TWI364856B - Light emitting diode device and fabricating method thereof - Google Patents

Light emitting diode device and fabricating method thereof Download PDF

Info

Publication number
TWI364856B
TWI364856B TW97105344A TW97105344A TWI364856B TW I364856 B TWI364856 B TW I364856B TW 97105344 A TW97105344 A TW 97105344A TW 97105344 A TW97105344 A TW 97105344A TW I364856 B TWI364856 B TW I364856B
Authority
TW
Taiwan
Prior art keywords
substrate
electrode
emitting diode
light
diode device
Prior art date
Application number
TW97105344A
Other languages
Chinese (zh)
Other versions
TW200935624A (en
Inventor
Yu Ju Hsu
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW97105344A priority Critical patent/TWI364856B/en
Publication of TW200935624A publication Critical patent/TW200935624A/en
Application granted granted Critical
Publication of TWI364856B publication Critical patent/TWI364856B/en

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

1364856 Ιύο年.09月2'7日按正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係關於一種發光二極體裝置及其製程。 【先前技術】1364856 Ιύο年. September 2'7, according to the replacement page. 6. Description of the invention: [Technical Field of the Invention] [0001] The present invention relates to a light-emitting diode device and a process thereof. [Prior Art]

[0002]發光二極體(Light Emitting Diode, LED)由於具有 體積小、響應快、亮度高、壽命長及發光穩定等優點, 已廣泛應用於顯示裝置及光讀寫裝置中。當發光二極體 工作時,其產生之能量大約20%以光能形式導出,而80% 以熱能形式導出。該熱能將導致發光二極體溫度上升, 影響發光效率並減少元件壽命。 [0003] 傳統解決方法係採用一散熱器、一致冷晶片 (Thermoelectric cooler,TE cooler)或二者相結 合,藉由黏合或焊接之方式與該發光二極體組裝,對該 發光二極體致冷散熱。致冷晶片由於具有致冷速度快、 體積小、無污染、溫度控制準確度高等優點,逐步取代 其他散熱組件,更廣泛應用於發光二極體致冷散熱。[0002] Light Emitting Diodes (LEDs) have been widely used in display devices and optical read/write devices because of their small size, fast response, high brightness, long life, and stable light emission. When the light-emitting diode is operated, about 20% of its energy is derived as light energy, and 80% is derived as heat energy. This thermal energy will cause the temperature of the light-emitting diode to rise, affecting the luminous efficiency and reducing the life of the component. [0003] The conventional solution uses a heat sink, a thermo cooler (TE cooler) or a combination of the two, and is assembled with the light emitting diode by bonding or soldering, and the light emitting diode is Cooling heat. The cooling chip has the advantages of fast cooling speed, small volume, no pollution, high temperature control accuracy, etc., and gradually replaces other heat-dissipating components, and is more widely used for cooling and cooling of light-emitting diodes.

[0004] 該致冷晶片包括一第一基板、一與該第一基板相對設置 之第二基板。該發光二極體與該致冷晶片之第一基板藉 由一黏合材質相黏合固定。該散熱器亦藉由一黏合材質 黏合固定於該致冷晶片之第二基板。 [0005] 當施加一預定電流時,該發光二極體發光並產生熱量, 該熱量藉由該致冷晶片吸收並傳導至該散熱器,再藉由 該散熱器釋放,從而使得該發光二極體之溫度降低。 [0006] 惟,當該發光二極體工作時,該黏合處或焊接處會影響 097105344 表單編號A0101 第3頁/共17頁 1003353025-0 1364856 100年09月27日修正巷換頁 導熱效率,且黏合或焊接之方式導致組裝過程複雜及製 造成本上升。另,該致冷晶片之二基板亦影響導熱效率 ,從而導致該發光二極體散熱效果不佳。 【發明内容】 [0007] 有鑑於此,提供 >種散熱效果較佳、成本較低之發光二 極體裝置實為必要。 - [0008] 有鑑於此,提供一種上述發光二極體裝置之製程亦為必 要。 [0009] 一種發光二極體裝置,其包括一發光二極體磊晶片及一 # 致冷晶片。該發光二極體磊晶片包括一基板及一設置於 該基板表面之半導體層。該致冷晶片直接形成於該基板 遠離該半導體層之表面。[0004] The refrigerated wafer includes a first substrate and a second substrate disposed opposite the first substrate. The LED is bonded to the first substrate of the refrigerating wafer by an adhesive material. The heat sink is also bonded and fixed to the second substrate of the refrigerant chip by an adhesive material. [0005] When a predetermined current is applied, the light emitting diode emits light and generates heat, which is absorbed by the cold film and transmitted to the heat sink, and then released by the heat sink, thereby causing the light emitting diode The temperature of the body is lowered. [0006] However, when the light-emitting diode is in operation, the bond or the weld will affect 097105344 Form No. A0101 Page 3 / Total 17 Page 1003353025-0 1364856 On September 27, 100, the heat transfer efficiency of the lane change page is corrected, and The way of bonding or welding leads to complicated assembly processes and increased manufacturing costs. In addition, the two substrates of the cooled wafer also affect the heat conduction efficiency, thereby causing poor heat dissipation of the light emitting diode. SUMMARY OF THE INVENTION [0007] In view of the above, it is necessary to provide a light-emitting diode device having a better heat dissipation effect and a lower cost. - [0008] In view of the above, it is also necessary to provide a process for the above-described light-emitting diode device. [0009] A light emitting diode device comprising a light emitting diode epitaxial wafer and a #冷冷 wafer. The LED epitaxial wafer includes a substrate and a semiconductor layer disposed on a surface of the substrate. The cooled wafer is formed directly on the surface of the substrate away from the semiconductor layer.

[0010] —種發光二極體裝置,其包括一發光二極體磊晶片及一 致冷晶片,該發光二極體磊晶片包括一基板及一設置於 該基板表面之半導體層。該致冷晶片之冷端直接吸收該 發光二極體磊晶片產生之熱量,並傳導至熱端。 [0011] 一種發光二極體裝置之製程,其包括如下步驟:提供一 基板,於該基板上形成一半導體層;於該基板遠離該半 導體層之表面直接形成致冷晶片;提供一散熱器,並與 該致冷晶片黏合固定。 [0012] 相較於先前技術,本發明發光二極體裝置之致冷晶片直 接形成於該發光二極體磊晶片之基板表面,省去該致冷 晶片之二基板,如此不僅可大幅提昇散熱效率,同時亦 節省製造與組裝成本。該發光二極體裝置之製程將該致 097105344 表單編號 A0101 第 4 頁/共 17 頁 1003353025-0 1364856[0010] A light emitting diode device comprising a light emitting diode epitaxial wafer and a cooled wafer, the light emitting diode epitaxial wafer comprising a substrate and a semiconductor layer disposed on the surface of the substrate. The cold end of the cooled wafer directly absorbs the heat generated by the light emitting diode and is conducted to the hot end. [0011] A process for a light-emitting diode device, comprising the steps of: providing a substrate, forming a semiconductor layer on the substrate; directly forming a cooling chip on the surface of the substrate away from the semiconductor layer; providing a heat sink, And bonding and fixing with the cooling chip. [0012] Compared with the prior art, the cold-formed wafer of the light-emitting diode device of the present invention is directly formed on the surface of the substrate of the light-emitting diode epitaxial wafer, and the two substrates of the cooled wafer are omitted, so that the heat dissipation can be greatly improved. Efficiency while saving manufacturing and assembly costs. The process of the light-emitting diode device will be 097105344 Form No. A0101 Page 4 of 17 1003353025-0 1364856

100年.09月日修正替换頁 冷晶片直接步成於該發光二極體蟲晶片之基板表面*不 需藉由黏合或焊接方式連接至該發光二極體磊晶片,從 而大幅提昇該發光二極體裝置之散熱效率。 【實施方式】 [0013] 請參閱圖1,係本發明發光二極體裝置之第一實施方式之 側面結構示意圖。該發光二極體裝置2包括一發光二極體 磊晶片21、一致冷晶片22及一散熱器23。該致冷晶片22 直接形成於該發光二極體磊晶片21之表面。該散熱器23 設置於該致冷晶片22之遠離該發光二極體磊晶片21之表 面。 [0014] 該發光二極體磊晶片21包括一基板211及一半導體層212 。該半導體層212設置於該基板211之表面。該基板211 係絕緣基板,其材質係藍寶石(Sapphire)或石夕(Si)。 [0015] 該致冷晶片22包括複數第一電極223a、一絕緣層(圖未示 )、複數第二電極223b、複數P型半導體晶粒224及複數N 型半導體晶粒225。該第一電極223a設置於該基板211之 # 遠離該半導體層212之表面。該絕緣層設置於該散熱器23 靠近該致冷晶片22之表面。該第二電極223b設置於該絕 緣層之表面,且與該第一電極223a相對交錯排列設置。 每一該P型半導體晶粒224與該N型半導體晶粒225相互交 替間隔設置,且夾於該第一電極223a及第二電極223b之 間。 [0016] 每一該P型半導體晶粒224與N型半導體晶粒225之靠近該 發光二極體磊晶片21之一端定義為冷端,每一該P型半導 體晶粒224與N型半導體晶粒225之靠近該散熱器23之一 097105344 表單編號 A0101 第 5 頁/共 17 頁 1003353025-0 1364856Correction of the replacement page cold wafer on the 100th and the 09th of the first day, the surface of the substrate of the light-emitting diode chip is directly formed on the surface of the substrate of the light-emitting diode wafer* without being bonded or soldered to the light-emitting diode wafer, thereby greatly enhancing the light-emitting diode The heat dissipation efficiency of the polar body device. [Embodiment] [0013] Referring to Figure 1, there is shown a side view of a first embodiment of a light-emitting diode device of the present invention. The light emitting diode device 2 includes a light emitting diode epitaxial wafer 21, a uniform cold wafer 22, and a heat sink 23. The cooled wafer 22 is directly formed on the surface of the light emitting diode epitaxial wafer 21. The heat sink 23 is disposed on a surface of the refrigerant chip 22 away from the light emitting diode epitaxial wafer 21. [0014] The LED epitaxial wafer 21 includes a substrate 211 and a semiconductor layer 212. The semiconductor layer 212 is disposed on a surface of the substrate 211. The substrate 211 is an insulating substrate made of sapphire or Si Xi. [0015] The refrigerated wafer 22 includes a plurality of first electrodes 223a, an insulating layer (not shown), a plurality of second electrodes 223b, a plurality of P-type semiconductor dies 224, and a plurality of N-type semiconductor dies 225. The first electrode 223a is disposed on a surface of the substrate 211 away from the semiconductor layer 212. The insulating layer is disposed on a surface of the heat sink 23 adjacent to the chilled wafer 22. The second electrode 223b is disposed on the surface of the insulating layer and arranged in a staggered manner with the first electrode 223a. Each of the P-type semiconductor dies 224 and the N-type semiconductor dies 225 are alternately spaced apart from each other and sandwiched between the first electrode 223a and the second electrode 223b. [0016] One end of each of the P-type semiconductor die 224 and the N-type semiconductor die 225 adjacent to the LED epitaxial wafer 21 is defined as a cold end, and each of the P-type semiconductor die 224 and the N-type semiconductor crystal The granule 225 is close to one of the heat sinks 23 097105344 Form No. A0101 Page 5 of 17 1003353025-0 1364856

1100年.09 B1100.09 B

端定義為熱端。每一該P型半導體晶粒224設置於該二N塑 半導體晶粒225之間,該P型/半導體晶粒224與一N型半導 體晶粒225之冷端藉由一第一電極223a電性連接。該P型 半導體晶粒224與另一N型半導體晶粒225之熱端藉由一第 二電極223b電性連接,從而使得複數該P型半導體晶粒 224及複數N型半導體晶粒225相互電性串聯連接。當該發 光二極體裝置2被施加一預定電流時,該致冷晶片22之冷 端吸收該發光二極體磊晶片21產生之熱量,並將熱量傳 導至熱端。該熱量於熱端藉由該散熱器23及時釋放,從 而使得該發光二極體磊晶片21之溫度降低。 [〇〇17] 請參閱圖2,係圖1所示發光二極體裝置2之製程圖,其包 括如下步驟: [0018] 步驟S1 :提供一基板,於該基板表面形成一半導體層; [0019] 請一併參閱圖3,提供一基板211。該基板211係絕緣基板 ,其材質係藍寶石或矽。於該基板211表面藉由磊晶技術 形成一半導體層212。 [0020] 步驟S2 :於該基板211遠離該半導體層212之表面直接形 成致冷晶片, [0021] 請一併參閱圖4,於該基板211之遠離該半導體層212之表 面沉積形成複數第一電極223a。複數該第一電極223a間 隔排列。 [0022] 藉由電鑄技術於每一該第一電極223a上形成間隔設置之 —P型半導體晶粒224及一N型半導體晶粒225。該P型半 導體晶粒224及N型半導體晶粒225之靠近該基板211之一 1 表單編號A0101 第6頁/共17頁 1003353025-0 [0023] [0023] 1364856The end is defined as the hot end. Each of the P-type semiconductor dies 224 is disposed between the NAND semiconductor dies 225, and the cold ends of the P-type/semiconductor dies 224 and the N-type semiconductor dies 225 are electrically connected by a first electrode 223a. connection. The P-type semiconductor die 224 and the other end of the other N-type semiconductor die 225 are electrically connected by a second electrode 223b, so that the P-type semiconductor die 224 and the plurality of N-type semiconductor die 225 are electrically connected to each other. Sexually connected in series. When the light-emitting diode device 2 is applied with a predetermined current, the cold end of the refrigerant chip 22 absorbs the heat generated by the light-emitting diode epitaxial wafer 21 and transfers the heat to the hot end. The heat is released at the hot end by the heat sink 23, so that the temperature of the light-emitting diode epitaxial wafer 21 is lowered. [FIG. 2] Referring to FIG. 2, a process diagram of the LED device 2 shown in FIG. 1 includes the following steps: [0018] Step S1: providing a substrate, forming a semiconductor layer on the surface of the substrate; 0019] Referring to FIG. 3 together, a substrate 211 is provided. The substrate 211 is an insulating substrate made of sapphire or germanium. A semiconductor layer 212 is formed on the surface of the substrate 211 by epitaxial technique. [0020] Step S2: directly forming a cooling wafer on the surface of the substrate 211 away from the semiconductor layer 212. [0021] Referring to FIG. 4 together, a surface of the substrate 211 is formed away from the surface of the semiconductor layer 212 to form a plurality of first Electrode 223a. The plurality of first electrodes 223a are arranged in an interval. [0022] A P-type semiconductor die 224 and an N-type semiconductor die 225 are formed on each of the first electrodes 223a by electroforming. The P-type semiconductor die 224 and the N-type semiconductor die 225 are adjacent to one of the substrates 211. Form No. A0101 Page 6 of 17 1003353025-0 [0023] [0023] 1364856

力白修正替換頁~ I 端藉由該第一電極223a電性連接》 於該基板211、複數第一電極223a、複數P型半導體晶粒 224及複數N型半導體晶粒225表面沉積一光阻層(圖未示 )’提供一光罩對該光阻層進行曝光顯影形成一預定之光 阻圖案。於複數該p型半導體晶粒224、複數N型半導體晶 粒225及剩餘先阻上沉積一導電金屬層,蝕刻該剩餘光姐 及其上之導電金屬層,.形成複數第二電極223b。該第二 電極223b與該第一電極223a相對交錯排列設置。該第二 電極223b與該第—電極223a分別電性連接該半導體晶粒 224、225之兩端,從而使得該半導體晶粒224、225相互 電性串聯連接。於該第二電極223b表面沉積一絕緣層(圖 未示)。 [0024] 步驟S3 :提供一散熱器,並與該致冷晶片22黏合固定。 [0025] 請一併參閱圖5 ’提供一散熱器23,該散熱器23與該絕緣 層相黏合固定。從而該致冷晶片22之熱端與該散熱器23 相連接。該發光二極體磊晶片21發出之熱量於熱端藉由 該散熱器23釋放。 [0026] 相較於先前技術,本發明發光二極體裝置2之致冷晶片22 藉由電鑄技術直接形成於該發光二極體磊晶片21之基板 211表面,不需藉由黏合材質或焊接之組裝方式,同時亦 省去該致冷晶片22之二基板,如此不僅可大幅提昇散熱 效率,同時亦降低製造與組裝成本。 [0027]請參閱圖6,係本發明發光二極體裝置第二實施方式之側 面結構示意圖。該發光二極體裝置3與第一實施方式之發 1003353025-0 097105344 表單編號A0101 第7頁/共17頁 1364856 100年09月2/日核正臂一頁 光二極體裝置2大致相同,其主要區別在於:該發光二極 體裝置3包括一第一電極323a及一第二電極323b。該第 —電極323a設置於該基板311遠離該半導體層(未標示) 之表面。該第二電極323b設置於該散熱器(未標示)之表 面。複數半導體晶粒324間隔排列並夾於該第一電極323a 及第一電極323b之間。該半導體晶粒324係類型相同之半 導體晶粒,如均為P型半導體晶粒或N型半導體晶粒。該 半導體晶粒324藉由該第一電極323a及第二電極323b保 持電性並聯連接。該發光二極體裝置3之製程與第一實施 方式之發光二極體裝置2之製程大致相同,其主要區別在 讀 於:於基板311遠離該半導體層之表面沉積一第一電極 323a,於該第一電極323a上形成複數間隔排列且類型相 同之半導體晶粒324 »再於該半導體晶粒324上沉積一第 二電極323b,使得複數該半導體晶粒324電性並聯連接。 [0028] 請參閱圖7,係本發明發光二極體裝置第三實施方式之側 面結構示意圖。該發光二極體裝置4與第一實施方式之發 光二極體裝置2大致相同,其主要區別在於:該發光二極 4 體裝置4之發光二極體磊晶片41之基板411係導電基板, 其材質係碳化矽(SiC) »該發光二極體裝置4進一步包括 一設置於該基板411表面之絕緣層41 6及複數間隔設置於 該絕緣層416表面之第一電極423a。每一該P型半導體晶 粒4 24與該N型半導體晶粒相互交替設置’且夾於該第一 電極423a及第二電極423b之間,並保持電性串聯連接。 該發光二極體裝置4之製程與第一實施方式之發光二極體 裝置2之製程大致相同,其主要區別在於:提供一基板 097105344 表摩·编號A0101 第8頁/共17頁 1003353025-0 1364856The white-correcting replacement page ~I is electrically connected to the substrate 211, the plurality of first electrodes 223a, the plurality of P-type semiconductor dies 224, and the plurality of N-type semiconductor dies 225 by a first photoresist 223a. A layer (not shown) provides a mask to expose and develop the photoresist layer to form a predetermined photoresist pattern. A plurality of conductive metal layers are deposited on the p-type semiconductor crystal grains 224, the plurality of N-type semiconductor crystal grains 225, and the remaining first resistors, and the remaining photo-semiconductor and the conductive metal layer thereon are etched to form a plurality of second electrodes 223b. The second electrode 223b is arranged in a staggered manner with the first electrode 223a. The second electrode 223b and the first electrode 223a are electrically connected to the two ends of the semiconductor die 224, 225, respectively, so that the semiconductor die 224, 225 are electrically connected in series with each other. An insulating layer (not shown) is deposited on the surface of the second electrode 223b. [0024] Step S3: providing a heat sink and bonding and fixing the cooled wafer 22. [0025] Please refer to FIG. 5' to provide a heat sink 23, which is bonded and fixed to the insulating layer. Thereby, the hot end of the cooled wafer 22 is connected to the heat sink 23. The heat emitted by the light-emitting diode epitaxial wafer 21 is released by the heat sink 23 at the hot end. [0026] Compared with the prior art, the cold-formed wafer 22 of the light-emitting diode device 2 of the present invention is directly formed on the surface of the substrate 211 of the light-emitting diode epitaxial wafer 21 by electroforming technology, without bonding materials or The soldering assembly method also eliminates the two substrates of the cooled wafer 22, which not only greatly improves the heat dissipation efficiency, but also reduces the manufacturing and assembly costs. Referring to Fig. 6, a side view of a second embodiment of a light emitting diode device of the present invention is shown. The light-emitting diode device 3 is substantially the same as the first embodiment of the hair 1003353025-0 097105344 form number A0101 page 7 / 17 page 1364856 100 September 2 / day nuclear positive arm one-page photodiode device 2, The main difference is that the LED device 3 includes a first electrode 323a and a second electrode 323b. The first electrode 323a is disposed on a surface of the substrate 311 away from the semiconductor layer (not labeled). The second electrode 323b is disposed on a surface of the heat sink (not shown). The plurality of semiconductor dies 324 are spaced apart and sandwiched between the first electrode 323a and the first electrode 323b. The semiconductor die 324 are of the same type of semiconductor die, such as a P-type semiconductor die or an N-type semiconductor die. The semiconductor die 324 is electrically connected in parallel by the first electrode 323a and the second electrode 323b. The process of the light-emitting diode device 3 is substantially the same as that of the light-emitting diode device 2 of the first embodiment. The main difference is that a first electrode 323a is deposited on the surface of the substrate 311 away from the semiconductor layer. A plurality of semiconductor dies 324 having the same interval and the same type are formed on the first electrode 323a. Further, a second electrode 323b is deposited on the semiconductor dies 324, so that the plurality of semiconductor dies 324 are electrically connected in parallel. Referring to FIG. 7, a side view of a third embodiment of a light-emitting diode device of the present invention is shown. The light emitting diode device 4 is substantially the same as the light emitting diode device 2 of the first embodiment, and the main difference is that the substrate 411 of the light emitting diode epitaxial wafer 41 of the light emitting diode device 4 is a conductive substrate. The material is made of tantalum carbide (SiC). The light-emitting diode device 4 further includes an insulating layer 41 6 disposed on the surface of the substrate 411 and a first electrode 423a disposed at a plurality of intervals on the surface of the insulating layer 416. Each of the P-type semiconductor crystal grains 4 24 and the N-type semiconductor crystal grains are alternately disposed ′ and sandwiched between the first electrode 423a and the second electrode 423b, and are electrically connected in series. The process of the light-emitting diode device 4 is substantially the same as that of the light-emitting diode device 2 of the first embodiment, and the main difference is that a substrate 097105344 is provided. The number is A0101, page 8 / page 17 1003353025- 0 1364856

100年.09月27日接正替^頁 411,該基板411係導電基板。於該基板411表面形成一 絕緣層416,並於該絕緣層416形成複數間隔排列之第一 電極423a。 [0029] 請參閱圖8,係本發明發光二極體裝置第四實施方式之側 面結構示意圖。該發光二極體裝置5與第二實施方式之發 光二極體裝置3大致相同,其主要區別在於:該發光二極 體裝置5之發光二極體磊晶片(未標示)之基板511係導電 基板,其材質係碳化矽。該基板511表面設置有複數間隔 排列且類型相同之半導體晶粒524。該發光二極體裝置5 之製程與第二實施方式之發光二極體裝置3之製程大致相 同,其主要區別在於:該半導體晶粒524係直接形成於該 基板511之表面。 [0030] 請參閱圖9,係本發明發光二極體裝置第五實施方式之底 面結構示意圖。該發光二極體裝置6與第四實施方式之發 光二極體裝置5大致相同,其主要區別在於:該發光二極 體裝置6包括設置於基板(圖未示)表面之一絕緣層616及 • 一矩形導電塊617。該矩形導電塊617位於該基板中心位 置,其包括垂直該基板之四側面(圖未示)。該絕緣層616 覆蓋該基板之該矩形導電塊617之外圍區域。該絕緣層 61 6表面設置有複數間隔排列且類型相同之半導體晶粒 624。該半導體晶粒624之一端連接至該四側面,藉由該 矩形導電塊617電性連接,定義該端為冷端。另一端藉由 一電極623電性連接,定義該端為熱端。該散熱器(圖未 示)與該熱端相連接。該發光二極體裝置6之製程與第四 實施方式之發光二極體裝置5之製程大致相同,其主要區 097105344 表單編號A0101 第9頁/共17頁 1003353025-0 1364856 100年.09月27日梭正_«頁 別在於:於該基板表面中心位置形成—矩形導電塊617並 於該基板及矩形導電塊617表面沉積一絕緣層616❶於該 絕緣層61 6表面形成複數間隔排列之半導體晶粒6 2 4,且 該半導體晶粒6 2 4之一端連接至該四側面。於該半導體晶 粒624之另一端沉積一電極623,從而該半導體晶粒624 電性並聯連接。 [0031] 綜上所述,本發明確已符合發明專利之要件,爰依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,本發明之範圍並不以上述實施方式為限,舉凡熟悉 | 本案技藝之人士援依本發明之精神所作之等效修飾或變 化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0032] 圖1係本發明發光二極體裝置之第一實施方式之側面結構 示意圖。 [0033] 圖2係圖1發光二極體裝置製程之流程圖。 [0034] 圖3至圖5係圖2所示發光二極體裝置之各製程步驟之結構 | 示意圖。 [0035] 圖6係本發明發光二極體裝置之第二實施方式之側面結構 示意圖。 [0036] 圖7係本發明發光二極體裝置之第三實施方式之側面結構 示意圖。 [0037] 圖8係本發明發光二極體裝置之第四實施方式之側面結構 示意圖。 097105344· 表單編號Α0101 第10頁/共17頁 1003353025-0 1364-856 [0038] 100年09月27日梭正替換頁 圖9係本發明發光二極體裝置之第五實施方式之底面結構 示意圖。 【主要元件符號說明】 [0039] 發光二極體裝置2、3、4、5、6基板 11、311、 411、511發光二極體磊晶片21、41致冷晶片22散熱片 23 [0040] 半導體層 212、412On the 27th and the 27th of September, the substrate 411 is a conductive substrate. An insulating layer 416 is formed on the surface of the substrate 411, and a plurality of first electrodes 423a arranged at intervals are formed in the insulating layer 416. Referring to FIG. 8, a side view of a fourth embodiment of a light-emitting diode device of the present invention is shown. The light-emitting diode device 5 is substantially the same as the light-emitting diode device 3 of the second embodiment, and the main difference is that the substrate 511 of the light-emitting diode epitaxial wafer (not labeled) of the light-emitting diode device 5 is electrically conductive. The substrate is made of tantalum carbide. The surface of the substrate 511 is provided with a plurality of semiconductor dies 524 arranged at different intervals and of the same type. The process of the light-emitting diode device 5 is substantially the same as that of the light-emitting diode device 3 of the second embodiment. The main difference is that the semiconductor die 524 is directly formed on the surface of the substrate 511. Referring to FIG. 9, a bottom view of a fifth embodiment of a light-emitting diode device of the present invention is shown. The light emitting diode device 6 is substantially the same as the light emitting diode device 5 of the fourth embodiment, and the main difference is that the light emitting diode device 6 includes an insulating layer 616 disposed on a surface of a substrate (not shown) and • A rectangular conductive block 617. The rectangular conductive block 617 is located at a central position of the substrate and includes four sides (not shown) perpendicular to the substrate. The insulating layer 616 covers a peripheral region of the rectangular conductive block 617 of the substrate. The surface of the insulating layer 61 6 is provided with a plurality of semiconductor dies 624 arranged at different intervals and of the same type. One end of the semiconductor die 624 is connected to the four sides, and the rectangular conductive block 617 is electrically connected, and the end is defined as a cold end. The other end is electrically connected by an electrode 623, and the end is defined as a hot end. The heat sink (not shown) is coupled to the hot end. The process of the light-emitting diode device 6 is substantially the same as that of the light-emitting diode device 5 of the fourth embodiment, and its main area 097105344 Form No. A0101 Page 9 / Total 17 Page 1003353025-0 1364856 100 years. September 27 The Japanese shuttle is formed by: forming a rectangular conductive block 617 at the center of the surface of the substrate and depositing an insulating layer 616 on the surface of the substrate and the rectangular conductive block 617, and forming a plurality of semiconductor crystals arranged at intervals on the surface of the insulating layer 61 6 A particle 6 2 4 and one end of the semiconductor die 6 24 is connected to the four sides. An electrode 623 is deposited on the other end of the semiconductor wafer 624 such that the semiconductor die 624 are electrically connected in parallel. [0031] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and those skilled in the art will be able to make equivalent modifications or variations in accordance with the spirit of the present invention. All should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0032] Fig. 1 is a schematic view showing the side structure of a first embodiment of a light-emitting diode device of the present invention. 2 is a flow chart of the process of the LED device of FIG. 1. 3 to FIG. 5 are schematic diagrams showing the structure of each process step of the light-emitting diode device shown in FIG. 2. 6 is a schematic side view showing a second embodiment of the light-emitting diode device of the present invention. 7 is a schematic view showing a side structure of a third embodiment of the light-emitting diode device of the present invention. 8 is a schematic view showing the side structure of a fourth embodiment of the light-emitting diode device of the present invention. 097105344· Form No. 1010101 Page 10/Total 17 Page 1003353025-0 1364-856 [0038] September 27, 100, the shuttle replacement page FIG. 9 is a schematic diagram of the bottom structure of the fifth embodiment of the light-emitting diode device of the present invention. . [Description of Main Component Symbols] [0040] Light-emitting diode device 2, 3, 4, 5, 6 substrate 11, 311, 411, 511 light-emitting diode epitaxial wafer 21, 41 cold-rolled wafer 22 heat sink 23 [0040] Semiconductor layer 212, 412

[0041] 第一電極 223a、323a、423a第二電極 223b、323b、 423b [0042] P型半導體晶粒224、424 [0043] N型半導體晶粒225、425 [0044] 半導體晶粒 324、524、624 [0045] 絕緣層 416、616 [0046] 矩形導電塊617電極623First electrodes 223a, 323a, 423a second electrodes 223b, 323b, 423b [0042] P-type semiconductor dies 224, 424 [0043] N-type semiconductor dies 225, 425 [0044] Semiconductor dies 324, 524 624 [0045] insulating layer 416, 616 [0046] rectangular conductive block 617 electrode 623

1003353025-0 097105344 表單編號A0101 第11頁/共17頁1003353025-0 097105344 Form No. A0101 Page 11 of 17

Claims (1)

1364856 100:年.09月2'7日梭正替換頁 七、申請專利範圍: 1 . 一種發光二極體裝置,其包括: 一發光二極體磊晶片,其包括一基板及一設置於該基板表 面之半導體層;及 一致冷晶片,其直接形成於該基板之遠離該半導體層之表 面,該致冷晶片包括一設置於該基板遠離該半導體層一側 的電極及設置於該電極上的複數類型相同之半導體晶粒, 該半導體晶粒為P型半導體晶粒或N型半導體晶粒。1364856 100: Year. September 2'7, the shuttle is replacing page 7. Patent application scope: 1. A light-emitting diode device, comprising: a light-emitting diode epitaxial wafer, comprising a substrate and a device disposed thereon a semiconductor layer on the surface of the substrate; and a uniform cold wafer directly formed on the surface of the substrate away from the semiconductor layer, the cooling wafer including an electrode disposed on a side of the substrate away from the semiconductor layer and disposed on the electrode A plurality of semiconductor dies of the same type, the semiconductor dies being P-type semiconductor dies or N-type semiconductor dies. 2 .如申請專利範圍第1項所述之發光二極體裝置,其中,該 基板係絕緣基板。 3. 如申請專利範圍第2項所述之發光二極體裝置,其中,該 電極包括一第一電極及與第一電極相對設置的第二電極, 該第一電極設置於該基板遠離該半導體層之表面,該半導 體晶粒夾於該第一電極及第二電極之間。 4. 如申請專利範圍第1項所述之發光二極體裝置,其中,該 基板係導電基板。2. The light-emitting diode device according to claim 1, wherein the substrate is an insulating substrate. 3. The light emitting diode device of claim 2, wherein the electrode comprises a first electrode and a second electrode disposed opposite to the first electrode, the first electrode being disposed on the substrate away from the semiconductor The surface of the layer is sandwiched between the first electrode and the second electrode. 4. The light-emitting diode device according to claim 1, wherein the substrate is a conductive substrate. 5. 如申請專利範圍第4項所述之發光二極體裝置,其中,該 致冷晶片還包括一矩形導電塊及一絕緣層,該矩形導電塊 設置於該基板表面中心位置,該矩形導電塊包括垂直於該 基板之四側面,該絕緣層設置於該基板之該矩形導電塊之 外圍區域,該半導體晶粒設置於該絕緣層表面,且一端連 接該四側面,該電極設置於該半導體晶粒遠離該矩形導電 塊之一端。 6.如申請專利範圍第1項所述之發光二極體裝置,其進一步 包括一散熱器,且該散熱器與該致冷晶片黏合固定。 097105344 表單編號A0101 第12頁/共17頁 1003353025-0 rI364_856 100年09月27日梭正替换頁 7 . —種發光二極體裝置之製程,其包括如下步驟: 51. 提供一基板,於該基板表面形成一半導體層; 52. 於該基板遠離該半導體層一側形成電極,於該電極上 形成間隔排列之複數類型相同之半導體晶粒,該半導體晶 粒為P型半導體晶粒或N型半導體晶粒;及 53. 提供一散熱器,並與該致冷晶片黏合固定。 8. 如申請專利範圍第7項所述之發光二極體裝置之製程,其 中’該基板係絕緣基板。 9. 如申請專利範圍第8項所述之發光二極體裝置之製程,其 中,該電極包括第一電極及第二電極,步驟S2還包括於該 基板遠離該半導體層之表面形成該第一電極,於該第一電 極表面形成該複數半導體晶粒,再於該半導體晶粒遠離該 半導體層之表面形成該第二電極。 10 .如申請專利範圍第7項所述之發光二極體裝置之製程,其 中,該基板係導電基板。 11 .如申請專利範圍第10項所述之發光二極體裝置之製程,其 中,步驟S2還包括於該基板遠離該半導體層之表面依序形 成一導電塊及一絕緣層,該導電塊設置於該導電基板表面 中心位置,該導電塊包括垂直於該基板之四側面,該半導 體晶粒設置於該絕緣層表面,且一端連接該四側面,該電 極設置於該半導體晶粒遠離該矩形導電塊之一端。 097105344 表單編號A0101 第13頁/共17頁 1003353025-05. The illuminating diode device of claim 4, wherein the chilled wafer further comprises a rectangular conductive block and an insulating layer, the rectangular conductive block being disposed at a central position of the substrate surface, the rectangular conductive The block includes a fourth side perpendicular to the substrate, the insulating layer is disposed on a peripheral region of the rectangular conductive block of the substrate, the semiconductor die is disposed on the surface of the insulating layer, and one end is connected to the four sides, and the electrode is disposed on the semiconductor The die is away from one end of the rectangular conductive block. 6. The light emitting diode device of claim 1, further comprising a heat sink, the heat sink being bonded to the cold wafer. 097105344 Form No. A0101 Page 12 of 17 1003353025-0 rI364_856 September 27, 2007 Shuttle replacement page 7. The process of a light-emitting diode device, comprising the following steps: 51. Providing a substrate, Forming a semiconductor layer on the surface of the substrate; 52. Forming an electrode on a side of the substrate away from the semiconductor layer, and forming a plurality of semiconductor dies of the same type arranged at intervals on the electrode, the semiconductor dies being P-type semiconductor dies or N-type a semiconductor die; and 53. A heat sink is provided and bonded to the refrigerant die. 8. The process of the light-emitting diode device according to claim 7, wherein the substrate is an insulating substrate. 9. The process of the illuminating diode device of claim 8, wherein the electrode comprises a first electrode and a second electrode, and the step S2 further comprises forming the first surface of the substrate away from the surface of the semiconductor layer. And forming an electrode of the plurality of semiconductor grains on the surface of the first electrode, and forming the second electrode on a surface of the semiconductor die away from the semiconductor layer. 10. The process of the light-emitting diode device of claim 7, wherein the substrate is a conductive substrate. The process of the light-emitting diode device of claim 10, wherein the step S2 further comprises sequentially forming a conductive block and an insulating layer on the surface of the substrate away from the semiconductor layer, the conductive block being disposed. At the center of the surface of the conductive substrate, the conductive block includes four sides perpendicular to the substrate, the semiconductor die is disposed on the surface of the insulating layer, and one end is connected to the four sides, and the electrode is disposed on the semiconductor die away from the rectangular conductive One end of the block. 097105344 Form No. A0101 Page 13 of 17 1003353025-0
TW97105344A 2008-02-15 2008-02-15 Light emitting diode device and fabricating method thereof TWI364856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105344A TWI364856B (en) 2008-02-15 2008-02-15 Light emitting diode device and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105344A TWI364856B (en) 2008-02-15 2008-02-15 Light emitting diode device and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW200935624A TW200935624A (en) 2009-08-16
TWI364856B true TWI364856B (en) 2012-05-21

Family

ID=44866629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105344A TWI364856B (en) 2008-02-15 2008-02-15 Light emitting diode device and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI364856B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315379B (en) * 2010-07-01 2013-11-06 晶元光电股份有限公司 Photoelectric element with thermoelectric structure

Also Published As

Publication number Publication date
TW200935624A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
US7972877B2 (en) Fabricating method of light emitting diode package
TWI295115B (en) Encapsulation and methods thereof
US7855396B2 (en) Light emitting diode package structure
CN100524864C (en) LED encapsulation structure and its making method
US7569420B2 (en) Flip-chip packaging method for light emitting diode with eutectic layer not overlapping insulating layer
US8898892B2 (en) Method of making circuit board module
CN102610735B (en) Light-emitting device with thermoelectric separated structure and manufacturing method of light-emitting device
US20060243997A1 (en) High power LEDs
US20160102854A1 (en) Cooling mechanism for led light using 3-d phase change heat transfer
JP2005101665A (en) Process for fabricating light emitting device of flip chip light emitting diode
US9991434B2 (en) Semiconductor device with metal-bonded heat dissipator and manufacturing method for the same
TW200806921A (en) Light emitting diode lighting module with improved heat dissipation structure
US20130133864A1 (en) Heat distribution structure, manufacturing method for the same and heat-dissipation module incorporating the same
JP2007066696A (en) Lighting system
Li et al. Active thermal management of high-power LED through chip on thermoelectric cooler
US20100301359A1 (en) Light Emitting Diode Package Structure
TWI329181B (en) Illumination device
Cheng Thermal management of high-power white LED package
JP2004296989A (en) Substrate for light emitting diode device
TWI364856B (en) Light emitting diode device and fabricating method thereof
TWI287300B (en) Semiconductor package structure
TW200849642A (en) LED heat dissipation module
WO2021093014A1 (en) Backlight module and manufacturing method therefor
CN100367522C (en) LED packaging structure with thermoelectric device
JP5320354B2 (en) Heat dissipation device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees