TWI608633B - Light emitting diode device and method for manufacturing the same - Google Patents
Light emitting diode device and method for manufacturing the same Download PDFInfo
- Publication number
- TWI608633B TWI608633B TW104142131A TW104142131A TWI608633B TW I608633 B TWI608633 B TW I608633B TW 104142131 A TW104142131 A TW 104142131A TW 104142131 A TW104142131 A TW 104142131A TW I608633 B TWI608633 B TW I608633B
- Authority
- TW
- Taiwan
- Prior art keywords
- type semiconductor
- unit
- metal layer
- semiconductor unit
- epitaxial
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Description
本發明關於一種發光二極體裝置,特別是一種製程容易、改善散熱性之發光二極體裝置,及其製造方法。 The invention relates to a light-emitting diode device, in particular to a light-emitting diode device with easy process and improved heat dissipation, and a manufacturing method thereof.
近年來發光二極體裝置的應用越來越廣泛,近年來搭配透明基板可以兩面發光的LED燈的LED燈絲燈,因為外型仿古美觀,很受消費者的青睞,是以許多廠商都投入了LED燈絲燈之生產。 In recent years, the application of the light-emitting diode device has become more and more widespread. In recent years, the LED filament lamp of the LED lamp with the transparent substrate can be illuminated on both sides. Because of its elegant appearance, it is very popular among consumers, and many manufacturers have invested in it. Production of LED filament lamps.
但儘管LED燈絲燈的數量持續成長,但與傳統的鎢絲燈出貨數量來相比,仍有一段相當大的差距。LED燈絲燈無法普遍的主要的原因在於LED燈絲燈對於封裝有較高的要求,在製程工藝方面較為複雜、生產良率低,價格也因此較高。現在LED燈絲燈的作法多是先於大基板上長成LED單元,再將LED單元減薄切割成個別獨立的LED晶粒,再將多個個別獨立的LED晶粒黏附或焊接於一載板,最後再將載板上的個別獨立的LED晶粒拉線串接而成。如此的多步驟製程,因為在每一個步驟皆會造成良率降低的損失,所以良率並不高。例如在切割成LED晶粒的步驟,良率降低就非常明顯。再加上其他步驟施作時的良率損失,製作良率的改善變成是LED燈絲燈產品製造的重要課題。 However, although the number of LED filament lamps continues to grow, there is still a considerable gap compared to the number of conventional tungsten filament lamps shipped. The main reason why LED filament lamps are not universal is that LED filament lamps have high requirements for packaging, are complicated in process technology, have low production yield, and are therefore expensive. Nowadays, LED filament lamps are mostly grown into LED units before the large substrate, and then the LED units are thinned and cut into individual LED dies, and then a plurality of individual LED dies are adhered or soldered to one carrier. Finally, the individual independent LED die wires on the carrier board are connected in series. Such a multi-step process, because at each step will result in a loss of yield reduction, so the yield is not high. For example, in the step of cutting into LED dies, the yield reduction is very obvious. In addition to the yield loss at the time of other steps, the improvement in production yield becomes an important issue in the manufacture of LED filament lamps.
再者,LED燈絲燈也有散熱的技術問題亟需克服,特別是大瓦數的LED燈絲燈運作時,會產生大量熱,因此如何有效地散熱,提高電光效率,也成為LED燈絲燈需要改善的重要課題。另外尚有消費者認為LED燈絲燈的照度不足、光效低之問題須要改善,因此導致LED燈絲燈價格與效能,離市場期待仍有一段差距,成為LED燈絲燈擴大應用的障礙。 Furthermore, the technical problem of cooling the LED filament lamp also needs to be overcome, especially when the large wattage LED filament lamp operates, a large amount of heat is generated, so how to effectively dissipate heat and improve the electro-optic efficiency, and also become an improvement of the LED filament lamp. important topic. In addition, some consumers believe that the problem of insufficient illumination and low light efficiency of LED filament lamps needs to be improved. As a result, the price and performance of LED filament lamps are still far from the market expectation, which has become an obstacle to the expansion of LED filament lamps.
然而,LED燈的耗電量少,燈泡壽命長,是效率很高的光源。為了達到省電節能的目標,目前已有許多廠商及研究團隊投入,企圖從製程或結構方面著手改良,期待能夠提高LED燈絲燈照度、加強散熱、降低成本,進而可以開發出一種能夠解決現有LED燈絲燈發展困境的新型燈具。 However, LED lamps consume less power and have a longer lamp life, making them an efficient source of light. In order to achieve the goal of energy saving and energy saving, many manufacturers and research teams have invested in attempts to improve the process or structure. It is expected to improve the illumination of LED filament lamps, enhance heat dissipation and reduce costs, and then develop an existing LED. New lamps for the development of filament lamps.
本發明之主要目的旨在提供一種散熱性佳、並具有改良電光轉換效率之發光二極體裝置。 The main object of the present invention is to provide a light-emitting diode device which is excellent in heat dissipation and has improved electro-optical conversion efficiency.
本發明之另一目的旨在提供一種改良良率、步驟簡單之發光二極體製造方法。 Another object of the present invention is to provide a method of manufacturing a light-emitting diode which has improved yield and simple steps.
為達成上述目的,本發明特別在一基板上形成複數個磊晶單元,每一個磊晶單元包括有n型半導體單元、發光層、p型半導體單元、以及透明電極層,並在該些磊晶單元形成多對布拉格反射鏡對,使該些多對布拉格反射鏡對包覆該些磊晶單元,透過反射光線來提升出光強度。換言之,相較於習知技術中同時使用更多的晶片來取得足夠的出光總量,本發明的發光二極體裝置就已具有改善的照度。除此之外,本發明之發光二極體裝置,因第一金屬層及第二金屬層之結構設置,沒有散熱性不佳的缺點,反而具有優秀的散熱性。 In order to achieve the above object, the present invention particularly forms a plurality of epitaxial cells on a substrate, each epitaxial cell including an n-type semiconductor cell, a light-emitting layer, a p-type semiconductor cell, and a transparent electrode layer, and in the epitaxial The unit forms a plurality of pairs of Bragg mirror pairs, so that the pairs of Bragg mirror pairs cover the epitaxial units, and the reflected light is transmitted to enhance the light intensity. In other words, the illuminating diode device of the present invention has improved illuminance compared to conventional techniques in which more wafers are used simultaneously to achieve a sufficient amount of light output. In addition, the light-emitting diode device of the present invention has a structure in which the first metal layer and the second metal layer are provided, and has no disadvantage of poor heat dissipation, and has excellent heat dissipation properties.
具體而言,本發明之發光二極體裝置包括:一基板;複數個磊晶單元,位於該基板之一表面;一第一金屬層,該第一金屬層係位於該磊晶單元之部分表面以連結該磊晶單元與另一相鄰之磊晶單元;n對布拉格反射鏡對,係包覆該些磊晶單元以及該第一金屬層之部份表面,其中n係為一大於6之整數;以及一第二金屬層,係設於該布拉格反射鏡對之表面,且該第二金屬層連接未經該布拉格反射鏡對所覆蓋之該第一金屬層;其中,每一磊晶單元包括:一n型半導體單元,係位於該基板之表面;一個發光層,位於該n型半導體單元上;一p型半導體單元,位於該n型半導體單元上,且該發光層係夾設於該p型半導體單元與該n型半導體單元之間,部份之n型半導體單元露出且不被該p型半導體單元覆蓋;以及一透明電極層,係位於該p型半導體單元之表面。 Specifically, the LED device of the present invention comprises: a substrate; a plurality of epitaxial cells on a surface of the substrate; a first metal layer, the first metal layer is located on a part of the surface of the epitaxial cell Connecting the epitaxial unit to another adjacent epitaxial unit; n pairs of Bragg mirror pairs, covering the epitaxial cells and a portion of the surface of the first metal layer, wherein n is a greater than 6 And a second metal layer disposed on the surface of the pair of Bragg mirrors, and the second metal layer is connected to the first metal layer not covered by the Bragg mirror pair; wherein each epitaxial layer The unit includes: an n-type semiconductor unit on a surface of the substrate; an illuminating layer on the n-type semiconductor unit; a p-type semiconductor unit on the n-type semiconductor unit, and the luminescent layer is interposed on the substrate Between the p-type semiconductor unit and the n-type semiconductor unit, a portion of the n-type semiconductor unit is exposed and not covered by the p-type semiconductor unit; and a transparent electrode layer is located on the surface of the p-type semiconductor unit.
於本發明之發光二極體裝置中,該p型半導體單元之側壁及該發光層之側壁更可選擇性地包括一絕緣層。可使用作為絕緣層之材料並無特別限制,任何一種用在發光二極體裝置的絕緣層材料都可以被使用。譬如說,氮化物,如氮化矽;氧化物,如二氧化矽或氧化鋁;或者也可以使用氮氧化物等。本領域具有通常知識者可依情況選用適當之材料形成絕緣層,並不特別限制在上述之材料中。 In the light-emitting diode device of the present invention, the sidewall of the p-type semiconductor unit and the sidewall of the light-emitting layer more selectively include an insulating layer. The material which can be used as the insulating layer is not particularly limited, and any of the insulating layer materials used in the light-emitting diode device can be used. For example, a nitride such as tantalum nitride; an oxide such as cerium oxide or aluminum oxide; or an oxynitride or the like may also be used. A person having ordinary skill in the art may select an appropriate material to form an insulating layer, and is not particularly limited to the above materials.
於本發明一示例性實施例中,可以使用習知領域中任何用來形成磊晶單元的材料來形成磊晶單元,譬如說,該n型半導體單元可為一n型氮化鎵、該p型半導體單元係一p型氮化鎵、該發光層為複數層矽摻雜的氮化鎵銦磊晶(InxGayN/GaN多重量子井)、且該透明電極層可為ITO(氧化銦錫,Indium Tin Oxide)。除此之外,為了提升層和層之間介面黏著力、或者為了使磊晶單元有其他輔助或附加功能,亦可加入其他習知的輔助功能層。舉例來說,可在基板與該磊晶單元之間更包括一氮化鎵或氮化鋁緩衝 層,使後續形成之磊晶單元和基板之間有更好的結合,然而,本發明對此並無特別限制。 In an exemplary embodiment of the present invention, an epitaxial cell may be formed using any material used in the prior art to form an epitaxial cell. For example, the n-type semiconductor cell may be an n-type gallium nitride, the p The semiconductor unit is a p-type gallium nitride, the light-emitting layer is a plurality of layers of germanium-doped gallium indium nitride epitaxial (In x Ga y N/GaN multiple quantum well), and the transparent electrode layer can be ITO (oxidized) Indium Tin Oxide). In addition, other conventional auxiliary functional layers may be added in order to enhance the adhesion between the layers and the layers, or to provide other auxiliary or additional functions to the epitaxial unit. For example, a gallium nitride or aluminum nitride buffer layer may be further included between the substrate and the epitaxial unit to provide a better bond between the subsequently formed epitaxial unit and the substrate. However, the present invention There are no special restrictions.
第一金屬層與第二金屬層可由任何適合的金屬材料形成,舉例來說,可為金、銀、銅、鈦、鋁、鉻、鎳、鉑、鈹、鎂、鈣、鍶或上述任意複數種金屬材料之組合。本發明中第一金屬層連接兩相鄰磊晶單元,係透過連接磊晶單元之陽極(或透明電極)及另一磊晶單元之陰極而達成。 The first metal layer and the second metal layer may be formed of any suitable metal material, for example, gold, silver, copper, titanium, aluminum, chromium, nickel, platinum, rhodium, magnesium, calcium, strontium or any of the above plural a combination of metallic materials. In the present invention, the first metal layer is connected to two adjacent epitaxial cells through the anode (or transparent electrode) connecting the epitaxial cells and the cathode of the other epitaxial cell.
於本發明一示例性實施例中,該第二金屬層可經圖案化而具有一間隙,使該第二金屬層分隔成至少兩獨立之電極。本發明第二金屬層所覆蓋之區域無限制,較佳為覆蓋大部分基板或之n對布拉格反射鏡對區域以改善漏光、增加光回收效率、以及改善散熱效率。 In an exemplary embodiment of the invention, the second metal layer may be patterned to have a gap separating the second metal layer into at least two separate electrodes. The area covered by the second metal layer of the present invention is not limited, and preferably covers most of the substrate or n pairs of Bragg mirror pairs to improve light leakage, increase light recovery efficiency, and improve heat dissipation efficiency.
於上述之n對布拉格反射鏡對,其中該布拉格反射鏡對係由兩種不同折射率的材料重覆交錯堆疊而形成,且該兩種不同折射率的材料的厚度可相同或不同。於本發明中,該布拉格反射鏡對之光學膜層折射率可介於1.3至2.8之間,較佳為1.45至2.3之間,更佳為1.3至2.8之間。兩種不同折射率的材料,可為五氧化二鉭/三氧化二鋁之組合、五氧化二鉭/氮化矽之組合、五氧化二鉭/氧化矽之組合、二氧化鈦/二氧化矽、二氧化鈦/三氧化二鋁之組合、氧化鈦/二氧化矽之組合、以及二氧化鈦/氮化矽之組合,於本發明一示例性實施例中使用二氧化鈦/二氧化矽組合之布拉格反射鏡對。至於布拉格反射鏡對中兩種不同折射率的材料的厚度分別可在450Å~675Å之間、更佳為460Å~690Å之間。舉例來說,可為由460Å的二氧化鈦與690Å的二氧化矽所組成之布拉格反射鏡對、450Å的二氧化鈦與675Å的二氧化矽所組成之布拉格反射鏡對、或是400Å的二氧化鈦與770Å的二氧化矽所組成之布拉格反射鏡對,然本發明並不限於此。 In the above n pairs of Bragg mirror pairs, wherein the Bragg mirror pair is formed by repeatedly stacking two different refractive index materials, and the thickness of the two different refractive index materials may be the same or different. In the present invention, the refractive index of the optical film of the Bragg mirror may be between 1.3 and 2.8, preferably between 1.45 and 2.3, more preferably between 1.3 and 2.8. Two different refractive index materials, which may be a combination of antimony pentoxide/aluminum oxide, a combination of antimony pentoxide/niobium nitride, a combination of antimony pentoxide/antimony oxide, titanium dioxide/cerium dioxide, titanium dioxide A combination of /aluminum trioxide, a combination of titanium oxide / cerium oxide, and a combination of titanium dioxide / cerium nitride, in a preferred embodiment of the invention, a pair of Bragg mirrors of a combination of titanium dioxide / ceria is used. The thickness of the two different refractive index materials of the Bragg mirror pair may be between 450 Å and 675 Å, and more preferably between 460 Å and 690 Å. For example, it can be a Bragg mirror pair consisting of 460Å titanium dioxide and 690Å cerium oxide, 450Å titanium dioxide and 675Å cerium oxide, or 400Å titanium dioxide and 770Å two. A Bragg mirror pair composed of cerium oxide, but the invention is not limited thereto.
布拉格反射鏡對的反射率隨材料的層數和材料之間的折射率差而改變,於本發明中,布拉格反射鏡對的對數(n)較佳為6對以上(n>6),更佳為20對以上;至於材料之間的折射率差,較佳可在1.3至2.8的範圍之內,然本發明並不限於此。 The reflectance of the Bragg mirror pair varies with the number of layers of the material and the refractive index difference between the materials. In the present invention, the logarithm (n) of the Bragg mirror pair is preferably 6 pairs or more (n>6), Preferably, it is 20 or more; as for the refractive index difference between the materials, it is preferably in the range of 1.3 to 2.8, but the present invention is not limited thereto.
於本發明之一示例性實施例中,上述之基板可為任何具有透光性之半導體材料,也可以是藍寶石基板、氮化鎵基板、氮化鋁基板,較佳可為藍寶石基板,然本發明不限於此,本領域具有通常知識者可依需求加以選擇。本發中使用之基板之形狀及大小並無限制,可為任何習用之形狀。較佳可為矩形、圓形、多邊形、橢圓形、半圓形、或不規則形。 In an exemplary embodiment of the present invention, the substrate may be any translucent semiconductor material, or may be a sapphire substrate, a gallium nitride substrate, an aluminum nitride substrate, or preferably a sapphire substrate. The invention is not limited thereto, and those skilled in the art can select them according to requirements. The shape and size of the substrate used in the present invention are not limited and may be any conventional shape. It may preferably be rectangular, circular, polygonal, elliptical, semi-circular, or irregular.
除此之外,本發明也提供一種發光二極體裝置之製造方法,包括下列步驟:(a)於一基板上形成複數個獨立之磊晶單元,且每一磊晶單元包括:一n型半導體單元,係位於該基板之表面;至少一發光層,位於該n型半導體單元上;一p型半導體單元,位於該n型半導體單元上,且該發光層係夾設於該p型半導體單元與該n型半導體單元之間,部份之n型半導體單元露出且不被該p型半導體單元覆蓋;以及一透明電極層,係位於該p型半導體單元之表面;(b)於該些磊晶單元之表面形成第一金屬層,使該第一金屬層覆蓋部分之磊晶單元表面,以連結該磊晶單元與另一相鄰之磊晶單元;(c)形成n對布拉格反射鏡對,使該些布拉格反射鏡對包覆該些該磊晶單元以及部分之第一金屬層,其中n係為一大於6之整數;以及(d)於該布拉格反射鏡對之一表面形成一第二金屬層,且該第二金屬層連接未經該布拉格反射鏡對所覆蓋之該第一金屬層。 In addition, the present invention also provides a method for fabricating a light emitting diode device, comprising the steps of: (a) forming a plurality of independent epitaxial cells on a substrate, and each epitaxial cell comprises: an n-type a semiconductor unit is disposed on a surface of the substrate; at least one light emitting layer is disposed on the n-type semiconductor unit; a p-type semiconductor unit is disposed on the n-type semiconductor unit, and the light emitting layer is interposed on the p-type semiconductor unit Between the n-type semiconductor unit, a portion of the n-type semiconductor unit is exposed and not covered by the p-type semiconductor unit; and a transparent electrode layer is disposed on a surface of the p-type semiconductor unit; (b) Forming a first metal layer on the surface of the crystal unit such that the first metal layer covers a portion of the epitaxial unit surface to join the epitaxial unit and another adjacent epitaxial unit; (c) forming an n-pair Bragg mirror pair Having the Bragg mirror pairs enclose the epitaxial cells and a portion of the first metal layer, wherein n is an integer greater than 6; and (d) forming a second surface on one of the Bragg mirror pairs Metal layer, and the first Connected without a metal layer on the Bragg mirror covered of the first metal layer.
於上述之製造方法中,在步驟(a)之前,可選擇性地先在基板上先形成一緩衝層,譬如,氮化鋁緩衝層,以使後續形成之磊晶單元和基板之間有更好的結合。 In the above manufacturing method, before the step (a), a buffer layer, such as an aluminum nitride buffer layer, may be selectively formed on the substrate to further improve the subsequent formation of the epitaxial unit and the substrate. Good combination.
為了避免電流經由側壁連通n型層或金屬電極造成短路,在步驟(a)中,更包括在該p型半導體單元之側壁及該發光層之側壁上形成一絕緣層;再者,步驟(a)中所述之n型半導體單元可為一n型氮化鎵,且該p型半導體單元可為一p型氮化鎵。 In order to prevent the current from being short-circuited via the sidewall to the n-type layer or the metal electrode, in the step (a), an insulating layer is further formed on the sidewall of the p-type semiconductor unit and the sidewall of the light-emitting layer; further, the step (a) The n-type semiconductor unit described in the above may be an n-type gallium nitride, and the p-type semiconductor unit may be a p-type gallium nitride.
此外,於本發明之製造方法中,在步驟(d)之後更包括一步驟(e),係圖案化該第二金屬層使該第二金屬層具有一間隙而分隔成至少兩獨立之電極。 In addition, in the manufacturing method of the present invention, after the step (d), a step (e) is further included, and the second metal layer is patterned such that the second metal layer has a gap and is divided into at least two independent electrodes.
10‧‧‧發光二極體裝置 10‧‧‧Lighting diode device
110‧‧‧第一金屬層 110‧‧‧First metal layer
120‧‧‧磊晶單元 120‧‧‧ epitaxial unit
130‧‧‧基板 130‧‧‧Substrate
140‧‧‧布拉格反射鏡對 140‧‧‧Braph mirror pair
150‧‧‧第二金屬層 150‧‧‧Second metal layer
圖1係本發明一示例性實施例之發光二極體裝置結構示意圖。 1 is a schematic structural view of a light emitting diode device according to an exemplary embodiment of the present invention.
圖2係本發明一示例性實施例之發光二極體裝置結構之俯視圖。 2 is a top plan view showing the structure of a light emitting diode device according to an exemplary embodiment of the present invention.
以下係利用特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之優點與其他功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,且本說明書中的各項細節亦可針對不同的觀點與應用,在不背離本發明精神下進行各種修飾與變更。 The embodiments of the present invention are described in the following by means of specific embodiments, and those skilled in the art can readily understand the advantages and other effects of the present invention from the disclosure. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention.
實施例1 Example 1
圖1係本發明一示例性實施例之發光二極體裝置10結構示意圖。該發光二極體裝置10包括:第一金屬層110、磊晶單元120、基板130、布拉格反射鏡對140、以及第二金屬層150。 1 is a schematic structural view of a light emitting diode device 10 according to an exemplary embodiment of the present invention. The light emitting diode device 10 includes a first metal layer 110, an epitaxial unit 120, a substrate 130, a Bragg mirror pair 140, and a second metal layer 150.
更具體地,於實施例1中,係在藍寶石基板130之一表面上,於750~1200℃、1大氣壓的操作條件下利用有機金屬氣相沉積方法依序形成氮化鎵本質磊晶、n型氮化鎵、發光層、p型氮化鎵;之後以半導體製程如黃光、微影、蝕刻工序將前述磊晶材料製作成帶有PN極性的元件。然後在p型氮化鎵之側壁及發光層之側壁上,利用化學氣相沉積法形成氮化矽絕緣層(圖未示),以避免電流經由側壁連通n型層或金屬電極而短路。 More specifically, in the first embodiment, on the surface of one of the sapphire substrates 130, the gallium nitride intrinsic epitaxy is sequentially formed by the organometallic vapor deposition method under the operating conditions of 750 to 1200 ° C and 1 atm. The gallium nitride, the light-emitting layer, and the p-type gallium nitride; the epitaxial material is then fabricated into a device having a PN polarity by a semiconductor process such as a yellow light, a lithography, or an etching process. Then, a tantalum nitride insulating layer (not shown) is formed on the sidewalls of the p-type gallium nitride and the sidewalls of the light-emitting layer by chemical vapor deposition to prevent short-circuiting of current through the sidewalls via the n-type layer or the metal electrode.
接下來,在真空條件下,利用電子束蒸鍍方式,在該些磊晶單元120的表面以金/鎳形成第一金屬層110,使第一金屬層覆蓋部分的磊晶單元表面,使得該些磊晶單元與相鄰之磊晶單元120能夠彼此串接相連。 Next, under vacuum conditions, the first metal layer 110 is formed of gold/nickel on the surface of the epitaxial cells 120 by electron beam evaporation, so that the first metal layer covers a portion of the epitaxial cell surface, so that The epitaxial cells and the adjacent epitaxial cells 120 can be connected in series with each other.
形成磊晶單元之後,接下來在真空條件下,以電子束蒸鍍方式,在該些磊晶單元120及第一金屬層110之表面形成布拉格反射鏡對140。該布拉格反射鏡對140係以460Å的TiO2與690Å的SiO2所組成,總共有20層(對),並且包覆該些磊晶單元120以及部分之第一金屬層110,且部分之第一金屬層110不被該布拉格反射鏡140包覆(參考圖1)。 After the epitaxial cells are formed, a Bragg mirror pair 140 is formed on the surfaces of the epitaxial cells 120 and the first metal layer 110 by electron beam evaporation under vacuum conditions. The Bragg mirror pair 140 is composed of 460 Å TiO 2 and 690 Å SiO 2 , and has a total of 20 layers (pairs), and covers the epitaxial units 120 and a portion of the first metal layer 110, and the portion thereof A metal layer 110 is not covered by the Bragg reflector 140 (refer to FIG. 1).
圖2係本發明實施例1之發光二極體裝置結構之俯視圖。由圖2可清楚看見,第一金屬層110係以交錯的方式與相鄰之磊晶單元120串聯連結,換言之,若由發光二極體裝置的上方俯視,可見第一金屬層係位於磊晶單元之一側之某一側使第一個磊晶單元與相鄰之第二個磊晶單元相連,而由與某一側相對之另一側使第二個磊晶單元與相鄰之第三個磊晶單元相連,以此類推。 Fig. 2 is a plan view showing the structure of a light-emitting diode device according to a first embodiment of the present invention. As can be clearly seen from FIG. 2, the first metal layer 110 is connected in series with the adjacent epitaxial cells 120 in a staggered manner. In other words, if viewed from above the light-emitting diode device, the first metal layer is located in the epitaxial layer. One side of one side of the unit connects the first epitaxial unit to the adjacent second epitaxial unit, and the other side opposite the opposite side causes the second epitaxial unit to be adjacent to the other Three epitaxial units are connected, and so on.
最後,在真空條件下,利用電子束蒸鍍方式,在該布拉格反射鏡對140之一表面形成一第二金屬層150,且該第二金屬層150與未經該布拉格反射鏡140對所覆蓋之該第一金屬層110連接。並進一步圖案化該第二金屬層150使該第二金屬150層具有一間隙而分隔成至少兩獨立之電極。 Finally, under vacuum conditions, a second metal layer 150 is formed on one surface of the Bragg mirror pair 140 by electron beam evaporation, and the second metal layer 150 is not covered by the pair of Bragg mirrors 140. The first metal layer 110 is connected. And further patterning the second metal layer 150 such that the second metal 150 layer has a gap and is divided into at least two independent electrodes.
以積分球在80V、15mA的操作條件下,實際測量所獲得之發光二極體裝置的出光強度為在750至850mW,電光轉換效率約在60%,證實本發明之發光二極體裝置具有優異的效能。 Under the operating conditions of 80V and 15mA of the integrating sphere, the light intensity of the light-emitting diode device obtained by actual measurement is 750 to 850 mW, and the electro-optic conversion efficiency is about 60%, which proves that the light-emitting diode device of the present invention is excellent. Performance.
10‧‧‧發光二極體裝置 10‧‧‧Lighting diode device
110‧‧‧第一金屬層 110‧‧‧First metal layer
120‧‧‧磊晶單元 120‧‧‧ epitaxial unit
130‧‧‧基板 130‧‧‧Substrate
140‧‧‧布拉格反射鏡對 140‧‧‧Braph mirror pair
150‧‧‧第二金屬層 150‧‧‧Second metal layer
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104142131A TWI608633B (en) | 2015-12-15 | 2015-12-15 | Light emitting diode device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104142131A TWI608633B (en) | 2015-12-15 | 2015-12-15 | Light emitting diode device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201721905A TW201721905A (en) | 2017-06-16 |
TWI608633B true TWI608633B (en) | 2017-12-11 |
Family
ID=59687357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104142131A TWI608633B (en) | 2015-12-15 | 2015-12-15 | Light emitting diode device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI608633B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111490140A (en) * | 2019-01-25 | 2020-08-04 | 晶元光电股份有限公司 | Light emitting element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201424042A (en) * | 2012-12-14 | 2014-06-16 | Seoul Viosys Co Ltd | Light emitting diode enhanced in light extraction effciency |
TW201505202A (en) * | 2013-07-17 | 2015-02-01 | Genesis Photonics Inc | Light emitting diode structure |
TWM511125U (en) * | 2014-07-31 | 2015-10-21 | Seoul Viosys Co Ltd | Light emitting diode and light emitting device |
-
2015
- 2015-12-15 TW TW104142131A patent/TWI608633B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201424042A (en) * | 2012-12-14 | 2014-06-16 | Seoul Viosys Co Ltd | Light emitting diode enhanced in light extraction effciency |
TW201505202A (en) * | 2013-07-17 | 2015-02-01 | Genesis Photonics Inc | Light emitting diode structure |
TWM511125U (en) * | 2014-07-31 | 2015-10-21 | Seoul Viosys Co Ltd | Light emitting diode and light emitting device |
Also Published As
Publication number | Publication date |
---|---|
TW201721905A (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110088922B (en) | Light emitting diode chip structure and manufacturing method thereof | |
US8519430B2 (en) | Optoelectronic device and method for manufacturing the same | |
KR20100095134A (en) | Light emitting device and method for fabricating the same | |
TWM255518U (en) | Vertical electrode structure of Gallium Nitride based LED | |
TWI636582B (en) | Light emitting device | |
CN107516701B (en) | A kind of high pressure light-emitting diode chip and preparation method thereof | |
TW201603319A (en) | Optoelectronic device and method for manufacturing the same | |
CN102024898B (en) | LED (light-emitting diode) and manufacturing method thereof | |
WO2015003564A1 (en) | Gallium nitride based light emitting diode and manufacturing method thereof | |
TWI538184B (en) | Light-emitting diode array | |
TW202029529A (en) | Light-emitting device and manufacturing method thereof | |
KR101101858B1 (en) | Light emitting diode and fabrication method thereof | |
CN203607447U (en) | Led chip | |
JP2009059851A (en) | Semiconductor light emitting diode | |
WO2012045222A1 (en) | Light emitting device and manufacturing method thereof | |
TWI608633B (en) | Light emitting diode device and method for manufacturing the same | |
TWM522469U (en) | Light emitting diode device | |
CN102130250A (en) | Light emitting diode (LED) and manufacturing method thereof | |
CN102130251B (en) | Light emitting diode (LED) and manufacturing method thereof | |
CN203674245U (en) | LED structure | |
TWI587543B (en) | Light emitting diode packaging structure and method for manufacturing the same | |
US10396246B2 (en) | Optoelectronic device and method for manufacturing the same | |
TWI758603B (en) | Optoelectronic device and method for manufacturing the same | |
TWI631733B (en) | Light emitting device | |
TWI790911B (en) | Optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |