TWI453759B - Operation method of flash memory - Google Patents

Operation method of flash memory Download PDF

Info

Publication number
TWI453759B
TWI453759B TW099141539A TW99141539A TWI453759B TW I453759 B TWI453759 B TW I453759B TW 099141539 A TW099141539 A TW 099141539A TW 99141539 A TW99141539 A TW 99141539A TW I453759 B TWI453759 B TW I453759B
Authority
TW
Taiwan
Prior art keywords
memory
flash memory
operating
bit
storage
Prior art date
Application number
TW099141539A
Other languages
Chinese (zh)
Other versions
TW201222556A (en
Inventor
Po Chou Chen
Tao Cheng Lu
Yao Wen Chang
I Chen Yang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW099141539A priority Critical patent/TWI453759B/en
Publication of TW201222556A publication Critical patent/TW201222556A/en
Application granted granted Critical
Publication of TWI453759B publication Critical patent/TWI453759B/en

Links

Description

快閃記憶體的操作方法Flash memory operation method

本發明是有關於一種記憶體的操作方法,且特別是有關於一種快閃記憶體(FLASH memory)的操作方法。The present invention relates to a method of operating a memory, and more particularly to a method of operating a flash memory.

非揮發性記憶體技術是目前最受重視的記憶體技術,其中有一種以氧化物-氮化物-氧化物(Oxide-Nitride-Oxide;ONO)等具有電荷捕捉效果的結構來取代傳統記憶胞的堆疊式記憶胞,因具有製程容易及高密度化的優點,所以已經受到各界高度重視與研究,亦可稱為電荷捕捉型快閃記憶體。在電荷捕捉型快閃記憶體中,每一個記憶胞(memory cell)的ONO內可儲存電荷,且儲存的電荷會影響其臨界電壓Vth ,且可感測此臨界電壓以表示資料。Non-volatile memory technology is currently the most important memory technology, and one of them has a charge-trapping structure such as Oxide-Nitride-Oxide (ONO) to replace traditional memory cells. Stacked memory cells, which have the advantages of easy process and high density, have been highly valued and studied by various circles, and can also be called charge trap type flash memory. In charge trapping type flash memory, charge can be stored in the ONO of each memory cell, and the stored charge affects its threshold voltage Vth , and the threshold voltage can be sensed to represent the data.

目前發展出可儲存兩個狀態以上之多位階單元(Multi-level Cell,MLC)記憶胞,以增加儲存密度,其「多階」指的是電荷充電有多個能階(即多個電壓值),如此便能儲存多個位元的值於每個記憶胞中,如圖1所示。At present, multi-level cell (MLC) memory cells can be stored to increase storage density. The "multi-order" refers to charge charging with multiple energy levels (ie, multiple voltage values). ), so that the value of multiple bits can be stored in each memory cell, as shown in Figure 1.

在圖1中,由字元線WL0~WL2、位元線BL1~BL2以及數個記憶胞10,且每一記憶胞10對應於一個字元線與兩個位元線。不過,在記憶體尺寸愈來愈小的發展下,在單一記憶胞10中的兩個儲存位元100a與100b如存在4個的程式位準,則可能彼此發生交互作用,例如一個儲存位元100a的儲存電荷所產生的電場對於另一個儲存位元100b在被操作時發生影響,而導致所謂的第二位元效應(2nd bit effect)102。In FIG. 1, word lines WL0 WL WL2, bit lines BL1 BL BL2, and a plurality of memory cells 10, and each memory cell 10 corresponds to one word line and two bit lines. However, in the case of the smaller and smaller memory size, two storage bits 100a and 100b in a single memory cell 10 may interact with each other if there are four program levels, such as a storage bit. 100a effect of electric field generated by the stored charge 100b is stored bit to the other occurs when operated, resulting in the so-called second bit effect (2 nd bit effect) 102.

而且,在程式化記憶胞10之操作期間,由於程式電壓是施加至所有連接至同一條字元線WL1之記憶胞,因此使儲存位元100a受到左側隔著位元線BL1的程式化擾亂(program disturbance)104。除此之外,隨75nm node(節點)以下進展的記憶體,字元線WL0~WL2之間的距離也縮短的情況下,還會使儲存位元100a、100b受到上下兩個記憶胞10之儲存位元的字元線干擾(Wordline interference)106。Moreover, during the operation of the stylized memory cell 10, since the program voltage is applied to all the memory cells connected to the same word line WL1, the memory bit 100a is disturbed by the stylization of the left side via the bit line BL1 ( Program disturbance) 104. In addition, in the memory that progresses below the 75 nm node, the distance between the word lines WL0 to WL2 is also shortened, and the storage bits 100a and 100b are also subjected to the upper and lower memory cells 10 The word line interference 106 of the storage bit is stored.

圖2即顯示受到上述寄生效應影響之儲存位元100a的電壓分佈圖,其中4個程式位準對應於不同的臨界電壓分布,臨界狀態200、202、204以及206具有不同的臨界電壓分佈範圍並彼此間隔開。然而,隨著晶粒尺寸愈來愈小,單一記憶胞的兩個位元彼此所產生的第二位元效應會導致變大的臨界電壓分佈208。而且,因為程式化擾亂的關係,會再增加臨界電壓分佈210。然後,在字元線之間的距離愈來愈小的情形下,還會因為字元線干擾而進一步加大臨界電壓分佈212。最終導致無法區分臨界狀態200與臨界狀態202,而使記憶體內所有記憶胞從原本的4個程式位準變為3個程式位準,只能當作1個位元操作。2 shows a voltage distribution diagram of the memory cell 100a affected by the parasitic effect described above, wherein the four program levels correspond to different threshold voltage distributions, and the critical states 200, 202, 204, and 206 have different threshold voltage distribution ranges and They are spaced apart from each other. However, as the grain size becomes smaller and smaller, the second bit effect produced by the two bits of a single memory cell causes a large threshold voltage distribution 208. Moreover, because of the stylized disturbing relationship, the threshold voltage distribution 210 is again increased. Then, in the case where the distance between the word lines is getting smaller, the threshold voltage distribution 212 is further increased due to word line interference. Eventually, the critical state 200 and the critical state 202 cannot be distinguished, and all the memory cells in the memory are changed from the original four program levels to three program levels, and can only be operated as one bit.

本發明提供一種快閃記憶體的操作方法,可避免記憶體受到第二位元效應(2nd bit effect)、程式化擾亂(Program disturbance)與字元線干擾(Wordline interference)等效應影響。The present invention provides a method of operating a flash memory, the memory can be avoided by the second bit effect (2 nd bit effect), stylized disturb (Program disturbance) and the word line disturbance (Wordline interference) Effects and the like.

本發明另提供一種快閃記憶體的操作方法,能比傳統單位準單元(SLC)或多位準單元(MLC)記憶體增加1.5倍的儲存密度(storage density)。The present invention further provides a method of operating a flash memory that can increase the storage density by a factor of 1.5 compared to a conventional unit cell (SLC) or multi-level cell (MLC) memory.

本發明提出一種快閃記憶體的操作方法,是數個儲存位元中的一個儲存位元具有數目為2n 的程式位準(program level)時,將該儲存位元四周相鄰的儲存位元設為具有數目為2n-1 的程式位準;同樣地,數個儲存位元中的另一個儲存位元具有數目為2n-1 的程式位準時,將這個儲存位元四周相鄰的儲存位元設為具有數目為2n 的程式位準,其中每一程式位準對應於不同的臨界電壓分布。The present invention provides a method for operating a flash memory, in which a storage bit of a plurality of storage bits has a program level of 2 n , and the storage bits adjacent to the storage bit are stored. The meta is set to have a program level of 2 n-1 ; similarly, another storage bit of the plurality of storage bits has a program number of 2 n-1 , and the storage bit is adjacent to each other. The storage bits are set to have a program level of 2 n , where each program level corresponds to a different threshold voltage distribution.

在本發明之一實施例中,上述快閃記憶體可為虛擬接地記憶體陣列(virtual ground memory array)或NAND型記憶體。In an embodiment of the invention, the flash memory may be a virtual ground memory array or a NAND type memory.

在本發明之一實施例中,上述快閃記憶體包括由電荷捕捉型記憶胞構成的記憶體或由浮置閘極型記憶胞構成的記憶體。In an embodiment of the invention, the flash memory includes a memory composed of a charge trap type memory cell or a memory composed of a floating gate type memory cell.

本發明另提出一種快閃記憶體的操作方法,這種快閃記憶體包括數條字元線、數條位元線以及數個記憶胞,且每一記憶胞對應於一個字元線與兩個位元線。上述操作方法包括將對應於同一字元線的記憶胞中的儲存位元設為具有2n 與2n-1 交替的程式位準,並將對應於同一位元線的記憶胞中的儲存位元設為具有2n 與2n-1 交替的程式位準,其中每一程式位準對應於不同的臨界電壓分布。The invention further provides a method for operating a flash memory, the flash memory comprising a plurality of word lines, a plurality of bit lines and a plurality of memory cells, and each memory cell corresponds to one word line and two One bit line. The above operation method includes setting a storage bit in a memory cell corresponding to the same word line to have a program level alternated between 2 n and 2 n-1 , and storing the storage bit in the memory cell corresponding to the same bit line The element is set to have a programmed level of 2 n and 2 n-1 , where each program level corresponds to a different threshold voltage distribution.

在本發明之另一實施例中,上述快閃記憶體包括虛擬接地記憶體陣列(virtual ground memory array)。In another embodiment of the invention, the flash memory comprises a virtual ground memory array.

在本發明之另一實施例中,上述記憶胞包括電荷捕捉型記憶胞或浮置閘極型記憶胞。In another embodiment of the invention, the memory cell comprises a charge trapping memory cell or a floating gate memory cell.

在本發明之各實施例中,上述儲存位元為多位準單元(MLC)。In various embodiments of the invention, the storage bit is a multi-level cell (MLC).

在本發明之各實施例中,上述儲存位元包括多位準單元與單位準單元(SLC)。In various embodiments of the invention, the storage bit comprises a multi-level cell and a unit quasi-cell (SLC).

在本發明之各實施例中,上述n為正整數,如2、3或4。In various embodiments of the invention, the above n is a positive integer such as 2, 3 or 4.

基於上述,本發明在快閃記憶體的操作方法上設計具有2n-1 個程式位準之儲存位元四周用具有2n 個程式位準之儲存位元將其包圍、具有2n 個程式位準之儲存位元四周同樣用具有2n-1 個程式位準之儲存位元將其包圍,因此可比單位準單元或多位準單元記憶體的儲存密度高,並可同時減輕寄生效應,使程式位準維持在可區別的狀態。Based on the above, the present invention designs a storage bit having 2 n-1 program levels in the operation method of the flash memory, and surrounds it with 2 n program level storage bits, and has 2 n programs. The storage bits of the level are also surrounded by storage bits having 2 n-1 program levels, so the storage density of the unit quasi-cell or multi-level cell memory is high, and the parasitic effect can be mitigated at the same time. Keep the program level in a distinguishable state.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖3是依照本發明之一實施例之一種快閃記憶體的上視圖。3 is a top view of a flash memory in accordance with an embodiment of the present invention.

請參照圖3,本實施例之快閃記憶體的操作方法是用於操作由排列成陣列的數個記憶胞構成的快閃記憶體。舉例來說,本實施例之快閃記憶體是由數條字元線WL0、WL1和WL2、數條位元線BL1和BL2以及數個電荷捕捉型記憶胞30a~30i構成,且圖中的每一記憶胞對應於一個字元線與兩個位元線,因此本實施例之快閃記憶體為虛擬接地記憶體陣列(virtual ground memory array)。本實施例之快閃記憶體的操作方法是將對應於同一字元線WL1的記憶胞30d、30e與30f中的儲存位元306b、300a、300b、308a設為具有2n 與2n-1 交替的程式位準,並將對應於同一位元線BL1的記憶胞30b、30e與30h中的儲存位元302a、300a、304a設為具有2n 與2n-1 交替的程式位準,其中每一程式位準對應於不同的臨界電壓分布。Referring to FIG. 3, the method of operating the flash memory of the present embodiment is for operating a flash memory composed of a plurality of memory cells arranged in an array. For example, the flash memory of the embodiment is composed of a plurality of word lines WL0, WL1 and WL2, a plurality of bit lines BL1 and BL2, and a plurality of charge trapping memory cells 30a to 30i, and Each memory cell corresponds to one word line and two bit lines, so the flash memory of this embodiment is a virtual ground memory array. The method of operating the flash memory of this embodiment is to set the storage bits 306b, 300a, 300b, 308a in the memory cells 30d, 30e and 30f corresponding to the same word line WL1 to have 2 n and 2 n-1 Alternate program levels, and the storage bits 302a, 300a, 304a in the memory cells 30b, 30e, and 30h corresponding to the same bit line BL1 are set to have a program level of 2 n and 2 n-1 , wherein Each program level corresponds to a different threshold voltage distribution.

由於上述實施例中的具有數目為2n 的程式位準之儲存位元300a四周被程式位準數目為2n-1 之儲存位元300b、302a、304a和306b包圍,所以能降低寄生效應(parasitic effect),避免位準減少;被程式位準數目為2n 之儲存位元300a、302b、308a和304b包圍的具有數目為2n-1 的程式位準之儲存位元300b則能承受較大的寄生效應而不降低位準。換言之,整個快閃記憶體至少有一半的記憶胞能進行數目為2n 的程式位準的操作,因此上述實施例比傳統全部使用單位準單元(SLC)記憶胞的方式增加1.5倍的儲存密度(storage density)。另外,若是與本身已經可作多位準單元(multi-level cell,MLC)之記憶體相比,上述實施例也可以增加1.5倍的儲存密度。Since the storage bit 300a having the program level of 2 n in the above embodiment is surrounded by the storage bits 300b, 302a, 304a and 306b having the program level of 2 n-1 , the parasitic effect can be reduced ( parasitic effect), to avoid the reduced level; a level 2 n number of programs is stored bit 300a, having a number 302b, 308a and 304b is surrounded by the formula 2 n-1 of the storage level of the bit 300b can withstand more Large parasitic effects without lowering the level. In other words, at least half of the memory cells of the entire flash memory can perform a program level of 2 n , so the above embodiment increases the storage density by 1.5 times compared to the conventional method of using the unit cell (SLC) memory cells. (storage density). In addition, the above embodiment can also increase the storage density by 1.5 times compared with a memory which itself can be used as a multi-level cell (MLC).

在上述實施例中,程式位準數目中的n值可為大於等於2的正整數,如2、3或4。因此,記憶胞30e的儲存位元300a為多位準單元;而儲存位元300b在n=2時是單位準單元、在n為3或以上時屬於多位準單元。In the above embodiment, the value of n in the program level number may be a positive integer greater than or equal to 2, such as 2, 3 or 4. Therefore, the storage bit 300a of the memory cell 30e is a multi-level cell; and the storage bit 300b is a unit quasi-cell when n=2, and belongs to a multi-level cell when n is 3 or more.

圖4顯示n為2時儲存位元300a的電壓分佈圖。在圖4中,四個程式位準對應於不同的臨界電壓分布,臨界狀態400(零位準)、402(第一位準)、404(第二位準)以及406(第三位準)每個都具有清楚的臨界電壓分佈範圍並彼此間隔開。因為程式位準數目大(如4個程式位準)的儲存位元300a四周被程式位準數目小(如2個程式位準)的儲存位元包圍,所以能減輕起因於第二位元效應(2nd bit effect)的臨界電壓分佈408、起因於程式化擾亂(Program disturbance)的臨界電壓分佈410與起因於字元線干擾(Wordline interference)的臨界電壓分佈412,而使程式位準(臨界狀態400)維持在可區別的狀態。Figure 4 shows a voltage distribution diagram of the storage bit 300a when n is 2. In Figure 4, the four program levels correspond to different threshold voltage distributions, critical states 400 (zero level), 402 (first level), 404 (second level), and 406 (third level). Each has a clear threshold voltage distribution range and is spaced apart from each other. Since the storage location 300a of a large program level (such as 4 program levels) is surrounded by a storage bit having a small number of program levels (such as 2 program levels), the second bit effect can be alleviated. (2 nd bit effect) threshold voltage distribution 408, threshold voltage distribution 410 due to program disturbance and threshold voltage distribution 412 due to word line interference, so that the program level (critical State 400) is maintained in a distinguishable state.

此外,本發明之快閃記憶體的操作方法也可應用到NAND型記憶體。Further, the method of operating the flash memory of the present invention can also be applied to a NAND type memory.

圖5是依照本發明之另一實施例之一種快閃記憶體的上視圖。請參照圖5,本實施例之快閃記憶體的操作方法是用於操作由排列成陣列的數個記憶胞構成的快閃記憶體。舉例來說,本實施例之快閃記憶體可以是NAND型快閃記憶體,其是由數條字元線WL1、WL2和WL3、數條主動區(active region)A1、A2和A3以及數個記憶胞50a~50i構成,且圖中的每一記憶胞位於一條字元線與一條主動區之間,其中記憶胞50a~50i可為電荷捕捉型記憶胞或浮置閘極型記憶胞。本實施例之操作方法是當記憶胞50e的儲存位元508具有數目為2n 的程式位準時,將其四周相鄰的儲存位元502、506、510和514設為具有數目為2n-1 的程式位準。同樣地,當儲存位元502具有數目為2n-1 的程式位準時,需將其四周相鄰的儲存位元500、504、508等設為具有數目為2n 的程式位準。如此一來,圖5之儲存位元508在n為2時的電壓分佈也將與圖4相同。Figure 5 is a top plan view of a flash memory in accordance with another embodiment of the present invention. Referring to FIG. 5, the method of operating the flash memory of this embodiment is for operating a flash memory composed of a plurality of memory cells arranged in an array. For example, the flash memory of this embodiment may be a NAND type flash memory, which is composed of a plurality of word lines WL1, WL2, and WL3, a plurality of active regions A1, A2, and A3, and numbers. Each memory cell is composed of 50a~50i, and each memory cell in the figure is located between a word line and an active area, wherein the memory cells 50a~50i may be charge trap type memory cells or floating gate type memory cells. The operation method of this embodiment is that when the storage bit 508 of the memory cell 50e has a program level of 2 n , the adjacent storage bits 502, 506, 510 and 514 are set to have a number of 2 n- The program level of 1 is correct. Similarly, when the storage bit 502 has a program level of 2 n-1 , it is necessary to set the adjacent storage bits 500, 504, 508, etc. around it to have a program level of 2 n . As such, the voltage distribution of the storage bit 508 of FIG. 5 when n is 2 will also be the same as FIG.

圖6是依照本發明之一實施例之一種快閃記憶體的上視圖。在圖6中的快閃記憶體是由數條字元線WL1~WL4、數條位元線BL1~BL3以及數個浮置閘極型記憶胞60a~60l構成,且圖中的每一記憶胞就是一個儲存位元,因此本實施例之快閃記憶體也可視作由排列成陣列的數個儲存位元600~622構成的NOR型浮置閘極型記憶體陣列。Figure 6 is a top plan view of a flash memory in accordance with an embodiment of the present invention. The flash memory in FIG. 6 is composed of a plurality of word lines WL1 to WL4, a plurality of bit lines BL1 to BL3, and a plurality of floating gate type memory cells 60a to 60l, and each memory in the figure The cell is a memory bit, so the flash memory of this embodiment can also be regarded as a NOR-type floating gate memory array composed of a plurality of memory cells 600-622 arranged in an array.

圖6之快閃記憶體的操作方法是將對應於同一字元線WL1的儲存位元600、602、604設為具有2n 與2n-1 交替的程式位準,並將對應於同一位元線BL1的儲存位元600、606、612、618設為具有2n 與2n-1 交替的程式位準,其中每一程式位準對應於不同的臨界電壓分布。這樣的操作設計因為程式位準數目大(2n )的儲存位元608四周被程式位準數目小(2n-1 )的儲存位元602、606、610與614包圍,所以能減輕起因於程式化擾亂的臨界電壓分佈與起因於字元線干擾的臨界電壓分佈,而使程式位準維持在可區別的狀態。The method of operating the flash memory of FIG. 6 is to set the storage bit 600, 602, 604 corresponding to the same word line WL1 to have a program level of 2 n and 2 n-1 , and will correspond to the same bit. The storage bits 600, 606, 612, 618 of the line BL1 are set to have a programmed level of 2 n and 2 n-1 , wherein each program level corresponds to a different threshold voltage distribution. Such an operation design can be alleviated because the storage bit 608 having a large number of program levels (2 n ) is surrounded by the storage bits 602, 606, 610 and 614 with a small number of program levels (2 n-1 ). The threshold voltage distribution of the stylized disturbance and the critical voltage distribution resulting from the word line interference maintain the program level in a distinguishable state.

綜上所述,本發明所提出的設計概念是在具有數目為2n-1 的程式位準之儲存位元四周用程式位準數目為2n 之儲存位元將其包圍,以避免儲存位元的位準減少。因此,整個快閃記憶體至少有一半的記憶胞能進行數目為2n 的程式位準的操作,和傳統全部使用單位準單元(SLC)以及多位準單元(MLC)記憶胞的方式相比具有更高的儲存密度(storage density)。另一方面,程式位準數目大(如2n )的儲存位元則以程式位準數目小(如2n-1 )的儲存位元包圍,以減輕寄生效應,使程式位準維持在可區別的狀態。In summary, the design concept proposed by the present invention encloses a storage bit having a program level of 2 n around a storage bit having a program level of 2 n-1 to avoid storing bits. The level of the yuan is reduced. Therefore, at least half of the entire memory of the flash memory can perform a program level of 2 n , compared to the traditional method of using unit cell (SLC) and multi-level cell (MLC) memory cells. Has a higher storage density. On the other hand, a large number of program level (e.g., 2 n) is stored bit program level places small number (e.g., 2 n-1) bits surround the storage, in order to reduce parasitic effects, so that the program can be maintained at a level The state of difference.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

A1、A2、A3‧‧‧主動區A1, A2, A3‧‧‧ active area

BL1、BL2、BL3‧‧‧位元線BL1, BL2, BL3‧‧‧ bit line

WL0、WL1、WL2、WL3、WL4‧‧‧字元線WL0, WL1, WL2, WL3, WL4‧‧‧ character lines

10、30a~30i、50a~50i、60a~60l‧‧‧記憶胞10, 30a~30i, 50a~50i, 60a~60l‧‧‧ memory cells

100a、100b、300a、300b、302a、302b、304a、304b、306b、308a、500~516、600~622‧‧‧儲存位元100a, 100b, 300a, 300b, 302a, 302b, 304a, 304b, 306b, 308a, 500~516, 600~622‧‧‧ storage bits

102‧‧‧第二位元效應102‧‧‧ second bit effect

104‧‧‧程式化擾亂104‧‧‧Stylized disruption

106‧‧‧字元線干擾106‧‧‧word line interference

200、202、204、206、400、402、404、406‧‧‧臨界狀態200, 202, 204, 206, 400, 402, 404, 406‧‧‧ critical state

208、210、212、408、410、412‧‧‧臨界電壓分佈208, 210, 212, 408, 410, 412‧‧ ‧ threshold voltage distribution

圖1是習知之一種電荷捕捉型快閃記憶體的上視圖。1 is a top view of a conventional charge trapping type flash memory.

圖2顯示受到寄生效應影響之記憶胞的電壓分佈圖。Figure 2 shows the voltage distribution of memory cells affected by parasitic effects.

圖3是依照本發明之一實施例之一種快閃記憶體的上視圖。3 is a top view of a flash memory in accordance with an embodiment of the present invention.

圖4顯示圖3之儲存位元的n為2時第一記憶胞的電壓分佈圖。4 shows a voltage distribution diagram of the first memory cell when n of the storage bit of FIG. 3 is 2.

圖5是依照本發明之另一實施例之一種快閃記憶體的上視圖。Figure 5 is a top plan view of a flash memory in accordance with another embodiment of the present invention.

圖6是依照本發明之一實施例之一種浮置閘極快閃記憶體的上視圖。6 is a top plan view of a floating gate flash memory in accordance with an embodiment of the present invention.

30a~30i...記憶胞30a~30i. . . Memory cell

300a、300b、302a、302b、304a、304b、306b、308a...儲存位元300a, 300b, 302a, 302b, 304a, 304b, 306b, 308a. . . Storage bit

BL1、BL2...位元線BL1, BL2. . . Bit line

WL0、WL1、WL2...字元線WL0, WL1, WL2. . . Word line

Claims (10)

一種快閃記憶體的操作方法,用於操作由排列成陣列的數個儲存位元構成的一快閃記憶體,所述操作方法包括:該數個儲存位元中的一儲存位元具有數目為2n 的程式位準(program level)時,將該儲存位元四周相鄰的儲存位元設為具有數目為2n-1 的程式位準;以及該數個儲存位元中的另一儲存位元具有數目為2n-1 的程式位準時,將該另一儲存位元四周相鄰的儲存位元設為具有數目為2n 的程式位準,其中每一程式位準對應於不同的臨界電壓分布。A method for operating a flash memory for operating a flash memory composed of a plurality of storage bits arranged in an array, the method comprising: storing a number of the storage bits in the plurality of storage bits When the program level is 2 n , the adjacent storage bits around the storage bit are set to have a program level of 2 n-1 ; and the other of the plurality of storage bits The storage bit has a program number of 2 n-1 , and the adjacent storage bits around the other storage bit are set to have a program level of 2 n , wherein each program level corresponds to a different The critical voltage distribution. 如申請專利範圍第1項所述之快閃記憶體的操作方法,其中該快閃記憶體包括虛擬接地記憶體陣列或NAND型記憶體。 The method of operating a flash memory as described in claim 1, wherein the flash memory comprises a virtual grounded memory array or a NAND type memory. 如申請專利範圍第1項所述之快閃記憶體的操作方法,其中該快閃記憶體包括由數個電荷捕捉型記憶胞構成的記憶體或由數個浮置閘極型記憶胞構成的記憶體。 The method of operating a flash memory according to claim 1, wherein the flash memory comprises a memory composed of a plurality of charge trapping memory cells or a plurality of floating gate memory cells. Memory. 一種快閃記憶體的操作方法,該快閃記憶體包括數條字元線、數條位元線以及數個記憶胞,且每一記憶胞對應於該數個字元線中的一個與該數個位元線中的一對,所述操作方法包括:將對應於同一字元線的該數個記憶胞的數個儲存位元設為具有2n 與2n-1 交替的程式位準;以及將對應於同一位元線的該數個記憶胞的數個儲存位元 設為具有2n 與2n-1 交替的程式位準,其中每一程式位準對應於不同的臨界電壓分布。A method for operating a flash memory, the flash memory comprising a plurality of word lines, a plurality of bit lines, and a plurality of memory cells, and each memory cell corresponds to one of the plurality of word lines and the a pair of a plurality of bit lines, the operation method comprising: setting a plurality of storage bits of the plurality of memory cells corresponding to the same word line to have a program level of 2 n and 2 n-1 alternating And setting a plurality of storage bits of the plurality of memory cells corresponding to the same bit line to have a program level of 2 n and 2 n-1 , wherein each program level corresponds to a different threshold voltage distribution . 如申請專利範圍第1或4項所述之快閃記憶體的操作方法,其中該數個儲存位元為多位準單元(MLC)。 The method of operating a flash memory according to claim 1 or 4, wherein the plurality of storage bits are multi-level cells (MLC). 如申請專利範圍第1或4項所述之快閃記憶體的操作方法,其中該數個儲存位元包括多位準單元與單位準單元(SLC)。 The method of operating a flash memory according to claim 1 or 4, wherein the plurality of storage bits comprise a multi-level cell and a unit cell (SLC). 如申請專利範圍第1或4項所述之快閃記憶體的操作方法,其中n為大於等於2的正整數。 The method of operating a flash memory as described in claim 1 or 4, wherein n is a positive integer greater than or equal to 2. 如申請專利範圍第7項所述之快閃記憶體的操作方法,其中n為2、3或4。 The method of operating a flash memory as described in claim 7, wherein n is 2, 3 or 4. 如申請專利範圍第4項所述之快閃記憶體的操作方法,其中該快閃記憶體包括虛擬接地記憶體陣列。 The method of operating a flash memory as described in claim 4, wherein the flash memory comprises a virtual grounded memory array. 如申請專利範圍第4項所述之快閃記憶體的操作方法,其中該數個記憶胞包括電荷捕捉型記憶胞或浮置閘極型記憶胞。 The method of operating a flash memory according to claim 4, wherein the plurality of memory cells comprise a charge trapping memory cell or a floating gate memory cell.
TW099141539A 2010-11-30 2010-11-30 Operation method of flash memory TWI453759B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099141539A TWI453759B (en) 2010-11-30 2010-11-30 Operation method of flash memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099141539A TWI453759B (en) 2010-11-30 2010-11-30 Operation method of flash memory

Publications (2)

Publication Number Publication Date
TW201222556A TW201222556A (en) 2012-06-01
TWI453759B true TWI453759B (en) 2014-09-21

Family

ID=46725291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141539A TWI453759B (en) 2010-11-30 2010-11-30 Operation method of flash memory

Country Status (1)

Country Link
TW (1) TWI453759B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511136B (en) * 2014-01-09 2015-12-01 Macronix Int Co Ltd Memory system and associated access method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768673B1 (en) * 2003-04-24 2004-07-27 Advanced Micro Devices, Inc. Method of programming and reading a dual cell memory device
US20060152974A1 (en) * 2005-01-13 2006-07-13 Spansion Llc Multi-level ONO flash program algorithm for threshold width control
US20070189073A1 (en) * 2006-02-16 2007-08-16 Micron Technology, Inc. Programming method to reduce gate coupling interference for non-volatile memory
US20080192544A1 (en) * 2007-02-13 2008-08-14 Amit Berman Error correction coding techniques for non-volatile memory
US20090003073A1 (en) * 2006-01-10 2009-01-01 Arik Rizel Rd Algorithm Improvement for Nrom Technology
US20090103357A1 (en) * 2007-10-17 2009-04-23 Darlene Hamilton Fast single phase program algorithm for quadbit
US20090154251A1 (en) * 2007-12-18 2009-06-18 Spansion Llc ALGORITHM FOR CHARGE LOSS REDUCTION AND Vt DISTRIBUTION IMPROVEMENT
TW200939234A (en) * 2008-03-12 2009-09-16 Macronix Int Co Ltd Operating method of memory
US20100027351A1 (en) * 2008-08-01 2010-02-04 Samsung Electronics Co. Ltd. Memory device and memory programming method
US20100211724A1 (en) * 2007-09-20 2010-08-19 Hanan Weingarten Systems and methods for determining logical values of coupled flash memory cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768673B1 (en) * 2003-04-24 2004-07-27 Advanced Micro Devices, Inc. Method of programming and reading a dual cell memory device
US20060152974A1 (en) * 2005-01-13 2006-07-13 Spansion Llc Multi-level ONO flash program algorithm for threshold width control
US20090003073A1 (en) * 2006-01-10 2009-01-01 Arik Rizel Rd Algorithm Improvement for Nrom Technology
US20070189073A1 (en) * 2006-02-16 2007-08-16 Micron Technology, Inc. Programming method to reduce gate coupling interference for non-volatile memory
US20080192544A1 (en) * 2007-02-13 2008-08-14 Amit Berman Error correction coding techniques for non-volatile memory
US20100211724A1 (en) * 2007-09-20 2010-08-19 Hanan Weingarten Systems and methods for determining logical values of coupled flash memory cells
US20090103357A1 (en) * 2007-10-17 2009-04-23 Darlene Hamilton Fast single phase program algorithm for quadbit
US20090154251A1 (en) * 2007-12-18 2009-06-18 Spansion Llc ALGORITHM FOR CHARGE LOSS REDUCTION AND Vt DISTRIBUTION IMPROVEMENT
TW200939234A (en) * 2008-03-12 2009-09-16 Macronix Int Co Ltd Operating method of memory
US20100027351A1 (en) * 2008-08-01 2010-02-04 Samsung Electronics Co. Ltd. Memory device and memory programming method

Also Published As

Publication number Publication date
TW201222556A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
KR100771882B1 (en) Program method for multi-level non-volatile memory device
US9564237B2 (en) Nonvolatile memory device and read method thereof
US8107295B2 (en) Nonvolatile memory device and read method thereof
US7916542B2 (en) Nonvolatile memory device with multiple page regions, and methods of reading and precharging the same
US8441855B2 (en) Strings of memory cells having string select gates, memory devices incorporating such strings, and methods of accessing and forming the same
KR101489885B1 (en) Charge Trap Nonvolatile Memory Device With Enhanced Reliability And Method Of Operating The Same
KR102219290B1 (en) Nonvolatile Memory Device
US20070263452A1 (en) Method of Programming Flash Memory Device
KR101371522B1 (en) Nonvolatile memory device and driving method thereof
JP4004809B2 (en) Semiconductor device and operation method thereof
US8522115B2 (en) Flash memory device and memory system comprising same
JP4534211B2 (en) Multi-level cell memory device with improved reliability
KR20120002760A (en) Data recording method and data recoding device for improving operation reliability of nand flash memory
KR20220058278A (en) Nonvolatile memory device, memory system comprising thereof and operating method of nonvolatile memory device
TWI615856B (en) Field sub-bitline nor flash array
US7768833B2 (en) Method of programming non-volatile memory device
US8964486B2 (en) Semiconductor device and operating method thereof
US9576681B2 (en) Semiconductor device having high-voltage transistor
TWI453759B (en) Operation method of flash memory
KR100905867B1 (en) Program method of a flash memory device having multi-level cell
US20100202197A1 (en) Operation methods of nonvolatile memory device
KR101521993B1 (en) Nonvolatile memory device independent from breakdown voltage
US20120140556A1 (en) Method of operating flash memory
KR101044015B1 (en) Operating Method of Nonvolatile Memory Device
KR100871606B1 (en) Method for programming in non-volatile memory device and method for operating of nand flash memory device