TWI362768B - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
TWI362768B
TWI362768B TW97106192A TW97106192A TWI362768B TW I362768 B TWI362768 B TW I362768B TW 97106192 A TW97106192 A TW 97106192A TW 97106192 A TW97106192 A TW 97106192A TW I362768 B TWI362768 B TW I362768B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor light
emitting device
light
semiconductor
Prior art date
Application number
TW97106192A
Other languages
Chinese (zh)
Other versions
TW200937671A (en
Inventor
Tzong Liang Tsai
Wei Kai Wang
Su Hui Lin
Yi Cun Lu
Original Assignee
Huga Optotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huga Optotech Inc filed Critical Huga Optotech Inc
Priority to TW97106192A priority Critical patent/TWI362768B/en
Publication of TW200937671A publication Critical patent/TW200937671A/en
Application granted granted Critical
Publication of TWI362768B publication Critical patent/TWI362768B/en

Links

Description

1362768 九、發明說明: 【發明所屬之技術領域】 本發_ _-辨物發技件(_咖 Γ發—種編度絲_之= 【先前技術】 Ο © 甚為dfiii件(例如,發光二極體)的應用領域已 甚為廣泛,例如按鍵系統、手機螢幕背光模组1362768 IX. Description of the invention: [Technical field to which the invention belongs] The present invention _ _---------------------------------------------------------------------------------------------------------- The application field of the diode has been extensive, such as the button system and the mobile phone screen backlight module.

統症裝飾用燈飾及遙控領域等產品 =H η可靠性以及較低的 =)求其本身的外部量子效率(::。= 部量Γίΐ及外部量子效率與其本身的内 謂的内部量後率錢材有關。所 =則;意謂從元件内部發出至周圍空氣或i封裝 ==。,出效率係取決於當輻射 Ϊ ί的半導體材料具有高折射錄 而盔法軸3絲蹄料表面產生全反射(tGtal reflection) 外^取㈣雜昇,财導财光元件的 請=圖-。圖—係緣示習知的發光二極體卜如圖一 氣Γ綠二極體1包含基板10、Ν-_氮化鎵12、p-type 氮b鎵16、發光區14以及電極18。為了導通Ρ·咖氮化鎵 6 Λ、0 / 1362768 16及N-type氮化鎵12以使發光二極體1運作,其中一個電 極18係形成於P-type氮化鎵1.6上,另外一個電極18係形成 ^ N-type氮化鎵12上。於形成另外一個電極18之前,發光 一極體1需透過钱刻製程以部份姓刻p 氮化鎵μ、發光 區14以及^type氮化鎵12。之後,另外一個電極18係形成 ;N type鼠化嫁12之曝露的部份上。然而,如圖一所示, f於發光區14被部份钱刻,因此發光二極體丨不但出光面積 大幅減少,並且其發光效率亦降低許多。 、 雖_目前為止已财許多種不⑽構的發光二極體被 ,出,但是如何充份提高發光二極體之光取出效率及 同^極,具有寬廣及均勻的出光—直是不斷被研究的議題: 解決上主蝴在於提供—種彻發光元件,以 【發明内容】 件具有高度光取出效率’並且能夠;射、;廣= © 本發明之一範疇在於提供一種半導體發光元件 於根據本發明之一具體實施例中,半導 f板(substrate)、第一傳導型態半導 :: 半導體材料層、發_light_emittin 電極以及複數個凸狀結構(bUmpstmcture)〇弟電極、第二 第-傳導型態半導體材料層係形成於 型態半導,材料層具有上表面’並且 g气2導 上,並且發光層係形成於第二區域上=係=於第一區域 材料層係形成於發光層上。第-雷粞伤傳導型態半導體 第-電極_成於第二傳導型態 附圖料W㈣詳述及所 【實施方式】 例之^^面^^根據本發明之—具體實施 所示’半導體發光元件2包含基板2〇、第一傳 ,導U導體材料層22、發光層24、第二傳導型態半導體材 料層26、第-電極3〇、第二電極32以及複數個凸狀結構 28 ° 於實際應用中,基板20可以是玻璃(si〇2)、矽(si)、鍺 (Ge)、氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、氮化鋁 (A1N)、藍寶石(sapphire)、尖晶石、三氧化二鋁 (Al2〇3)、碳化矽(sic)、氧化鋅(ZnO)、氧化鎂(MgO)、二氧化 裡銘(LiAl〇2)、二氧化鋰鎵(LiGa02)或四氧化鎂二鋁 (MgAl204),但不以此為限。 於一具體實施例中,第一傳導型態半導體材料層22及第 二傳導型態半導體材料層26可以由m-v族化合物半導體材 料所製成。 ΠΙ·ν族化合物半導體材料内之m族化學元素可以是銘 (Α1)、鎵(Ga)或銦(In)等元素。m-V族化合物半導體材料内之 V族化學元素可以是氮⑼、磷(p)或砷(As)等元素。於此實施 例中,第一傳導型態半導體材料層22及第二傳導型態半導體 材料層26可以由氮化鎵製成。 第一傳導型態半導體材料層22係形成於基板20上,並 且第一傳導型態可以是N型態。換言之,第一傳導型態半導 體材料層22為N型態氮化鎵接觸層。第一傳導型態半導體 材料層22具有上表面220,並且上表面220包含第一區域 2200以及不同於第一區域2200之第二區域2202。第一電極 30係形成於第一區域2200上,並且發光層24係形成於第二 區域2202上。第一電極30即為N型態電極。 第二傳導型態半導體材料層26係形成於發光層24上。 對應於第一傳導型態半導體材料層22,第二傳導型態半導體 材料層26係P型態,亦即p型態氮化鎵接觸層。第二電極 32可以形成於第二傳導型態半導體材料層26上,並且第二 電極32即為P型態電極。 一 如圖二A所示,複數個凸狀結構28係形成於第一 型態半導體材料層22之上表面22〇上並且介於第一區域 2200以及第二區域施之間。於實際應用中,從頂視圖來 看’每-個凸狀結構28可以呈現圓柱狀、姻狀及 等。 特,至少一個1^ 2800係形成於每一個凸狀結構 28的侧壁。於此實施例+,每一個凸狀結構28賴壁具有 鋸齒形,因此其側壁形成複數個凹陷28〇〇。也就&一 個凸狀,構28 _壁具有_的表面形齡 morphology)。請參閱圖二B。圖二B係繪示根據本發明之另 二具體實施例之半導體發光元件2之截面視圖。於另一具體 ,例中’每-個凸狀結構28 _壁大致上可以具有弧形的 輪廓。 假設每-個凸狀結構28的侧壁具有筆直的輪靡,並且側 壁與第-傳導型態半導體材料層22之上表面220之夾角等於 度’則由發光層24所發出的光線將被侷限在凸狀結構28 與半導體發光元件2之主體間來回反射。然*,如圖二a及 圖二B所示,由於本發明中之每一個凸狀結構28的側壁具 有粗糙的表面形態或弧形的輪廓,因此部份侧壁盥第一 型態半導體材料層22之上表面挪之夾角θ可以大於或小於 9〇度。藉此,由發光層24所發出的絲,尤其是侧光,在 向凸狀結構28後可以被凸狀結構28的侧壁反射並改變其 行進方向,以增加光線由半導體發光元件2之出光面 (observation side)射出之機率。 除了侧光取出率提高之外’假設半導體發光元件2之出 光面朝上,則由發光層所射出朝向半導體發光元件2内的底 部之光線在反碰並射向魏個凸狀結構28時,光線亦可以 被凸狀結構28導向it{光面射出。除此之外,若複數個凸狀結 構28均勻地分佈於第-傳導型態半$體材料層η之上表面 220上,半導體發光元件2將可以產生較寬廣且均句的出 光。 為了避免由發光層24所發出的光線被第一 3〇所吸 收’每-個凸狀結構28的高度可以大致上等於或高於第一電 極30的高度。如圖二A戶斤示,若以第一傳導型態半導體材 料層之上表面22〇為參考面,第一電極%之頂表面 具有而度D1,每-個凸狀結構28之頂表面28〇具有高度 D2,並且D2大致上可以等於D1或大於D1峨擔光線射向 1362768 第一電極30。 請參閱圖三。圖三係繪示於一具體實施例中根據本發明 之每一個凸狀結構28的組成之示意圖。圖三係繪示一範例以 表示每一個凸狀結構28可以由第一傳導型態半導體材料層 22、第二傳導型態半導體材料層26以及發光層24所組成。 或者,母一個凸狀結構28可以完全由第一傳導型態半導體材 料層22所組成。需注意的是,為了避免由半導體發光元件2 之主體所發射的光線被吸收’圖三中每一個凸狀結構28的發 光層24進一步可以被移除。 於另一具體實施例中,如圖四A所示,為了將光線更有 效率地取出,每一個凸狀結構28可以由折射率大於丨之特定 材料所製成。這種材料可以是ITO、Si02、SiN、ZnO、 polyimide、BCB、SOG、InO、SnO、ΙΠ-V 族化合物半導體 材料或II-VI族化合物半導體材料,但不以此為限。m_v族 化合物半導體材料内之ΙΠ族化學元素及V族化學元素的種 類已如之前所述。π-νι族化合物中之π族化學元素可以是鈹 (Be)、鎂(Mg)、鈣(Ga)或銘(Sr)等元素,n-VI族化合物中之 VI族化學元素可以是氧(〇)、硫(s)、砸(Se)或碲(Te)等元素。 藉由空氣與特定材料之折射率的差異,半導體發光元件 2之光取出效率能夠更有效地提昇。由於這種材料本身具有 之折射率大於環境之折射率(例如空氣之折射率為1},因&半 導體發光元件2所發出之侧光可經由此材料折向上方或下 方,避免被第一電極30吸收,以增加半導體發光元件2本身 之光輸出效率。 於另一具體實施例中,每一個凸狀結構28亦可以由絕緣 =料所製成。或者,如圖四B所示,於另一具體實施例中, 母一個凸狀結構28可以包含第一結構層282以及第二結構异Products such as lighting and remote control for the decoration of the disease = H η reliability and lower =) to find its own external quantum efficiency (:: = = part of the Γ ΐ ΐ and external quantum efficiency and its own internal internal rate It is related to money. It means that it is emitted from the inside of the component to the surrounding air or i package ==. The efficiency depends on the high refractive index of the semiconductor material when the radiation is generated and the surface of the helmet shaft 3 is generated. Total reflection (tGtal reflection), external extraction (4), and the financial information of the financial components. Figure---------------------------------------------------------------------------------------------------------------- Ν-_GaN 12, p-type nitrogen b gallium 16, illuminating region 14 and electrode 18. In order to conduct Ρ 咖 咖 氮化 氮化 0, 0 / 1362768 16 and N-type gallium nitride 12 to make two The polar body 1 operates, wherein one electrode 18 is formed on the P-type gallium nitride 1.6, and the other electrode 18 is formed on the N-type gallium nitride 12. Before forming another electrode 18, the light-emitting body 1 is formed. It is necessary to engrave the process with a part of the surname GaN gallium, illuminating region 14 and ^type gallium nitride 12. After that, another electrode The 18 series is formed; the N type is exposed to the exposed portion of the mouse 12. However, as shown in Fig. 1, f is partially engraved in the light-emitting region 14, so that the light-emitting diode is not only greatly reduced in light-emitting area, but also The luminous efficiency is also reduced a lot. Although there are many types of light-emitting diodes that are not (10) structured, it has been widely used to improve the light extraction efficiency and the same polarity of the light-emitting diode. Light-out is a topic that is constantly being researched: the solution to the problem is to provide a kind of light-emitting component, to [inventive content] a piece with high light extraction efficiency' and capable of; shooting; wide = © one aspect of the invention is to provide A semiconductor light-emitting element according to a specific embodiment of the present invention, a semi-conductive f-substrate, a first conductive type semiconductor:: a semiconductor material layer, a _light_emittin electrode, and a plurality of convex structures (bUmpstmcture) The second electrode, the second conductive-type semiconductor material layer is formed on the type of semi-conductive, the material layer has an upper surface 'and g gas 2 leads, and the light-emitting layer is formed on the second region = system = first Area The domain material layer is formed on the light-emitting layer. The first-electrode-type conductive semiconductor-electrode is formed in the second conductive type of the reference material W (four) and the [embodiment] In the present invention, the semiconductor light-emitting device 2 includes a substrate 2, a first pass, a U-conductor material layer 22, a light-emitting layer 24, a second conductive-type semiconductor material layer 26, and a first electrode. Two electrodes 32 and a plurality of convex structures 28 ° In practical applications, the substrate 20 may be glass (si〇2), bismuth (si), germanium (Ge), gallium nitride (GaN), gallium arsenide (GaAs). , gallium phosphide (GaP), aluminum nitride (A1N), sapphire, spinel, aluminum oxide (Al2〇3), bismuth carbide (sic), zinc oxide (ZnO), magnesium oxide (MgO ), LiAl〇2, LiGa2 or MgAl204, but not limited to this. In one embodiment, the first conductive type semiconductor material layer 22 and the second conductive type semiconductor material layer 26 may be made of an m-v compound semiconductor material. The group m chemical element in the ν·ν group compound semiconductor material may be an element such as Α1, gallium (Ga) or indium (In). The Group V chemical element in the m-V compound semiconductor material may be an element such as nitrogen (9), phosphorus (p) or arsenic (As). In this embodiment, the first conductive type semiconductor material layer 22 and the second conductive type semiconductor material layer 26 may be made of gallium nitride. The first conductive type semiconductor material layer 22 is formed on the substrate 20, and the first conductive type may be an N-type. In other words, the first conductive type semiconductor material layer 22 is an N-type gallium nitride contact layer. The first conductive type semiconductor material layer 22 has an upper surface 220, and the upper surface 220 includes a first region 2200 and a second region 2202 different from the first region 2200. The first electrode 30 is formed on the first region 2200, and the light-emitting layer 24 is formed on the second region 2202. The first electrode 30 is an N-type electrode. A second conductive type semiconductor material layer 26 is formed on the light emitting layer 24. Corresponding to the first conductive type semiconductor material layer 22, the second conductive type semiconductor material layer 26 is a P-type, that is, a p-type gallium nitride contact layer. The second electrode 32 may be formed on the second conductive type semiconductor material layer 26, and the second electrode 32 is a P-type electrode. As shown in Figure 2A, a plurality of convex structures 28 are formed on the upper surface 22 of the first type of semiconductor material layer 22 and between the first region 2200 and the second region. In practical applications, from the top view, each of the convex structures 28 can be cylindrical, marriage, and the like. Specifically, at least one 1 2800 is formed on the side wall of each of the convex structures 28. In this embodiment +, each of the convex structures 28 has a zigzag shape, so that the side walls form a plurality of recesses 28〇〇. That is, & a convex shape, the structure 28 _ wall has _ surface age morphology). Please refer to Figure 2B. Figure 2B is a cross-sectional view showing a semiconductor light emitting element 2 in accordance with another embodiment of the present invention. In another embodiment, the 'per-convex structure 28' wall may have an arcuate profile substantially. Assuming that the sidewall of each of the convex structures 28 has a straight rim and the angle between the sidewall and the upper surface 220 of the first-conducting-type semiconductor material layer 22 is equal to the degree ', the light emitted by the light-emitting layer 24 will be limited. Reflected back and forth between the convex structure 28 and the body of the semiconductor light emitting element 2. However, as shown in FIG. 2a and FIG. 2B, since the sidewall of each of the convex structures 28 in the present invention has a rough surface morphology or a curved profile, a part of the sidewalls 盥 the first type semiconductor material The angle θ of the surface above the layer 22 may be greater than or less than 9 degrees. Thereby, the filaments emitted by the luminescent layer 24, especially the sidelights, can be reflected by the sidewalls of the convex structure 28 after the convex structure 28 and change its traveling direction to increase the light output from the semiconductor light-emitting element 2. The probability of shooting on the observation side. In addition to the improvement in the side light extraction rate, 'assuming that the light-emitting surface of the semiconductor light-emitting element 2 faces upward, when the light emitted from the light-emitting layer toward the bottom of the semiconductor light-emitting element 2 is collided and directed toward the Wei convex structure 28, Light can also be directed by the convex structure 28 to the light surface. In addition, if a plurality of convex structures 28 are uniformly distributed on the upper surface 220 of the first-conducting type semi-material layer n, the semiconductor light-emitting element 2 can produce a wider and uniform sentence. In order to prevent the light emitted by the luminescent layer 24 from being absorbed by the first 〇, the height of each of the convex structures 28 may be substantially equal to or higher than the height of the first electrode 30. As shown in FIG. 2A, if the upper surface 22 of the first conductive type semiconductor material layer is used as a reference surface, the top surface of the first electrode % has a degree D1, and the top surface 28 of each convex structure 28 The crucible has a height D2, and D2 can be substantially equal to D1 or greater than D1, and the light is directed toward the first electrode 30 of 1362768. Please refer to Figure 3. Figure 3 is a schematic illustration of the composition of each of the convex structures 28 in accordance with the present invention in a particular embodiment. 3 is an illustration showing that each of the convex structures 28 may be composed of a first conductive type semiconductor material layer 22, a second conductive type semiconductor material layer 26, and a light-emitting layer 24. Alternatively, the female one convex structure 28 may be entirely composed of the first conductive type semiconductor material layer 22. It is to be noted that in order to prevent the light emitted by the body of the semiconductor light-emitting element 2 from being absorbed, the light-emitting layer 24 of each of the convex structures 28 in Fig. 3 can be further removed. In another embodiment, as shown in Figure 4A, in order to extract light more efficiently, each of the convex structures 28 can be made of a particular material having a refractive index greater than 丨. The material may be ITO, SiO 2 , SiN, ZnO, polyimide, BCB, SOG, InO, SnO, ΙΠ-V compound semiconductor material or II-VI compound semiconductor material, but is not limited thereto. The m_v group of the steroid chemical elements and the group V chemical elements in the compound semiconductor material have been as described above. The π-group chemical element in the π-νι group compound may be an element such as beryllium (Be), magnesium (Mg), calcium (Ga) or indium (Sr), and the group VI chemical element in the n-VI compound may be oxygen ( 〇), sulfur (s), strontium (Se) or strontium (Te) and other elements. The light extraction efficiency of the semiconductor light emitting element 2 can be more effectively improved by the difference in refractive index between the air and the specific material. Since the material itself has a refractive index greater than the refractive index of the environment (for example, the refractive index of air is 1}, the side light emitted by the & semiconductor light-emitting element 2 can be folded upward or downward through the material to avoid being first. The electrode 30 is absorbed to increase the light output efficiency of the semiconductor light-emitting element 2 itself. In another embodiment, each of the convex structures 28 may also be made of an insulating material. Alternatively, as shown in FIG. 4B, In another embodiment, the female one convex structure 28 may include the first structural layer 282 and the second structural difference.

•<.S 11 ώ Μ 圖二中凸狀結構28之組成,第一結構層282可以 #型癌半導體材料層22、第二傳導型態半導體材料 二=6以及發光層24所組成。或者,第一結構層282可以完 ί傳導型態半導體材料層22所組成。第二結構層284 3 ^結構層282上並且由折射率大於1之特定材料所 裏成,材料的選擇則如同先前所述。• <.S 11 ώ Μ The composition of the convex structure 28 in Fig. 2, the first structural layer 282 may be composed of a #-type cancer semiconductor material layer 22, a second conductive type semiconductor material =6, and a light-emitting layer 24. Alternatively, the first structural layer 282 can be comprised of a layer of conductive semiconductor material 22. The second structural layer 284 3 ^ structural layer 282 is formed of a specific material having a refractive index greater than 1, and the material is selected as previously described.

,了提高光取出效率,於一較佳具體實 =導型態半導體材料層22之上表面22G為參二H ο 面300具有高度D1,每一個凸狀結構28之頂表 /、有尚度132,並且D2大致上可以等於D1或大於D1 光層24戶斤發出的光線被第一電極30所吸收、。另 德道結構層282之頂表面2820具有高度D3,並且第二 致4 ί導體材料層%之頂表面具有高度D4。D4大 致上可以等於D3或大於D3。 2 圖五。圖五鱗示㈣本發日狀轉體發光元件 © 際應用中’複數個凸狀結構28基本上需環 向未顯不於圖五中)以將由發光層24射出之光線導 l所_發光疋件2之出光面。於—較佳具體實施例中,如 圖带=複^個凸狀結構28可以排列成内外兩層環狀圈的 外兩層環狀圈彼此錯開以確保複數個凸狀結構 之出^ Γ ; 層、24射出之光線全部導向半導體發光元件2 離総甚者’複數個凸狀結構28亦可以佈滿第一傳導型 層22之上表面220以保證半導體發光元件2之 先取出效率能夠被提昇。 片構Is參Α及圖六Β。圖六Α係繪示圖二Α中之凸狀 二国。固丄頂表面進—步形成至少一個凹陷2802之截面 » °圖六B係繪示圖二B中之凸狀結構28之頂表面28〇 12 /05 側‘個凹陷28G2之截面視圖。也就是說,除了 表面形^ j結構28之頂表面28G亦可以同時具有粗輪的 的輪鹿,凸狀結構28之頂表面280亦可以具有弧形 或弧幵%ϊίΐ結構28之頂表面280具有粗糙的表面形態 魏形的輪廓,皆可崎-步提S光取姐率。 本道:;^圖七°圖七係繪示根據本發明之—具體實施例之 Ο ΐ 22 透明導電層34形.第—傳導型態半導體材料 i、發光22:上並且包覆第二傳導型態半導體材料層 層二形成之後,第二_ 32可以形成於透;導$ 二網㈣2際應用中’透明導電層34可以由薄型金屬 i不H層、轉觸____所製成, ,較於先前技術,根據本發明之半導體發光 出光面發^^件内部所射出之光線導^ ❿ 率。ί外廊’更可以有效地提高光取出效 於,、有咼度的光取出效率,根據本發明之半導 體發先70件亦可以朗於光泵浦⑽办㈣)。 丰導 述本ί 實施例之詳述,係希望能更加清楚描 涵蓋ϋΐίΓ —加以_。相反地’其目的是希望能 圍的範•内明所欲申請之專利範 據上述的朗作n /所申明之翻_的射應該根 ㈣說月作最寬廣的解釋,以致使其涵蓋所有可能的改 13 1362768 變以及具相等性的安排。 3 © 14 1362768 ' \ 【圖式簡單說明】 圖-儀繪示習知的發光二極體。 元件示根據她之-具體實施例之半導體發光 光元具財_之半導體發 Ο 圖三、圖四Α及圖四Β 結構的組成之示意圖。 係繪示根據本發明之每一個凸狀 頂視圖 圖五係繪示根據本發明之半導體發光元件之 至巾之凸狀結叙财崎—步形成 圖^^:?中之凸狀結構之頂表面進一步^ © 至少一個凹陷之截面視圖 圖 件進一步包含透明導電層之截面視圖。 【主要元件符號說明】 1 :發光二極體 10 :基板 12 : N-type氮化鎵 14 :發光區 16 : P-type氮化鎵 18 :電極 2:半導體發光元件 20 :基板 15 1362768 22 :第一傳導型態半導體材料層 24 :發光層 28 :凸狀結構 32 :第二電極 220 :上表面 284 :第二結構層 〇 26 :第二傳導型態半導體材料層 30 :第一電極 34 :透明導電層 282 :第一結構層 260、280、300、320、2820 :頂表面 2200 :第一區域 2202 :第二區域 2800、2802 :凹陷 Θ :夾角 D卜 D2、D3、D4 :高度 Θ 16In order to improve the light extraction efficiency, on the surface 22G of the preferred semiconductor material layer 22, the surface 22G has a height D1, and the top surface of each convex structure 28 has a goodness. 132, and D2 may be substantially equal to D1 or greater than D1. The light emitted by the light layer 24 is absorbed by the first electrode 30. The top surface 2820 of the other structural layer 282 has a height D3, and the top surface of the second layer of conductor material has a height D4. D4 can be equal to D3 or greater than D3. 2 Figure 5. Figure 5 is a scale showing (4) the hair-emitting element of the present invention. In the application, the plurality of convex structures 28 basically need to be circumferentially not shown in Fig. 5 to guide the light emitted by the light-emitting layer 24. The shiny side of the piece 2. In the preferred embodiment, the outer belts of the inner and outer annular loops can be arranged to be offset from each other to ensure the outflow of a plurality of convex structures. The light emitted by the layers 24 and 24 is all directed to the semiconductor light-emitting element 2. The plurality of convex structures 28 may also be covered with the upper surface 220 of the first conductive layer 22 to ensure that the efficiency of first extraction of the semiconductor light-emitting element 2 can be improved. . The composition of the sheet is referred to and the figure is six. Figure 6 shows the convexity of the two countries in Figure II. The solid dome surface further forms a cross section of at least one recess 2802. FIG. 6B is a cross-sectional view of the top surface 28 〇 12 /05 side of the convex structure 28 in FIG. That is to say, in addition to the top surface 28G of the surface structure 28, the wheel deer may also have a coarse wheel. The top surface 280 of the convex structure 28 may also have a curved or curved top surface 280 of the structure 28. With a rough surface shape, the shape of the Wei shape can be used to improve the S-light rate. The following is a schematic diagram of a transparent conductive layer 34 in accordance with the present invention. The first conductive type semiconductor material i, the light-emitting 22: is coated on the second conductive type. After the second layer of the semiconductor material layer is formed, the second _32 may be formed in the transparent; the second transparent layer 34 may be made of a thin metal i, not a H layer, and a touch ____, Compared with the prior art, the light emission rate of the inside of the semiconductor light-emitting surface emitting member according to the present invention is higher. The ί veranda can effectively improve the light extraction efficiency and the light extraction efficiency. The 70-piece semi-conductor according to the present invention can also be used in light pumping (10) (4). The details of the embodiments are intended to be more clearly described. On the contrary, 'the purpose is to hope that the patents that Fan Nei Ming wants to apply for, the above-mentioned langu ng / the stated yoke _ the root of the root (four) said the month to make the broadest interpretation, so that it covers all Possible changes to 13 1362768 and equal arrangements. 3 © 14 1362768 ' \ [Simple description of the diagram] The diagram-indicator shows the conventional light-emitting diode. The components are shown in accordance with the specific embodiment of the semiconductor light-emitting device. The semiconductor device is shown in FIG. 3, FIG. 4, and FIG. Illustrated in each of the convex top views according to the present invention, the fifth embodiment of the semiconductor light-emitting device according to the present invention is shown in the convex shape of the scarf. Surface further ^ © at least one of the recessed cross-sectional views further comprises a cross-sectional view of the transparent conductive layer. [Main component symbol description] 1 : Light-emitting diode 10 : Substrate 12 : N-type gallium nitride 14 : Light-emitting region 16 : P-type gallium nitride 18 : Electrode 2 : Semiconductor light-emitting element 20 : Substrate 15 1362768 22 : First conductive type semiconductor material layer 24: light emitting layer 28: convex structure 32: second electrode 220: upper surface 284: second structural layer 〇26: second conductive type semiconductor material layer 30: first electrode 34: Transparent conductive layer 282: first structural layer 260, 280, 300, 320, 2820: top surface 2200: first region 2202: second region 2800, 2802: recessed Θ: angle D D D2, D3, D4: height Θ 16

Claims (1)

1362768 十、申請專利範圍: 1、 一種半導體發光元件,包含: 一基板; ,該第-傳導型態半導體 :層具有-上表面,並且該上表面= 及不同於該第一區域之一第二區域;匕3《£域以 Ο © 2、 -第-電極,該第一電極係形成於該第一區域上; 一發光層,該發光層係形成於該第二區域上; ^二料錢半導體 彻:料型態半導 _數個凸狀結構係形成於該第一傳 體材料層之該上表面上並且介於該第-區 ,以及該第二區域之間,其中至少—個凹陷係形成於 ΐϊϊ專利範圍第1項所述之半導體發光祕,其中每-個 ^狀…構的部份側壁與該第一傳導型態半導體材料層之誃 表面之一失角係大於或小於90度。 ^ 、7請專利範圍第i項所述之半導體發光元件,其中該第一 I極之-第-頂表面大致上與每—個凸狀結構之—第 面同高或低於每一個凸狀結構之該第二頂表面。 4、^申請專利範,3項所述之半導體發光元件,其中每一個 狀結構係由折射率大於丨之一材料所製成,並且該材料係 17 1362768 ·-· % 選自由 ITO、Si02、SiN、ZnO、polymide、BCB、SOG、 InO、SnO、一m-v族化合物半導體材料以及一π-VI族化合 物半導體材料所組成之一群組中之其一。 5、 如申請專利範圍第1項所述之半導體發光元件,其中每一個 凸狀結構包含: 一第一結構層;以及 一第二結構層,形成於該第一結構層上並且由折射率大 於1之一材料所製成,並且該材料係選自由ITO、 〕 Si〇2、SiN、ZnO、polymide、BCB、SOG、InO、 Sn0、一m-V族化合物半導體材料以及一π-νι族化合物 半導體材料所組成之一群組中之其一。 6、 如申請專利範圍第5項所述之半導體發光元件,其中該第一 , 電極,一第一頂表面大致上與每一個凸狀結構之一第二頂表 面同高或低於每一個凸狀結構之該第二頂表面。 7、 如申請專利範圍第6項所述之半導體發光元件,其中該第一 結構層之一第三頂表面大致上與該第二傳導型態半導體材料 層之一第四頂表面同高或低於該第二傳導型態半導體材料層 ^ 之該第四頂表面。 8、 如申請專利範圍第1項所述之半導體發光元件,其中每一個 凸狀結構係由一絕緣材料所製成。 9、 如申請專利範圍第1項所述之半導體發光元件,進一步包含 一透明導電層,該透明導電層形成於該第一傳導型態半導體 材料層之該上表面上並且包覆該第二傳導型態半導體材料 層、該發光層以及該複數個凸狀結構。 \ 1〇、如申請專利範圍第1項所述之半導體發光元件,其中至少一 乂,S 18 11I) © 個凹陷進-步形成於每—個凸狀結構之頂表面。 第1項所述之半導體發光元件,其中每一個 凸狀結構之頂表面進-步具有一弧形的輪廣。 1固 12、 範圍第1項所述之半導體發光元件,其中該第- I13、 述之半導體發光元件,其中該基板 銘、藍寶石、尖晶石、:m ^化録、鼠化 ^ 一軋化一鋁、石反化矽、氧化鋅、氧化 ^、一氧化鋰鋁、二氧化鋰鎵以及四氧化 群組中之其一所形成。 、 導it係Ν型態,並且該第二傳導型態係ρ型 態 •在呂所組成之- 14、一種半導體發光元件,包含: 一基板; 一第-傳導型態半導體材料層,該第上,該第-傳 -第-電極’該第-電極係形成於該第—區域上; 一發光層,該發光層係形成於該第二區域上; 一 該第二傳導型態半導體 一 ίίΐ ϋ觸观卿:料型態半導 複狀結構’該複油凸狀結構 s 19 1362768 大致上具有一派形的輪靡。 15、 如申請專利範圍第14項所述之半導體發光元件,其中每-個 凸狀結構的部份側壁與該第一傳導型態半導體材料層之該上 表面之一夾角係大於或小於90度。 16、 ^申請專利範圍第14項所述之半導體發光元件,其中該第一 電極之一第一頂表面大致上與每一個凸狀結構之一第二頂表 面同高或低於每一個凸狀結構之該第二頂表面。 17、 如申請專利範圍第16項所述之半導體發光元件,其中每一個 凸狀結構係由折射率大於丨之一材料所製成,並且該材料係 選自由 ITO、Si02、SiN、ZnO、polymide、BCB、SOG、 InO ' SnO、一m-V族化合物半導體材料以及一η·νι族化合 物半導體材料所組成之一群組中之其一 β 18、 如申請專利範圍第Μ項所述之半導體發光元件,其中每一個 凸狀結構包含: 一第一結構層;以及 一第二結構層,形成於該第一結構層上並且由折射率大 於1之一材料所製成,並且該材料係選自由ΙΤΟ、 Si02、SiN、ZnO、p〇iymide、BCB、S0G、InO、 SnO、一ni_V族化合物半導體材料以及一h 化合物 半導體材料所組成之一群組中之其一。 19、 如申請專利範圍第18項所述之半導體發光元件,其中該第一 電極之一第一頂表面大致上與每一個凸狀結構之一第二頂表 面同高或低於每一個凸狀結構之該第二頂表面。 2〇、如申請專利範圍第β項所述之半導體發光元件,其中該第一 結構層之-第二頂表面大致上與該第二傳導型態半導體材料 〆r' 20 面’低於該第二傳導型態半導體材料層 21、 導體發光耕,其情-個 22、 項所述之半導體發光元件,進一步包含 材表 1^導電層形成於該第一料娜半導體 層、該發光層以及該複^固傳導型態半導禮材料 23、 其中至少- 24、 範圍第14項所述之半導體發光元件,每一個凸狀 、、、。構之頂表©進-步具有—弧形的輪靡。 25、 ΐίΐί·圍第14項所述之半導體發光元件,其中該第一 LUN型態,並且該第二傳導型態係ρ型態。 6、ΪΙ、5冑專職圍第14項所述之半導體發光元件,其中該基板 由J自由玻璃、石夕、鍺、氮化鎵、坤化錄、碟化蘇、氮化 、k寶石、尖晶石、三氧化二|g、碳化發、氧化辞、氧化 群組氧触軌及吨賊二麵組成之-1362768 X. Patent application scope: 1. A semiconductor light emitting device comprising: a substrate; the first conductive type semiconductor: the layer has an upper surface, and the upper surface = and a second one different from the first region a region; 匕 3 "" domain with Ο 2, - first electrode, the first electrode is formed on the first region; a light-emitting layer, the light-emitting layer is formed on the second region; ^ two money Semiconductors: material type semiconducting _ a plurality of convex structures are formed on the upper surface of the first body material layer and between the first region, and the second region, wherein at least one of the depressions The semiconductor light-emitting secret described in the first aspect of the patent, wherein each of the side walls of the structure and the surface of the first conductive type semiconductor material have a missing angle of 90 or more. degree. The semiconductor light-emitting device of claim 1, wherein the first-first surface of the first I-pole is substantially the same as or lower than each of the convex surfaces of each of the convex structures. The second top surface of the structure. 4, ^ apply for a patent, the semiconductor light-emitting elements described in 3, each of which is made of a material having a refractive index greater than that of 丨, and the material is 17 1362768 ·-· % selected from ITO, SiO 2 , One of a group consisting of SiN, ZnO, polymide, BCB, SOG, InO, SnO, a mv compound semiconductor material, and a π-VI compound semiconductor material. 5. The semiconductor light-emitting device of claim 1, wherein each of the convex structures comprises: a first structural layer; and a second structural layer formed on the first structural layer and having a refractive index greater than 1 made of one material, and the material is selected from the group consisting of ITO, SiO 2 , SiN, ZnO, polymide, BCB, SOG, InO, SnO, an mV compound semiconductor material, and a π-νι compound semiconductor material. One of the groups that make up. 6. The semiconductor light-emitting device of claim 5, wherein the first, electrode, and a first top surface are substantially the same as or lower than each of the second top surfaces of each of the convex structures. The second top surface of the structure. 7. The semiconductor light emitting device of claim 6, wherein a third top surface of the first structural layer is substantially the same as or lower than a fourth top surface of the second conductive type semiconductor material layer. And the fourth top surface of the second conductive semiconductor material layer. 8. The semiconductor light-emitting device of claim 1, wherein each of the convex structures is made of an insulating material. 9. The semiconductor light emitting device of claim 1, further comprising a transparent conductive layer formed on the upper surface of the first conductive type semiconductor material layer and covering the second conductive A layer of a type semiconductor material, the luminescent layer, and the plurality of convex structures. The semiconductor light-emitting device of claim 1, wherein at least one of 乂, S 18 11I) is formed in a top surface of each of the convex structures. The semiconductor light-emitting device of item 1, wherein the top surface of each of the convex structures further has an arc-shaped wheel width. The semiconductor light-emitting device of the first aspect, wherein the substrate, the sapphire, the spinel, the m ^ recording, the mouse One of aluminum, stone antimony, zinc oxide, oxide, lithium aluminum oxide, lithium gallium dioxide, and a group of tetraoxides. And the second conductivity type is a ρ type state, which is composed of LV. 14. A semiconductor light-emitting device comprising: a substrate; a first-conducting type semiconductor material layer, the first The first-electrode-electrode is formed on the first region; a light-emitting layer is formed on the second region; and the second conductive semiconductor is ϋ触观卿: Material type semi-conductive complex structure 'The re-oil convex structure s 19 1362768 has a rim of a pie shape. 15. The semiconductor light emitting device of claim 14, wherein a portion of each of the sidewalls of each of the convex structures and the upper surface of the first conductive semiconductor material layer are at an angle of greater than or less than 90 degrees. . The semiconductor light-emitting device of claim 14, wherein the first top surface of one of the first electrodes is substantially the same as or lower than each of the second top surfaces of each of the convex structures. The second top surface of the structure. 17. The semiconductor light-emitting device of claim 16, wherein each of the convex structures is made of a material having a refractive index greater than that of 丨, and the material is selected from the group consisting of ITO, SiO 2 , SiN, ZnO, and polymide. a semiconductor light-emitting element according to any one of the group consisting of BCB, SOG, InO 'SnO, an mV group compound semiconductor material, and a η·νι group compound semiconductor material. Each of the convex structures includes: a first structural layer; and a second structural layer formed on the first structural layer and made of a material having a refractive index greater than one, and the material is selected from the group consisting of One of a group consisting of SiO2, SiN, ZnO, p〇iymide, BCB, S0G, InO, SnO, a ni_V compound semiconductor material, and a compound semiconductor material. The semiconductor light-emitting device of claim 18, wherein the first top surface of one of the first electrodes is substantially the same as or lower than each of the second top surfaces of each of the convex structures. The second top surface of the structure. The semiconductor light-emitting device of claim 7, wherein the second top surface of the first structural layer is substantially lower than the second conductive type semiconductor material 〆r' 20 ' a semiconductor material layer 21, a semiconductor light-emitting device according to the item 22, further comprising a material layer formed on the first semiconductor layer, the light-emitting layer, and the conductive layer The semiconductor light-emitting device of any of the above-mentioned items, wherein each of the semiconductor light-emitting elements is at least -24, and each of the convex light-emitting materials. The top of the structure © the step - has a curved rim. The semiconductor light-emitting device of item 14, wherein the first LUN type is, and the second conductive type is a p-type. 6. A semiconductor light-emitting device according to item 14, wherein the substrate is made of J-free glass, Shixia, 锗, GaN, Kunhua, disc, nitriding, k-stone, and sharp. Spar, trioxide|g, carbonization, oxidation, oxidation group oxygen contact and two sides of the thief -
TW97106192A 2008-02-22 2008-02-22 Semiconductor light-emitting device TWI362768B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97106192A TWI362768B (en) 2008-02-22 2008-02-22 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97106192A TWI362768B (en) 2008-02-22 2008-02-22 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
TW200937671A TW200937671A (en) 2009-09-01
TWI362768B true TWI362768B (en) 2012-04-21

Family

ID=44867105

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97106192A TWI362768B (en) 2008-02-22 2008-02-22 Semiconductor light-emitting device

Country Status (1)

Country Link
TW (1) TWI362768B (en)

Also Published As

Publication number Publication date
TW200937671A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
US11393950B2 (en) Light-emitting diode device and method for manufacturing the same
US8384112B2 (en) Light emitting chip
US20120235114A1 (en) Light emitting chip
TWI528579B (en) Light emitting diode device
US8237184B2 (en) Light-emitting semiconductor device
CN102437263A (en) Light-emitting diode (LED) and manufacturing method thereof
JP2011035275A (en) Nitride semiconductor light-emitting element
CN101969091A (en) Light emitting diode
KR101014339B1 (en) Gallium nitride light emitting diode and method for manufacturing the same
CN108565319A (en) Nitride semiconductor structure and semiconductor light-emitting elements
TW201318206A (en) LED chip
TWI362768B (en) Semiconductor light-emitting device
RU2011106966A (en) LIGHT-RADIATING SEMICONDUCTOR DEVICE
TW200937672A (en) Semiconductor light-emitting device
TWI505502B (en) Light-emitting diode and method for manufacturing thereof
CN107681035B (en) Transparent conducting layer, manufacturing method thereof and light emitting diode
KR101360882B1 (en) Nitride semiconductor device and method of manufacturing the same
KR100696194B1 (en) Nitride semiconductor light emitting device and preparing method of the same
TWM293524U (en) Light emitting diode package
TW201415666A (en) Semiconductor element
TWI608633B (en) Light emitting diode device and method for manufacturing the same
WO2021102666A1 (en) Light-emitting diode structure
TWI545797B (en) Light emitting diode chip
TW202401873A (en) Light extraction structures for light-emitting diode chips and related methods
TWM491255U (en) Light emitting diode chip

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees