なり複屈折性を有するため、これを偏光子保護フィルムとして用いた場合、光学的歪みにより画質が低下するという問題があった。すなわち、複屈折性を有するポリエステルフィルムは所定の光学異方性(リタデーション)を有することから、偏光子保護フィルムとして用いた場合、斜め方向から観察すると虹状の色斑が生じ、画質が低下する。そのため、特許文献1~3では、ポリエステルとして共重合ポリエステルを用いることで、リタデーションを小さくする対策がなされている。 The polyester film is superior to the TAC film in durability, but unlike the TAC film, it has birefringence. Therefore, when it is used as a polarizer protective film, there is a problem that the image quality is deteriorated due to optical distortion. That is, since the polyester film having birefringence has a predetermined optical anisotropy (retardation), when used as a polarizer protective film, a rainbow-like color spot is generated when observed from an oblique direction, and the image quality is deteriorated. . Therefore, Patent Documents 1 to 3 take measures to reduce retardation by using a copolyester as the polyester.
 また、特許文献4には、バックライト光源として白色発光ダイオードを用い、更に偏光子保護フィルムとして一定のリタデーションを有する配向ポリエステルフィルムを用いることで、虹状の色むらを解決できることが開示されている。 Patent Document 4 discloses that a rainbow-like color unevenness can be solved by using a white light emitting diode as a backlight light source and further using an oriented polyester film having a certain retardation as a polarizer protective film. .
 特許文献5には、偏光子保護フィルムは、偏光板の製造時、あるいは得られた偏光板を液晶セルと複合させる工程など、多くの熱処理工程を通過するため、良好な寸法安定性を有すること具体的には120℃×30分の非拘束熱処理後のポリエステルフィルムの収縮率が、フィルムMD方向、TD方向のいずれにおいても5%以下であることが好ましいことが開示されている。 In Patent Document 5, the polarizer protective film has good dimensional stability because it passes through many heat treatment steps such as a step of producing a polarizing plate or a step of combining the obtained polarizing plate with a liquid crystal cell. Specifically, it is disclosed that the shrinkage rate of the polyester film after non-restraining heat treatment at 120 ° C. for 30 minutes is preferably 5% or less in both the film MD direction and the TD direction.
特開2002-116320号公報JP 2002-116320 A 特開2004-219620号公報JP 2004-219620 A 特開2004-205773号公報JP 2004-205773 A WO2011-162198WO2011-162198 特開2010-277028号公報JP 2010-277028 A
 上述の通り、偏光子保護フィルムとして用いられるポリエステルフィルムは、種々の観点から改良が重ねられているが、本発明者らは、更なる改善の余地があることを見出した。即ち、本発明者らは、これまでに改良されたポリエステルフィルムを偏光子保護フィルムとして採用した偏光板をもう一つの偏光板とクロスニコルの関係となるように配置した場合に、僅かに光の漏れが生じ、視認性が悪化する場合があるという、新規な課題の存在を発見した。そこで、本発明は、上述の僅かな光の漏れを抑制することが可能な、ポリエステルフィルムからなる偏光子保護フィルムを提供することを課題とする。 As described above, the polyester film used as the polarizer protective film has been improved from various viewpoints, but the present inventors have found that there is room for further improvement. That is, the present inventors, when a polarizing plate adopting a polyester film improved so far as a polarizer protective film is arranged so as to have a crossed Nicols relationship with another polarizing plate, We discovered the existence of a new problem that leakage may occur and visibility may deteriorate. Then, this invention makes it a subject to provide the polarizer protective film which consists of a polyester film which can suppress the above-mentioned slight light leakage.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ポリエステルフィルムの熱収縮率が最大となる方向とそのポリエステルフィルムの流れ方向又は幅方向とが成す角(即ち、フィルム流れ方向又はフィルム幅方向に対する熱収縮率が最大である方向の傾き)の絶対値が15度以下となるように制御することにより上記課題が解決されることを見出した。斯かる知見に基づき、更なる検討を重ね、下記に代表される発明が提供される。
項1.
フィルム流れ方向又は幅方向とフィルムの熱収縮率が最大となる方向とが成す角の絶対値が15度以下であるポリエステルフィルムである偏光子保護フィルム。
項2.
ポリエステルフィルムのリタデーションが4000~30000nmであり、Nz係数が1.7以下である、項1に記載の偏光子保護フィルム。
項3.
ポリエステルフィルムの面配向度が0.13以下である、項1又は2に記載の偏光子保護フィルム。
項4.
偏光子の両側に偏光子保護フィルムを積層した構成からなり、
少なくとも片側の偏光子保護フィルムが項1~3のいずれかに記載の偏光子保護フィルムである、偏光板。
項5.
偏光子の片側に項1~3のいずれかに記載の偏光子保護フィルムが積層された偏光板。
項6.
バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
前記バックライト光源は連続した発光スペクトルを有する白色光源であり、
前記偏光板は偏光子の両側に偏光子保護フィルムを積層した構成であり、
入射光側に配される偏光板の偏光子保護フィルムの少なくとも一方、及び出射光側に配される偏光板の偏光子保護フィルムの少なくとも一方が、項1~3のいずれかに記載の偏光子保護フィルムである、液晶表示装置。
項7.
前記入射光側に配される偏光板の入射光側の偏光子保護フィルム及び前記出射光側に配される偏光板の出射光側の偏光子保護フィルムが、項1~3のいずれかに記載の偏光子保護フィルムである、項6に記載の液晶表示装置。
項8.
バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
前記バックライト光源は連続した発光スペクトルを有する白色光源であり、
前記偏光板が項5に記載の偏光板である、液晶表示装置。
As a result of intensive studies to solve the above problems, the present inventors have found that an angle formed by the direction in which the thermal shrinkage rate of the polyester film is maximum and the flow direction or width direction of the polyester film (that is, the film flow). It has been found that the above problem can be solved by controlling the absolute value of the inclination of the direction in which the heat shrinkage rate is maximum with respect to the direction or the film width direction to be 15 degrees or less. Based on such knowledge, further studies are made and the following inventions are provided.
Item 1.
The polarizer protective film which is a polyester film whose absolute value of the angle | corner which the film flow direction or the width direction and the direction in which the thermal contraction rate of a film becomes the maximum is 15 degrees or less.
Item 2.
Item 2. The polarizer protective film according to Item 1, wherein the retardation of the polyester film is 4000 to 30000 nm, and the Nz coefficient is 1.7 or less.
Item 3.
Item 3. The polarizer protective film according to Item 1 or 2, wherein the plane orientation degree of the polyester film is 0.13 or less.
Item 4.
Consists of a structure in which a polarizer protective film is laminated on both sides of the polarizer,
4. The polarizing plate, wherein the polarizer protective film on at least one side is the polarizer protective film according to any one of Items 1 to 3.
Item 5.
A polarizing plate in which the polarizer protective film according to any one of Items 1 to 3 is laminated on one side of the polarizer.
Item 6.
A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
The backlight source is a white light source having a continuous emission spectrum;
The polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer,
Item 4. The polarizer according to any one of Items 1 to 3, wherein at least one of the polarizer protective films of the polarizing plate arranged on the incident light side and at least one of the polarizer protective films of the polarizing plate arranged on the outgoing light side are A liquid crystal display device which is a protective film.
Item 7.
Item 4. The polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side and the polarizer protective film on the outgoing light side of the polarizing plate arranged on the outgoing light side are described in any one of Items 1 to 3. Item 7. A liquid crystal display device according to Item 6, which is a polarizer protective film.
Item 8.
A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
The backlight source is a white light source having a continuous emission spectrum;
6. A liquid crystal display device, wherein the polarizing plate is the polarizing plate according to item 5.
 本発明によれば、2枚の偏光板をクロスニコルの関係で配置した場合に、従来生じていた僅かな光の漏れを抑制することができる。また、好適な一実施形態に従えば、薄型化に適し、虹斑が生じないだけでなく、当該光の漏れに起因した視認性の悪化が軽減された、優れた視認性を有する液晶表示装置の提供が可能である。 According to the present invention, when two polarizing plates are arranged in a crossed Nicols relationship, it is possible to suppress slight light leakage that has conventionally occurred. In addition, according to a preferred embodiment, the liquid crystal display device has excellent visibility, which is suitable for thinning, not only causing rainbow spots, but also reducing the deterioration of visibility due to leakage of the light. Can be provided.
図1は、フィルムの熱収縮率をフィルムの流れ方向を0度として5度間隔で360度測定した結果の例を示す。この例では、熱収縮率が最大となる各は約15度である。FIG. 1 shows an example of the result of measuring the heat shrinkage rate of a film by 360 degrees at intervals of 5 degrees with the film flow direction being 0 degree. In this example, each maximum heat shrinkage is about 15 degrees. 図2は、5度間隔で測定した熱収縮率から、1度間隔又はそれ以上の精度で熱収縮率が最大となる角を求めるために、角度をX軸とし、熱収縮率をY軸としてプロットした図である。FIG. 2 shows the angle as the X axis and the heat shrinkage rate as the Y axis in order to obtain the angle at which the heat shrinkage rate is maximized with an accuracy of 1 degree interval or more from the heat shrinkage rate measured at intervals of 5 degrees. FIG. 図3は、熱収縮率の傾きの低減方法1で利用するクリップの間隔を模式的に示す。FIG. 3 schematically shows the interval between the clips used in the method 1 for reducing the inclination of the heat shrinkage rate. 図4は、熱収縮率の傾きの低減方法4で利用できるテンター長手方向の距離とテンター温度との関係を示す。FIG. 4 shows the relationship between the distance in the longitudinal direction of the tenter and the tenter temperature that can be used in the method 4 for reducing the inclination of the thermal shrinkage rate.
1.偏光子保護フィルム
 本発明の偏光子保護フィルムは、ポリエステルフィルムであり、フィルムの流れ方向又は幅方向に対する熱収縮率が最大となる方向の傾き(以降、熱収縮率の傾きと簡略化して呼ぶことがある)の絶対値が15度以下であることが好ましい。前記熱収縮率の傾きの絶対値は、好ましくは12度以下であり、より好ましくは10度以下であり、さらにより好ましくは8度以下であり、更に好ましくは6度以下であり、特に好ましくは4度以下、最も好ましくは2度以下である。熱収縮率の傾きの絶対値は小さいほど好ましいことから下限は0度である。
1. Polarizer Protective Film The polarizer protective film of the present invention is a polyester film, and is referred to as an inclination in a direction in which the thermal shrinkage rate with respect to the flow direction or width direction of the film is maximized (hereinafter simply referred to as an inclination of the thermal shrinkage rate). Is preferably 15 degrees or less. The absolute value of the slope of the heat shrinkage rate is preferably 12 degrees or less, more preferably 10 degrees or less, still more preferably 8 degrees or less, still more preferably 6 degrees or less, particularly preferably. 4 degrees or less, most preferably 2 degrees or less. Since the absolute value of the slope of the heat shrinkage rate is preferably as small as possible, the lower limit is 0 degree.
 上述する僅かな光の漏れが生じる正確なメカニズムは解明されていないが、次のように考えられる。通常、液晶表示装置の中には、2枚の偏光板がクロスニコルの関係となるように配置されている。2枚の偏光板をクロスニコル関係で配置すると、通常、光は2枚の偏光板を通過しない。しかし、偏光子保護フィルムが熱処理によって収縮すると、それに伴って偏光子にも収縮又は反り返りが僅かに生じ、結果として完全なクロスニコルの関係が崩れ、光りが漏れてしまうと考えられる。このような原理から、光の漏れは、偏光子保護フィルムの熱収縮率が最も大きい方向が、フィルム流れ方向又はフィルム幅方向に対して斜め方向である場合に顕著となる。尚、偏光子保護フィルム流れ方向は、通常、偏光子の偏光軸と並行又は垂直である。 The exact mechanism of the slight light leakage described above has not been elucidated, but is thought to be as follows. Usually, in a liquid crystal display device, two polarizing plates are arranged so as to have a crossed Nicols relationship. When two polarizing plates are arranged in a crossed Nicols relationship, light usually does not pass through the two polarizing plates. However, when the polarizer protective film is shrunk by heat treatment, the polarizer is also shrunk or warped slightly, and as a result, the complete crossed Nicols relationship is broken and light leaks. From such a principle, light leakage becomes significant when the direction in which the thermal contraction rate of the polarizer protective film is the largest is oblique to the film flow direction or the film width direction. In addition, the polarizer protective film flow direction is usually parallel or perpendicular to the polarization axis of the polarizer.
 特許文献5には、MD方向、TD方向のいずれにおいても熱収縮率が5%以下であるポリエステルフィルムからなる偏光子保護フィルムが開示されている。しかし、上述したメカニズムから明らかなように、MD方向の熱収縮率及びTD方向の熱収縮率が小さくても、熱収縮率が最大となる方向がフィルム流れ方向又はフィルム幅方向に対して傾いている場合は、前記偏光の漏れの問題が生じる。 Patent Document 5 discloses a polarizer protective film made of a polyester film having a thermal shrinkage rate of 5% or less in both the MD direction and the TD direction. However, as is clear from the mechanism described above, the direction in which the thermal contraction rate is maximum is inclined with respect to the film flow direction or the film width direction even if the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction are small. If so, the problem of leakage of polarized light occurs.
 また、特許文献5は、フィルム両端の部位についてもフィルム面内遅相軸とフィルムTD方向とのなす角度及びそのばらつきを小さくし、液晶ディスプレイの色シフト及び色斑を防止することも開示する。しかし、フィルム面内遅相軸の向きと熱収縮率の傾きとは必ずしも並行ではないため、たとえフィルム面内遅相軸を制御したフィルムであったとしても、前記偏光の漏れの問題は生じる。 Patent Document 5 also discloses that the angle formed by the in-plane slow axis and the film TD direction and the variation thereof are reduced at both ends of the film, thereby preventing the color shift and color spot of the liquid crystal display. However, since the in-plane slow axis direction of the film and the inclination of the thermal contraction rate are not always parallel, the problem of leakage of polarized light occurs even if the film has a controlled in-film slow axis.
 本発明の偏光子保護フィルムに用いるポリエステルフィルムは、任意のポリエステル樹脂から得ることができる。ポリエステル樹脂の種類は、特に制限されず、ジカルボン酸とジオールとを縮合させて得られる任意のポリエステル樹脂を使用することができる。 The polyester film used for the polarizer protective film of the present invention can be obtained from any polyester resin. The type of the polyester resin is not particularly limited, and any polyester resin obtained by condensing dicarboxylic acid and diol can be used.
 ポリエステル樹脂の製造に使用可能なジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等が挙げられる。 Examples of the dicarboxylic acid component that can be used in the production of the polyester resin include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, , 5-Naphthalenedicarboxylic acid, diphenylcarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracene dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Hexahydroterephthalic acid, hexahydroisophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyl Adipi Acid, pimelic acid, azelaic acid, dimer acid, sebacic acid, suberic acid, dodecamethylene dicarboxylic acid and the like.
 ポリエステル樹脂の製造に使用可能なジオール成分としては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等が挙げられる。 Examples of the diol component that can be used in the production of the polyester resin include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1 , 3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, etc. Can be mentioned.
 ポリエステル樹脂を構成するジカルボン酸成分とジオール成分は、いずれも1種又は2種以上を用いることができる。ポリエステルフィルムを構成する好適なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどが挙げられ、より好ましくはポリエチレンテレフタレートやポリエチレンナフタレートを挙げることができるが、これらは更に他の共重合成分を含んでも良い。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。特に、ポリエチレンテレフタレートは固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得られるので、最も好適な素材である。 The dicarboxylic acid component and the diol component constituting the polyester resin can be used alone or in combination of two or more. Suitable polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and more preferably polyethylene terephthalate and polyethylene naphthalate. Furthermore, other copolymer components may be included. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching. In particular, polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and a large retardation can be obtained relatively easily even if the film is thin.
(熱収縮率)
 ポリエステルフィルムの熱収縮率は全方向において5%以下であることが好ましい。ポリエステルフィルムの全方向における熱収縮率は以下のようにして測定される。
(Heat shrinkage)
The thermal shrinkage rate of the polyester film is preferably 5% or less in all directions. The thermal shrinkage rate in all directions of the polyester film is measured as follows.
 ポリエステルフィルムを一辺21cmの正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置する。このポリエステルフィルム上にその中央を中心とする直径80mmの円を描き、二次元画像測定機(例えば、MITUTOYO製QUICK IMAGE)を使用して、フィルムの流れ方向を0度として5度間隔で直径を測定する。ここで、フィルム流れ方向を0度として、テンター内でフィルムを上面から見た際に時計回り(右回り)を正の角度、反時計回り(左回り)を負の角度とする。-90度~85度の範囲で測定すれば全方位についての直径が測定できる。 A polyester film is cut into a square shape with a side of 21 cm and left in an atmosphere of 23 ° C. and 65% RH for 2 hours or longer. On this polyester film, draw a circle with a diameter of 80mm centered on the center, and use a two-dimensional image measuring machine (for example, QUICK IMAGE made by MITUTOYO) to set the diameter in 5 degree intervals with the film flow direction as 0 degree. taking measurement. Here, assuming that the film flow direction is 0 degree, when the film is viewed from above in the tenter, the clockwise direction (clockwise) is a positive angle and the counterclockwise direction (counterclockwise) is a negative angle. If measured in the range of -90 degrees to 85 degrees, the diameter in all directions can be measured.
 次いで、ポリエステルフィルムを85℃で30分間、水中で加熱処理した後、フィルム表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置する。その後、上記と同様に円の直径を5度間隔で測定する。熱処理前の直径をLo、熱処理後の同方向の直径をLとし、下記の式に従って、各方向の熱収縮率が求められる。 Next, the polyester film is heat-treated at 85 ° C. for 30 minutes in water, then the moisture adhering to the film surface is wiped off, air-dried, and then left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more. Thereafter, the diameter of the circle is measured at intervals of 5 degrees as described above. The diameter before heat treatment is Lo, the diameter in the same direction after heat treatment is L, and the heat shrinkage rate in each direction is determined according to the following formula.
              熱収縮率(%)=((L- L)/ L)×100 Thermal contraction rate (%) = ((L 0 -L) / L 0 ) × 100
 5度間隔で360度測定した熱収縮率をグラフで表示すると、例えば、図1のようになる。図1では、円の中心は熱収縮率0%であり、円の中心からの距離が長くなるに従い熱収縮率は大きくなることを示す。また、円周はフィルム流れ方向を0度とした角度を示す。よって、90度はフィルム幅方向と平行する。 When the heat shrinkage rate measured 360 degrees at intervals of 5 degrees is displayed in a graph, for example, it is as shown in FIG. In FIG. 1, the center of the circle has a heat shrinkage rate of 0%, and the heat shrinkage rate increases as the distance from the center of the circle increases. The circumference indicates an angle with the film flow direction being 0 degree. Therefore, 90 degrees is parallel to the film width direction.
 上記の測定方法で求められる熱収縮率は、その最大値が5%以下であることが好ましく、より好ましくは3%以下、さらにより好ましくは1%以下、最も好ましくは0.5%以下である。熱収縮率の下限は特に制限されないが、例えば0.01%以上である。 The maximum value of the heat shrinkage rate obtained by the above measuring method is preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and most preferably 0.5% or less. . The lower limit of the heat shrinkage rate is not particularly limited, but is 0.01% or more, for example.
(熱収縮率の傾き)
 上記の通り、熱収縮率は、5度間隔で測定されるが、熱収縮率が最大となる方向は、次の手順に従って、1度の精度で求められる。即ち、熱収縮率の測定結果(-90度~85度の範囲の熱収縮率の結果)を図2のように横軸をフィルム流れ方向を0度とした角度、縦軸をその角度における熱収縮率としてプロットする。この際、-180度~-95度、及び90度~175度の値も補間する(-90度の熱収縮率が90度の熱収縮率に対応し、0度の熱収縮率が-180度の熱収縮率に対応する)。次に、各プロットを結ぶ近似曲線を引き、熱収縮率が最大となる方向を精度1度で読み取り、これをαと定義する。なお、-90度≦α≦90度である。
(Slope of heat shrinkage)
As described above, the thermal contraction rate is measured at intervals of 5 degrees, and the direction in which the thermal contraction rate is maximized is obtained with an accuracy of 1 degree according to the following procedure. That is, the measurement result of the heat shrinkage rate (result of the heat shrinkage rate in the range of −90 ° to 85 °) is an angle with the horizontal axis as the film flow direction as shown in FIG. Plot as shrinkage. At this time, values of -180 degrees to -95 degrees and 90 degrees to 175 degrees are also interpolated (a thermal contraction rate of -90 degrees corresponds to a thermal contraction ratio of 90 degrees, and a thermal contraction ratio of 0 degrees is -180 degrees). Corresponding to the degree of heat shrinkage). Next, an approximate curve connecting the plots is drawn, and the direction in which the thermal contraction rate is maximized is read with an accuracy of 1 degree, and this is defined as α. Note that −90 degrees ≦ α ≦ 90 degrees.
 熱収縮率が最大となる方向αが-45度~45度の範囲にある場合は、その値を熱収縮率の傾きとする。また、熱収縮率が最大となる方向αが45度以上及び-45度以下の場合は、フィルム流れ方向ではなく、フィルム幅方向を基準に傾いていると解し、α-90度(αが45度以上の場合)、90度+α(αが-45度以下の場合)を熱収縮率の傾きとする。熱収縮率の最大値と最小値との差が0.1%以下の場合には、全ての方向で熱収縮率がほぼ等しく、熱収縮率に傾きが存在しないため、熱収縮率の傾きは0度とみなす。 When the direction α in which the heat shrinkage rate is maximum is in the range of −45 ° to 45 °, the value is defined as the slope of the heat shrinkage rate. Further, when the direction α in which the thermal contraction rate is maximum is 45 degrees or more and −45 degrees or less, it is understood that the direction is inclined with respect to the film width direction, not the film flow direction, and α−90 degrees (α is 90 ° + α (when α is −45 ° or less) and the inclination of the heat shrinkage rate. When the difference between the maximum value and the minimum value of the heat shrinkage rate is 0.1% or less, the heat shrinkage rate is almost equal in all directions, and there is no inclination in the heat shrinkage rate. It is considered.
 (光漏れ評価方法)
 光漏れは、2枚の偏光板をクロスニコルの関係で配置し、これらを透過する550nm~600nmの波長の光の最大透過率を測定する。光の透過率の測定は、任意の分光光度計を用いて行うことができる。測定される最大透過率は、好ましくは、0.02%以下であり、より好ましくは0.015%以下である。
(Light leakage evaluation method)
For light leakage, two polarizing plates are arranged in a crossed Nicols relationship, and the maximum transmittance of light having a wavelength of 550 nm to 600 nm passing through them is measured. The light transmittance can be measured using any spectrophotometer. The maximum transmittance to be measured is preferably 0.02% or less, more preferably 0.015% or less.
 次に、虹斑抑制の観点から、ポリエステルフィルムのリタデーション、及びNz係数、及び面配向度について説明する。 Next, the retardation of the polyester film, the Nz coefficient, and the degree of plane orientation will be described from the viewpoint of suppressing iridoplasm.
(リタデーション)
 偏光子保護フィルムに用いられるポリエステルフィルムは、4000~30000nmのリタデーションを有することが好ましい。リタデーションが4000nm以上であれば、液晶表示装置を斜め方向から観察したとき生じ得る虹斑が抑えられ、良好な視認性を確保することができる。ポリエステルフィルムの好ましいリタデーションは4500nm以上、より好ましくは5000nm以上、更に好ましくは6000nm以上、より更に好ましくは8000nm以上、一層好ましくは10000nm以上である。ここで、4000~30000nmとは、下限値として4000nmを含み、上限値として30000nmを含むことを意味するが、含まない範囲も想定される。
(Retardation)
The polyester film used for the polarizer protective film preferably has a retardation of 4000 to 30000 nm. If the retardation is 4000 nm or more, rainbow spots that may occur when the liquid crystal display device is observed from an oblique direction are suppressed, and good visibility can be ensured. The preferable retardation of the polyester film is 4500 nm or more, more preferably 5000 nm or more, still more preferably 6000 nm or more, still more preferably 8000 nm or more, and still more preferably 10,000 nm or more. Here, 4000 to 30000 nm means that 4000 nm is included as the lower limit value and 30000 nm is included as the upper limit value, but a range not including it is also assumed.
 ポリエステルフィルムのリタデーションの上限は、特に制限されないが、例えば、30000nmである。それ以上のリタデーションを有するポリエステルフィルムを用いても更なる視認性の改善効果は実質的に得られず、リタデーションの上昇に伴ってフィルムの厚みも相当に厚くなり、工業材料としての取り扱い性が低下する恐れがあるためである。 The upper limit of the retardation of the polyester film is not particularly limited, but is, for example, 30000 nm. Even if a polyester film having a retardation higher than that is used, the effect of improving the visibility is not substantially obtained, and as the retardation increases, the thickness of the film is considerably increased, and the handling property as an industrial material is lowered. Because there is a risk of doing.
 配向ポリエステルフィルムのリタデーションの値は、次の手順で求められる。分子配向計(例えば、王子計測器株式会社製、MOA-6004型分子配向計)を用いてフィルムの配向軸方向を求める。配向軸方向の屈折率(ny)及び配向軸方向とフィルム面内で直交する方向の屈折率(nx)を測定波長589nmで測定する。これら二軸方向の屈折率の差(異方性)の絶対値(|ny-nx|)を求め、それにフィルムの厚みを掛けて、リタデーションの値は求められる。フィルムのリタデーションは、例えば、KOBRA-21ADH(王子計測機器株式会社)等の市販の自動複屈折測定装置を用いて測定することができる。また、フィルムの屈折率は、例えば、アッベ屈折率計(アタゴ社製、NAR-4T)等の市販される測定器を用いて測定できる。 The retardation value of the oriented polyester film is obtained by the following procedure. The orientation axis direction of the film is determined using a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments). The refractive index (ny) in the orientation axis direction and the refractive index (nx) in the direction orthogonal to the orientation axis direction in the film plane are measured at a measurement wavelength of 589 nm. The absolute value (| ny−nx |) of the difference (anisotropy) of the refractive index in these biaxial directions is obtained, and the retardation value is obtained by multiplying it by the thickness of the film. The retardation of the film can be measured using a commercially available automatic birefringence measuring apparatus such as KOBRA-21ADH (Oji Scientific Instruments). The refractive index of the film can be measured using a commercially available measuring instrument such as an Abbe refractometer (NAGO-4T, manufactured by Atago Co., Ltd.).
(Nz係数)
 偏光子保護フィルムに用いるポリエステルフィルムは、上述のリターデーションの範囲であることに加えて、|ny-nz|/|ny-nx|で表されるNz係数が1.7以下であることが好ましい。Nz係数は次のようにして求めることができる。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いてフィルムの配向軸方向を求め、配向軸方向とこれに直交する方向の二軸の屈折率(ny、nx、但しny>nx)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求める。こうして求めたnx、ny、nzを、|ny-nz|/|ny-nx|で表される式に代入して、Nz係数を求めることができる。
(Nz coefficient)
The polyester film used for the polarizer protective film preferably has an Nz coefficient represented by | ny-nz | / | ny-nx | of 1.7 or less in addition to the above-described retardation range. . The Nz coefficient can be obtained as follows. The orientation axis direction of the film is obtained using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), and the biaxial refractive index (ny, nx, However, ny> nx) and the refractive index (nz) in the thickness direction are determined by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The Nz coefficient can be obtained by substituting nx, ny, and nz obtained in this way into an expression represented by | ny−nz | / | ny−nx |.
 ポリエステルフィルムのリタデーションが4000nm~30000nmであっても、Nz係数が1.7を超えると、一対の偏光板の両方においてポリエステルフィルムを偏光子保護フィルムとして用いた場合に(例えば、入射光側に配される偏光板の入射光側の偏光子保護フィルム及び出射光側に配される偏光板の出射光側の偏光子保護フィルムがポリエステルフィルムである場合)、液晶表示装置を斜め方向から観察した際に、依然として、角度によっては虹斑が生じる場合がある。このような虹斑の発生を抑制するという観点からNz係数はより好ましくは1.65以下、さらに好ましくは1.63以下である。Nz係数の下限値は、1.2である。これは、1.2未満のフィルムを得ることは製造技術的に難しいためである。また、フィルムの機械的強度を保つためには、Nz係数の下限値は1.3以上が好ましく、より好ましくは1.4以上、さらに好ましくは1.45以上である。  Even if the retardation of the polyester film is 4000 nm to 30000 nm, if the Nz coefficient exceeds 1.7, when the polyester film is used as a polarizer protective film in both the pair of polarizing plates (for example, arranged on the incident light side). When the polarizer protective film on the incident light side of the polarizing plate and the polarizer protective film on the outgoing light side of the polarizing plate arranged on the outgoing light side are polyester films), when the liquid crystal display device is observed from an oblique direction Still, rainbow spots may occur depending on the angle. The Nz coefficient is more preferably 1.65 or less, and still more preferably 1.63 or less, from the viewpoint of suppressing the occurrence of such rainbow spots. The lower limit value of the Nz coefficient is 1.2. This is because it is difficult in terms of manufacturing technology to obtain a film of less than 1.2. In order to maintain the mechanical strength of the film, the lower limit value of the Nz coefficient is preferably 1.3 or more, more preferably 1.4 or more, and further preferably 1.45 or more. *
(面配向係数)
 ポリエステルフィルムのリタデーション値及びNz係数を上記の特定範囲に制御することに加え、(nx+ny)/2-nzで表される面配向係数を特定値以下にすることにより、より確実に一対の偏光板の両方に偏光子保護フィルムとしてポリエステルフィルムを用いた場合の虹斑を解消することができる。ここで、nx、ny及びnzの値は、Nz係数と同様の方法で求められる。配向ポリエステルフィルムの面配向度は0.13以下が好ましく、より好ましくは0.125以下、さらに好ましくは0.12以下である。面配向度を0.13以下にすることで、液晶表示装置を斜め方向から観察した場合に角度によって観察される虹斑を完全に解消することができる。面配向度は0.08以上が好ましく、より好ましくは0.1以上である。面配向度が0.08未満では、フィルム厚みが変動し、リタデーションの値がフィルム面内で不均一になる場合がある。
(Plane orientation coefficient)
In addition to controlling the retardation value and Nz coefficient of the polyester film within the above specific range, the plane orientation coefficient represented by (nx + ny) / 2-nz is made to be not more than the specific value, thereby ensuring a pair of polarizing plates In both cases, rainbow spots can be eliminated when a polyester film is used as a polarizer protective film. Here, the values of nx, ny, and nz are obtained by the same method as for the Nz coefficient. The degree of plane orientation of the oriented polyester film is preferably 0.13 or less, more preferably 0.125 or less, and still more preferably 0.12 or less. By setting the degree of plane orientation to 0.13 or less, it is possible to completely eliminate rainbow spots observed depending on the angle when the liquid crystal display device is observed from an oblique direction. The plane orientation degree is preferably 0.08 or more, and more preferably 0.1 or more. If the degree of plane orientation is less than 0.08, the film thickness varies, and the retardation value may be non-uniform in the film plane.
(リタデーション比)
 ポリエステルフィルムは、そのリタデーション(Re)と厚さ方向リタデーション(Rth)の比(Re/Rth)が、好ましくは0.2以上、より好ましくは0.5以上、さらに好ましくは0.6以上である。上記リタデーションと厚さ方向リタデーション(Rth)の比(Re/Rth)が大きいほど、複屈折の作用は等方性を増し、観察角度による虹状の色斑の発生が生じ難くなるためである。完全な1軸性(1軸対称)フィルムでは上記リタデーションと厚さ方向リタデーションの比(Re/Rth)は2となる。しかし、後述するように完全な1軸性(1軸対称)フィルムに近づくにつれ配向方向と直行する方向の機械的強度が著しく低下する。そこで、リタデーションと厚さ方向のリタデーションの比(Re/Rth)の上限は、好ましくは1.2以下、より好ましくは1以下である。観察角度による虹状の色斑発生を完全に抑制するためには、上記リタデーションと厚さ方向のリタデーションの比(Re/Rth)が2である必要は無く、1.2以下で十分である。また、上記比率が1.0以下であっても、液晶表示装置に求められる視野角特性(左右180度、上下120度程度)を満足することは十分可能である。
(Retardation ratio)
The polyester film has a ratio (Re / Rth) of retardation (Re) to thickness direction retardation (Rth) of preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.6 or more. . This is because as the ratio of the retardation to the thickness direction retardation (Rth) (Re / Rth) is larger, the birefringence action is more isotropic, and the occurrence of iridescent color spots due to the observation angle is less likely to occur. In a complete uniaxial (uniaxial symmetry) film, the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is 2. However, as will be described later, the mechanical strength in the direction orthogonal to the orientation direction is significantly lowered as the film approaches a complete uniaxial (uniaxial symmetry) film. Therefore, the upper limit of the ratio of retardation in the thickness direction (Re / Rth) is preferably 1.2 or less, more preferably 1 or less. In order to completely suppress the occurrence of rainbow-like color spots due to the observation angle, the ratio of the retardation to the retardation in the thickness direction (Re / Rth) does not need to be 2, and 1.2 or less is sufficient. Even if the ratio is 1.0 or less, it is possible to satisfy the viewing angle characteristics (180 degrees left and right, 120 degrees up and down) required for the liquid crystal display device.
(厚み斑)
 ポリエステルフィルムのリタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。この観点から、ポリエステルフィルムの厚み斑は5%以下であることが好ましく、4.5%以下であることがさらに好ましく、4%以下であることがよりさらに好ましく、3%以下であることが特に好ましい。フィルムの厚み斑は、次の手順で測定することができる。フィルムロールからTD方向にフィルムを40mm幅に切出す。切り出したサンプルをアンリツ製接触式連続厚み計(送り出し速度:1.5m/min、サンプリング周期:100ms)により連続的にTD方向の厚みを測定し、平均値、最大値、最小値を求める。厚みムラは、以下の式で算出した値の絶対値とした。
厚み斑=((測定結果の最大値)-(測定結果の最小値))/(測定結果の平均値)×100(%)
(Thick spots)
In order to suppress fluctuations in the retardation of the polyester film, it is preferable that the thickness unevenness of the film is small. In this respect, the thickness unevenness of the polyester film is preferably 5% or less, more preferably 4.5% or less, still more preferably 4% or less, and particularly preferably 3% or less. preferable. The thickness unevenness of the film can be measured by the following procedure. A film is cut into a width of 40 mm from the film roll in the TD direction. The cut sample is continuously measured with an Anritsu contact-type continuous thickness meter (feeding speed: 1.5 m / min, sampling cycle: 100 ms) to determine the average value, maximum value, and minimum value. The thickness unevenness was an absolute value of a value calculated by the following formula.
Thickness unevenness = ((maximum value of measurement result) − (minimum value of measurement result)) / (average value of measurement result) × 100 (%)
(フィルム厚み)
 ポリエステルフィルムの厚みは、特に制限されないが、通常15~300μmであり、好ましくは15~200μmである。フィルム厚みが15μm未満では、フィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じる場合がある。特に好ましい厚みの下限は25μmである。一方、偏光子保護フィルムの厚みの上限は、300μmを超えると偏光板の厚みが厚くなりすぎてしまい好ましくない。偏光子保護フィルムとしての実用性の観点から、厚みの上限は200μmが好ましい。特に好ましい厚みの上限は一般的なTACフィルムと同等程度の100μmである。
(Film thickness)
The thickness of the polyester film is not particularly limited, but is usually 15 to 300 μm, preferably 15 to 200 μm. When the film thickness is less than 15 μm, the anisotropy of the mechanical properties of the film becomes remarkable, and tearing, tearing, and the like may occur. A particularly preferable lower limit of the thickness is 25 μm. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 300 μm, the thickness of the polarizing plate becomes too thick, which is not preferable. From the viewpoint of practicality as a polarizer protective film, the upper limit of the thickness is preferably 200 μm. A particularly preferable upper limit of the thickness is 100 μm, which is about the same as a general TAC film.
(光透過率)
 ポリエステルフィルムは、偏光子に含まれるヨウ素色素等の光学機能性色素の劣化を抑制する観点から、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。光線透過率は、フィルムの平面に対して垂直方法に測定したものであり、分光光度計(例えば、日本分光製分光光度計V-7100)を用いて測定することができる。
(Light transmittance)
The polyester film desirably has a light transmittance of 20% or less at a wavelength of 380 nm from the viewpoint of suppressing deterioration of an optical functional dye such as iodine dye contained in the polarizer. The light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays. The light transmittance is measured in a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, a spectrophotometer V-7100 manufactured by JASCO Corporation).
 配向ポリエステルフィルムの波長380nmの透過率は、配合する紫外線吸収剤の種類及び濃度、並びにフィルムの厚みを適宜調節することで20%以下に制御することができる。本発明で使用される紫外線吸収剤には、公知の紫外線吸収剤を適宜選択して使用することができる。具体的な紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。 The transmittance at a wavelength of 380 nm of the oriented polyester film can be controlled to 20% or less by appropriately adjusting the type and concentration of the ultraviolet absorber to be blended and the thickness of the film. As the ultraviolet absorber used in the present invention, a known ultraviolet absorber can be appropriately selected and used. Specific examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
 有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、及び環状イミノエステル系等、並びにこれらの任意の組み合わせが挙げられるが特に限定されない。耐久性の観点からはベンゾトアゾール系、又は環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、より紫外線吸収効果を改善することができる。 Examples of the organic ultraviolet absorber include, but are not limited to, benzotriazole, benzophenone, and cyclic imino ester, and any combination thereof. From the viewpoint of durability, a benzotoazole system or a cyclic imino ester system is particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
 ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、及びアクリロニトリル系紫外線吸収剤としては、例えば、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(5-クロロ(2H)-ベンゾトリアゾール-2-イル)-4-メチル-6-(tert-ブチル)フェノール、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール等が挙げられる。環状イミノエステル系紫外線吸収剤としては、例えば、2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン等が挙げられる。これらの紫外線吸収剤は、1種のみを使用してもよく、2種以上を併用してもよい。 Examples of the benzophenone ultraviolet absorber, benzotriazole ultraviolet absorber, and acrylonitrile ultraviolet absorber include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2 ′ -Dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- (2′-hydroxy-3′-tert-butyl-5 ′ Methylphenyl) -5-chlorobenzotriazole, 2- (5-chloro (2H) -benzotriazol-2-yl) -4-methyl-6- (tert-butyl) phenol, 2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, etc. Examples of the cyclic imino ester UV absorber include 2,2 ′-( 1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazine-4 -One, 2-phenyl-3,1-benzoxazin-4-one, etc. These ultraviolet absorbers may be used alone or in combination of two or more.
 ポリエステルフィルムに紫外線吸収剤を配合する場合、配向ポリエステルフィルムを3層以上の多層構造とし、フィルムの最外層以外の層(即ち、中間層)に紫外線吸収剤を添加することが好ましい。 When blending a UV absorber with a polyester film, it is preferable that the oriented polyester film has a multilayer structure of three or more layers, and the UV absorber is added to a layer other than the outermost layer of the film (that is, an intermediate layer).
(その他の成分等)
 配向ポリエステルフィルムには、紫外線吸収剤以外に、本発明の効果を妨げない範囲で、各種の添加剤を含有させることも好ましい様態である。添加剤として、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。
(Other ingredients)
In addition to the ultraviolet absorber, it is also preferable to add various additives to the oriented polyester film as long as the effects of the present invention are not hindered. Examples of additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants. Moreover, in order to show high transparency, it is also preferable that a polyester film does not contain a particle | grain substantially. “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
(易接着層)
 本発明においては、偏光子との接着性を改良のために、ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂又はポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、及びポリウレタン樹脂溶液等が挙げられる。
(Easily adhesive layer)
In the present invention, in order to improve the adhesion to the polarizer, it is preferable to have an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin on at least one side of the polyester film. . Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer. The coating solution used for forming the easy-adhesion layer is preferably an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin. Examples of these coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982. Examples thereof include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
 易接着層は、上記塗布液を未延伸フィルム又は縦方向の1軸延伸フィルムの片面又は両面に塗布した後、100~150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な易接着層の塗布量は、0.05~0.2g/mに管理することが好ましい。塗布量が0.05g/m未満であると、得られる偏光子との接着性が不十分となる場合がある。一方、塗布量が0.2g/mを超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に易接着層を設ける場合は、両面の易接着層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The easy-adhesion layer can be obtained by applying the coating solution on one or both sides of an unstretched film or a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and stretching in the lateral direction. The final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesion with the resulting polarizer may be insufficient. On the other hand, when the coating amount exceeds 0.2 g / m 2 , blocking resistance may be lowered. When providing an easily bonding layer on both surfaces of a polyester film, the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
 易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下であることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組み合わせて添加することもできる。 It is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. The average particle size of the fine particles is preferably 2 μm or less. When the average particle diameter of the particles exceeds 2 μm, the particles easily fall off from the coating layer. As particles to be included in the easy adhesion layer, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, Examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
 粒子の平均粒径は、走査型電子顕微鏡(SEM)で粒子の写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を計算して得ることができる。 The average particle size of the particles is determined by taking a photograph of the particles with a scanning electron microscope (SEM), the maximum size of 300 to 500 particles (magnification so that the size of one smallest particle is 2 to 5 mm) The distance between the two most distant points) is measured, and the average value can be calculated.
 塗布液は、公知の方法を用いて塗布することができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法等が挙げられる。これらの方法を単独であるいは組み合わせて行うことができる。 The coating solution can be applied using a known method. Examples include reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method and the like. These methods can be performed alone or in combination.
 ポリエステルフィルムには、偏光子との接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。 The polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion with the polarizer.
(機能層)
 ポリエステルフィルムの偏光子が配置される面とは反対側の面に、写り込み防止やギラツキ抑制、キズ抑制等を目的として、種々の機能層、すなわちハードコート層、防眩層、反射防止層、低反射層、低反射防止層、及び反射防止防眩層、帯電防止層からなる群より選択される1種以上の機能層を配向ポリエステル表面に設けることも好ましい様態である。種々の機能層を設けるに際して、配向ポリエステルフィルムはその表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と配向ポリエステルフィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。
(Functional layer)
Various functional layers, i.e., hard coat layer, antiglare layer, antireflection layer, for the purpose of preventing reflection, glare suppression, scratch control, etc., on the surface opposite to the surface on which the polarizer of the polyester film is disposed, It is also preferable to provide one or more functional layers selected from the group consisting of a low reflection layer, a low antireflection layer, an antireflection antiglare layer, and an antistatic layer on the oriented polyester surface. When providing various functional layers, the oriented polyester film preferably has an easy adhesion layer on the surface thereof. At that time, from the viewpoint of suppressing interference due to reflected light, it is preferable to adjust the refractive index of the easy-adhesion layer so that it is close to the geometric mean of the refractive index of the functional layer and the refractive index of the oriented polyester film. The refractive index of the easy-adhesion layer can be adjusted by a known method. For example, the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
(ポリエステルフィルムの製造方法)
 偏光子保護フィルムとして用いるポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。一軸延伸フィルムでも、二軸延伸フィルムであっても良い。
(Production method of polyester film)
The polyester film used as the polarizer protective film can be manufactured according to a general method for manufacturing a polyester film. For example, the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter. The method of performing heat processing is mentioned. A uniaxially stretched film or a biaxially stretched film may be used.
 (熱収縮率の傾き低減)
 フィルム流れ方向又は幅方向に対する熱収縮率が最大となる方向の傾きの絶対値を15度以下に制御する手段は特に制限されないが、次の点に留意することが好ましい。即ち、テンター内の熱処理工程後の冷却区間では、熱固定で除去しきれなかった延伸に伴う収縮応力と冷却に伴う熱応力が存在する。また、端部のフィルムはクリップで拘束されているのに対して中央部のフィルムは比較的伸縮可能であることから、冷却区間でフィルム流れ方向と幅方向における応力の分布に偏りが存在する。これらが主な原因となり、熱収縮率の傾きが発生する。このような事情を踏まえ、以下に熱収縮率の傾きを低減する具体的な手段を例示する。
(Reduced slope of thermal shrinkage)
The means for controlling the absolute value of the inclination in the direction in which the thermal contraction rate with respect to the film flow direction or the width direction is maximum is not particularly limited, but it is preferable to pay attention to the following points. That is, in the cooling section after the heat treatment step in the tenter, there are contraction stress accompanying stretching and thermal stress accompanying cooling that could not be removed by heat fixation. Further, since the film at the end is restrained by the clip, the film at the center is relatively stretchable, and therefore there is a bias in the distribution of stress in the film flow direction and the width direction in the cooling section. These are the main causes and the inclination of the heat shrinkage rate occurs. Based on such circumstances, specific means for reducing the inclination of the heat shrinkage rate will be exemplified below.
(熱収縮率の傾きの低減方法1)
 熱固定後の冷却区間で、クリップ間隔をフィルム流れ方向に狭め、テンター冷却区間でのフィルムの流れ方向の応力を均一にでき、熱収縮率の傾きを低減することが出来る。よって、熱収縮率の傾きを低減するには、クリップ間隔を狭める温度帯を適切に調整することが好ましい。フィルム組成やフィルム製造条件によって異なるため、特に限定されないが、温度が高すぎる場合、流れ方向に対して左側端部(フィルムを上から見た場合)のフィルムは熱収縮率の傾きが正の方向に大きくなる(右側端部は負の方向に大きくなる)。また、温度が低すぎる場合、フィルムの熱収縮量が小さ過ぎ、平面性不良となるため好ましくない。このように、クリップ間隔を狭める温度を適正な範囲に設定することでテンター冷却区間での流れ方向の応力を均一にして、熱収縮率の傾きを低減させることが出来る。
(Method 1 for reducing the slope of thermal shrinkage)
In the cooling section after heat setting, the clip interval is narrowed in the film flow direction, the stress in the film flow direction in the tenter cooling section can be made uniform, and the inclination of the heat shrinkage rate can be reduced. Therefore, in order to reduce the inclination of the heat shrinkage rate, it is preferable to appropriately adjust the temperature zone in which the clip interval is narrowed. Since it varies depending on the film composition and film production conditions, it is not particularly limited, but when the temperature is too high, the film at the left end (when the film is viewed from above) with respect to the flow direction has a positive direction of thermal shrinkage. (The right end increases in the negative direction). On the other hand, when the temperature is too low, the amount of heat shrinkage of the film is too small, and the flatness becomes poor. Thus, by setting the temperature for narrowing the clip interval to an appropriate range, the stress in the flow direction in the tenter cooling section can be made uniform, and the inclination of the thermal contraction rate can be reduced.
 熱収縮率の傾きを低減するには、フィルム流れ方向にクリップ間隔を狭める緩和率も重要である。フィルム組成やフィルム製造条件によって異なるため、特に限定されないが、緩和率は、0.01~3%が好ましく、0.05~1.5%がより好ましい。緩和率が高すぎる場合、フィルムが縮みきらず、平面性不良となるため好ましくない。また、緩和率が低すぎる場合、熱収縮率の傾きの低減効果が低くなる。ここにおける緩和率とは、図3に示すようなクリップの中心間距離を用いて、下記の式で計算することが出来る。
緩和率=(((緩和前のクリップ間距離)―(緩和後のクリップ間距離))/(緩和前のクリップ間距離))×100(%)
 幅方向の熱収縮率が高すぎる場合には、熱収縮率の傾きが大きくなる傾向がある。そのため、テンターレールパターンを調整し、フィルム幅方向にクリップ間隔を狭める緩和率と温度を適切に調整することがより好ましい。このように、クリップ間隔をフィルム流れ方向に狭める温度帯と緩和率を適当な範囲に設定すること、及び、必要に応じてテンターレールパターンを幅方向の収縮率が大きくなり過ぎないように適切に調整することでテンター冷却区間での流れ方向の応力を均一にして、熱収縮率の傾きを低減させることが出来る。
In order to reduce the inclination of the thermal shrinkage rate, the relaxation rate that narrows the clip interval in the film flow direction is also important. Since it differs depending on the film composition and film production conditions, it is not particularly limited, but the relaxation rate is preferably 0.01 to 3%, more preferably 0.05 to 1.5%. When the relaxation rate is too high, the film is not completely shrunk and the flatness is poor, which is not preferable. Moreover, when the relaxation rate is too low, the effect of reducing the slope of the heat shrinkage rate is reduced. Here, the relaxation rate can be calculated by the following equation using the distance between the centers of the clips as shown in FIG.
Relaxation rate = (((distance between clips before relaxation) − (distance between clips after relaxation)) / (distance between clips before relaxation)) × 100 (%)
When the heat shrinkage rate in the width direction is too high, the inclination of the heat shrinkage rate tends to increase. Therefore, it is more preferable to adjust the tenter rail pattern and appropriately adjust the relaxation rate and temperature for narrowing the clip interval in the film width direction. In this way, set the temperature zone and the relaxation rate to narrow the clip interval in the film flow direction to an appropriate range, and properly adjust the tenter rail pattern so that the shrinkage rate in the width direction does not become too large. By adjusting, the stress in the flow direction in the tenter cooling section can be made uniform, and the inclination of the heat shrinkage rate can be reduced.
(熱収縮率の傾きの低減方法2)
 熱固定後の冷却区間で、フィルム端部をクリップから分離し、クリップによる拘束から開放してテンター冷却区間での幅方向の応力を均一にすることができる。また、巻き取り工程の張力を適正な値に調整することにより、テンター冷却区間での流れ方向の応力を均一にすることができる。このようにして、テンター冷却区間での流れ方向の応力を均一にすることにより熱収縮率の傾きを低減することが出来る。
(Method 2 for reducing the slope of the heat shrinkage rate)
In the cooling section after heat setting, the film end can be separated from the clip and released from restraint by the clip, and the stress in the width direction in the tenter cooling section can be made uniform. Moreover, the stress of the flow direction in a tenter cooling area can be made uniform by adjusting the tension | tensile_strength of a winding process to an appropriate value. Thus, the inclination of the heat shrinkage rate can be reduced by making the stress in the flow direction uniform in the tenter cooling section.
 フィルム端部をクリップから分離する方法は特に限定されないが、従来公知である方法を用いれば良い。具体的には、クリップからフィルムを切断する方法、及び、クリップを開放する方法を挙げることができる。グリップからフィルムを切断する方法は、任意であり、例えば、シェア刃を用いた切断又はレーザーを用いた溶断を挙げることができる。これらの方法を組み合わせて実施することもできる。クリップからフィルムを切断する場合は、フィルム両端のクリップに近接する位置で行うことが望ましい。 The method for separating the film edge from the clip is not particularly limited, but a conventionally known method may be used. Specific examples include a method of cutting a film from a clip and a method of opening a clip. The method of cutting the film from the grip is arbitrary, and examples thereof include cutting using a shear blade or fusing using a laser. A combination of these methods can also be carried out. When cutting a film from a clip, it is desirable to carry out at a position close to the clip at both ends of the film.
 フィルム端部をクリップから分離する際のフィルム温度は、50℃~300℃であることが望ましい。フィルムの融点Tmに対してフィルム温度が高い程、フィルムの平面性を維持することが難しく、また、フィルムのガラス転移温度Tgに対してフィルム温度が低すぎる場合、熱収縮率の傾きが低減し難くなる。そのため、(ガラス転移温度Tg-20℃)よりも高く、(融点Tm-10℃)よりも低い温度でフィルムをクリップから切断分離することが望ましい。ここでのフィルム温度は、放射温度計による測定値である。 The film temperature when separating the film edge from the clip is desirably 50 ° C to 300 ° C. The higher the film temperature with respect to the melting point Tm of the film, the more difficult it is to maintain the flatness of the film. Also, when the film temperature is too low with respect to the glass transition temperature Tg of the film, the slope of the heat shrinkage rate is reduced. It becomes difficult. Therefore, it is desirable to cut and separate the film from the clip at a temperature higher than (glass transition temperature Tg−20 ° C.) and lower than (melting point Tm−10 ° C.). The film temperature here is a value measured by a radiation thermometer.
 フィルム端部をクリップから分離する場合には巻き取り工程での張力を適切に調整することが好ましい。適切な張力はフィルム組成、厚み、及びフィルム製造条件によって異なるため、特に限定されないが、0.01~3kg/mmが好ましく、より好ましくは0.1~2kg/mmである。張力が高すぎる場合、流れ方向に対して左側端部のフィルムは熱収縮率の傾きが正の方向に大きくなる(右側端部は負の方向に大きくなる)。また、張力が低すぎる場合、流れ方向に対して左側端部のフィルムは熱収縮率の傾きが負の方向に大きくなる(右側端部は正の方向に大きくなる)。ただし、これら傾向は流れ方向を基準に角度を評価した場合であって、幅方向を基準とした場合は正負が逆の傾向となる。 When separating the film end from the clip, it is preferable to appropriately adjust the tension in the winding process. The appropriate tension varies depending on the film composition, thickness, and film production conditions, and is not particularly limited, but is preferably 0.01 to 3 kg / mm 2 , more preferably 0.1 to 2 kg / mm 2 . If the tension is too high, the film at the left end with respect to the flow direction has a larger thermal contraction rate in the positive direction (the right end increases in the negative direction). On the other hand, if the tension is too low, the film at the left end with respect to the flow direction has a larger thermal contraction rate in the negative direction (the right end increases in the positive direction). However, these tendencies are when the angle is evaluated based on the flow direction, and when the width direction is used as a reference, the positive and negative tendencies are reversed.
 幅方向の熱収縮率が高すぎる場合、熱収縮率の傾きは大きくなる。そのため、フィルム端部をクリップから分離する前のレールパターンを調整し、上述のようにフィルム幅方向にクリップ間隔を狭める緩和率及び温度を調整することが好ましい。このように、張力を適当な範囲に設定することでテンター冷却区間での流れ方向の応力を均一にして、熱収縮率の傾きを低減させることが出来る。 If the heat shrinkage rate in the width direction is too high, the slope of the heat shrinkage rate becomes large. Therefore, it is preferable to adjust the rail pattern before separating the film end from the clip, and to adjust the relaxation rate and temperature for narrowing the clip interval in the film width direction as described above. In this way, by setting the tension within an appropriate range, the stress in the flow direction in the tenter cooling section can be made uniform, and the inclination of the thermal contraction rate can be reduced.
(熱収縮率の傾きの低減方法3)
 低減方法2と同様の考え方で、テンター出口のフィルム温度を所定温度(即ち、ガラス転移温度Tg-20℃)よりも高く、且つ、所定温度(融点Tm-70℃)よりも低くすることでも熱収縮率の傾きを低減することが出来る。この場合、効果が室温に左右されるため、室温を制御することが望ましい。
(Method 3 for reducing the slope of the heat shrinkage rate)
In the same way as the reduction method 2, the film temperature at the exit of the tenter is higher than a predetermined temperature (that is, the glass transition temperature Tg-20 ° C.) and lower than the predetermined temperature (melting point Tm-70 ° C.). The shrinkage of the shrinkage rate can be reduced. In this case, since the effect depends on the room temperature, it is desirable to control the room temperature.
(熱収縮率の傾きの低減方法4)
 テンター熱固定後の冷却工程の温度設定を調整することでも熱収縮率の傾きを低減可能である。例えば、図4に示すように熱固定温度~テンター出口温度を、テンター長手方向に沿って、-15/X~-100/X(℃/m)となるようなに設定することが好ましい。ここで、Xはテンター出口幅(m)を示す。よって、例えば、テンター出口幅が2mの場合は、テンター長手方向に1m進むごとに、-7.5℃~-50℃の範囲で温度降下させることが好ましい。上記温度は、テンター出口幅あたりの温度を示すため、以下、これを単位幅あたりの温度設定と呼ぶ。
(Method 4 for reducing the slope of the heat shrinkage rate)
The inclination of the heat shrinkage rate can also be reduced by adjusting the temperature setting of the cooling process after the tenter heat setting. For example, as shown in FIG. 4, it is preferable to set the heat fixing temperature to the tenter outlet temperature to be −15 / X to −100 / X (° C./m) along the longitudinal direction of the tenter. Here, X represents the tenter outlet width (m). Therefore, for example, when the tenter outlet width is 2 m, it is preferable to lower the temperature in a range of −7.5 ° C. to −50 ° C. every time 1 m is advanced in the tenter longitudinal direction. Since the temperature indicates the temperature per tenter outlet width, this is hereinafter referred to as temperature setting per unit width.
 また、テンター出口温度は通常Tg以下に設定することが好ましい。単位幅あたりの温度設定が、長手方向に-100/X(℃/m)以下の場合、熱収縮率の傾きが15度を超えるため好ましくなく、-15/X(℃/m)以上の場合、熱収縮率の傾きは十分に低減出来るものの、テンター設備投資が過大となるため好ましくない。 Also, the tenter outlet temperature is usually preferably set to Tg or lower. When the temperature setting per unit width is -100 / X (° C / m) or less in the longitudinal direction, the inclination of the heat shrinkage rate exceeds 15 degrees, which is not preferable. When the temperature setting is -15 / X (° C / m) or more Although the inclination of the heat shrinkage rate can be sufficiently reduced, it is not preferable because the tenter equipment investment becomes excessive.
(熱収縮率の傾きの低減方法5)
 熱収縮率の傾きがあるフィルムでも、一度巻き取ったロールを、例えば、80℃~120℃、10秒~90分間、オフラインアニール処理することで、熱収縮率の傾きを低減することが出来る。オフラインアニール処理の場合、アニール処理の温度、時間を十分確保して調節することが好ましい。また、従来公知のテンター出口~巻き取りロールの間でインラインアニール処理をすることも望ましい。この場合も、上記オフラインアニール処理と同様にアニール処理の温度、時間を十分確保することが好ましく、エアーキャンロールを使用することは、熱処理効率や平面性維持の点でより望ましい。
(Method 5 for reducing the slope of the heat shrinkage rate)
Even with a film having a thermal contraction rate, the roll once wound is subjected to, for example, an offline annealing treatment at 80 ° C. to 120 ° C. for 10 seconds to 90 minutes, so that the thermal contraction rate can be reduced. In the case of off-line annealing treatment, it is preferable to adjust the temperature and time of annealing treatment sufficiently. It is also desirable to perform in-line annealing between the conventionally known tenter outlet and the take-up roll. In this case as well, it is preferable to ensure a sufficient temperature and time for the annealing treatment as in the above-described offline annealing treatment, and the use of an air can roll is more desirable in terms of heat treatment efficiency and flatness maintenance.
 これらの低減方法1~5は、いずれかの方法を単独で実施してもよいし、組み合わせて実施しても構わない。これらの方法により、熱収縮率の傾きを15度以下にすることができる。 These reduction methods 1 to 5 may be carried out by any one method or in combination. By these methods, the inclination of the heat shrinkage rate can be made 15 degrees or less.
 ポリエステルフィルムは、縦延伸、横延伸された後、熱処理工程を経て、両縁部を裁断してミルロールにし、必要に応じてスリットすることでスリットロールとなる。両縁部とは、フィルムの幅全体の長さを100%とし、フィルム両端から好ましくは1%~10%の範囲、より好ましくは1%~5%の範囲のことである。なお、ここでいう両端とは、上記低減方法2について説明した切断前のフィルム両端と同じである。このうち、ミルロールを3等分した際の両側の領域は、は、特に熱収縮率の傾きの絶対値が大きくなる傾向にあるため、この領域の熱収縮率の傾きの絶対値を15度以下に制御することが好ましい。    The polyester film is subjected to a heat treatment step after being longitudinally stretched and laterally stretched, and both edges are cut into mill rolls and slits as necessary to form slit rolls. The term “both edges” means that the length of the entire width of the film is 100%, preferably from 1% to 10%, more preferably from 1% to 5% from both ends of the film. In addition, the both ends here are the same as the both ends of the film before cutting demonstrated about the said reduction method 2. FIG. Among these, the area on both sides when the mill roll is divided into three equal parts tends to have a particularly large absolute value of the inclination of the heat shrinkage rate, so the absolute value of the inclination of the heat shrinkage rate of this area is 15 degrees or less. It is preferable to control. *
 上述する特定のリタデーション及びNz係数を有する配向ポリエステルフィルムは、製膜時の条件(例えば、延伸倍率、延伸温度、フィルムの厚み等)を調節することにより得ることができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションが得られ易い。一方、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど、低いリタデーションが得られ易い。 The oriented polyester film having the specific retardation and Nz coefficient described above can be obtained by adjusting the conditions during film formation (for example, the draw ratio, the draw temperature, the thickness of the film, etc.). For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the higher the retardation. On the other hand, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the lower the retardation.
 具体的な製膜条件としては、例えば、縦延伸温度及び横延伸温度は、80~145℃が好ましく、より好ましくは90~140℃である。縦延伸倍率は1.0~3.5倍が好ましく、より好ましくは1.0倍~3.0倍である。また、横延伸倍率は2.5~6.0倍が好ましく、より好ましくは3.0~5.5倍である。 As specific film forming conditions, for example, the longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 145 ° C, more preferably 90 to 140 ° C. The longitudinal draw ratio is preferably 1.0 to 3.5 times, more preferably 1.0 to 3.0 times. The transverse draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.5 times.
 リタデーションを上述する特定の範囲に制御するためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましい。縦横の延伸倍率の差が小さすぎるとリタデーションを高くすることが難しくなり好ましくない。また、延伸温度を低く設定することもリタデーションを高くする上では好ましい。続く熱処理の温度は、100~250℃が好ましく、より好ましくは180~245℃である。 In order to control the retardation within the specific range described above, it is preferable to control the ratio between the longitudinal draw ratio and the transverse draw ratio. If the difference between the vertical and horizontal draw ratios is too small, it is difficult to increase the retardation, which is not preferable. It is also preferable to set the stretching temperature low in order to increase the retardation. The temperature of the subsequent heat treatment is preferably 100 to 250 ° C, more preferably 180 to 245 ° C.
 Nz係数を上述の特定の値にするためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましく、一軸延伸フィルムとすることが好ましい。また、Nz係数を下げるためには、ポリマーの分子量を上げる、結晶性を下げるために共重合成分を添加することも好ましい。更に、フィルムのNz係数を特定の範囲に制御するためには、トータル延伸倍率、延伸温度を適宜設定することにより行うことが出来る。例えば、トータル延伸倍率が低いほど、延伸温度が高いほど、低いNz係数を得ることが出来る。 In order to set the Nz coefficient to the above specific value, it is preferable to control the ratio of the longitudinal draw ratio and the transverse draw ratio, and it is preferable to use a uniaxially stretched film. In order to reduce the Nz coefficient, it is also preferable to add a copolymer component in order to increase the molecular weight of the polymer and to decrease the crystallinity. Furthermore, in order to control the Nz coefficient of the film within a specific range, the total stretching ratio and the stretching temperature can be appropriately set. For example, the lower the total draw ratio and the higher the drawing temperature, the lower the Nz coefficient can be obtained.
 面配向度を上述の特定値にするためは、トータル延伸倍率を制御することが好ましい。トータル延伸倍率が高すぎると、面配向度が高くなりすぎるため好ましくない。また延伸温度を制御することも面配向度を低くする上では好ましい。縦延伸倍率と横延伸倍率の差を大きくし、トータル延伸倍率を低く設定し、延伸温度を高く設定することで、Nz係数、面配向度を特定の値以下とすることが可能となる。 In order to set the plane orientation degree to the above specific value, it is preferable to control the total draw ratio. If the total draw ratio is too high, the degree of plane orientation becomes too high, which is not preferable. It is also preferable to control the stretching temperature in order to reduce the degree of plane orientation. By increasing the difference between the longitudinal draw ratio and the transverse draw ratio, setting the total draw ratio low, and setting the draw temperature high, the Nz coefficient and the degree of plane orientation can be made to be below specific values.
 延伸温度及び延伸倍率はフィルムの厚み斑に大きな影響を与えることから、厚み斑の観点からも製膜条件の最適化を行うことが好ましい。特にリタデーションを高くするために縦延伸倍率を低くすると、縦厚み斑が悪くなることがある。縦厚み斑は延伸倍率のある特定の範囲で非常に悪くなる領域があることから、この範囲を外したところで製膜条件を設定することが望ましい。 Since the stretching temperature and the stretching ratio have a great influence on the thickness unevenness of the film, it is preferable to optimize the film forming conditions from the viewpoint of the thickness unevenness. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes very bad in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
 配向ポリエステルフィルムへの紫外線吸収剤の配合は、公知の方法を組み合わせて実施できる。例えば、混練押出機を用いて、乾燥させた紫外線吸収剤とポリマー原料とをブレンドして予めマスターバッチを作製し、フィルム製膜時に所定の該マスターバッチとポリマー原料を混合する方法等によって配合することができる。 The blending of the ultraviolet absorber into the oriented polyester film can be carried out by combining known methods. For example, using a kneading extruder, the dried UV absorber and polymer raw material are blended to prepare a master batch in advance, and blended by a method of mixing the predetermined master batch and polymer raw material during film formation. be able to.
 上記マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために5~30質量%の濃度にするのが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエステル原料の融点以上、290℃以下の温度で1~15分間で押し出すことが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。1分以下の押し出しでは紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。 The concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and economically blend it. As a condition for producing the master batch, a kneading extruder is used, and the extrusion temperature is preferably from 1 to 15 minutes at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. Extrusion for 1 minute or less makes it difficult to uniformly mix the UV absorber. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
 3層以上の多層構造を有する配向ポリエステルフィルムの中間層への紫外線吸収剤の配合は、次のよう手法で実施することができる。外層用としてポリエステルのペレット単独、中間層用として紫外線吸収剤を含有したマスターバッチとポリエステルのペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、2台以上の押出機、3層のマニホールド又は合流ブロック(例えば角型合流部を有する合流ブロック)を用いて、両外層を構成するフィルム層、中間層を構成するフィルム層を積層し、口金から3層のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。 The blending of the ultraviolet absorber into the intermediate layer of the oriented polyester film having a multilayer structure of three or more layers can be carried out by the following method. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film. That is, using two or more extruders, a three-layer manifold or a merging block (for example, a merging block having a square merging portion), a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated, An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll.
 光学欠点の原因となる、原料のポリエステル中に含まれている異物を除去するため、配向ポリエステルフィルムの製造過程において、溶融押し出しの際に高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率95%)は、15μm以下が好ましい。濾材の濾過粒子サイズが15μmを超えると、20μm以上の異物の除去が不十分となりやすい。 In order to remove foreign substances contained in the raw material polyester that cause optical defects, it is preferable to perform high-precision filtration during melt extrusion in the process of producing an oriented polyester film. The filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 μm or less. When the filter particle size of the filter medium exceeds 15 μm, removal of foreign matters of 20 μm or more tends to be insufficient.
 1.偏光板
 偏光板は、ヨウ素で染色されたポリビニルアルコール系フィルム等からなる偏光子の両側を2枚の偏光子保護フィルムで挟んだ構成であり、前記2枚の偏光子保護フィルムのうち少なくとも一方が、熱収縮率の傾きの絶対値が特定範囲のポリエステルフィルムであることが好ましい。また、一実施形態において、偏光板は、偏光子の一方の面に偏光子保護フィルムが積層された構成であることが好ましい。偏光子と偏光子保護フィルムは接着剤を介して積層され、通常、70℃~120℃の範囲で10分~60分ほど熱処理して偏光板が得られる。
1. Polarizing plate The polarizing plate has a configuration in which a polarizer made of a polyvinyl alcohol film dyed with iodine is sandwiched between two polarizer protective films, and at least one of the two polarizer protective films is It is preferable that the absolute value of the inclination of the heat shrinkage rate is a polyester film in a specific range. Moreover, in one Embodiment, it is preferable that a polarizing plate is the structure by which the polarizer protective film was laminated | stacked on one surface of the polarizer. The polarizer and the polarizer protective film are laminated via an adhesive, and are usually heat-treated in the range of 70 ° C. to 120 ° C. for 10 minutes to 60 minutes to obtain a polarizing plate.
(偏光子保護フィルムの配置)
 液晶表示装置では、上記特定のポリエステルフィルムが、一対の偏光板の両方の偏光子保護フィルムとして使用されることが好ましい。一対の偏光板とは、液晶に対して入射光側に配置される偏光板と液晶に対して出射光側に配置される偏光板との組み合わせを意味する。即ち、当該ポリエステルフィルムは、入射光側の偏光板と出射光側の偏光板の両方の偏光板に用いられることが好ましい。当該ポリエステルフィルムは、各偏光板を構成する偏光子の少なくとも一方の面に積層されていれば良い。
(Polarizer protective film arrangement)
In the liquid crystal display device, the specific polyester film is preferably used as a polarizer protective film for both of the pair of polarizing plates. The pair of polarizing plates means a combination of a polarizing plate disposed on the incident light side with respect to the liquid crystal and a polarizing plate disposed on the outgoing light side with respect to the liquid crystal. That is, the polyester film is preferably used for both the incident light side polarizing plate and the outgoing light side polarizing plate. The said polyester film should just be laminated | stacked on the at least one surface of the polarizer which comprises each polarizing plate.
 好適な一実施形態において、当該ポリエステルフィルムは、入射光側の偏光板の入射光側の偏光子保護フィルムとして使用され、且つ、出射光側の偏光板の出射光側の偏光子保護フィルムとして使用される。偏光板を構成する偏光子の一方の面のみに当該配向ポリエステルフィルムが積層される場合、他方の面には任意の偏光子保護フィルム(例えば、TACフィルム等)を使用すること、又は、偏光子保護フィルムを設けないことが可能である。入射光側に配される偏光板の液晶セル側の偏光子保護フィルム及び出射光側に配される偏光板の液晶セル側(即ち、入射光側)の偏光子保護フィルムとして当該ポリエステルフィルムを採用すると、液晶セルの偏光特性を変化させてしまう可能性があるため、これらの位置の偏光子保護フィルムは、当該ポリエステルフィルム以外の偏光子保護フィルム(例えば、TACフィルム、アクリルフィルム、ノルボルネン系フィルムに代表されるような複屈折が無いフィルム)を用いることが好ましい。これらのフィルムも熱収縮率の傾きの絶対値は小さいほうが好ましい。 In a preferred embodiment, the polyester film is used as a polarizer protective film on the incident light side of the polarizing plate on the incident light side, and used as a polarizer protective film on the outgoing light side of the polarizing plate on the outgoing light side. Is done. When the oriented polyester film is laminated only on one surface of the polarizer constituting the polarizing plate, an arbitrary polarizer protective film (for example, a TAC film) is used on the other surface, or the polarizer. It is possible not to provide a protective film. The polyester film is used as the polarizer protective film on the liquid crystal cell side of the polarizing plate arranged on the incident light side and the polarizer protective film on the liquid crystal cell side (that is, incident light side) of the polarizing plate arranged on the outgoing light side. Then, since there is a possibility of changing the polarization characteristics of the liquid crystal cell, the polarizer protective film at these positions may be a polarizer protective film other than the polyester film (for example, a TAC film, an acrylic film, or a norbornene-based film). It is preferable to use a film having no birefringence as represented. These films also preferably have a small absolute value of the slope of the heat shrinkage rate.
2.液晶表示装置
 一般に、液晶表示装置は、バックライト光源に対向する側から画像を表示する側(視認側又は出射光側)に向かう順に、後面モジュール、液晶セル及び前面モジュールから構成されている。後面モジュール及び前面モジュールは、一般に、透明基板と、その液晶セル側表面に形成された透明導電膜と、その反対側に配置された偏光板とから構成されている。ここで、偏光板は、後面モジュールでは、バックライト光源に対向する側に配置され、前面モジュールでは、画像を表示する側(視認側又は出射光側)に配置されている。
2. 2. Liquid Crystal Display Device In general, a liquid crystal display device is composed of a rear module, a liquid crystal cell, and a front module in order from the side facing the backlight light source toward the image display side (viewing side or outgoing light side). The rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side. Here, the polarizing plate is disposed on the side facing the backlight light source in the rear module, and is disposed on the image display side (viewing side or outgoing light side) in the front module.
(バックライト光源)
 液晶表示装置は少なくとも、バックライト光源、2つの偏光板、及び2つの偏光板の間に配された液晶セルを構成部材として含む。本発明の液晶表示装置は、これら以外の他の構成部材、例えば、カラーフィルター、レンズフィルム、拡散シート、反射防止フィルム等を適宜有しても構わない。
(Backlight light source)
The liquid crystal display device includes at least a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates as constituent members. The liquid crystal display device of the present invention may have other constituent members other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film and the like as appropriate.
 バックライトの構成は、導光板や反射板等を構成部材とするエッジライト方式であっても、直下型方式であっても構わない。バックライト光源は、連続した幅広い発光スペクトルを有する白色光源であることが好ましい。ここで、連続した幅広い発光スペクトルとは、少なくとも450nm~650nmの波長領域、好ましくは可視光の領域において光の強度がゼロになる波長が存在しない発光スペクトルを意味する。このような連続した幅広い発光スペクトルを有する白色光源としては、例えば、白色LEDを挙げることができるが、これに限定されるものではない。 The configuration of the backlight may be an edge light method using a light guide plate, a reflection plate or the like as a constituent member, or a direct type. The backlight light source is preferably a white light source having a continuous broad emission spectrum. Here, the continuous broad emission spectrum means an emission spectrum in which there is no wavelength at which the light intensity becomes zero in a wavelength region of at least 450 nm to 650 nm, preferably in the visible light region. As such a white light source having a continuous broad emission spectrum, for example, a white LED can be exemplified, but the present invention is not limited thereto.
 本発明で使用可能な白色LEDには、蛍光体方式、すなわち化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子や、有機発光ダイオード(Organic light-emitting diode:OLED)等が含まれる。蛍光体としては、例えば、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等を挙げることができる。白色LEDの中でも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有していると共に発光効率にも優れるため、本発明のバックライト光源として好適である。白色LEDは消費電力が小さいため、それを利用した本発明の液晶表示装置は、省エネルギー化にも資する。 The white LED usable in the present invention includes a phosphor type, that is, an element that emits white light by combining a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor and a phosphor, or an organic light emitting diode (Organic light). -Emitting diode (OLED). Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor. Among white LEDs, white light-emitting diodes, consisting of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and have a luminous efficiency. Therefore, it is suitable as the backlight light source of the present invention. Since the white LED has low power consumption, the liquid crystal display device of the present invention using the white LED contributes to energy saving.
 従来からバックライト光源として広く用いられている冷陰極管や熱陰極管等の蛍光管は、発光スペクトルが特定波長にピークを有する不連続な発光スペクトルを有する。よって、虹斑を抑制する効果を得ることは困難であるため、本発明の液晶表示装置の光源としては好ましくない。 Conventionally, fluorescent tubes such as cold-cathode tubes and hot-cathode tubes that have been widely used as backlight light sources have a discontinuous emission spectrum whose emission spectrum has a peak at a specific wavelength. Therefore, since it is difficult to obtain the effect of suppressing rainbow spots, it is not preferable as the light source of the liquid crystal display device of the present invention.
 以下、実施例を参照して本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.
 実施例における物性の評価方法は以下の通りである。
(1)熱収縮率とその傾き
 スリットロールの各切り出し部から切り出されたポリエステルフィルムを一辺21cmの正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置した。このポリエステルフィルムの中央を中心とする直径80mmの円を描き、二次元画像測定機(MITUTOYO製QUICK IMAGE)を使用して、フィルムの流れ方向を0度として5間隔で直径を測定した。ここで、フイルム流れ方向を0度として、フィルム上面において時計回り(右回り)を正の角度、反時計回り(左回り)を負の角度と設定した。直径を測定したため、-90度~85度の範囲の測定で、全方向について測定された。次いで、このポリエステルフィルムを85℃で30分間、水中で加熱処理した後、フィルム表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置した。その後、上記と同様に円の直径を5度間隔で測定した。熱処理前の直径をLo、熱処理後の同方向の直径をLとし、下記の式に従って、各方向の熱収縮率を求めた。
The physical property evaluation methods in the examples are as follows.
(1) Thermal contraction rate and inclination The polyester film cut out from each cut-out part of the slit roll was cut into a square shape with a side of 21 cm and left for 2 hours or more in an atmosphere of 23 ° C. and 65% RH. A circle with a diameter of 80 mm centered on the center of the polyester film was drawn, and the diameter was measured at 5 intervals with the flow direction of the film as 0 degree using a two-dimensional image measuring machine (QUICK IMAGE manufactured by MITUTOYO). Here, the film flow direction was set to 0 degree, and on the upper surface of the film, clockwise (rightward) was set as a positive angle, and counterclockwise (leftward) was set as a negative angle. Since the diameter was measured, it was measured in all directions in the range of -90 to 85 degrees. Next, the polyester film was heat-treated at 85 ° C. for 30 minutes in water, and then moisture adhering to the film surface was wiped off and air-dried, and then left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more. Thereafter, the diameter of the circle was measured at intervals of 5 degrees as described above. The diameter before heat treatment was Lo, the diameter in the same direction after heat treatment was L, and the heat shrinkage rate in each direction was determined according to the following formula.
              熱収縮率(%)=((L- L)/ L)×100 Thermal contraction rate (%) = ((L 0 -L) / L 0 ) × 100
(熱収縮率の最大値)
 全方向での熱収縮率のうち最大となる値を最大熱収縮率とする。各スリットロール(L、C、R)についてフィルム幅方向に3点サンプリング(中央、両端部の3点)して同様の評価を行い、3つの最大熱収縮率の平均値を熱収縮率の最大値として表1に記載した。なお、今回の実施例ではいずれのスリットロールも中央と両端部の3点とも最大熱収縮率は5%以下であった。
(Maximum heat shrinkage)
The maximum value among the heat shrinkage rates in all directions is defined as the maximum heat shrinkage rate. Each slit roll (L, C, R) was sampled at three points in the film width direction (center, three points at both ends) and evaluated in the same manner, and the average value of the three maximum heat shrinkage rates was determined as the maximum heat shrinkage rate. Values are listed in Table 1. In this example, the maximum heat shrinkage rate of each slit roll was 5% or less at the center and at the three ends.
(熱収縮率の最大方向(α)の読み取り)
 全方向の熱収縮率を求めた結果から、熱収縮率の傾きを次の通り測定した。得られた測定値(-90度~85度)を図2のように横軸を角度、縦軸をその角度に対応する熱収縮率としてプロットし、-180度~-95度、90度~175度の値を補間した。(-90度の熱収縮率が90度の熱収縮率に対応し、0度の熱収縮率が-180度の熱収縮率に対応する。) 次に、プロットを結ぶ近似曲線を引き熱収縮率が最大となる方向を精度1度で読み取り、αと定義した。但し、-90度≦α≦90度である。
(Reading the maximum direction of heat shrinkage (α))
From the result of obtaining the heat shrinkage rate in all directions, the slope of the heat shrinkage rate was measured as follows. As shown in FIG. 2, the measured values (−90 ° to 85 °) are plotted with the horizontal axis representing the angle and the vertical axis representing the heat shrinkage corresponding to the angle, −180 ° to −95 °, 90 ° to The value of 175 degrees was interpolated. (The thermal contraction rate of -90 degrees corresponds to the thermal contraction ratio of 90 degrees, and the thermal contraction ratio of 0 degrees corresponds to the thermal contraction ratio of -180 degrees.) Next, draw an approximate curve connecting the plots The direction with the highest rate was read with an accuracy of 1 degree and defined as α. However, −90 degrees ≦ α ≦ 90 degrees.
(熱収縮率の傾き)
 熱収縮率が最大となる方向αが-45度~45度の範囲にある場合には、その値を熱収縮率の傾きとした。また、熱収縮率が最大となる方向αが45度以上及び-45度以下の場合には、フィルム流れ方向ではなく、フィルム幅方向を基準に傾いていると解し、α-90度(αが45度以上の場合)、90度+α(αが-45度以下の場合)を熱収縮率の傾きとした。以上の測定を各スリットロール(L、C、R)についてフィルム幅方向に3点サンプリング(中央、両端部の3点)して同様に行い、3つの熱収縮率の傾きの絶対値の平均を熱収縮率の傾きとして表1に記載した。尚、今回の実施例では、中央と両端部の3点とも熱収縮率の傾きの絶対値が15度以下となっていた。
(Slope of heat shrinkage)
When the direction α in which the heat shrinkage rate is maximum is in the range of −45 ° to 45 °, the value is defined as the slope of the heat shrinkage rate. Further, when the direction α in which the heat shrinkage rate is maximum is 45 degrees or more and −45 degrees or less, it is understood that the film is inclined with respect to the film width direction, not the film flow direction, and α−90 degrees (α 90 ° + α (when α is −45 ° or less) and the inclination of the heat shrinkage rate. The above measurement was similarly performed for each slit roll (L, C, R) by sampling three points in the film width direction (center, three points at both ends), and calculating the average of the absolute values of the slopes of the three heat shrinkage rates. The slope of thermal shrinkage is shown in Table 1. In this example, the absolute value of the inclination of the heat shrinkage rate was 15 degrees or less at the three points at the center and both ends.
(2)光漏れ評価方法
 PVAフィルムからなる偏光子の片側に、トリアセチルセルロースフィルム(富士フイルム(株)社製、厚み80μm)を張り合わせ、もう一方の面に後述する方法で作製したポリエステルフィルムを貼り合せた。張り合わせには接着剤を使用しオーブンで85℃30分間加熱処理をして、偏光板を製造した。なお、偏光子の偏光軸と、ポリエステルフィルムの主配向軸が互いに垂直になるように貼り合せた。こうして得られた2枚の偏光板を、クロスニコルに配置した。この際、2枚の偏光板を、それぞれのポリエステルフィルムが偏光子よりも外側に位置するように配置した。そして、日本分光製分光光度計V7100を用いて、当該2枚の偏光板を透過する550nm~600nmの波長の光の最大光線透過率を測定した。測定結果について、下記の通り評価した。
○ :最大光線透過率が0.02%以下
× :最大光線透過率が0.02%以上
(2) Light Leakage Evaluation Method A triacetyl cellulose film (manufactured by Fuji Film Co., Ltd., thickness 80 μm) is bonded to one side of a polarizer made of PVA film, and a polyester film produced by the method described later on the other side. Pasted together. Adhesives were used for pasting and heat treatment was performed in an oven at 85 ° C. for 30 minutes to produce a polarizing plate. In addition, it bonded so that the polarizing axis of a polarizer and the main orientation axis | shaft of a polyester film might become mutually perpendicular | vertical. The two polarizing plates thus obtained were arranged in crossed Nicols. At this time, the two polarizing plates were arranged such that the respective polyester films were positioned outside the polarizer. Then, using a spectrophotometer V7100 manufactured by JASCO, the maximum light transmittance of light having a wavelength of 550 nm to 600 nm that was transmitted through the two polarizing plates was measured. The measurement results were evaluated as follows.
○: Maximum light transmittance is 0.02% or less ×: Maximum light transmittance is 0.02% or more
(3)リタデーション(Re)
 リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|nx-ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性及び異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いてフィルムの配向軸方向を求め、配向軸方向が長辺となるように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(nx,ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)を用いて測定し、前記二軸の屈折率の差の絶対値(|nx-ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。
(3) Retardation (Re)
Retardation is a parameter defined by the product (ΔNxy × d) of the biaxial refractive index anisotropy (ΔNxy = | nx−ny |) on the film and the film thickness d (nm). Yes, a measure of optical isotropy and anisotropy. The biaxial refractive index anisotropy (ΔNxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), the orientation axis direction of the film is obtained, and a 4 cm × 2 cm rectangle is cut out so that the orientation axis direction becomes the long side, for measurement A sample was used. For this sample, the biaxial refractive index (nx, ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd., measurement wavelength 589 nm). The absolute value (| nx−ny |) of the difference between the biaxial refractive indexes was defined as the refractive index anisotropy (ΔNxy). The thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Retardation (Re) was determined from the product (ΔNxy × d) of refractive index anisotropy (ΔNxy) and film thickness d (nm).
(4)Nz係数
|ny-nz|/|ny-nx|で得られる値をNz係数とした。ただし、ny>nxとなるように、ny及びnxの値を選択した。
(4) Nz coefficient | ny-nz | / | ny-nx | However, the values of ny and nx were selected so that ny> nx.
(5)面配向度(△P)
(nx+ny)/2-nzで得られる値を面配向度(△P)とした。
(5) Degree of plane orientation (ΔP)
The value obtained by (nx + ny) / 2-nz was defined as the degree of plane orientation (ΔP).
(6)厚さ方向リタデーション(Rth)
 厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|nx-nz|)、△Nyz(=|ny-nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。リタデーションの測定と同様の方法でnx、ny、nzとフィルム厚みd(nm)を求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めた。
(6) Thickness direction retardation (Rth)
Thickness direction retardation refers to two birefringences ΔNxz (= | nx−nz |) and ΔNyz (= | ny−nz |), respectively, when viewed from the cross section in the film thickness direction. It is a parameter which shows the average of retardation obtained. Thickness direction retardation (Rth) is calculated by calculating nx, ny, nz and film thickness d (nm) in the same manner as the retardation measurement, and calculating an average value of (ΔNxz × d) and (ΔNyz × d). )
(7)虹斑観察
 PVAとヨウ素からなる偏光子の片側に後述する方法で作成したポリエステルフィルムを偏光子の偏光軸とポリエステルフィルムの配向主軸が垂直になるように貼り付け、その反対側の面にTACフィルム(富士フィルム(株)社製、厚み80μm)を貼り付けて偏光板を作成した。得られた偏光板を液晶を挟んで両側に一枚ずつ、各偏光板がクロスニコルの関係になるよう配置して液晶表示装置を作製した。各偏光板は、前記ポリエステルフィルムが液晶とは反対側(遠位)となるように配置された。液晶表示装置の光源には、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色LEDを光源(日亜化学、NSPW500CS)に用いた。このような液晶表示装置の正面、及び斜め方向から目視観察し、虹斑の発生有無について、以下のように判定した。
A: いずれの方向からも虹斑の発生無し。
A’:斜め方向から観察したときに、角度によって極薄い虹斑が観察される。
B: 斜め方向から観察したときに、角度によって薄い虹斑が観察される。
C: 斜め方向から観察したときに、虹斑が観察される。
D: 正面方向及び斜め方向から観察したときに、虹斑が観察される。
(7) Observation of rainbow spots A polyester film prepared by the method described later is attached to one side of a polarizer made of PVA and iodine so that the polarization axis of the polarizer and the orientation axis of the polyester film are perpendicular to each other, and the opposite surface A TAC film (manufactured by Fuji Film Co., Ltd., thickness: 80 μm) was attached to the plate to create a polarizing plate. The obtained polarizing plate was placed on both sides of the liquid crystal so that each polarizing plate was in a crossed Nicols relationship to produce a liquid crystal display device. Each polarizing plate was arrange | positioned so that the said polyester film might be on the opposite side (distal) from a liquid crystal. As a light source of the liquid crystal display device, a white LED composed of a light emitting element in which a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor were combined was used as a light source (Nichia Chemical, NSPW500CS). The liquid crystal display device was visually observed from the front and oblique directions, and the presence or absence of rainbow spots was determined as follows.
A: No iridescence from any direction.
A ′: When observed from an oblique direction, very thin rainbow spots are observed depending on the angle.
B: When observed from an oblique direction, a thin iridescence is observed depending on the angle.
C: When observed from an oblique direction, rainbow spots are observed.
D: When observed from the front direction and the oblique direction, rainbow spots are observed.
 (8)引裂き強度
 東洋精機製作所製エレメンドルフ引裂試験機を用いて、JIS P-8116に従い、各フィルムの引裂き強度を測定した。引裂き方向はフィルムの配向主軸方向と平行となるように行ない、以下のように判定した。なお、配向主軸方向の測定は分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)で測定した。
(8) Tear Strength Using a Toyo Seiki Seisakusho Elmendorf Tear Tester, the tear strength of each film was measured according to JIS P-8116. The tearing direction was performed so as to be parallel to the orientation main axis direction of the film, and was determined as follows. The measurement in the orientation main axis direction was performed with a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
 ○:引裂き強度が50mN以上
 ×:引裂き強度が50mN未満
○: Tear strength is 50 mN or more ×: Tear strength is less than 50 mN
(製造例1-ポリエステルA)
 エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部及びエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
(Production Example 1-Polyester A)
When the temperature of the esterification reactor was raised to 200 ° C., 86.4 parts by mass of terephthalic acid and 64.6 parts by mass of ethylene glycol were charged and 0.017 parts by mass of antimony trioxide as a catalyst while stirring. 0.064 parts by mass of magnesium acetate tetrahydrate and 0.16 parts by mass of triethylamine were charged. Next, the pressure was raised and the pressure esterification reaction was carried out under the conditions of gauge pressure 0.34 MPa and 240 ° C., then the esterification reaction can was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC over 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and after 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。) After completion of the polycondensation reaction, it is filtered through a NASRON filter with a 95% cut diameter of 5 μm, extruded into a strand from a nozzle, and cooled and solidified using cooling water that has been filtered (pore diameter: 1 μm or less) in advance. And cut into pellets. The obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
(製造例2-ポリエステルB)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た。(以後、PET(B)と略す。)
(Production Example 2-Polyester B)
10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity Was 0.62 dl / g) and 90 parts by mass were mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
(製造例3-接着性改質塗布液の調整)
 常法によりエステル交換反応及び重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%及びネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
(Production Example 3-Adjustment of Adhesive Modification Coating Solution)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the whole dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal group-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol (relative to the entire glycol component) was prepared as a glycol component. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, 0.06 parts by mass of a nonionic surfactant were mixed and then heated and stirred. After adding 5 parts by mass of a water-dispersible sulfonic acid metal base-containing copolymer polyester resin and continuing to stir until the resin is no longer agglomerated, the resin water dispersion is cooled to room temperature to obtain a solid content concentration of 5.0% by mass. A uniform water-dispersible copolymerized polyester resin liquid was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin solution was mixed with 99.46 parts by mass of the silicia 310. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain an adhesive modified coating solution.
 (偏光子保護フィルム1)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層及び外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 1)
After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by a conventional method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III) and dissolved at 285 ° C. . After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法によりこの未延伸PETフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。 Next, after applying the adhesive property-modifying coating solution on the both sides of this unstretched PET film by a reverse roll method so that the coating amount after drying was 0.08 g / m 2 , the coating was dried at 80 ° C. for 20 seconds. .
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、その後、130℃まで冷却したフィルムをシェア刃で両端部から2%の位置で切断し、0.5kg/mmの張力で巻き取り、両縁部を裁断除去することによって、フィルム厚み約50μmの一軸配向PETフィルムからなるミルロールを得た。このミルロールを3等分して、3本のスリットロール(L,C,R)を得た。なお、フィルム流れ方向に対して左に位置するスリットロールをL、右に位置するスリットロールをR、中央をCとした。 The unstretched film on which this coating layer was formed was guided to a tenter stretching machine, and the film was guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds and then cooled to 130 ° C. with a shear blade at 2% from both ends. The film was wound with a tension of 5 kg / mm 2 and both edges were cut and removed to obtain a mill roll made of a uniaxially oriented PET film having a film thickness of about 50 μm. This mill roll was divided into three equal parts to obtain three slit rolls (L, C, R). In addition, the slit roll located on the left with respect to the film flow direction was L, the slit roll located on the right was R, and the center was C.
 (偏光子保護フィルム2)
 未延伸フィルムの厚みを変更することにより、厚み約100μmとすること以外は偏光子保護フィルム1と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 2)
By changing the thickness of the unstretched film, three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained in the same manner as the polarizer protective film 1 except that the thickness was about 100 μm.
 (偏光子保護フィルム3)
 熱固定後にシェア刃でカットしなかったこと以外は偏光子保護フィルム1と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 3)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained in the same manner as the polarizer protective film 1 except that it was not cut with a shear blade after heat setting.
 (偏光子保護フィルム4)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2倍延伸した後、偏光子保護フィルム1と同様の方法で幅方向に4.0倍延伸し、その後、140℃まで冷却したフィルムをシェア刃で両端部から2%の位置で切断し、0.65kg/mmの張力で巻き取り、未延伸フィルムの厚みを調整することによりフィルム厚み約50μmの二軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 4)
An unstretched film produced by the same method as that for the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched twice in the traveling direction by a roll group having a difference in peripheral speed. After that, the film was stretched 4.0 times in the width direction in the same manner as the polarizer protective film 1, and then the film cooled to 140 ° C. was cut with a shear blade at a position of 2% from both ends, and 0.65 kg / Three slit rolls (L, C, R) made of a biaxially oriented PET film having a film thickness of about 50 μm were obtained by winding with a tension of mm 2 and adjusting the thickness of the unstretched film.
 (偏光子保護フィルム5)
 フィルムをクリップから分離する方法として、シェア刃でカットする方法からクリップを開放する方法に変更したこと以外は偏光子保護フィルム1と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 5)
As a method of separating the film from the clip, three slit rolls made of a uniaxially oriented PET film (L, L) in the same manner as the polarizer protective film 1 except that the method of cutting with a shear blade is changed to the method of opening the clip. C, R).
 (偏光子保護フィルム6)
 偏光子保護フィルム1と同様の方法で、走行方向に1.0倍、幅方向に3.5倍延伸して、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 6)
Three slit rolls (L, C) made of a uniaxially oriented PET film having a film thickness of about 75 μm, stretched 1.0 times in the running direction and 3.5 times in the width direction in the same manner as the polarizer protective film 1 , R).
(偏光子保護フィルム7)
 偏光子保護フィルム1と同様の方法を用い、未延伸フィルムの厚みを変更し、横延伸倍率を3.8倍、延伸温度を135℃として、厚み約100μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 7)
Using the same method as for the polarizer protective film 1, the thickness of the unstretched film was changed, the lateral stretch ratio was 3.8 times, the stretch temperature was 135 ° C., and three uniaxially oriented PET films with a thickness of about 100 μm were used. Slit rolls (L, C, R) were obtained.
(偏光子保護フィルム8)
 偏光子保護フィルム1と同様の方法を用い、横延伸倍率を3.8倍、延伸温度を135℃として、厚み約50μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 8)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film with a thickness of about 50 μm, using the same method as the polarizer protective film 1, with a lateral stretching ratio of 3.8 times, a stretching temperature of 135 ° C. Got.
(偏光子保護フィルム9)
熱固定後にシェア刃でカットしなかったこと以外は偏光子保護フィルム8と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 9)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained in the same manner as the polarizer protective film 8 except that it was not cut with a shear blade after heat setting.
(偏光子保護フィルム10)
 偏光子保護フィルム1と同様の方法を用い、横延伸倍率を4.2倍、延伸温度を135℃として、厚み約50μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 10)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film with a thickness of about 50 μm, using the same method as the polarizer protective film 1, with a lateral stretch ratio of 4.2 times, a stretch temperature of 135 ° C. Got.
(偏光子保護フィルム11)
シェア刃で切断後の巻き取り張力を0.2kg/mmとした以外は偏光子保護フィルム10と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 11)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained in the same manner as the polarizer protective film 10 except that the winding tension after cutting with a shear blade was 0.2 kg / mm 2 . .
(偏光子保護フィルム12)
熱固定後にシェア刃でカットしなかったこと以外は偏光子保護フィルム10と同様にして一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 12)
Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained in the same manner as the polarizer protective film 10 except that it was not cut with a shear blade after heat setting.
(偏光子保護フィルム13)
 偏光子保護フィルム4と同様の方法で、走行方向に1.8倍、幅方向に2.0倍延伸し、また、シェア刃で切断後の巻き取り張力を0.2kg/mmとしたフィルム厚み約275μmの二軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 13)
A film which is stretched 1.8 times in the running direction and 2.0 times in the width direction in the same manner as the polarizer protective film 4, and the winding tension after cutting with a shear blade is 0.2 kg / mm 2 Three slit rolls (L, C, R) made of a biaxially oriented PET film having a thickness of about 275 μm were obtained.
(偏光子保護フィルム14)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、90℃~70℃の温度区間で流れ方向に0.2%クリップ間隔を狭めて、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 14)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was processed at a temperature of 225 ° C. for 30 seconds, and the clip interval was narrowed by 0.2% in the flow direction in the temperature range of 90 ° C. to 70 ° C. Three slit rolls (L, C, R) made of a uniaxially oriented PET film having a film thickness of about 75 μm were obtained.
(偏光子保護フィルム15)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、90℃~70℃の温度区間で流れ方向に0.1%クリップ間隔を狭めて、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 15)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was processed at a temperature of 225 ° C. for 30 seconds, and the clip interval was narrowed by 0.1% in the flow direction in the temperature range of 90 ° C. to 70 ° C. Three slit rolls (L, C, R) made of a uniaxially oriented PET film having a film thickness of about 75 μm were obtained.
(偏光子保護フィルム16)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、110℃~70℃の温度区間で流れ方向に0.2%クリップ間隔を狭めて、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 16)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was processed at a temperature of 225 ° C. for 30 seconds, and the clip interval was narrowed by 0.2% in the flow direction in the temperature range of 110 ° C. to 70 ° C. Three slit rolls (L, C, R) made of a uniaxially oriented PET film having a film thickness of about 75 μm were obtained.
(偏光子保護フィルム17)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、150℃~100℃の温度区間で流れ方向に0.4%クリップ間隔を狭めて、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 17)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was processed at a temperature of 225 ° C. for 30 seconds, and the clip interval was narrowed by 0.4% in the flow direction in the temperature range of 150 ° C. to 100 ° C. Three slit rolls (L, C, R) made of a uniaxially oriented PET film having a film thickness of about 75 μm were obtained.
(偏光子保護フィルム18)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、単位幅あたりに-55℃/mの温度設定で冷却し、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 18)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Then, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds, cooled at a temperature setting of −55 ° C./m per unit width, and a film thickness of about 75 μm Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained.
(偏光子保護フィルム19)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、単位幅あたりに-35℃/mの温度設定で冷却し、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 19)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Then, while maintaining the width stretched in the width direction, the film was processed at a temperature of 225 ° C. for 30 seconds, cooled at a temperature setting of −35 ° C./m per unit width, and a film thickness of about 75 μm Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained.
(偏光子保護フィルム20)
 偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.5倍延伸し、次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、単位幅あたりに-120℃/mの温度設定で冷却し、フィルム厚み約75μmの一軸配向PETフィルムからなる3本のスリットロール(L,C,R)を得た。
(Polarizer protective film 20)
An unstretched film produced by the same method as that for the polarizer protective film 1 is guided to a tenter stretching machine and guided to a hot air zone having a temperature of 125 ° C. while gripping the end of the film with a clip, and 3.5 times in the width direction. Then, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds, cooled at a temperature setting of −120 ° C./m per unit width, and a film thickness of about 75 μm Three slit rolls (L, C, R) made of a uniaxially oriented PET film were obtained.
 偏光子保護フィルム1~20について、熱収縮率の傾きの絶対値、熱収縮率の最大値、及び光漏れ評価の結果を表1に示す。 Table 1 shows the absolute value of the inclination of the heat shrinkage rate, the maximum value of the heat shrinkage rate, and the results of light leakage evaluation for the polarizer protective films 1 to 20.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1において、「フィルム」とは、上記の偏光子保護フィルムを意味する。 In Table 1, “film” means the above polarizer protective film.
 また、偏光子保護フィルム1~20を用いて上述するように作製した液晶表示装置について虹斑観察及び引裂き強度を測定した結果を以下の表2に示す。 Further, Table 2 below shows the results of rainbow-eye observation and tear strength measurement of the liquid crystal display devices manufactured as described above using the polarizer protective films 1 to 20.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示された結果から、熱収縮率の傾きの絶対値が15度以下であれば、2枚の偏光板がクロスニコルの関係になるように配置した場合の僅かな光の漏れを抑制することができることが示された。また、偏光子保護フィルム1~20の熱収縮率の最大値は全て1%未満であった。 From the results shown in Table 1, if the absolute value of the slope of the heat shrinkage rate is 15 degrees or less, slight light leakage is suppressed when the two polarizing plates are arranged in a crossed Nicols relationship. It was shown that you can. Further, the maximum value of the heat shrinkage rate of each of the polarizer protective films 1 to 20 was less than 1%.
 表2に示された結果から、配向ポリエステルフィルムのリタデーションが4000以上であり、且つ、そのNz係数が1.7以下である場合に、虹斑の発生が顕著に抑制されることが示された。また、この条件に加えて、配向ポリエステルフィルムの面配向度を0.13以下に制御することによって、より効果的に虹斑の発生を抑制することが可能であることが示された。 From the results shown in Table 2, it was shown that when the retardation of the oriented polyester film is 4000 or more and the Nz coefficient is 1.7 or less, the generation of rainbow spots is remarkably suppressed. . In addition to this condition, it has been shown that by controlling the degree of plane orientation of the oriented polyester film to 0.13 or less, it is possible to more effectively suppress the occurrence of rainbow spots.
 本発明によれば、2枚の偏光板をクロスニコルの関係になるように配置した場合に、僅かな光の漏れの発生が抑制され、優れた視認性を有する液晶表示装置を得るのに好適なポリエステルフィルムからなる偏光子保護フィルムを提供することができる。よって、本発明の産業上の利用可能性は極めて高い。 According to the present invention, when two polarizing plates are arranged so as to have a crossed Nicols relationship, slight light leakage is suppressed and suitable for obtaining a liquid crystal display device having excellent visibility. It is possible to provide a polarizer protective film made of a polyester film. Therefore, the industrial applicability of the present invention is extremely high.

Claims (8)

  1. フィルム流れ方向又は幅方向に対する熱収縮率が最大となる方向の傾きの絶対値が15度以下であるポリエステルフィルムからなる偏光子保護フィルム。 The polarizer protective film which consists of a polyester film whose absolute value of the inclination of the direction where the thermal contraction rate with respect to a film flow direction or the width direction becomes the maximum is 15 degrees or less.
  2. ポリエステルフィルムのリタデーションが4000~30000nmであり、Nz係数が1.7以下である、請求項1に記載の偏光子保護フィルム。 The polarizer protective film according to claim 1, wherein the retardation of the polyester film is 4000 to 30000 nm, and the Nz coefficient is 1.7 or less.
  3. ポリエステルフィルムの面配向度が0.13以下である、請求項1又は2に記載の偏光子保護フィルム。 The polarizer protective film of Claim 1 or 2 whose surface orientation degree of a polyester film is 0.13 or less.
  4. 偏光子の両側に偏光子保護フィルムを積層した構成からなり、
    少なくとも片側の偏光子保護フィルムが請求項1~3のいずれかに記載の偏光子保護フィルムである、偏光板。
    Consists of a structure in which a polarizer protective film is laminated on both sides of the polarizer,
    The polarizing plate, wherein the polarizer protective film on at least one side is the polarizer protective film according to any one of claims 1 to 3.
  5. 偏光子の片側に請求項1~3のいずれかに記載の偏光子保護フィルムが積層された偏光板。 A polarizing plate in which the polarizer protective film according to any one of claims 1 to 3 is laminated on one side of the polarizer.
  6. バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
    前記バックライト光源は連続した発光スペクトルを有する白色光源であり、
    前記偏光板は偏光子の両側に偏光子保護フィルムを積層した構成であり、
    入射光側に配される偏光板の偏光子保護フィルムの少なくとも一方、及び出射光側に配される偏光板の偏光子保護フィルムの少なくとも一方が、
    請求項1~3のいずれかに記載の偏光子保護フィルムである、液晶表示装置。
    A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
    The backlight source is a white light source having a continuous emission spectrum;
    The polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer,
    At least one of the polarizer protective films of the polarizing plate disposed on the incident light side, and at least one of the polarizer protective films of the polarizing plate disposed on the outgoing light side,
    A liquid crystal display device which is the polarizer protective film according to any one of claims 1 to 3.
  7. 前記入射光側に配される偏光板の入射光側の偏光子保護フィルム及び前記出射光側に配される偏光板の出射光側の偏光子保護フィルムが、
    請求項1~3のいずれかに記載の偏光子保護フィルムである、請求項6に記載の液晶表示装置。
    The polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side and the polarizer protective film on the outgoing light side of the polarizing plate arranged on the outgoing light side,
    The liquid crystal display device according to claim 6, which is the polarizer protective film according to any one of claims 1 to 3.
  8. バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
    前記バックライト光源は連続した発光スペクトルを有する白色光源であり、
    前記偏光板が請求項5に記載の偏光板である、液晶表示装置。
    A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
    The backlight source is a white light source having a continuous emission spectrum;
    A liquid crystal display device, wherein the polarizing plate is the polarizing plate according to claim 5.
PCT/JP2014/073451 2013-09-10 2014-09-05 Liquid crystal display device, polarization plate, and polarizer protective film WO2015037527A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217029721A KR102491441B1 (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarization plate, and polarizer protective film
KR1020237002136A KR20230015521A (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarization plate, and polarizer protective film
CN201480050003.4A CN105531610B (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarizer and polaroid protective film
JP2014543689A JPWO2015037527A1 (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarizing plate and polarizer protective film
KR1020167008518A KR20160053955A (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarization plate, and polarizer protective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187191 2013-09-10
JP2013-187191 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037527A1 true WO2015037527A1 (en) 2015-03-19

Family

ID=52665633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073451 WO2015037527A1 (en) 2013-09-10 2014-09-05 Liquid crystal display device, polarization plate, and polarizer protective film

Country Status (5)

Country Link
JP (5) JPWO2015037527A1 (en)
KR (3) KR102491441B1 (en)
CN (1) CN105531610B (en)
TW (1) TWI675226B (en)
WO (1) WO2015037527A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095247A (en) * 2018-11-29 2020-06-18 住友化学株式会社 Polarizing plate
WO2021200367A1 (en) * 2020-03-31 2021-10-07 東洋紡株式会社 Polyester film for protecting polarizer, polarizer, and liquid crystal display device
JP2022028752A (en) * 2017-09-29 2022-02-16 東洋紡株式会社 Polyester film and use of the same
JP7396402B2 (en) 2016-12-14 2023-12-12 東洋紡株式会社 Liquid crystal display devices, polarizing plates and polarizer protective films

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649591B (en) 2016-05-31 2019-02-01 南韓商Skc股份有限公司 Protective film for polarizing member, polarizing plate including the same, and display device having the same
US11415836B2 (en) * 2018-03-28 2022-08-16 Shanjin Optoelectronics (Suzhou) Co., Ltd. Polarizing plate and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059907A (en) * 1999-08-23 2001-03-06 Nitto Denko Corp Phase difference sheet and production thereof
WO2013100042A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Liquid crystal display device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146372A (en) * 1974-10-17 1976-04-20 Teijin Ltd Goseijushifuirumuno shikannetsushorihoho
JPS5787331A (en) * 1980-11-21 1982-05-31 Teijin Ltd Manufacture of biaxially stretched film
CN1205030C (en) * 2000-05-30 2005-06-08 尤尼吉可株式会社 Polyester film for metal sheet laminating, metal sheet laminated with this film, and metal vessel formed from this metal sheet
JP4341163B2 (en) 2000-10-10 2009-10-07 コニカミノルタホールディングス株式会社 Polarizing plate protective film, polarizing plate using the same, manufacturing method, and liquid crystal display device
US6916440B2 (en) * 2001-05-31 2005-07-12 3M Innovative Properties Company Processes and apparatus for making transversely drawn films with substantially uniaxial character
JP2004205773A (en) 2002-12-25 2004-07-22 Konica Minolta Holdings Inc Polarizing plate and its manufacturing method, and liquid crystal display device using the same
JP4352705B2 (en) 2003-01-14 2009-10-28 コニカミノルタホールディングス株式会社 Polarizing plate protective film, polarizing plate and liquid crystal display device using the same
JP4374859B2 (en) * 2003-01-23 2009-12-02 東レ株式会社 Support film for polarizing film and polarizing plate
KR100601916B1 (en) * 2003-11-21 2006-07-14 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using positive biaxial retardation film
TWI377401B (en) * 2005-01-25 2012-11-21 Sumitomo Chemical Co Liquid crystal display device and polarizing plate set useful for the same
US7713595B2 (en) * 2005-10-18 2010-05-11 Nitto Denko Corporation Optical compensation films produced by a carrier-web-casting process
JP5332234B2 (en) * 2007-03-29 2013-11-06 東洋紡株式会社 Polyethylene terephthalate resin film roll and method for producing the same
JP2008256747A (en) * 2007-03-30 2008-10-23 Fujifilm Corp Protection film for polarizing plate, its manufacturing method, polarizing plate and liquid crystal display device
JP2009078536A (en) * 2007-09-07 2009-04-16 Teijin Dupont Films Japan Ltd Heat-shrinkable polyester film
JP2009269301A (en) * 2008-05-08 2009-11-19 Toyobo Co Ltd Easily adhesive polyester film
JP5077143B2 (en) * 2008-08-19 2012-11-21 東洋紡績株式会社 Biaxially oriented laminated polyester film
TW201022016A (en) * 2008-12-08 2010-06-16 Extend Optronics Corp Biaxial oriented polyester film with improved formability and manufacturing method thereof
JP2010224512A (en) * 2009-02-24 2010-10-07 Sumitomo Chemical Co Ltd Tn mode liquid crystal panel
JP5451186B2 (en) 2009-06-01 2014-03-26 帝人デュポンフィルム株式会社 Uniaxially oriented aromatic polyester film for polarizer support substrate
WO2011043131A1 (en) * 2009-10-09 2011-04-14 東洋紡績株式会社 Biaxially oriented polyethylene terephthalate film
JP4888853B2 (en) * 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
KR20160079928A (en) 2010-06-22 2016-07-06 도요보 가부시키가이샤 Liquid crystal display device, polarizing plate and polarizer protective film
JP5518762B2 (en) * 2011-02-09 2014-06-11 富士フイルム株式会社 Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP2012220879A (en) * 2011-04-13 2012-11-12 Toyobo Co Ltd Biaxially oriented polyethylene terephthalate film for protecting polarizer
JP5512759B2 (en) * 2011-09-16 2014-06-04 富士フイルム株式会社 Method for producing biaxially stretched thermoplastic resin film
JP2013109116A (en) * 2011-11-21 2013-06-06 Konica Minolta Advanced Layers Inc Method for manufacturing polarizing film protection film, polarizing film protection film, polarizing plate and liquid crystal display device using the same
KR102385405B1 (en) * 2013-05-14 2022-04-08 도요보 가부시키가이샤 Liquid crystal display device, polarizing plate, and polarizer protective film
KR102245388B1 (en) * 2013-06-28 2021-04-28 도레이 카부시키가이샤 Biaxially oriented polyester film
KR20150027684A (en) * 2013-08-29 2015-03-12 삼성에스디아이 주식회사 Polarizing plate, method for preparing the same and liquid crystal display apparatus comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059907A (en) * 1999-08-23 2001-03-06 Nitto Denko Corp Phase difference sheet and production thereof
WO2013100042A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396402B2 (en) 2016-12-14 2023-12-12 東洋紡株式会社 Liquid crystal display devices, polarizing plates and polarizer protective films
JP2022028752A (en) * 2017-09-29 2022-02-16 東洋紡株式会社 Polyester film and use of the same
JP2022028751A (en) * 2017-09-29 2022-02-16 東洋紡株式会社 Polyester film and use of the same
JP2020095247A (en) * 2018-11-29 2020-06-18 住友化学株式会社 Polarizing plate
WO2021200367A1 (en) * 2020-03-31 2021-10-07 東洋紡株式会社 Polyester film for protecting polarizer, polarizer, and liquid crystal display device
JP7024934B1 (en) * 2020-03-31 2022-02-24 東洋紡株式会社 Polyester film for protector protector, polarizing plate and liquid crystal display device
JP2022048363A (en) * 2020-03-31 2022-03-25 東洋紡株式会社 Polyester film for polarizer protection, polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
CN105531610A (en) 2016-04-27
TWI675226B (en) 2019-10-21
KR20230015521A (en) 2023-01-31
JPWO2015037527A1 (en) 2017-03-02
KR20210116714A (en) 2021-09-27
TW201531748A (en) 2015-08-16
KR20160053955A (en) 2016-05-13
JP2020115211A (en) 2020-07-30
KR102491441B1 (en) 2023-01-20
JP2022105524A (en) 2022-07-14
JP2024045417A (en) 2024-04-02
JP2018185535A (en) 2018-11-22
CN105531610B (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6179548B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP6443048B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP7264191B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP5614506B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP2018185535A (en) Liquid crystal display device, polarization plate, and polarizer protective film
JP2015111208A (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP6459175B2 (en) Liquid crystal display device and polarizing plate
JP2015111207A (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP6337481B2 (en) Polarizer protective film, polarizing plate and liquid crystal display device
JP2015141217A (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP6459176B2 (en) Liquid crystal display device and polarizing plate
JP6337474B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP2015111206A (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP2015079129A (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP2016099553A (en) Liquid crystal display device and polarizing plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050003.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014543689

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008518

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14843896

Country of ref document: EP

Kind code of ref document: A1