TWI361433B - Operating method of memory - Google Patents
Operating method of memory Download PDFInfo
- Publication number
- TWI361433B TWI361433B TW97108687A TW97108687A TWI361433B TW I361433 B TWI361433 B TW I361433B TW 97108687 A TW97108687 A TW 97108687A TW 97108687 A TW97108687 A TW 97108687A TW I361433 B TWI361433 B TW I361433B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory
- memory cell
- memory cells
- bit
- operating
- Prior art date
Links
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
Description
1361433 P960132 2561 ltwf.doc/ρ 九、發明說明: 【發明所屬之技術領域】 本發明是有_-射電抹除且式 的操作方法,且特別是有關於—種# " β心體 的反或剛nor)魏憶II的操作方^。 vlrtual-ground) 【先前技術】1361433 P960132 2561 ltwf.doc/ρ IX. Description of the invention: [Technical field of the invention] The present invention has an operation method of _-radio erasing and the like, and particularly relates to the inverse of the type # " β heart Or just nor) Wei Yi II's operation ^. Vlrtual-ground) [prior art]
可電抹除且可程式唯敎贿是_種可進Can be erased electrically and can be used only for bribery
2入、讀取或抹除㈣作且存人之資料在斷電後也不會 j失的非揮發性記憶體。可電抹除且可程式唯讀記憶體中 取典型的是快閃記,_。而電荷陷人層型記憶體則是一種 以氮化轉代典型的㈣記憶體之掺雜多晶料置閉極 (floating gate)的可電抹除且可程式唯讀記憶體。電荷陷入 層型記龍之電荷陷人層的㈣通常是氮切,且此種氮 化石夕電荷陷人層上下通常各有—層氧切,控制閘極以及 基底的材質通常是多㈣切,因此,此種元件通稱為石夕/ 乳化石夕/氮化石夕/氧化石夕/石夕(SON〇s)元件。由於氮化石夕具有 捕捉電子的躲’注人電荷陷人層之中的電子會集中於電 荷陷入層的局部區域上’通常,纽韻巾接近及極之區 域以及接近源極之區域可分別儲存一位元(bit),因此,此 種記憶胞是一種每一記憶胞有二個位元的記憶元件。 典型的SONOS記憶體在操作時,是先選定單一個記 憶胞’對所選定的單-記憶胞的控制閘極所對應的字元線 施加偏壓並在其汲極所對應的位元線施加偏壓,而其他的 5 1361433 P960132 25611twf.doc/p 字元線則施以0伏特的雷厭.4 @ H 电莖’其他的位元線則施以0伏特 的電壓或洋置,以使得雷;斗、兩 A2付冤子或電洞注入於氮化矽層中接近 汲極之處,改邊其啟始電壓 式來進行程式化方法相當胞寫入的方 廣,在讀取時料有誤_耗5彡’。而且啟始電㈣分布較 【發明内容】 縮 ,發明就是在提供-種記憶體的操 1可 短程式化的時間。 /、J以 可使各資 本發明就是在提供_觀憶翻操作方法, 料狀態的啟始電壓的分布較窄。 本發明提出-種記憶體的操作方法 個記憶胞觸狀纖胞_,各㈣縣括 與:第二位兀。此操作方法包括選擇—記憶胞行, 所^記憶胞行所對應之多個記憶胞,使記憶胞之 弟一位7L達到預定的程式化狀態。 依照本發明實施例所述,上述之記憶體的操作方法 中,在進行程式化記憶胞行所對應之記憶胞時,同時 選^記憶胞行所對應之記憶胞的多條字元線施加多個預定 偏 。 依照本發明實施例所述,上述之記憶體的操作方法 中,預定的程式化狀態是多個具有不同啟始電壓分/ 式化狀態。 狂 依照本發明實施例所述,上述之記憶體的操作方法 1361433 P960132 25611twf.doc/p 中,在進行程式化所選的記憶胞行所對應之記,隐胞時,盘 所選的記憶胞行的上述記憶胞相鄰且共用相同位元線的^ 憶胞的第二位元同時達到多個無用狀態,各上述無用狀熊 與相鄰之所選的記憶胞行的上述記憶胞之第一位^二 的程式化狀態相同。 ,照本發明實施例所述,上述之記憶體的操作方法 中,第一位元為有用位元;第二位元為無用位元。 依,本發明實施例所述,上述之記憶體的操作方法更 包括在讀取時,僅讀取所選之上述記憶胞之第—位元之程 ^化狀態,不讀取所選之上述記憶胞之無用位元之無用狀 〇 依照本發明實施騎述,上述之記憶體的操作方法 中,在進行上述程式化時,是藉由誘發單側偏壓收斂效應, 以使電洞注入於所選定之上述記憶胞行之記憶胞中。〜2 Non-volatile memory that enters, reads, or erases (4) and saves the data of the depositor after the power is turned off. It can be erased electrically and can be read in the program-only read memory. The typical one is flash, _. The charge trapped layer memory is an electrically erasable and programmable read-only memory that is nitrided to replace the typical (four) memory doped polysilicon floating gate. (4) The charge trapping layer of the charge trapping layer is usually nitrogen cut, and the nitride nitride trap layer usually has a layer of oxygen cut, and the control gate and the material of the substrate are usually multi (four) cut. Therefore, such an element is commonly known as the Shi Xi / Emulsified Shi Xi / Nitride Xi / Oxide / Shi Xi (SON 〇 s) elements. Since the electrons in the nitride trapping electron trapping layer are concentrated on the local region of the charge trapping layer, the neon towel approaching and the polar region and the region close to the source can be separately stored. One bit, therefore, such a memory cell is a memory element with two bits per memory cell. In the operation of a typical SONOS memory, a single memory cell is selected to apply a bias voltage to the word line corresponding to the control gate of the selected single-memory cell and apply it to the bit line corresponding to the drain. Bias, while the other 5 1361433 P960132 25611twf.doc/p character lines are applied with 0 volts of thunder. 4 @ H electric stems' other bit lines are applied with a voltage of 0 volts or oceanic, so that Lei; bucket, two A2 tweezer or hole injected into the tantalum nitride layer close to the pole, change the starting voltage type to carry out the stylization method is quite a kind of cell writing, when reading Wrong _ consumption 5 彡 '. Moreover, the distribution of the initial electricity (four) is smaller than that of the [invention]. The invention is to provide a short program time for the operation of the memory. /, J can make the various inventions provide the method of operation, and the distribution of the starting voltage of the material state is narrow. The invention proposes a method for operating a memory. A memory cell-shaped fibroblast _, each (four) county includes: a second sputum. The operation method includes selecting a memory cell row, and a plurality of memory cells corresponding to the memory cell row, so that a 7L of the memory cell brother reaches a predetermined stylized state. According to the embodiment of the present invention, in the method for operating the memory, when the memory cell corresponding to the memory cell row is performed, the plurality of word lines of the memory cell corresponding to the memory cell row are simultaneously applied. Pre-targeted. According to an embodiment of the invention, in the method of operating the memory, the predetermined stylized state is a plurality of different starting voltage division/distribution states. According to the embodiment of the present invention, in the above-mentioned memory operation method 1136143 P960132 25611twf.doc/p, in the memory corresponding to the selected memory cell row, when the cell is hidden, the selected memory cell of the disk The second bit of the memory cell adjacent to the memory cell and sharing the same bit line simultaneously reaches a plurality of useless states, and the memory cells of each of the useless bears and the adjacent selected memory cell row The stylized state of a ^2 is the same. According to the embodiment of the present invention, in the above method for operating a memory, the first bit is a useful bit; the second bit is a useless bit. According to the embodiment of the present invention, the method for operating the memory further includes: reading only the selected state of the first bit of the memory cell during reading, and not reading the selected one. The useless use of the memory cell is performed according to the present invention. In the above method of operating the memory, in the above-mentioned stylization, a hole is induced by inducing a one-sided bias convergence effect. Selected in the memory cells of the above memory cells. ~
依照本發明實施例所述,上述之記憶體的操作方法更 包括在進行抹除時,藉由誘發雙側偏壓電子注入效應或 Fowler-Nordheim電子穿隨效應,以使電子注入於上述^憶 胞陣列之各記憶胞中。 依照本發明實施例所述,上述之記憶體的操作方法 中’在進仃上述程式化時,是藉由誘發單側偏壓收斂效應, 以使電子注入於所選定之上述記憶胞行之記憶胞中。“ 依照本發明實施例所述,上述之記憶體的操作方法更 包括在進行抹除時’藉由誘發雙側偏塵電洞注人效鹿、價 帶-導帶穿_電酿人效應,以使電子注人於上述^憶胞 P960132 25611 twf.doc/p 陣列之各上述記憶胞中。 依照本發明實施例所述,上述之記韻的操作方法 中,上述記憶胞為多階記憶胞。 依照本發明實施觸述,±述之記憶體的操作方法 中’上述記憶胞陣列為-虛擬接地(virtual_gr。 閘型記憶胞陣列。 ^ 依照本發明實施觸述,±述之記憶體的操作方法 中,記憶胞是以逐列方式進行程式化。 本發明又提出一種記憶體的操作方法,此記憶體包括 多個記憶胞所構成之記憶胞陣列。此操作方法包括 ^匕言己憶胞’其中連接到相同位元線之同列的記憶 破程式化。 i .依照本發明實施觸述,上述之記顏的操作方法 中,在進行各姉式化時,同時在所選的—記憶胞行之 憶胞所對應的多條字元線施加多個預定偏壓。 。 依照本發明實施例所述,上述之記憶體的操作方法 中,上述記憶胞陣列為—虛擬接地的反或_記憶胞陣列。 依照本發明實施例所述,上述之記憶體的操作方法 t ’上述記憶胞為多階記憶胞。 、 依照本發明實施例所述,上述之記憶體的操作方法 中,在對一所選之記憶胞行的記憶胞進行程式化時,同時 在=選的記憶胞行之記憶胞戶斤對應的多條字元線施加多個 預定偏壓。 依照本發明實施例所述,上述之記憶體的操作方法 1361433 P960132 25611twf.doc/p 中,在對一所選之記憶胞行的記憶胞進行程式化時,是藉 由誘發單側偏壓收斂效應’以使電洞注入於所選定之上述 記憶胞行之記憶胞中。 依照本發明實施例所述,上述之記憶體的操作方法 中’在對一所選之記憶胞行的記憶胞進行程式化時,是藉 由誘發單側偏壓收敛效應,以使電子注入於所選定之上述 記憶胞行之記憶胞中。 本發明實施例之記憶體的操作方法,其可以縮短程式 化的時間。 本發明實施例之記憶體的操作方法,可使各資料狀離 的啟始電壓的分布較窄。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖1繪示用於本發明之操作方法之記憶體的電路示意 圖。圖2!會示用於本發明之操作方法之一種習知記憶胞的 結構剖面示意圖。 >明參照®1與2,祕本發明之記鐘包括由多數個 :己隐胞10所組成的記憶胞陣列。此記憶胞陣列例如是由多 =夕憶胞(MLC)所組成的虛擬接地的反或閘型記憶 2二她立元線Inmn、 ^夕條字凡線WLn_i、WLn+1、WLn+2、...等。各記憶 1361433 P960132 iseiltwldoc/p 胞l〇包括控制閘極12、電、 與源極/汲極區22。在此層16、源極/沒極區 據立電^ 祕區,是指其可依 -、爪仙·動的方向而做為源極區或做為汲極卩 =20與源極/汲極區22設置於基底;4二: 二,。電ί;:陷入層16設置於控制閘極12與基底14According to an embodiment of the invention, the method for operating the memory further comprises inducing electrons to be injected into the above-mentioned memory by inducing a double-sided bias electron injection effect or a Fowler-Nordheim electron follow-up effect during erasing. In each memory cell of the cell array. According to the embodiment of the present invention, in the above method of operating the memory, the above-mentioned stylization is performed by inducing a unilateral bias convergence effect to cause electrons to be injected into the memory of the selected memory cell. In the cell. According to the embodiment of the present invention, the method for operating the memory includes the method of inducing a double-sided dust hole to inject a human deer, a valence band-guide band wear, and an electric brewing effect. The electron cell is injected into each of the memory cells of the above-mentioned memory cell array of P960132 25611 twf.doc/p. According to the embodiment of the present invention, the memory cell is a multi-order memory cell. According to the present invention, in the operation method of the memory described above, 'the above memory cell array is a virtual ground (virtual_gr. thyristor memory cell array. ^ Implementation of the tactile according to the present invention, ± description of the operation of the memory) In the method, the memory cell is programmed in a column-by-column manner. The invention further provides a method for operating a memory, the memory comprising a memory cell array composed of a plurality of memory cells. The operation method includes: 'The memory of the same column connected to the same bit line is broken. i. According to the implementation of the present invention, in the above-mentioned method of recording, in the process of performing various morphing, at the same time in the selected memory cell OK The plurality of word lines corresponding to the cell are applied with a plurality of predetermined bias voltages. According to the method for operating the memory device, the memory cell array is a virtual grounded anti- or memory cell array. According to the embodiment of the present invention, the method for operating the memory t' is that the memory cell is a multi-level memory cell. According to the embodiment of the present invention, in the method for operating the memory, the one selected in the memory is selected. When the memory cells of the memory cell are programmed, a plurality of predetermined bias voltages are applied to the plurality of word lines corresponding to the memory cells of the selected memory cell. According to the embodiment of the present invention, the memory is as described above. In the method of operation 1614433 P960132 25611twf.doc/p, when a memory cell of a selected memory cell is programmed, the unilateral bias convergence effect is induced to cause the hole to be injected into the selected one. In the memory cell of the above memory cell, according to the embodiment of the present invention, in the operation method of the memory device, when the memory cell of a selected memory cell is programmed, the unilateral bias is induced. Pressure a method of operating the memory of the embodiment of the present invention, which can shorten the stylization time. The above and other objects, features and advantages of the present invention will become more apparent and obvious. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment] Fig. 1 is a circuit diagram showing a memory used in the operating method of the present invention. Fig. 2 is a schematic cross-sectional view showing a structure of a conventional memory cell used in the method of operation of the present invention. Ming References 1 and 2, the clock of the invention includes a memory cell array composed of a plurality of: cryptocytes 10. The memory cell array is, for example, a virtual grounded inverse or gate type memory composed of multiple = singular memory cells (MLC). 2, two vertical lines Inmn, ^ sigma words WLn_i, WLn+1, WLn+2 ...Wait. Each memory 1361433 P960132 iseiltwldoc/p cell includes a control gate 12, an electrical, and a source/drain region 22. In this layer 16, the source/no-polar area is the source area, which means that it can be used as the source area in the direction of -, claw, and movement, or as the source of the pole / 与 = 20 and source / 汲The polar region 22 is disposed on the substrate; 4: two. ί;: the trapping layer 16 is disposed on the control gate 12 and the substrate 14
声6 L6為介電層,如氮切層。在電荷陷入 Ϊ ίί 頂包括—層穿遂介電層18。穿遂介電 1曰6之ίτ Π列如為氧化矽。在控制閘極12與電荷陷入層 匕石Γ1Λ 介電層15。介電層15之材質例如為氧 由於電何陷入層16為介電層,可使得所注入的電子 ^電,侷限在特定的區域中’因此,在進行程式化時,可 :刀別在接近源極/沒極區20的區域30或接近源極/没極區 22的區域4G儲存資料狀態。然而,在本發明實施例中, 電荷陷入層丨6接近_/祕區2㈣區域%為實際用以 儲存貧料的資料位元;而接近源極/汲極區22的區域4〇為 無用位元。 在記憶胞陣列中,記憶胞Al、a2、a3 ;記憶胞&、 B2、B3 ’記憶胞Q、C2、c3以及記憶胞^、D3均分 別排列成-行。記憶胞Al、Bl、Q、Di ;記憶胞A2、B2、 G、D2 ;記憶胞a3、b3、c3、d3均分別排列成一列。各 記憶胞之源極/汲極區20與同一壯相鄰的記憶胞的各源 極/没極區22制且藉由位元線BL連朗行之那些記憶 胞之源極/汲極區20。例如,記憶胞Ci的源極/汲極區2〇 (S > 10 1361433 P960132 25611twf.doc/p ‘與記憶胞Bl的源極/沒極區22共用,且藉由位元線私連 • 接同打之記憶胞C2、C;3之源極/没極區20。此外,在記憶 胞陣列巾’㈣之記憶胞的各控侧極12對應於同-條字 •元線WL ’如讀胞A!、、c〗、Di的各控制閘極12對 應於同一條字元線WLw。 。記憶體在進行抹除時,是對所有的記憶胞 10施加偏 壓’以使得所有記憶胞10的資料位元30以及無用位元40 鲁朗基準狀g。在進行程式化時,則是使得同一行的記憶 胞的資料位元同時被程献。在進行讀取時,貞彳是僅讀取 t選記憶胞的資料位元30的程式化狀態,而不讀取所選記 k胞的無用位元40。本發明之記憶胞1〇的可以依據其啟 始電壓的大小而區分為多個狀態。請參照圖3,在一實施 例中,記憶胞10依據其啟始電壓分布的大小可區分為四個 狀痞,由大至小依序分別為(〇…狀態、(01)狀態、(1〇)狀態 以及(11)狀態。在本發明一實施例中,是將啟始電壓最高 的(00)狀態§丁為基準狀態,再程式化至啟始電壓較低的(〇1) 狀態、(10)狀悲或(11)狀態。在本發明另一實施例中,是將 啟始電壓最低的(11)狀態訂為基準狀態,再程式化至啟始 電壓較高的(10)狀態、(01)狀態、或(00)狀態。 貫施例一 請參照圖4A與4B,在進行抹除時,是對記憶胞陣列 的所有記憶胞10施加偏壓,以使得所有記憶胞1〇的資料 位元30以及無用位元40均達到啟始電壓最高的基準狀態 1361433 P960132 25611twf.doc/p 即(〇〇)狀態。請參照圖4A’在一實施例中,在進行抹除時, 藉由誘發雙側偏壓(Double Side Bias,DSB)電子注入效 應,以使所有的記憶胞10的啟始電壓上升。其操作方法是 在基底14施加〇伏特電壓,並在所有的字元線WLm疋 WLn、WLn+1施加1〇至15伏特的電壓,並且在所有的位 元線 BLn_2、BLn-丨、BLn、BLn_n、BLn+2施加 5 至 7 伏特的 黾壓,以使電子注入並陷入於電荷儲存層16中,使資料位 元30以及無用位元40均達到(〇〇)狀態。請參照圖,在 另一實施例中,在進行抹除時,藉由誘發F〇wler_N〇rdhdm 電子穿隧效應效應,以使所有的記憶胞1〇的啟始電壓上 升。其操作方法是在基底14施加0伏特電壓,並在所有的 字元線、WLn、WLn+】施加16至20伏特的電壓,並 且在所有的位元線BLn_2、BLw、BLn、BLn+1、BLn+2施加 0伏特的電壓’以使電子注入並陷入於電荷儲存層16中, 使貢料位元30以及無用位元4〇均達到(〇〇)狀態。 在進行程式化時,是使得所選定之記憶胞10其源極/ ;及極區20所對應之位元線與其相鄰之位元線之間產生壓 差’並且同時在所有的字元線施加適當之電壓例如是-2至 2伏特’藉由誘發單側偏壓(single side Bias,SSB)收斂效 應’以使得同行之記憶胞10的資料位元30程式化為啟始 電壓較低的(〇1)狀態、(10)狀態或(11)狀態。以下以同時程 式化記憶胞〇丨、D2、D3來說明之。 請參照圖5,假設記憶胞D,、記憶胞D2以及記憶胞 〇3的預定程式化狀態分別為(01)狀態、(10)狀態以及(11) 12 < S ) 1361433 P960132 25611 twf.doc/p . 狀態。在程式化同一行的記憶胞D!、D2、D3時,在基底 • 14施加0伏待電壓’並在位元線BLn+1施加例如是4至8 . 伏特的電壓,在相鄰的位元線BLn+2以及BLn施加相同的 . 電壓例如是〇伏特的電壓或是使其二者浮置,以使BLn+l 以及BLn+2其彼此之間產生壓差並且使得BLn+1以及BLn 其彼此之間產生壓差。而其他的位元線BLn !、Bju則浮 置。並且,同時在字元線WLn]、WLn、WLn+i分別施加例 • 如是I·2伏特、〇.2伏特以及-1.0伏特的電壓。在此操作條 件下,記憶胞D〗、記憶胞以及記憶胞d3的源極/沒極 區20接面所產生的熱電洞將向基底14移動,並且,受離 子化之作用,將產生許多的電子電洞對。電子電洞對中的 電洞’將因為基準狀態之記憶胞Di、A、的電荷儲存 層16的資料位元30中大量的電子的吸引而注入於電荷儲 存層16,使得資料位元3〇的啟始電壓自高啟始電壓收斂 至較低的啟始電壓’致記憶胞Di、記憶胞以及記憶胞 A的資料位元3〇分別達到(〇1)狀態、(1〇)狀態以及(ΐι)狀 _ ‘態’如圖6所示。 在程式化同一行的記憶胞Dl、D2、A時,由於記憶 胞D〗D2、1>3的源極/汲極區20分別與相鄰的記憶胞q、 C2、A的源極/汲極區22共用且均連接位元線BLn+i,且 相邱的位元線BLn同樣是施加〇伏特的電壓或是浮置,也 就是位元線BLn+1與位元線BLn之間的壓差,和位元線 BLn+1與位元線队+2之間㈣差相同,因此,記憶胞a、 。己隐胞C2以及s己憶胞C3的源極/沒極區22也將產生熱電 < S ) 13 1361433 P960132 2561 ltwf.doc/p • 洞並將向基底14移動,並且,受離子化之作用,也將產生 . 許多的電子電洞對。電子電洞對中的電洞,也將因為基準 .狀態之記憶胞C,、C2、C3的電荷儲存層16的無用位元40 .中大量的電子的吸引而注入於電荷儲存層16,以使得無用 位70 40的啟始電壓自高啟始電壓收斂至較低的啟始電 壓,記憶胞c】、記憶胞a以及記憶胞C3的無用位元4〇 也將分別達到(01)狀態、(1〇)狀態以及(11)狀態。 • 利用相同的方法,可以逐行將同行的記憶胞10同時程 式化使其資料位元30以及無用位元4〇達到(〇1)狀態、 (1〇)狀態或(11)狀態。 & 〃雖然’在本發明中’在進行程式化之後,記憶胞 ^資料位7L 3G以及無用位元4〇均達到程式化狀態(〇1)狀 怨、(1〇)狀態或(11)狀態。然而,僅有資料位元3〇所儲存 的狀態做為資料狀態;而無用位元4〇所儲存的狀態則為無 用狀態。因此,在進行讀取時,僅讀取所選之記憶胞之資 料位元30的私式化狀態,而不讀取所選之記憶胞之無 _ 用位元40之無用狀態。 … 言青參照圖7,在讀取選定的記憶胞〇2之資料位元3〇 1的貢料狀態時’可在記憶胞之控制閘極12所對應的 字tl線WLn施加3伏特的電壓,並在其他字元線WLw以 及WLn+1施加〇伏特的電壓,並且,在記憶胞仏的^極/ 没極區22所對應的位元線BLn+2施加16伏特的電壓,而 其他的位元線BLn+1、BLn、BLw、BLn·』施加。伏特的 電壓。藉由所讀取的電流的大小來判斷記憶胞之資料位 < S ) 14 1361433 P960132 25611twf.doc/p 元30中的資料狀態。 實施例二 請參考圖8A以及8B,在進行抹除時,是對記憶胞陣 列的所有記憶胞1G施加驗,以使得所有記憶胞1〇的資 料位兀3〇以及無用位疋4〇均達到啟始電壓最低的基準狀 態即(11)狀態。請參照圖8A,在一實施例中,在進行抹除 時’藉由誘發DSB電洞注入效應,以使所有的記憶胞1〇 的啟始電壓τ降。⑽作綠是在基底14施加Q伏特電 壓,並在所有的字元線WLn·丨、WLn、^\〇^+1施加-10至_15 伏特的電壓,並且在所有的位元線BLn 2、BLn」、BLn、 BLn+1、BLn+2施加5至7伏特的電壓,以使電洞注入並陷 入於電荷儲存層16中,使資料位元3G以及無用位元4〇 均達1(ii)狀態。請參照圖8B,在另一實施例中,在進行 抹除妗,藉由誘發價帶-導帶穿隧熱電洞(BAND TO BAND HATHOLE ’ BTBHH)注入效應,以使所有的記憶胞1〇的 啟始電壓下降。其操作方法是在基底14施加〇伏特電壓, 並在所有的字元線WLw、WLn、WLn+1施加-16至_20伏特 的電壓/並且在所有的位元線BLn.2、BLn]、BLn、BLn+1、 BLn+2 %加〇伏特的電壓,以使電洞注入並陷入於電荷儲存 層16中’使資料位元30以及無用位元40均達到(11)狀態。 ,進订程式化時’是使得所選定之記憶胞1〇其源極/ 及極區20所對應之位元線與其相鄰之位元線之間產生壓 並且同時在所有的字元線施加適當之電壓例如是-2至 < -S ) 15 1361433 P960132 25611twf.doc/p 2伏特’藉由誘發SSB收斂效應,以使得同行之記憶胞ι〇 的資料位元30程式化為啟始電壓較高的(10)狀態、(01)狀 態或(〇〇)狀態。以下以同時程式化記憶胞D!、D2、d3來說 明。 請參照圖9,假設記憶胞Di、記憶胞以及記憶胞 〇3的預定程式化狀態分別為(〇〇)狀態、(01)狀態以及(11) 狀態。在程式化記憶胞Di、D2、d3時’在基底14施加〇 伏特電壓,並在位元線BLn+1施加例如是4至8伏特的電 壓’在相鄰的位元線BLn+2以及BLn施加相同的電壓例如 是〇伏特的電壓或是使其二者浮置,以使BLn+i以及BLn+2 其彼此之間產生壓差,並且使得BLn+1以及BLn其彼此之 間產生壓差。而其他的位元線BLn i、BLn_2則浮置。並且, 同時在字元線WLlvl、WLn、WLn+]分別施加例如是12伏 特、0.2伏特以及_1.〇伏特的電壓。在此操作條件下,記憶 胞D,、r>2、D3的源極/汲極區20所產生的熱電洞將向基底 14移動,並且,受離子化之作用,將產生許多的電子電洞 電子電洞對中的電子,將因為基準狀態之記憶胞A、 h、d3的電荷儲存層i6㈣料位元3G中大量的電洞的吸 引而注入於電荷儲存層16,以使得資料位元的啟始電 =低啟始電壓收斂至較高的啟始電壓,記憶胞憶 月匕D2以及記憶胞D3的資料位元3〇分 狀態以及⑽狀態,如圖1〇所示。 _齡(叫 在=化記憶胞Dl、D2、D3時’由於記憶胞d】、A、 3的源極/汲極區20分別與相鄰的記憶皰q、C2、q的源 1361433 P960132 25611twf.doc/pAcoustic 6 L6 is a dielectric layer, such as a nitrogen cut layer. The charge is trapped Ϊ ίί top includes a layer through the dielectric layer 18.遂 遂 曰 曰 曰 曰 曰 ί ί ί ί ί 如 如 如 如 如 如 如The control gate 12 and the charge trapping layer are 匕 Γ 1 Λ dielectric layer 15. The material of the dielectric layer 15 is, for example, oxygen which is trapped in the layer 16 as a dielectric layer, so that the injected electrons can be confined to a specific region. Therefore, when stylized, the knife can be approached. The area 30 of the source/no-polar region 20 or the region 4G close to the source/no-polar region 22 stores the data state. However, in the embodiment of the present invention, the charge trapping layer 接近6 is close to the _/secret region 2 (four) region% is the data bit actually used to store the lean material; and the region 4 接近 close to the source/drain region 22 is the useless bit. yuan. In the memory cell array, memory cells Al, a2, and a3; memory cells & B2, B3' memory cells Q, C2, c3, and memory cells, D3 are arranged in a row. Memory cells Al, Bl, Q, Di; memory cells A2, B2, G, D2; memory cells a3, b3, c3, d3 are arranged in a column. The source/drain region of each memory cell and the source/drain region of the memory cells of the same strong and adjacent memory cells and which are connected by the bit line BL 20. For example, the source/drain region 2〇 of the memory cell Ci (S > 10 1361433 P960132 25611twf.doc/p ' is shared with the source/potential region 22 of the memory cell B1, and is privately connected by the bit line. In conjunction with the memory cell C2, C; 3 source / immersion zone 20. In addition, in the memory cell array '(4), the control side of the memory cell 12 corresponds to the same - word / element line WL ' The control gates 12 of the read cells A!, c, and Di correspond to the same word line WLw. When the memory is erased, all the memory cells 10 are biased 'to make all the memory cells 10 data bit 30 and useless bit 40 Lulang reference g. When stylized, the data bits of the same row of memory cells are simultaneously programmed. When reading, 贞彳 is only The stylized state of the data bit 30 of the t-selected memory cell is read, and the unused bit 40 of the selected k cell is not read. The memory cell of the present invention can be distinguished according to the magnitude of the starting voltage. A plurality of states. Referring to FIG. 3, in an embodiment, the memory cell 10 can be divided into four states according to the size of its starting voltage distribution, from large to The small order is (〇...state, (01) state, (1〇) state, and (11) state. In one embodiment of the present invention, the (00) state with the highest starting voltage is the reference state. And reprogramming to a lower (〇1) state, a (10) sorrow or (11) state, in another embodiment of the present invention, the lowest (11) state of the starting voltage is set as The reference state is reprogrammed to the (10) state, the (01) state, or the (00) state where the starting voltage is high. For the first example, please refer to FIGS. 4A and 4B, and when erasing, it is for the memory cell. All of the memory cells 10 of the array are biased such that the data bits 30 and the unused bits 40 of all the memory cells reach the reference state of the highest starting voltage 1136143 P960132 25611 twf.doc/p (〇〇). Referring to FIG. 4A', in an embodiment, when the erasing is performed, the double-bias (Double Side Bias, DSB) electron injection effect is induced to raise the starting voltage of all the memory cells 10. The method is to apply a volt volt to the substrate 14 and apply 1 〇 to 15 volts across all of the word lines WLm 疋 WLn, WLn+1. Voltage, and applying a voltage of 5 to 7 volts across all of the bit lines BLn_2, BLn-丨, BLn, BLn_n, BLn+2 to inject and trap electrons in the charge storage layer 16, causing the data bit 30 And the useless bit 40 reaches the (〇〇) state. Referring to the figure, in another embodiment, by performing the erase, the F穿wler_N〇rdhdm electron tunneling effect is induced to make all the memory cells The starting voltage of 1〇 rises. The method of operation is to apply a voltage of 0 volts to the substrate 14, and apply a voltage of 16 to 20 volts across all of the word lines, WLn, WLn+, and at all of the bit lines BLn_2, BLw, BLn, BLn+1, BLn. +2 applies a voltage of 0 volts to cause electrons to be injected and trapped in the charge storage layer 16, so that both the tributary bit 30 and the useless bit 4 达到 reach the (〇〇) state. When stylized, the selected memory cell 10 has its source /; and the bit line corresponding to the polar region 20 has a voltage difference between its bit line and its adjacent word line. Appropriate voltage is applied, for example, -2 to 2 volts 'by inducing a single side bias (SSB) convergence effect' to program the data bits 30 of the memory cell 10 of the peer to a lower starting voltage (〇1) state, (10) state, or (11) state. The following describes the simultaneous memory cell, D2, and D3. Referring to FIG. 5, it is assumed that the predetermined stylized states of the memory cell D, the memory cell D2, and the memory cell 3 are (01) state, (10) state, and (11) 12 < S ) 1361433 P960132 25611 twf.doc /p . Status. When staging the memory cells D!, D2, D3 of the same row, a voltage of 0 volts is applied to the substrate 14 and a voltage of 4 to 8 volts is applied to the bit line BLn+1, in the adjacent bits. The lines BLn+2 and BLn apply the same voltage. For example, the voltage of 〇volts or both are floated so that BLn+1 and BLn+2 generate a voltage difference between each other and make BLn+1 and BLn They create a pressure difference between each other. The other bit lines BLn ! and Bju are floating. Further, voltages of, for example, I·2 volts, 〇.2 volts, and -1.0 volts are applied to the word lines WLn], WLn, and WLn+i, respectively. Under this operating condition, the thermoelectric holes generated by the memory cell D, the memory cell, and the source/no-polar region 20 junction of the memory cell d3 will move toward the substrate 14, and, due to the ionization effect, will generate many Electronic hole pair. The hole in the electron hole pair will be injected into the charge storage layer 16 due to the attraction of a large amount of electrons in the data bit 30 of the memory cell Di, A of the reference state, so that the data bit 3〇 The starting voltage converges from the high starting voltage to the lower starting voltage', so that the memory cell Di, the memory cell, and the data bit of the memory cell A reach the (〇1) state, the (1〇) state, and Ϊ́ι) _ 'state' as shown in Figure 6. When the memory cells D1, D2, and A of the same row are stylized, the source/drain regions 20 of the memory cells D, D2, 1 > 3 and the sources/汲 of the adjacent memory cells q, C2, and A, respectively. The polar regions 22 share and are each connected to the bit line BLn+i, and the phase bit line BLn is also applied with a voltage of volts or floating, that is, between the bit line BLn+1 and the bit line BLn. The voltage difference is the same as the difference between the bit line BLn+1 and the bit line +2 (4), therefore, the memory cell a, . The source/noodle region 22 of the cryptic cell C2 and the singular cell C3 will also generate thermoelectricity <S) 13 1361433 P960132 2561 ltwf.doc/p • The hole will move toward the substrate 14, and is ionized The role will also be produced. Many pairs of electronic holes. The holes in the electron hole pair will also be injected into the charge storage layer 16 due to the attraction of a large amount of electrons in the memory cells C of the reference state, C2, and the useless bits of the charge storage layer 16 of C3. The start voltage of the useless bit 70 40 converges from the high start voltage to the lower start voltage, and the memory cell c, the memory cell a, and the useless bit 4 of the memory cell C3 also reach the (01) state, (1〇) state and (11) state. • Using the same method, the memory cells 10 of the same line can be simultaneously processed line by line so that the data bit 30 and the useless bit 4 〇 reach the (〇1) state, the (1〇) state, or the (11) state. & 〃 Although 'in the present invention', after the stylization, the memory cell data bit 7L 3G and the useless bit 4〇 are all in a stylized state (〇1), a (1〇) state or (11) status. However, only the state stored in the data bit 3 is used as the data state; and the state stored in the unused bit 4 is the useless state. Therefore, when reading is performed, only the private state of the data bit 30 of the selected memory cell is read, and the useless state of the selected memory cell 40 is not read. Referring to FIG. 7, when reading the tributary state of the data bit 3〇1 of the selected memory cell 2, a voltage of 3 volts can be applied to the word line WLn corresponding to the control gate 12 of the memory cell. And applying a voltage of volts volts to the other word lines WLw and WLn+1, and applying a voltage of 16 volts to the bit line BLn+2 corresponding to the gate/nomogram area 22 of the memory cell, while others Bit lines BLn+1, BLn, BLw, BLn· are applied. Volt voltage. The data state of the memory cell data bit < S ) 14 1361433 P960132 25611twf.doc/p 30 is determined by the magnitude of the current read. Embodiment 2 Referring to FIG. 8A and FIG. 8B, in the erasing, all the memory cells 1G of the memory cell array are tested, so that the data bits of all the memory cells are 兀3〇 and the useless bits are reached. The reference state with the lowest starting voltage is the (11) state. Referring to Figure 8A, in one embodiment, the DSB hole injection effect is induced by erasing to cause the threshold voltage τ of all memory cells to drop. (10) Greening is to apply a Q volt voltage to the substrate 14, and apply a voltage of -10 to _15 volts across all of the word lines WLn·丨, WLn, ^\〇^+1, and at all bit lines BLn 2 , BLn", BLn, BLn+1, BLn+2 apply a voltage of 5 to 7 volts to inject the hole and sink into the charge storage layer 16, so that the data bit 3G and the useless bit 4 are both 1 ( Ii) Status. Referring to FIG. 8B, in another embodiment, the erbium is performed by inducing a BAND TO BAND HATHOLE 'BTBHH injection effect to make all the memory cells 〇 The starting voltage drops. The method of operation is to apply a voltage of volts to the substrate 14 and apply a voltage of -16 to _20 volts across all of the word lines WLw, WLn, WLn+1 and at all of the bit lines BLn.2, BLn], BLn, BLn+1, BLn+2% are applied to the voltage of the volts so that the holes are implanted and trapped in the charge storage layer 16 to bring the data bit 30 and the useless bit 40 to the (11) state. When the program is programmed, the voltage is generated between the selected cell line 1 and the bit line corresponding to the source region 20 and its adjacent bit line and simultaneously applied to all the word lines. The appropriate voltage is, for example, -2 to <-S) 15 1361433 P960132 25611twf.doc/p 2 volts' by inducing the SSB convergence effect so that the data bits 30 of the memory cell of the peer are programmed into the starting voltage. A higher (10) state, a (01) state, or a (〇〇) state. The following is a description of the simultaneous stylized memory cells D!, D2, and d3. Referring to Fig. 9, it is assumed that the predetermined stylized states of the memory cell Di, the memory cell, and the memory cell 3 are (〇〇) state, (01) state, and (11) state, respectively. When the memory cells Di, D2, d3 are programmed, 'the volts voltage is applied to the substrate 14, and a voltage of, for example, 4 to 8 volts is applied to the bit line BLn+1' at the adjacent bit lines BLn+2 and BLn. Applying the same voltage, for example, a voltage of 〇V or both, so that BLn+i and BLn+2 generate a voltage difference between each other, and cause BLn+1 and BLn to generate a voltage difference between each other. . The other bit lines BLn i, BLn_2 are floating. Further, voltages of, for example, 12 volts, 0.2 volts, and _1. volts are applied to the word lines WLlv1, WLn, WLn+, respectively. Under this operating condition, the thermoelectric holes generated by the source/drain regions 20 of the memory cells D, r > 2, D3 will move toward the substrate 14, and, due to the ionization, many electron holes will be generated. The electrons in the electron hole pair are injected into the charge storage layer 16 due to the attraction of a large number of holes in the charge storage layer i6 (four) level 3G of the memory cells A, h, d3 of the reference state, so that the data bits are Start power = low start voltage converges to a higher starting voltage, memory cell memory 匕 D2 and memory cell D3 data bit 3 状态 state and (10) state, as shown in Figure 1 。. _ age (called = memory cell Dl, D2, D3 'because of memory cell d}, A, 3 source / bungee region 20 and adjacent memory blisters q, C2, q source 1361433 P960132 25611twf .doc/p
Bii 二用料連接位元線BLn+1,且相鄰的位元線 = 〇伏特的繼是浮置,也就是位元線 Βΐ"1 ^門=二之間的壓差’和位元線BLn+1與位元線 二 £同,因此,記憶胞Ci、記憶胞C2以及Bii two materials are connected to the bit line BLn+1, and the adjacent bit line = 〇 volt is followed by floating, that is, the bit line Βΐ "1 ^ gate = the pressure difference between the two and the bit line BLn+1 is the same as the bit line, therefore, the memory cell Ci, the memory cell C2, and
^胞c3的祕/祕區22也將產生熱電洞並將向基底14 Ϊ +並且1離子化之作用,也將產生許多的電子電洞 ’。毛子電洞對中的電子,也將因為基準狀態之記憶胞 C〗'C2、C3的電荷儲存層16的無用位元4〇中大量的電洞 的吸引而注人於電荷儲存層16,以使得無用位元40的啟 始電壓自低啟始電壓收斂至較高的啟始電壓,記憶胞Cl、 記憶胞C2以及記憶胞c3的無用位元4G也將分別達到_ 狀態、(01)狀態以及(10)狀態。 利用相^的方法,可以逐行將同行的記憶胞丨〇同時程 式化,使其資料位元30以及無用位元4〇達到(〇1)狀離、 (1〇)狀態或(11)狀態。 ~The secret/secret region 22 of the cell c3 will also create a thermoelectric hole and will ionize the substrate 14 and 1 and will also produce many electron holes. The electrons in the pair of hair hole holes will also be injected into the charge storage layer 16 due to the attraction of a large number of holes in the useless cells 4 of the memory storage layer 16 of the reference state, C2, C3, The start voltage of the useless bit 40 is converged from the low start voltage to the higher start voltage, and the memory cell C1, the memory cell C2, and the useless bit 4G of the memory cell c3 will also reach the _ state and the (01) state, respectively. And (10) status. By means of the phase method, the memory cells of the peers can be programmed at the same time, so that the data bit 30 and the useless bit 4〇 reach (〇1), (1〇) state or (11) state. . ~
雖然,在本發明中,在進行程式化之後,記憶胞1〇 的資料位元30以及無用位元40均達到程式化狀態(〇1)狀 態、(10)狀態或(11)狀態。然而,僅有資料位元所儲存 的狀態做為資料狀態;而無用位元40所儲存的狀態則為無 用狀態。因此,在進行讀取時,僅讀取所選之記憶胞之資 料位元30的程式化狀態,而不讀取所選之記憶胞1〇之無 用位元40之無用狀態。 ‘ 請參照圖7,在讀取選定的記憶胞〇2之資料位元3〇 中的資料狀態時’可在記憶胞〇2之控制閘極12所對應的 17 P960132 2561 ltwf.doc/p 字元線WLn施加3伏特的電壓,並在 及WLn+丨施加0伏特的電壓 :他子兀綠WL-丨以 汲極區22所對應的位元線B、:記憶胞D2的源極/ 其他的位元線力Βσ/·6伏特的電壓,而 電壓。藉由所讀取的電流的大小°來判斷;=== 元30中的資料狀態。 W己匕胞〇2之貝枓位 本發明實施例之程式化方法,可以藉由誘發SSB收餅 效應’使得記憶胞的啟始電壓精確達到 ^ 以使得啟始電壓的分布較窄。 心且了 βϋΐΐΓίΐ式化時,在所選定之程式化位元線施加電 ^ m相絲所需賴,其可同時將同一 的時間。 了以大巾曰鈿短記憶胞陣列程式化 限定已以較佳實施例揭露如上’然其並非用以 和Z 此技藝者,在不脫離本發明之精神 範圍米Ή β可作些許之更動與卿,因此本發明之保護 祀I視伽之申請專職圍所界定者為準。 【圖式簡單說明】 路示用於本發明實關之操作方法之記憶體的電 圖2繪示用於本發明實施例之操作方法之一種習 憶胞的結構剖面示意圖。 圖3繚示用於本發明實施例之一種記憶胞其各種狀態 1361433 P960132 25611twf.doc/p 與啟始電壓的關係圖。 圖4A為依據本發明實施例所繪示之一種記憶體藉由 電子注入方式進行抹除操作的電路示意圖。 圖4B為依據本發明另一實施例所繪示之一種記憶體 藉由電子注入方式進行抹除操作的電路示意圖。 圖5為依據本發明實施例所繪示之一種記憶體藉由電 洞注入方式進行程式化操作的電路示意圖。 圖6為依據本發明實施例所繪示之一種記憶體藉由電 洞注入方式進行程式化操作之啟始電壓與時間的關係圖。 圖7為依據本發明實施例所繪示之一種記憶體進行讀 取操作的電路示意圖。 圖8A為依據本發明實施例所繪示之一種記憶體藉由 電洞注入方式進行抹除操作的電路示意圖。 圖8B為依據本發明另一實施例所繪示之一種記憶體 藉由電洞注入方式進行抹除操作的電路示意圖。 圖9為依據本發明實施例所繪示之一種記憶體藉由電 子注入方式進行程式化操作的電路示意圖。 圖10為依據本發明實施例所繪示之一種記憶體藉由 電子注入方式進行程式化操作之啟始電壓與時間的關係 圖。 【主要元件符號說明】 10 :記憶胞 12 :控制閘極 14 :基底 19 < S ) 1361433 P960132 25611twf.doc/p 15 : 介電層 16 : 電荷儲存層 18 : 穿隧介電層 20、 22 :源極/汲極區 24 :通道區 30 :資料位元 40 :無用位元 20In the present invention, after the stylization, the data bit 30 and the useless bit 40 of the memory cell 1 are in the stylized state (〇1) state, the (10) state, or the (11) state. However, only the state stored by the data bit is used as the data state; and the state stored by the useless bit 40 is useless. Therefore, when reading is performed, only the stylized state of the selected memory cell bit 30 is read, and the useless state of the selected memory cell 40 is not read. Referring to Figure 7, when reading the data status in the data bit 3 of the selected memory cell 2, the P-switch can correspond to the control gate 12 of the memory cell 2. P960132 2561 ltwf.doc/p word The WLn is applied with a voltage of 3 volts and a voltage of 0 volts is applied to WLn+丨: the sub-line B corresponding to the drain region 22 of the sub-green WL-丨, the source of the memory cell D2/other The bit line force Β σ / · 6 volts of voltage, and the voltage. It is judged by the magnitude of the read current; === the state of the data in the element 30.程式 匕 之 之 本 本 本 本 本 本 本 本 本 本 本 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式 程式When the β ϋΐΐΓ ΐ 心 , , , , , , , ϋΐΐΓ ϋΐΐΓ ϋΐΐΓ 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加The stylized definition of the short memory cell array has been disclosed in the preferred embodiment as described above. However, it is not intended to be used in the art, and the modification can be made without departing from the spirit of the invention. Qing, therefore, the protection of the present invention is subject to the definition of the gamut application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a cross-sectional view showing the structure of a memory cell used in the operation method of the embodiment of the present invention. Fig. 3 is a diagram showing the relationship between various states 1361433 P960132 25611twf.doc/p and the starting voltage for a memory cell used in an embodiment of the present invention. FIG. 4A is a schematic circuit diagram of a memory device performing an erase operation by an electron injection method according to an embodiment of the invention. FIG. 4B is a circuit diagram of a memory device performing an erase operation by an electron injection method according to another embodiment of the invention. FIG. 5 is a circuit diagram showing a memory operation of a memory by a hole injection method according to an embodiment of the invention. FIG. 6 is a diagram showing a relationship between a starting voltage and a time for a memory operation by a cavity injection method according to an embodiment of the invention. FIG. 7 is a circuit diagram of a memory read operation according to an embodiment of the invention. FIG. 8A is a schematic circuit diagram of a memory device performing a erase operation by a hole injection method according to an embodiment of the invention. FIG. 8B is a circuit diagram of a memory device performing a erase operation by a hole injection method according to another embodiment of the invention. FIG. 9 is a circuit diagram showing a memory operation of a memory by an electronic injection method according to an embodiment of the invention. FIG. 10 is a diagram showing a relationship between a starting voltage and a time of a memory operation performed by an electronic injection method according to an embodiment of the invention. [Main component symbol description] 10: Memory cell 12: Control gate 14: Substrate 19 < S) 1361433 P960132 25611twf.doc/p 15 : Dielectric layer 16 : Charge storage layer 18 : Tunneling dielectric layers 20 , 22 : Source/Bungee Area 24: Channel Area 30: Data Bit 40: Useless Bit 20
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97108687A TWI361433B (en) | 2008-03-12 | 2008-03-12 | Operating method of memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97108687A TWI361433B (en) | 2008-03-12 | 2008-03-12 | Operating method of memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200939234A TW200939234A (en) | 2009-09-16 |
TWI361433B true TWI361433B (en) | 2012-04-01 |
Family
ID=44867646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97108687A TWI361433B (en) | 2008-03-12 | 2008-03-12 | Operating method of memory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI361433B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI453759B (en) * | 2010-11-30 | 2014-09-21 | Macronix Int Co Ltd | Operation method of flash memory |
-
2008
- 2008-03-12 TW TW97108687A patent/TWI361433B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200939234A (en) | 2009-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4559080B2 (en) | Reprogrammable non-volatile memory using breakdown phenomenon of ultra-thin dielectric | |
TWI631563B (en) | Method to reduce program disturbs in non-volatile memory cells | |
CN101432820B (en) | Methods for erasing and programming memory devices | |
JP2006310720A (en) | Inversion bit line, non-volatile memory trapping charge and its operating method | |
JP2004221554A (en) | Nonvolatile semiconductor memory device | |
TW200532901A (en) | Nonvolatile semiconductor memory device | |
TW200537506A (en) | Method and system for self-convergent erase in charge trapping memory cells | |
TWI390709B (en) | Methods for erasing memory devices and multi-level programming memory device | |
TW200935426A (en) | Operating method of memory device | |
TWI297499B (en) | Method of identifying logical information in a programming and erasing cell by on-side reading scheme | |
JP2005184029A (en) | Nonvolatile storage element and semiconductor integrated circuit device | |
TWI238413B (en) | Methods for enhancing erase of a memory device, programmable read-only memory device and method for preventing over-erase of an NROM device | |
KR100558004B1 (en) | Programing method of a non-volatile memory device including a charge storage layer between a gate electrode and a semiconductor substrate | |
KR20170000331A (en) | Semiconductor device and method of driving the same | |
JP2003068893A (en) | Nonvolatile storage cell and semiconductor integrated circuit | |
JP2005216471A (en) | Nonvolatile memory cell array having common drain line and method of operating the same | |
JP2013070256A (en) | Nonvolatile programmable logic switch | |
TWI361433B (en) | Operating method of memory | |
TWI415127B (en) | A high second bit operation window method for virtual ground array with two-bit memory cells | |
TWI376790B (en) | Two-bit non-volatile flash memory cells and methods of operating memory cells | |
TWI336941B (en) | Nonvolatile memory array having modified channel region interface | |
US7852680B2 (en) | Operating method of multi-level memory cell | |
KR101127892B1 (en) | Method for writing information into semiconductor nonvolatile memory | |
TW200847161A (en) | Three cycle sonos programming | |
JP5460748B2 (en) | Erasing method of flash EEPROM (FLASHEEPROMMEMORY) |