TWI373854B - Integrated getter for vacuum or inert gas packaged leds - Google Patents
Integrated getter for vacuum or inert gas packaged leds Download PDFInfo
- Publication number
- TWI373854B TWI373854B TW94111977A TW94111977A TWI373854B TW I373854 B TWI373854 B TW I373854B TW 94111977 A TW94111977 A TW 94111977A TW 94111977 A TW94111977 A TW 94111977A TW I373854 B TWI373854 B TW I373854B
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting diode
- getter
- light
- light emitting
- environment
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/10155—Shape being other than a cuboid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/10155—Shape being other than a cuboid
- H01L2924/10158—Shape being other than a cuboid at the passive surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Description
1373854 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種整合吸氣劑’而且特別關於一真空 或鈍氣封裝發光二極體的整合吸氣劑。 〃 1 【先前技術】 發光二極體(led)是固態光源’而且使用p型半導 與η型半導體間介面(junctj〇n)上電子(e|ectr〇n)與電洞 (hole)結合的原理。發光二極體的光線是由使用不^層二 發光材料控制,而且該發光材料是設置在發光二極體^曰片 (基板)上。每層材料所發出的光線通常是單色光。不同顏 色是經由使用多層發光材料與顏料而產生的。例如,在^ 當基板生成的InGaAlP族的多層發光材料可發出红光、黃 光或橙光。在碳化石夕(SiC)與氧化铭(A丨2〇3)基板成長二 InAIGaN族的多層發光材料可發出藍光、綠 ^ (UV light)。 為產生白光,可組合輸出三種發光二極體,例如紅 光、綠光或藍光的發光二極體。或者,單一藍光或紫外光 的發光二極體可用來激發放置於藍光或紫f光的發光二 極體附近的磷材料(phosphor material)。磷材料吸收藍光 或紫外光,而且再發出(re-emit)具有較長波長的光譜:光 線。因此,塗佈磷材料的藍光發光二極體可發出一適當顏 色的光譜’其中加以組合以產生白光。 產生白光發光二極體是使用不同摻雜(d〇pjng)物質而 4PC-CA05005TW-SAES.doc 5 在丨nAIGaN族生成的不同層材料,以取得p型層盥门型 層。有機金屬氣相▲晶法(OMVPE)是-種生成這類材料層 的技術。在有機金屬氣相蟲晶法技術中,有機金屬分子包 含預期的金屬原子而且以氣相傳送至適當基板而 薄膜在基板上。 適當的基板例如氮化鎵(GaN)、氮化|呂(A|N)、氧化铭 (AI203)與碳化石夕(SiC)。氧化|呂與碳化石夕可具有__氮化鎵 或氮化鋁緩衝層,而且該缓衝層是介於基板^發光二極體 =構間。例如,晶圓基板是完全由發光二極體結構層所覆 盖,而且5玄結構隨後加以切割為每個晶圓產生1〇,〇〇〇顆 發光二極體晶粒(dies)。每個晶粒隨後被設置於兩個電極 間,以成為發光二極體的主動元件。 以顆粒或薄膜形式出現的磷材料是沉積在|nA丨GaN 多層結構上,以便將發光二極體的主要光線波長平移至預 期可見色光發射光譜。磷材料是包含一主材料(host material)例如釔鋁石榴石(YAG)、硫化鎘(CdS)、硫化鋅 (ZnS)專’並包括低濃度的活化離子(actjvat〇r j〇n),例如 稀土金屬與過渡金屬。有關磷的描述可參照美國專利第 6,466,135B1號,提出於此做為參考β具有磷的lnA丨GaN 多層LED通$由聚合物樹月旨進行封裝(encapSU|atecj),例 如環氧樹脂。發光二極體以聚合物樹脂的封裝是描述於美 國專利弟5,959,316號中’提出於此做為參考。 為增加發光一極體的向前光線(forward light),由鱗覆 蓋的多層發光一極體可放置在一適當的反射杯(reflect〇r 4PC-CA05005TW-SAES.doc 1373854 cup)之中。反射杯將光線反射朝向發光二極體的末端。 來自發光二極體的熱量與UM量可料致聚合物樹 脂封裝化(degrade)。接著,聚合物樹脂封裝劣化會使得 光線嫒只。再者,濕氣的產生使得構元素層與丨多 層,構的發射效率降低。磷活化劑(act丨vat〇r)的氧化狀態 在氧氣存在時會改變,因此引起光線發射的減少且可能產 生發射波長的偏移。因為高功率發光二極體(例如,白光發 光二極體)在較高溫度運作,所以氧化反應會因溫度而加速 (temperature-enhanced)。發光二極體的顏色變化與發射 強度通常是不受歡迎的,且尤其是在使用白光發光^極體 時。 第1圖是習知發光二極體組件1〇〇的剖面圖,其包括 基。卩112。當然,該組件僅是不同類型發光二極體其中 的一種範例。描述許多類型發光二極體組件的論文可&照 美國加州聖荷西市的Lumileds Lighting之Shatij Haque 發表’名稱為「Packaging Challenges of High_Power LEDs for Solid State Lighting」,該論文提出於此做為參考 文獻。 在第1圖中,發光二極體材料106固定於一導線(丨ead) 108a。這可使用含銀導電環氧樹脂來達成,且具有高反射 性(reflectivity)。或者’對於「覆晶__chip)」類型的發光 一極體結構’因為焊料凸塊接合(s〇lder_bump bonding) 不會阻礙由主動區域射出的光線,所以使用焊料凸塊接合 是有益處的。 4PC-CA05005TW-SAES.doc 7 1373854 反射杯1〇4a與導線108a及i〇8b固定於基部112。 反射杯1〇4a是由實心材料製成,而且具有反置、截切的 (inverted,truncated)圓錐孔以提供一反射表面1〇牝。反 射杯104a可由電絕緣材料所製成,例如玻璃、陶瓷或塑 膠。例如,反射表面104b可為一鋁薄膜,而且該薄膜由 濺鍍製造而產生的。導線1〇8a與i〇8b通常由銅合金製 成。接合線107是將導線1〇8b電性輕合至發光二極體材 料106的頂端。聚合物樹脂簡是設置在反射杯1〇4a的 圓錐孔内’而且將發光二極體材料1〇6與結合線1〇7封裝 於其中。封裝劑(encapsulant) 1〇3較佳會使得磷材^ 102(以小氣泡顯示)散佈其間’用於將發光二極體材料的發 射波長平移,例如以產生「白」光。所謂的「白」意謂^ 生可見光的寬廣光譜,雖然白光有時混雜特定頻率(例如, 藍光)’但是+光線實質上為白色的。實心聚合物樹脂的封裝 圓頂110藉由環氧化(ep0Xjecj)或黏貼(glued)方式來連^ 至反射杯104a ’並且在封裝劑103上。 '°σ 發光二極體材料106可包括一 |nA|GaN多層 極體結構。基部112可由絕緣材料製成,例如藍寶石x & 或碳化石夕。基部112應該為非常差的導電體(例如,3) 體),但是較佳為-良好的導熱體。散細(未圖示)可選用 地设置或者成絲部112的-部分,以協轉熱量由習 發光二極體組件10Q排除。導線彻a與1Q8b是電極^ 線,而且可由導電材料製成,包含銅與銅合金。導 ί 二極體材料1〇6的基部具有大約相同的; 度。反射杯1〇4a可由絕緣材料例如玻璃或陶莞製成 4PC-CA05005TW-SAES.doc 8 第2圖顯示使用一段時間後習知LED組件遭遇的 定問題。在使用習知發光二極體組件1〇〇 一段時間後 光二極體材料產生的紫外_V)與熱量使得聚合& 樹脂封裝圓頂110變色或「變黃」。在圖中以圓頂110的 邊色區113來表示。聚合物樹脂封裝圓頂11〇的變黃接著 會導致吸收來自丨nAIGaN多層結構與磷材料的光線1 是可見光譜的藍光部分。這引起來自發光二光= 出降低與輸出色彩轉移。因此,習知發光二極體彳〇〇的輸 出變得較不明亮而且較不白(例如,較黃)。 1 再^ ’ InAIGaN多層結構及磷材料皆會與濕氣彳彳5(例 如水蒸氣)反應,這可擴散穿透實心聚合物圓頂而且引起 發光二極體的光線發射強度的減弱。再者,習知發光二極 體組件100的濕氣可引起電極與其他元件的腐蝕。磷材料 也與氧氣114反應,氧氣可穿透實心聚合物圓頂並且引起 發射光線的波長之改變。因此,習知發光二極體組件1〇〇 的濕氣與氧氣之效應對於發光二極體的效能是有不良影 響。 … 基於如述内谷,需要產生一發光二極體組件,在運作 期間可維持發光二極體發射光線的高強度與穩定波長,而 且也不因為曝露於氧氣、濕氣或其他污染物而快速劣化。 【發明内容】 -本發明提供一方法用於控制發光二極體封閉空間内 的環境(atmosphere),依據非限制的實施例’本方法包括 4PC-CA05005TW-SAES.doc 1373854 提供一吸氣劑於發光二極體封閉空間内的環境並 (activate)該吸氣劑,藉此可將污染物由環境中移除。勒 在-實施例中,發光二極體組件包括—以吸 的反射杯、-包覆反射杯關頂、以及―圓彻 : 環境(non-reactive atmosphere)。另一實施例包括―:1373854 IX. Description of the Invention: [Technical Field] The present invention relates to an integrated getter that incorporates a getter' and in particular relates to a vacuum or an off-gas packaged light-emitting diode. 〃 1 [Prior Art] A light-emitting diode (led) is a solid-state light source' and uses a p-type semiconductor and an n-type semiconductor interface (junctj〇n) to combine electrons (e|ectr〇n) with holes The principle. The light of the light-emitting diode is controlled by using a layer of light-emitting material, and the light-emitting material is disposed on the light-emitting diode (substrate). The light emitted by each layer of material is usually monochromatic. Different colors are produced by using multiple layers of luminescent materials and pigments. For example, the multilayered luminescent material of the InGaAlP family formed on the substrate can emit red, yellow or orange light. The carbon nanotubes (SiC) and the oxidized (A丨2〇3) substrate grow. The InAIGaN multilayer light-emitting material emits blue light and green light (UV light). In order to generate white light, three kinds of light emitting diodes such as red, green or blue light emitting diodes can be combined and output. Alternatively, a single blue or ultraviolet light emitting diode can be used to excite a phosphor material placed adjacent to the blue or violet f light emitting diode. The phosphor material absorbs blue or ultraviolet light and re-emits the spectrum with longer wavelengths: light. Therefore, the blue light-emitting diode coated with the phosphor material can emit a spectrum of a suitable color, which is combined to produce white light. The white light emitting diode is produced by using different doping (d〇pjng) materials and 4PC-CA05005TW-SAES.doc 5 different layer materials formed in the 丨nAIGaN family to obtain a p-type layered gate type layer. The organometallic gas phase ▲ crystallography (OMVPE) is a technique for producing layers of such materials. In the organometallic fumed process technique, the organometallic molecules comprise the desired metal atoms and are transported to the appropriate substrate in the vapor phase while the film is on the substrate. Suitable substrates are, for example, gallium nitride (GaN), nitride|Lu (A|N), oxidized (AI203), and carbonized carbide (SiC). Oxidation|Lv and carbon carbide may have a __ gallium nitride or aluminum nitride buffer layer, and the buffer layer is interposed between the substrate and the light emitting diode. For example, the wafer substrate is completely covered by the light-emitting diode structure layer, and the 5 meta-structure is subsequently cut to produce 1 〇, 发光 LED dies for each wafer. Each die is then placed between the two electrodes to become the active component of the light-emitting diode. Phosphorus materials appearing in the form of particles or thin films are deposited on a |nA丨GaN multilayer structure to translate the dominant wavelength of the light-emitting diode to the expected visible light emission spectrum. The phosphor material comprises a host material such as yttrium aluminum garnet (YAG), cadmium sulfide (CdS), zinc sulfide (ZnS), and includes a low concentration of activated ions (actjvat〇rj〇n), such as rare earths. Metal and transition metals. A description of the phosphorus can be found in U.S. Patent No. 6,466, 135, the disclosure of which is incorporated herein by reference. The encapsulation of a light-emitting diode in a polymer resin is described in U.S. Patent No. 5,959,316, the disclosure of which is incorporated herein by reference. In order to increase the forward light of the light-emitting body, the scale-covered multilayer light-emitting body can be placed in a suitable reflector cup (reflect〇r 4PC-CA05005TW-SAES.doc 1373854 cup). The reflector cup reflects the light toward the end of the light-emitting diode. The amount of heat and UM from the luminescent diode can be de- structured by polymer resin. Then, deterioration of the polymer resin package causes the light to smash only. Furthermore, the generation of moisture causes the structuring layer and the ruthenium layer to have a lower emission efficiency. The oxidation state of the phosphor activator (act丨vat〇r) changes in the presence of oxygen, thus causing a decrease in light emission and possibly causing a shift in the emission wavelength. Since high-power light-emitting diodes (for example, white light-emitting diodes) operate at higher temperatures, the oxidation reaction is temperature-enhanced. The color change and emission intensity of the light-emitting diode are generally undesirable, and especially when a white light-emitting body is used. Figure 1 is a cross-sectional view of a conventional light emitting diode assembly 1 , including a base.卩112. Of course, this component is only one example of a different type of light-emitting diode. Papers describing many types of light-emitting diode components can be published under the name "Packaging Challenges of High_Power LEDs for Solid State Lighting" by Shatij Haque of Lumileds Lighting, San Jose, Calif., which is hereby incorporated by reference. literature. In Fig. 1, the light emitting diode material 106 is fixed to a wire (丨ead) 108a. This can be achieved using a silver-containing conductive epoxy and has a high reflectivity. Alternatively, it is advantageous to use solder bump bonding because the "slip-on-bump bonding" type of light-emitting diode structure does not hinder light emitted from the active region. 4PC-CA05005TW-SAES.doc 7 1373854 The reflector cup 1〇4a and the wires 108a and i8b are fixed to the base 112. The reflector cup 1〇4a is made of a solid material and has inverted, truncated conical holes to provide a reflective surface 1〇牝. The reflector cup 104a can be made of an electrically insulating material such as glass, ceramic or plastic. For example, the reflective surface 104b can be an aluminum film and the film is produced by sputtering. The wires 1〇8a and i〇8b are usually made of a copper alloy. The bonding wire 107 electrically connects the wires 1〇8b to the top end of the light-emitting diode material 106. The polymer resin is simply disposed in the tapered hole of the reflecting cup 1〇4a and the light emitting diode material 1〇6 and the bonding wire 1〇7 are encapsulated therein. The encapsulant 1 〇 3 preferably causes the phosphor material 102 (shown as small bubbles) to be interspersed therebetween for translating the emission wavelength of the light-emitting diode material, for example to produce "white" light. The so-called "white" means a broad spectrum of visible light, although white light is sometimes mixed with a specific frequency (for example, blue light), but the + light is substantially white. The encapsulated dome 110 of the solid polymer resin is attached to the reflective cup 104a' and to the encapsulant 103 by epoxidation (ep0xjecj) or glued. The '° σ light-emitting diode material 106 may include a |nA|GaN multilayer polar body structure. The base 112 may be made of an insulating material such as sapphire x & or carbon stone. The base 112 should be a very poor electrical conductor (e.g., 3), but is preferably a good thermal conductor. The fineness (not shown) may be optionally provided or the portion of the filament portion 112 to be excluded from the light-emitting diode assembly 10Q by the heat transfer. Wires a and 1Q8b are electrode wires and can be made of a conductive material, including copper and copper alloys. The base of the diode material 1〇6 has approximately the same degree; The reflecting cup 1〇4a can be made of an insulating material such as glass or pottery. 4PC-CA05005TW-SAES.doc 8 Fig. 2 shows the problems encountered by conventional LED components after a period of use. The UV-V and UV generated by the photodiode material after a period of use of the conventional LED assembly 1 causes the polymer & resin package dome 110 to change color or "yellow". This is indicated by the edge color area 113 of the dome 110 in the figure. The yellowing of the polymer resin encapsulated dome 11 then causes the absorption of light from the 丨nAIGaN multilayer structure and the phosphor material 1 to be the blue portion of the visible spectrum. This causes a decrease in color and a color shift from the output of the light. Therefore, the output of the conventional light-emitting diode enthalpy becomes less bright and less white (e.g., yellower). 1 Further, the InAIGaN multilayer structure and the phosphor material react with moisture 彳彳5 (e.g., water vapor), which diffuses through the solid polymer dome and causes a decrease in the light emission intensity of the light-emitting diode. Furthermore, the moisture of the conventional light-emitting diode assembly 100 can cause corrosion of the electrodes and other components. The phosphorous material also reacts with oxygen 114, which penetrates the solid polymer dome and causes a change in the wavelength of the emitted light. Therefore, the effects of the moisture and oxygen of the conventional light-emitting diode assembly 1〇〇 have a detrimental effect on the performance of the light-emitting diode. ... based on the inner valley, it is necessary to produce a light-emitting diode assembly that maintains the high intensity and stable wavelength of the light emitted by the light-emitting diode during operation, and is not fast due to exposure to oxygen, moisture or other contaminants. Deterioration. SUMMARY OF THE INVENTION The present invention provides a method for controlling an atmosphere in an enclosed space of a light-emitting diode. According to a non-limiting example, the method includes 4PC-CA05005TW-SAES.doc 1373854 providing a gettering agent. The luminescent diode encloses the environment within the space and activates the getter, whereby contaminants can be removed from the environment. In an embodiment, the light emitting diode assembly includes - a reflective reflector cup, a coated reflector cup top, and a "non-reactive atmosphere". Another embodiment includes ":"
部、一附接至基部的發光半導體、一密封發光半導二 基部並絲-躺空腔騎明蓋、以及—受控制的 (controlled atmosphere)。在内部空腔的受控制 且 少於大約·PPM的氧氣或者水。在—非限定的^施^ 中’發光一極體組件也包括-吸氣劑,與受控制的 接觸,其中受控制的環境具有介於10大氣壓與1〇_3托 (torr)間的氣壓。或者’受控制的環境的氣壓為少於* 托爾的真空狀態。更進-步’受控制的環境包含一非反應 氣體選自包含鈍氣族(inert gasses)與惰性氣體族(n〇bg gasses)的群組。再進一步,受控制的環境是一種流體, 而且不會與材料曝露於腔室的表面產生反應。a light-emitting semiconductor attached to the base, a sealed light-emitting semi-conducting base, a wire-lying cavity, and a controlled atmosphere. Oxygen or water in the internal cavity that is controlled and less than approximately PPM. In a non-limiting embodiment, the 'light-emitting body assembly also includes a gettering agent in contact with the controlled environment, wherein the controlled environment has a pressure between 10 atmospheres and 1 to 3 torr. . Or the pressure of the controlled environment is less than *Tor's vacuum. The more advanced' controlled environment comprises a non-reactive gas selected from the group consisting of inert gasses and n〇bg gasses. Still further, the controlled environment is a fluid and does not react with the surface of the material that is exposed to the chamber.
根,實施例,在活性層的濕氣與氧氣產生的有害影響 =減至最低,這藉由將發光二極體組件維持在一受控制二 %境例如真^、非反應氣H或液體。再者,濕氣與氧氣可 使用吸氣劑由真空狀態或鈍氣中移除。實施例是適用於多 種類型的發光二極體,包括藍光發光二極體、綠光發光二 極體、紫外光發光二極體與白光發光二極體。 熟此技藝者在參照下面詳細說明與附加的圖示後當 可更明暸本發明的各項益處。 田 4PC-CA05005TW-SAES.doc 10 【實施方式】 第1圖與第2圖是用於說明習知技術。第3圖至第 8D圖是藉由本發明的各種實施例以說明一具有受控制 内部環境的發光二極體。 在下列敘述中’為解釋的目的提出不同特定細節以說 明本發明。然而,熟習此技藝者可以不需要這些特定細節 便I實施本發明。在其他情形中,習知的結構與裝置將以 不意圖的方式來顯示以避免模糊本發明内容。 受控制的環境(controlled atmosphere)」意謂盥發 極體(例如,|nAIGaN多層結構)的活性(ac ^ ^份相接觸的環境是糾㈣的,以降低特妨 不 ^’^^\會_材财刚_多層結構起反 範圍,而且假如沒有真空,則「受㈣ 隋3體、鈍氣或「良性(_)」流體。「受杵i 包以是氣態的流體,雖然在特定實施例可= ,糊的魏輸__廣物油 吸氣劑」是—種清除材料(scavenger materiahm日 ^特定物_如氫氣或氧氣)具有親合性 ‘Roots, examples, the detrimental effects of moisture and oxygen in the active layer = minimized by maintaining the light-emitting diode assembly in a controlled environment such as true, non-reactive gas H or liquid. Further, moisture and oxygen can be removed from the vacuum state or the blunt gas using a getter. The embodiment is applicable to a plurality of types of light-emitting diodes, including a blue light-emitting diode, a green light-emitting diode, an ultraviolet light-emitting diode, and a white light-emitting diode. The benefits of the present invention will become apparent to those skilled in the art of the <RTIgt; Field 4PC-CA05005TW-SAES.doc 10 [Embodiment] Figs. 1 and 2 are for explaining a conventional technique. Figures 3 through 8D are diagrams illustrating a light emitting diode having a controlled internal environment by various embodiments of the present invention. In the following description, various specific details are set forth to illustrate the invention. However, those skilled in the art can implement the invention without these specific details. In other instances, well-known structures and devices are shown in a non-intended manner to avoid obscuring the present invention. "controlled atmosphere" means the activity of a polar body (for example, |nAIGaN multilayer structure) (the environment in which ac ^ ^ is in contact with is corrected (4), so as to reduce the specificity of the ^^^^\ _ material wealth just _ multi-layer structure inversion range, and if there is no vacuum, then "subject to (4) 隋 3 body, blunt gas or "benign (_)" fluid. "The 杵i package is a gaseous fluid, although in a specific implementation Example =, the paste of the Wei lose __ wide oil suction agent is a kind of removal material (scavenger materiahm day ^ specific substance _ such as hydrogen or oxygen) has affinity '
吸氣劑可為複合材料S 4PC-CA05005TW-SAES.doc 化物)、非金屬化合物、沸石(zeolites)、特定塑膠等,這 些可有效吸收來自受控制的環境之污染物。 「污染物」意謂可以劣化發光二極體組件的任何物 ,。例如,在白光發光二極體的敘述中,污染物可包括氧 氣與水。然而,若有必要則實施例的吸氣劑可有效移除其 他污染物,並且可隨著不同的實施例改變。 〃、 尸根據某些實施例,適合的吸氣劑包括金屬吸氣劑例如 吸氣劑合金(getter alloys),包括鍅(zirconium)、釩 (vanadmm)、鐵、猛(manganese)以及由紀(yttrium)、鑭 (lanthanum)與稀土金屬中選出的一或多個元素。這些合金 描,於美國專利第6,521,014號,提出於此做為參考。鈦 吸氣劑與給(halfnium)吸氣劑也是適合的。其他適合的吸 氣劑包括週期表的2A族元素的氧化物。2A族氧化物的實 例如氧化鈣、氧化錳等。實施例不限制於任一種吸氣劑或 其組合物。可移除或「清除(scavenging)」濕氣、氧氣與 其他污染物的任何吸氣劑皆可使用。雖然使用吸氣劑移除 污染物的主要機制包括吸收作用(例如,污染物與吸氣劑的 化學反應)與吸附作用(例如,污染物被吸附至吸氣劑的表 面),然而其他機制也可應用在其他實施例中,例如由沸石 陣列加以捕捉污染物,這係依照實施例的需要而定。 根據特定實施例,吸氣劑被設置於發光二極體組件上 ,技術,如藉由濺鑛(sputtering)或蒸鍍(evaporation),這 是此技蟄領域中所習知的技術。另一種將吸氣劑設置於發 光一極體組件的技術是電泳法(e|ect「〇ph〇reSjS)。吸氣劑 4PC-CA05005TW-SAES.doc 1373854 也可以機械方式、化學鍵結等方式設置於發光二極體址 件。實施例不限制於任一設置適當吸氣劑於發光二極體組 件的方法。因此,設置適當吸氣劑係依照實施例的需要而 定。 第3圖是本發明實施例的發光二極體組件300的剖面 圖。發1二極體組件300包括一基部312。發光二極^材 料306是固定於一導線308a。反射杯304a與導線3〇8a 及3〇8b是固定於基部312。反射杯304a具有反置的 (inverted)、截切的(truncated)圓錐孔3〇5,而且具有—反 射表面304b。接合線307藉由例如銲料接合(s〇|de「 bonding)技術將導線3〇8b耦合至發光二極體材料3〇6的 頂端。碟材料302的薄層或薄膜是沉積在發光二極體材料 =。圓頂310是密封在反射杯304a上(例如,藉由環氧 樹脂、黏膠、銦金屬或鎔接)’以完全包覆反射表面304b 與發光二極體材料3〇6。 、古ΐ ”體組件(例如發光二極體組件300)的運作 ,热習此技藝者所熟知的。發光二極體材料306是一種丰 ^體材料巧作為二極體,允許電流只能沿著—個方向流 例如由陽極或正極流向陰極或負極。陰極與陽極通常 在务光二極體材料306的相反側邊。在此情形中,介於導 :線308a與發光二極體材料的底部之間的接觸部份 f二Μ)包括—陽極連接,而且介於接合線3(37與發光二 |豆^料306的頂部之間的接觸部份包括一陰極連接。當 些連接在其它實施例中可以是反向的(__)。 s ^ 307至七光—極體材料306頂部的連接通常以期望 4PC-CA05005TW-SAES.doc 13 寬陽極接觸部份(broad cathode contact)的方式,而不着 望阻擔發光一極體材料306頂部發射的光線。 反射表面304b使得來自發光二極體材料3〇6盘磷 料302所發射的光線被導引離開發光二極體組件的頂部 352。反射表面304b具有一吸氣劑318的薄膜,這是較 佳地以濺鍍或蒸鍍沉積在反射表面。 圓頂310可由任何適合的非渗透(n〇n_permeab⑹材 料製成,而且該材料較佳可抵抗來自發光二極體的紫外光 與熱量所產生的劣化。適合用於圓頂310的材料包括玻璃 巧石英(純Si〇2)。玻璃可以有許多種適合的類型。然而, 若人有明顯曝曬的機會時,可吸收紫外光的玻璃是較佳 的,因為紫外光對於眼睛視網膜與人體組織有不良影響。 而在紫外光是有益處的應用情形下(例如,生物純化),使 用不吸收紫外光的玻璃是較佳的。玻璃可為實質純的 Si〇2 ’摻雜其他元素或化合物,或是熟此技藝人士習知的 其他合成物。圓頂可為凸面的(例如,中空的),如第3圖 所顯示,但是在其他實施例中,玻璃可為實心的。 根據一實施例,腔室350中係維持真空狀態。根據其 他實施例,腔室350可包括無法與吸氣劑材料發生反應的 一惰性氣體例如氬氣(argon) ’或鈍氣例如氮氣。如此處使 用者,「惰性」氣體是在週期表第十八群,例如氦氣 (helium)、氖氣(neon)、氬氣(arg〇n)、氪氣(krypt〇n)等。 通常,惰性氣體是不與其他元素或化合物起反應。「鈍氣」 意謂該氣體通常不反應的。依照此定義,氮氣是其中之一 14 4PC-CA05005TW-SAES.doc 1373854 二非流體’意謂此流體通常不與接觸的材 =的材料例如具有表一 ^ μ ί些Γί劑材料必須先經過啟動(activa_方可有 、氧氣等。其他的吸氣劑材料則不 這些_°减_啟練序請參閱 弟7圖與第8D圖而加以詳細描述。The getter can be a composite material S 4PC-CA05005TW-SAES.doc), non-metallic compounds, zeolites, specific plastics, etc., which effectively absorb contaminants from a controlled environment. "Contaminant" means anything that can degrade the LED assembly. For example, in the description of a white light emitting diode, contaminants may include oxygen and water. However, the getter of the examples can effectively remove other contaminants if necessary and can vary with different embodiments. According to certain embodiments, suitable getters include metal getters such as getter alloys, including zirconium, vanadmm, iron, manganese, and yttrium. ), lanthanum and one or more elements selected from rare earth metals. These alloys are described in U.S. Patent No. 6,521,014, the disclosure of which is incorporated herein by reference. Titanium getters and half getters are also suitable. Other suitable getters include oxides of Group 2A elements of the Periodic Table. The solid of the Group 2A oxide is, for example, calcium oxide or manganese oxide. The examples are not limited to any getter or a combination thereof. Any getter that removes or "scavenging" moisture, oxygen and other contaminants can be used. Although the primary mechanisms for removing contaminants using getters include absorption (eg, chemical reactions of contaminants and getters) and adsorption (eg, contaminants are adsorbed to the surface of the getter), other mechanisms are also It can be used in other embodiments, such as trapping contaminants by a zeolite array, depending on the needs of the embodiment. According to a particular embodiment, the getter is disposed on the light emitting diode assembly, techniques such as by sputtering or evaporation, which are well known in the art. Another technique for disposing a getter in a light-emitting diode assembly is electrophoresis (e|ect "〇ph〇reSjS". The getter 4PC-CA05005TW-SAES.doc 1373854 can also be set by mechanical means, chemical bonding, etc. The embodiment is not limited to any method of providing a suitable getter to the light emitting diode assembly. Therefore, setting an appropriate getter is in accordance with the needs of the embodiment. A cross-sectional view of a light emitting diode assembly 300 of the embodiment of the invention. The hair diode assembly 300 includes a base portion 312. The light emitting diode material 306 is fixed to a wire 308a. The reflector cup 304a and the wires 3〇8a and 3〇 8b is fixed to the base 312. The reflective cup 304a has an inverted, truncated tapered hole 3〇5 and has a reflective surface 304b. The bonding wire 307 is joined by, for example, soldering (s〇|de The "bonding" technique couples the wires 3〇8b to the top end of the light-emitting diode material 3〇6. A thin layer or film of the disk material 302 is deposited on the light-emitting diode material =. The dome 310 is sealed on the reflective cup 304a. (for example, by epoxy resin, viscose, indium metal or tantalum ) 'To completely cover the reflective surface 304b and the light-emitting diode material 3〇6., Old ΐ "assembly (e.g., a light emitting diode assembly 300) operates, heat this study were known art. Light-emitting diode material 306 is a bulk material that acts as a diode, allowing current to flow only in one direction, such as from the anode or cathode to the cathode or cathode. The cathode and anode are typically on opposite sides of the optical diode material 306. In this case, the contact portion f between the conductive line 308a and the bottom of the light-emitting diode material includes an anode connection, and is interposed between the bonding wires 3 (37 and the light-emitting diodes 306). The contact portion between the top portions includes a cathode connection. When these connections are reversed (__) in other embodiments, the connections at the top of the s ^ 307 to seven-light-pole material 306 are typically expected to be 4PC-CA05005TW -SAES.doc 13 Broad cathode contact, without expecting to block the light emitted from the top of the luminescent element 306. The reflective surface 304b allows the 〇6 plate phosphor from the luminescent diode material The light emitted by 302 is directed away from the top 352 of the light emitting diode assembly. The reflective surface 304b has a film of getter 318 which is preferably deposited by sputtering or evaporation on the reflective surface. Any suitable non-permeable (n〇n_permeab (6) material, and the material is preferably resistant to degradation by ultraviolet light and heat from the light-emitting diode. Materials suitable for the dome 310 include glass quartz (pure Si) 〇 2). Glass can have many A suitable type. However, if the person has a clear exposure, the glass that absorbs ultraviolet light is preferred because the ultraviolet light has an adverse effect on the retina and human tissues of the eye. However, in the case where ultraviolet light is beneficial. (e.g., biological purification), it is preferred to use a glass that does not absorb ultraviolet light. The glass may be substantially pure Si 〇 2 'doped with other elements or compounds, or other compositions known to those skilled in the art. The top may be convex (eg, hollow) as shown in Figure 3, but in other embodiments, the glass may be solid. According to an embodiment, the vacuum is maintained in chamber 350. According to other embodiments The chamber 350 may include an inert gas such as argon or a blunt gas such as nitrogen which is incapable of reacting with the getter material. As the user herein, the "inert" gas is in the eighteenth group of the periodic table, for example Helium, neon, arg(n), helium (krypt〇n), etc. Usually, the inert gas does not react with other elements or compounds. Gas is usually not According to this definition, nitrogen is one of them. 14 4PC-CA05005TW-SAES.doc 1373854 2. Non-fluid' means that the fluid is usually not in contact with the material = for example, the material has a First through the start (activa_ can have, oxygen, etc.. Other getter materials are not these _ ° minus _ start training, please refer to the brother 7 map and 8D map for a detailed description.
㈣本發明實施例具魏氣劑材料的發光二極體 而且吸氣劑材料是沉積在圓頂41〇的内部 ί ί i圖中,發光二極體組件_包括—基部412。 巧-極體材料彻是藉由接線働a固^至基部412。 4〇ί 固定至基部412」意謂發光二極體材料 Ιϋΐ f的附接方式固技接線4Q8a。也就是說, 接、,表4〇8a疋部份夾在發光二極體材料406與基部412之(4) The light-emitting diode of the present invention has a light-emitting diode material and the getter material is deposited inside the dome 41, and the light-emitting diode assembly includes a base portion 412. The smart body material is completely fixed to the base 412 by means of a wire 働a. 4〇ί fixed to the base 412" means the attachment method of the light-emitting diode material Ιϋΐ f is fixed wire 4Q8a. That is to say, the contacts 4, 8a are partially sandwiched between the light-emitting diode material 406 and the base 412.
在苐4圖中,反射杯404a與接線408b也固定於基 ΙΙϋβ結合線4G7將接線獅電性耦合至發光二極^ I反射杯404a包括—具有側壁的開口,而且側 =疋f射表面404b。當然,其他反射||結構也可使用在 其他貫施例。 在第4圖中’發光二極體材料4〇6是以封裝劑例如聚 S物樹脂4Q3加以進行封裝。封㈣彻較佳的是使鱗材 抖402散佈其間,用於平移主發射波長(prjmaryemissi〇n 4PC-CA05005TW-SAES.doc 15 1373854 wavelength)。碟材料402可以(亦可不)集中接近發光二極 體材料406,並且在其他實施例中,麟材料是更平均地散 佈,或者疋依照其他濃度分佈加以散佈。根據特定實施 例,,材料的薄層或薄膜是沉積在發光二極體材料406 上。圓頂410是藉由例如環氧樹脂、黏膠、銦金屬或嫁接 而附接至反射杯404a ’以覆蓋反射杯的表面4〇4b與發光 二極體材料406。圓頂410的内部表面4〇5實質地限定發 光二極體組件400内的腔室450。在第4圖中,圓頂410 的内部表面405具有吸氣劑材料418沉積於其上。 反射表面404b使得發光二極體材料4〇6的特定發射 光線朝向發光二極體組件的頂部434。圓頂41〇可由任何 適虽材料製成,而且該材料對於特定波長是可穿透的。為 允許光線穿透’圓頂410的頂部434通常其實上或完全沒 有吸氣劑材料。 根巧些實施例,腔室45〇岐保持真空狀態。而根 巧他實施例’腔室450可包括鈍氣或惰性氣體。根據其 匕貫知例’腔t 450可包括—非反應流體。吸氣劑418 濕氣及氧氣等。-些吸氣劑可能需要啟 ^ΐΓ"能包括以化學方法處理吸氣劑、將吸氣劑 暴路於熱1或輪射’或者以其他方式啟動吸氣劑。 第5圖疋本發明貫施例具有吸氣劑材料的發光二極體 且件,,而,該吸氣劑材料是呈現顆粒形式。「顆 ;立」疋㈣使用吸氣騎料的分離雕、團贼本體。這 些顆粒可能㈣細,例如—具有尺寸大約100微米 4PC-CA05005TW-SAES.doc 16 具有尺寸數厘米_)的相對較 =2,、的顆粒可能使用細實施例; 的吸氣劑顆粒,而且吸氣劑的尺寸為」或1公^。 51?在例中,發光二極體組件5QQ包括一基部 μ0發先一極體材y料506是藉由接、線508a固定至基部 512。躲5_與反射杯5〇知也固定於基部512,而且 反射杯504a包括-提供反射表面5〇4b的帛口。較佳地, -層鱗材料502是沉積在發光二極體材料5〇6。 在第5圖中,圓頂510是密接在反射杯5〇4a,以完 全封裝反射杯的反射表面504b與發光二極體材料5〇6。 圓頂510是由適合的非參透材料製成。製造圓頂51〇的材 料不因來自發光二極體的紫外光與熱量而劣化,並且對於 特定的波長是可穿透的。此材料在實施射可為玻璃或石 英,但不限於此。 反射表面504b已經附著有吸氣劑522的顆粒。許多 技概可用於沉積吸氣劑的顆粒至反射杯5〇4a。根據實施 例,假如反射杯504a具有沉積在開口内壁的金屬薄膜, 則金屬薄膜可充當一電極,使顆粒藉由電泳法附著在反射 杯504a。相同地,在充當電極的傳導層已沉積後,電泳 法可用於沉積吸氣劑顆粒至圓頂510。或者,顆粒亦可以 枯著、鍛造(swaged)或其他方式附著至反射杯5〇4a的開 口内壁的表面。 4PC-CA05005TW-SAES.doc 17 —第6圖是發光二極體組件的另一實施例之剖面圖。在 第6圖中,發光二極體組件6〇〇包括一基部612。發光二 極體材料606是藉由接線608a固定至基部612。接線 608b與反射杯6〇4a也固定於基部612。結合線607將接 線608^附接至發光二極體材料6〇6的頂端。反射杯6〇乜 具有一提供反射表面604b的開口。磷材料602的薄層是 /儿積在發光二極體材料。中空蓋體6〇9是附接至反射 杯604a以覆蓋反射杯的反射表面6〇4b與發光二極體材 料 606。 、,^空盍體609可包括塑膠、玻璃或石英的圓柱Mg, 並覆蓋有適合的透鏡611。透鏡611可由玻璃、石英或其 他,δ材料製成。適合材料不因為來自發光二極體的熱量 而劣化,或者會對於此劣化現象有抵抗性。塑膠外殼 可用於整體固定發光二極體組件。 一圓柱616可充滿(impregnated)適合的吸氣劑用於吸 ^污染物。或者,圓柱可以僅為例如塑膠圓柱或玻璃圓 主。饭如圓柱616是塑膠的,應該加以塗佈使得圓柱盖法 ^滲透]此塗佈層可為一吸氣劑薄膜618,而且此薄^是 叹置於圓柱616的内表面。此外,吸氣劑可設置於反射表 =、604b然而’預期是不要有任何吸氣劑或其他阻礙物 在透鏡611,因此光線可以地自由通過。實施例中,透鏡 是由不可滲透物質所製成,例如玻璃或石英,但不侷限於 此。或者,透鏡可由塑膠塗佈一透明密封層而製成。 第7圖是一流程圖,用於說明製造發光二極體組件的 4PC-CA05005TW-SAES.doc 1373854 基本操作,而且可與第8A圖至第8D圖一起參考。 7qq #驟702開始’而且前進至步驟 04 1產生吸氣劑元件(getterelement)。例如,吸氣劑元 ΐ t指-一具有沉積一吸氣劑材料層的反射杯及/或圓頂或 二盍體,或與發光二極體組件的内部環境⑼抬⑺引 atm〇sphe「e)以流财式連通的其他任何吸氣劑元件。在 J驟、7。6中,適當環境被提供於發光二極體組件的内部腔In FIG. 4, the reflective cup 404a and the wiring 408b are also fixed to the base ΙΙϋβ bonding wire 4G7 to electrically couple the wiring lion to the illuminating diode 161. The reflecting cup 404a includes an opening having a side wall, and the side 疋f emitting surface 404b . Of course, other reflections|| structures can also be used in other embodiments. In Fig. 4, the light-emitting diode material 4〇6 is encapsulated by an encapsulant such as polys-resin resin 4Q3. It is better to seal (4) the squash shake 402 to spread the main emission wavelength (prjmaryemissi〇n 4PC-CA05005TW-SAES.doc 15 1373854 wavelength). The disc material 402 may or may not be concentrated near the illuminating diode material 406, and in other embodiments, the lining material is more evenly dispersed or 疋 spread according to other concentration profiles. According to a particular embodiment, a thin layer or film of material is deposited on the light emitting diode material 406. The dome 410 is attached to the reflective cup 404a' by, for example, epoxy, adhesive, indium metal or grafting to cover the surface 4〇4b of the reflective cup and the light-emitting diode material 406. The interior surface 4〇5 of the dome 410 substantially defines the chamber 450 within the light-emitting diode assembly 400. In Figure 4, the interior surface 405 of the dome 410 has a getter material 418 deposited thereon. The reflective surface 404b causes the particular emitted light of the light-emitting diode material 4〇6 to face the top 434 of the light-emitting diode assembly. The dome 41 can be made of any suitable material and the material is permeable to specific wavelengths. To allow light to penetrate the top 434 of the dome 410 there is typically no or no getter material at all. In some embodiments, the chamber 45 is maintained in a vacuum state. By way of example, the chamber 450 can include an inert gas or an inert gas. According to its conventional example, cavity t 450 can include - a non-reactive fluid. Getter 418 Moisture, oxygen, etc. - Some getters may need to be activated to include chemically treating the getter, venting the getter to heat 1 or rolling, or otherwise initiating the getter. Fig. 5 is a view showing a light-emitting diode of a getter material according to the present invention, and the getter material is in the form of particles. "Peak; stand" 疋 (4) Separate engraving of the inhaled riding material, the body of the thief. These particles may be (4) fine, for example - having a size of about 100 microns 4PC-CA05005TW-SAES.doc 16 having a size of a few centimeters -) relative to = 2, the particles may use a fine embodiment; the getter particles, and suck The size of the gas is "or 1". In the example, the light-emitting diode assembly 5QQ includes a base portion. The first-pole body material 506 is fixed to the base portion 512 by a wire 508a. The hiding 5_ and the reflecting cup 5 are also fixed to the base 512, and the reflecting cup 504a includes a mouthpiece providing the reflecting surface 5〇4b. Preferably, the layer scale material 502 is deposited on the light emitting diode material 5〇6. In Fig. 5, the dome 510 is in close contact with the reflective cup 5〇4a to completely encapsulate the reflective surface 504b of the reflective cup and the light-emitting diode material 5〇6. The dome 510 is made of a suitable non-permeable material. The material from which the dome 51 is fabricated is not deteriorated by ultraviolet light and heat from the light-emitting diode, and is permeable to a specific wavelength. This material may be glass or quartz, but is not limited thereto. The reflective surface 504b has attached particles of getter 522. A number of techniques can be used to deposit the particles of the getter to the reflective cup 5〇4a. According to the embodiment, if the reflective cup 504a has a metal thin film deposited on the inner wall of the opening, the metal thin film can serve as an electrode, and the particles are attached to the reflective cup 504a by electrophoresis. Similarly, after the conductive layer serving as the electrode has been deposited, electrophoresis can be used to deposit getter particles to the dome 510. Alternatively, the particles may be dry, swaged or otherwise attached to the surface of the open inner wall of the reflective cup 5〇4a. 4PC-CA05005TW-SAES.doc 17 - Fig. 6 is a cross-sectional view showing another embodiment of the light emitting diode assembly. In Fig. 6, the light emitting diode assembly 6A includes a base portion 612. Light-emitting diode material 606 is secured to base 612 by wire 608a. Wiring 608b and reflector cup 6A4a are also secured to base 612. Bonding wire 607 attaches wire 608 to the top end of light-emitting diode material 6〇6. The reflector cup 6 has an opening that provides a reflective surface 604b. A thin layer of phosphor material 602 is deposited in the light emitting diode material. The hollow cover 6〇9 is attached to the reflective cup 604a to cover the reflective surface 6〇4b of the reflective cup and the light-emitting diode material 606. The hollow body 609 may comprise a cylindrical Mg of plastic, glass or quartz and covered with a suitable lens 611. Lens 611 can be made of glass, quartz or other, delta material. Suitable materials are not deteriorated by heat from the light-emitting diodes, or are resistant to such deterioration. The plastic case can be used to integrally mount the LED assembly. A cylinder 616 can impregnise a suitable getter for absorbing contaminants. Alternatively, the cylinder may be only a plastic cylinder or a glass dome, for example. The rice, such as the cylinder 616, is plastic and should be coated so that the cylindrical cover is permeable. The coating layer can be a getter film 618, and the thin layer is placed on the inner surface of the cylinder 616. In addition, the getter can be placed on the reflectance table =, 604b. However, it is expected that no getter or other obstruction is present in the lens 611, so that the light can pass freely. In the embodiment, the lens is made of an impermeable substance such as glass or quartz, but is not limited thereto. Alternatively, the lens can be made by coating a transparent sealing layer with plastic. Fig. 7 is a flow chart for explaining the basic operation of 4PC-CA05005TW-SAES.doc 1373854 for manufacturing a light emitting diode assembly, and can be referred to together with Figs. 8A to 8D. 7qq #Step 702 starts' and proceeds to step 04 1 to generate a getter element. For example, the getter element t refers to a reflective cup and/or a dome or a dichroic body having a layer of getter material deposited thereon, or an internal environment (9) with a light emitting diode assembly (7) cited atm〇sphe" e) any other getter element that is connected in a flow-through manner. In J, 7.6, the appropriate environment is provided to the internal cavity of the light-emitting diode assembly
至。適*環境可為真空狀態、鈍氣、惰性氣體或任何合 的流體。to. The environment can be a vacuum, an inert gas, an inert gas or any combined fluid.
在步驟708巾,在適當環境存在的情形下,發光二極 ,係組合,發光二極體封裝結構。使用於環境的適當氣體 是包括氮氣、氬氣、氦氣與氖氣。「真空」意謂氣壓明顯 低於大氣壓力,例如大約低於1〇-3托爾(t〇「r)而且較佳大約 低於10·5托爾。在步驟712 t,利用適當的密封方法來密 封發光二極體封裝。在步驟714中,假如吸氣劑是需要啟 動,則啟動吸氣劑。在發光二極體封裝結構被密封之前、 之間、或之後,可啟動吸氣劑。例如,藉由將吸氣劑加熱 至大約35CTC持續10至30分鐘,以啟動吸氣劑。在吸氣 劑的啟動期間,吸氣劑所吸收的污染物擴散至吸氣劑内, 或污染物由吸氣劑内排除。在啟動期間後,啟動的吸氣劑 便準備好吸收污染物。製造程序7〇〇在步驟7〇6完成。 第8A圖至第8C圖是發光二極體組件的不同實施例 之剖面圖。這些可當作相對於第7圖說明之各個步驟的範 例。第8A圖顯示一基部812與一反射杯8〇4a,反射杯 804a具有一提供反射表面8〇4b的開口。反射表面804b 4PC-CA05005TW-SAES.doc 19 1373854 褐限於白光發光二極體表高古 r-基部 玻璃圓頂所包覆,而且玻璁圓曰粒係凡全由 反射杯可具有贱赌純是驗_紫外光。 鍍或胁=u 專膜’而且該薄膜較佳係由濺 ㈣ΤΪΐ反f ΐ例如,吸氣劑可為St 787TM吸氣劑 /㈣每疋可由義大利㈤砲(米蘭)的賽斯吸氣劑公In step 708, in the presence of a suitable environment, the light-emitting diodes are combined to form a light-emitting diode package structure. Suitable gases for use in the environment include nitrogen, argon, helium and neon. "Vacuum" means that the gas pressure is significantly lower than atmospheric pressure, for example, less than about 1 -3 torr (t〇 "r) and preferably less than about 10.5 torr. In step 712 t, using a suitable sealing method The light-emitting diode package is sealed. In step 714, if the getter needs to be activated, the getter is activated. The getter can be activated before, during, or after the light-emitting diode package is sealed. For example, the getter is activated by heating the getter to about 35 CTC for 10 to 30 minutes. During the start-up of the getter, the contaminants absorbed by the getter diffuse into the getter, or contaminants Excluded from the getter. After the start-up period, the activated getter is ready to absorb contaminants. Manufacturing procedure 7〇〇 is completed in step 7〇6. Figures 8A-8C are LED components. A cross-sectional view of a different embodiment. These can be considered as examples of the various steps illustrated with respect to Figure 7. Figure 8A shows a base 812 and a reflector cup 8A4a having a reflective surface 8〇4b. Opening. Reflecting surface 804b 4PC-CA05005TW-SAES.doc 19 1373854 The brown color is limited to the white light-emitting diode surface and the high-altitude r-base glass dome is coated, and the glass enamel granules are all made of reflective cups, which can be used for gambling. _ UV light. Plating or flank = u film 'And the film is preferably spattered (four) ΤΪΐ 反 f ΐ For example, the getter can be St 787TM getter / (four) per 疋 can be used by the Italian (five) gun (Milan) Seth getter
S3,件Γ部環境是真空或是非反應流體:玻璃 而且 部或其他支撐結構以密封該組件, 支撐^構疋用於支撐反射杯與|ηΑ丨GaN多層結構。 根據其它特定的實施例’發光二極體組件的 是受到加壓(pressurized),以致於壓力係大於大氣壓力^ 例如,發光二極體組件的内部環境可加壓至大約為週遭環 境壓力(ambient atmosphere)的1至糊倍。内部環境^S3, the ankle environment is a vacuum or a non-reactive fluid: glass and other support structures to seal the assembly, and the support structure is used to support the reflective cup and the |ηΑ丨GaN multilayer structure. According to other specific embodiments, the illuminating diode assembly is pressurized so that the pressure system is greater than atmospheric pressure. For example, the internal environment of the illuminating diode assembly can be pressurized to approximately ambient ambient pressure (ambient) 1) to paste times. Internal environment^
由組件所包括非反應氣體,例如氮氣與惰性氣體。已加壓 組件可能包括吸氣劑在發光二極體組件的反射杯及/或破 璃圓頂。玻璃圓頂是實質上不可滲透的材料。在其他特定 的已加壓組件實施例中,可省略吸氣劑。 上述貫施例是參照發光二極體材料。應該注意的是這 些實施例不是唯一可能的實施例。奈米碳管、光學接受^ 及其它裝置可被用來取代上述實施例的發光二極體材料。 上述實施例提及圓頂與透鏡,用於覆蓋裝置的内部環 境。應該注意的是圓頂在其它實施例可為實心的或者中^ 4PC-CA05005TW-SAES.doc 21 1373854 • ,。在實心圓頂的情形中,吸氣劑的放置可能就不在實心 . 圓頂内部(見第4圖)。在其他實施例中,反射杯可為實心 的’其中填充有環氧樹脂’但並不侷限於此。而且吸氣劑 材料I設置於中空圓頂内部,如第4圖所顯示者。通常, 在其它實施例中’内部環境的任何部分可以實心物質所取 代,例如藉由樹脂取代,但是不侷限於此。 、 上述實施例提及-裝置内的内部環境。在其他實施例 • 中,環境(atmosPhere)」可為真空或者流體。依昭環境 内的成分特性與定義裝置内部體積的内壁,在不干涉成分 的功月b並且與發光二極體材料不反應的情況下可使用不 同。在其他實施财,觀可麟不可壓縮的 體’這藉由填充㈣體躺增強裝置 在先前敘述中,本發明實施例係相對許多特定細 =,而且這隨著實施例改變。因此,說式 作為說明而不是限制本發明。 式/、疋 【圖式簡單說明】 本發明SJtf侧於舉例而制於限 相同的標號代表相同的树。 並且在圖7F中 Ϊ 12 =3,二極體(LED)組件的剖面圖; 顯不使用一段時間後的劣化問題; 圖,而且 第3圖係本發明一實施例發光 .第―明一實施例發光二心 .4PC-CA05005TW-SAES.doc 22 1373854 其中吸氣劑是沉積在封裝圓頂上; 第5圖係本發明一實施例發光二極體組件的剖面圖, 而且該組件包括以顆粒形式存在的吸氣劑材料; 第6圖係本發明另一實施例的發光二極體組件的剖面 圖,而且該組件包括—具有雛元件與朗元件的封 體; 第7 ®疋本毛明—貫施例的流程圖,顯示一用於;|ι·ΐ造 發光二極體組件的方法; 、、Non-reactive gases such as nitrogen and inert gases are included in the assembly. The pressurized assembly may include a getter and/or a reflective dome of the getter in the light emitting diode assembly. The glass dome is a material that is substantially impermeable. In other specific pressurized component embodiments, the getter may be omitted. The above embodiment is a reference light-emitting diode material. It should be noted that these embodiments are not the only possible embodiments. Nanocarbon tubes, optical receivers, and other devices can be used in place of the light emitting diode materials of the above embodiments. The above embodiments refer to domes and lenses for covering the interior environment of the device. It should be noted that the dome may be solid or in other embodiments 4PC-CA05005TW-SAES.doc 21 1373854. In the case of a solid dome, the placement of the getter may not be solid. Inside the dome (see Figure 4). In other embodiments, the reflective cup may be solid 'filled with epoxy resin' but is not limited thereto. Further, the getter material I is disposed inside the hollow dome as shown in Fig. 4. Generally, in other embodiments, any portion of the internal environment may be replaced by a solid material, such as by a resin, but is not limited thereto. The above embodiments refer to the internal environment within the device. In other embodiments, the environment (atmosPhere) may be vacuum or fluid. The composition characteristics in the environment and the inner wall defining the internal volume of the device can be used differently without interfering with the power of the component b and not reacting with the light-emitting diode material. In other implementations, it is by infilling the (four) lying reinforcement apparatus. In the foregoing description, the embodiments of the present invention are relatively many specific details, and this varies with the embodiment. Accordingly, the invention is to be construed as illustrative rather than limiting. BRIEF DESCRIPTION OF THE DRAWINGS The SJtf side of the present invention is exemplified by the same reference numerals to represent the same tree. And in FIG. 7F, Ϊ 12 = 3, a cross-sectional view of the diode assembly; the deterioration problem after a period of use is not shown; and FIG. 3 is an embodiment of the invention. The first embodiment is illuminated. Example of a light-emitting two-heart. 4PC-CA05005TW-SAES.doc 22 1373854 wherein the getter is deposited on the package dome; Figure 5 is a cross-sectional view of the light-emitting diode assembly of an embodiment of the invention, and the assembly is in the form of particles A getter material is present; Figure 6 is a cross-sectional view of a light emitting diode assembly according to another embodiment of the present invention, and the assembly includes a seal having a young component and a Lang component; A flow chart of the embodiment shows a method for manufacturing a light-emitting diode assembly;
第8A-8C圖是本發明實施例的發光二極 種元件之剖面圖;以及 第8D圖是顯示本發明實施例的已啟動的發光二極體 組件。8A-8C are cross-sectional views of the light-emitting diode component of the embodiment of the present invention; and Fig. 8D is a diagram showing the activated light-emitting diode assembly of the embodiment of the present invention.
【主要元件符號說明】 100習知發光二極體組件 103 封裝劑 104b反射表面 107 結合線 108b導線 112 基部 114 氧氣 300 發光二極體組件 304a反射杯 305 圓錐孔 307 接合線 308b導線 312 基部 102 磷材料 104a反射杯 106 發光二極體材料 108a導線 110 圓頂 113 變色區 115 濕氣 302 碟材料 304b反射表面 306發光二極體材料 308a導線 310 圓頂 318 吸氣劑 4PC-CA05005TW-SAES.doc 23 1373854[Main component symbol description] 100 conventional light-emitting diode assembly 103 encapsulant 104b reflective surface 107 bonding wire 108b wire 112 base 114 oxygen 300 light-emitting diode assembly 304a reflective cup 305 tapered hole 307 bonding wire 308b wire 312 base 102 phosphorus Material 104a Reflector Cup 106 Light Emitting Diode Material 108a Conductor 110 Dome 113 Discoloration Zone 115 Moisture 302 Disc Material 304b Reflective Surface 306 Luminous Diode Material 308a Wire 310 Dome 318 Getter 4PC-CA05005TW-SAES.doc 23 1373854
350 腔室 352 頂部 400 發光二極體組件 402 構材料 403 封裝劑 404a 反射杯 404b 反射表面 405 内部表面 406 發光二極體材料 407 結合線 408a 接線 408b 接線 410 圓頂 412 基部 418 吸氣劑材料 434 頂部 450 腔室 500 發光二極體組件 502 續材料 504a 反射杯 504b 反射表面 506 發光二極體材料 508a 接線 508b 接線 510 圓頂 512 基部 522 吸氣劑 600 發光二極體組件 602 鎮材料 604a 反射杯 604b 反射表面 606 發光二極體材料 607 結合線 608a 接線 608b 接線 609 中空蓋體 611 透鏡 612 基部 613 塑膠外殼 616 圓柱 618 吸氣劑薄膜 800 發光二極體組件 804a 反射杯 804b 反射表面 810 圓頂 812 基部 813 密封珠 816 吸氣劑 818 吸氣劑材料 820 吸氣劑顆粒 860 雷射光束 861 雷射行徑路線 4PC-CA05005TW-SAES.doc 24350 chamber 352 top 400 light-emitting diode assembly 402 construction material 403 encapsulant 404a reflective cup 404b reflective surface 405 inner surface 406 light-emitting diode material 407 bond wire 408a wire 408b wire 410 dome 412 base 418 getter material 434 Top 450 chamber 500 light emitting diode assembly 502 continued material 504a reflective cup 504b reflective surface 506 light emitting diode material 508a wiring 508b wiring 510 dome 512 base 522 getter 600 light emitting diode assembly 602 town material 604a reflective cup 604b reflective surface 606 light-emitting diode material 607 bond wire 608a wire 608b wire 609 hollow cover body 611 lens 612 base 613 plastic case 616 cylinder 618 getter film 800 light-emitting diode assembly 804a reflector cup 804b reflective surface 810 dome 812 Base 813 sealing beads 816 getter 818 getter material 820 getter particles 860 laser beam 861 laser path 4PC-CA05005TW-SAES.doc 24
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56289904P | 2004-04-15 | 2004-04-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200539487A TW200539487A (en) | 2005-12-01 |
TWI373854B true TWI373854B (en) | 2012-10-01 |
Family
ID=38113185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94111977A TWI373854B (en) | 2004-04-15 | 2005-04-15 | Integrated getter for vacuum or inert gas packaged leds |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN100589226C (en) |
MY (1) | MY143265A (en) |
TW (1) | TWI373854B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820411B (en) * | 2009-02-19 | 2016-08-24 | 光宝电子(广州)有限公司 | Light-emitting diode chip for backlight unit, preparation method and method for packing |
EP2438610A4 (en) * | 2009-06-01 | 2015-12-02 | Sumitomo Chemical Co | Encapsulation process and structure for electronic devices |
CN102237319A (en) * | 2010-04-23 | 2011-11-09 | 三星半导体(中国)研究开发有限公司 | Package |
CN102244178A (en) * | 2010-05-14 | 2011-11-16 | 展晶科技(深圳)有限公司 | Encapsulation structure of LED (light emitting diode) |
WO2012042428A2 (en) * | 2010-09-28 | 2012-04-05 | Koninklijke Philips Electronics N.V. | Light-emitting arrangement |
CN103050603B (en) * | 2011-10-17 | 2016-03-23 | 展晶科技(深圳)有限公司 | The manufacture method of LED encapsulation structure |
US9666556B2 (en) | 2015-06-29 | 2017-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Flip chip packaging |
CN107346859A (en) * | 2017-07-26 | 2017-11-14 | 江苏舒适照明有限公司 | A kind of preparation method of white light source |
WO2019052194A1 (en) * | 2017-09-13 | 2019-03-21 | 厦门三安光电有限公司 | Method for die-bonding semiconductor element and semiconductor element |
-
2005
- 2005-04-13 CN CN200580019608A patent/CN100589226C/en active Active
- 2005-04-15 TW TW94111977A patent/TWI373854B/en not_active IP Right Cessation
- 2005-04-15 MY MYPI20051690 patent/MY143265A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200539487A (en) | 2005-12-01 |
CN100589226C (en) | 2010-02-10 |
CN1973355A (en) | 2007-05-30 |
MY143265A (en) | 2011-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7560820B2 (en) | Integrated getter for vacuum or inert gas packaged LEDs | |
TWI373854B (en) | Integrated getter for vacuum or inert gas packaged leds | |
JP4881358B2 (en) | Light emitting device | |
JP4280042B2 (en) | Reduction of light emitting element contamination | |
JP5919504B2 (en) | Light emitting device | |
TWI599078B (en) | Moisture-resistant chip scale packaging light emitting device | |
US8597963B2 (en) | Manufacture of light emitting devices with phosphor wavelength conversion | |
TWI504028B (en) | Light emitting device | |
JP4417906B2 (en) | Light emitting device and manufacturing method thereof | |
US20140021495A1 (en) | Light emitting device with phosphor wavelength conversion | |
WO2018105327A1 (en) | Production method for optical semiconductor device | |
JP2010067939A (en) | Light-emitting device | |
JP2007088472A (en) | Light emitting diode package and method for manufacture it | |
US20150318449A1 (en) | A hermetically sealed optoelectronic component | |
JP2010027645A (en) | Light emitting device and fabrication process therefor | |
JP2007059419A (en) | Led package with compound semiconductor light emitting element | |
JP2007067183A (en) | Led package with compound semiconductor light emitting device | |
WO2014045489A1 (en) | Illumination light source and illumination device | |
JP2007235104A (en) | Light emitting device and manufacturing method thereof | |
JP2007080874A (en) | Light-emitting device | |
TWM482855U (en) | Light-emitting diode packaging structure | |
JP2009064999A (en) | Method for generating low color-temperature light and light-emitting device adopting the method | |
JP2007013026A (en) | Light emitting element module, germicidal lamp device, lamp device for curing ultraviolet ray curing type resin, illumination device, display device and traffic signal | |
TWM320750U (en) | Polychromatic light emitting diode with light mixing by dispersant | |
JP5320374B2 (en) | Method for manufacturing light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |