1361126 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種翻轉平台’且特別是有關於一種用於 吸附基板並翻轉基板的基板翻轉平台以及用於其之翻轉基板 的方法。 【先前技術】BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a flipping platform' and, more particularly, to a substrate flipping platform for adsorbing a substrate and flipping the substrate, and a method for flipping the substrate therefor. [Prior Art]
隨著液晶顯示技術的進步加上液晶顯示裝置具有重量輕 且體積小等優點,液晶顯示裝置已廣泛地應用於多種電子產 品’如數位相機、個人數位助理(personal digital assistant, PD A )、行動電活、筆記型電腦(n〇teb〇〇k compUter )以及平 面薄型化電視等。液晶顯示裝置包括液晶顯示面板與背光模 組,其中液晶顯示面板是由二基板以及位於此二基板之間的液 晶層所構成。在將此二基板組立的過程中,需先藉由翻轉平台 將其中一個基板翻面,之後再進行基板組立。 圖1A與圖1B是習知一種基板翻轉平台的俯視示意圖去 側視示意圖。請參照圖1A與圖1B,習知基板翻轉平台1〇 包括翻轉架110與固定架120,而翻轉架11〇係樞接於固定姜 120上。翻轉架U0之表面112上設有多個支撐管114,每: ,撐管114的頂端皆設有一個吸附墊116 ,且每一吸附墊“ 皆具有孔洞117。此外,翻轉架n〇内部 内部設有多條管線(圖未示),這些管線的一端經由轉^ =4内部延伸至吸附墊116的孔洞117,另—端則連接至主, 直此主管線連接至翻轉架UG外的真空源。如此,售 〜源開啟時,吸附塾116即可用來吸附基板。 先參2C#f知技射將二基板社㈣程圖。η 來承’習知技術之基板組立的流程是先用機械手臂Κ 朿承載基板5〇,射機械手臂1Q具有多個麵墊12,其= 4 1361126 以吸附基板^的背面52,而基板%的正面則形成有彩色據 光層54 〇接著’藉由機械手臂1〇將基板兄放置於吸附塾叫 上。然後’、開啟真空源,以藉由吸附墊116來吸附基板50的 者面52,並且將機械手臂1〇移開。 之後,靖參照圖2B,將翻轉架110翻轉180。,以使基板 50翻面。接著’藉由另—機械手臂2G的吸附塾22來吸附基 板50的背面52。之後,關閉真空源,並藉由機械手臂 基板50移走。With the advancement of liquid crystal display technology and the advantages of light weight and small size of liquid crystal display devices, liquid crystal display devices have been widely used in various electronic products such as digital cameras, personal digital assistants (PD A), and actions. Electric work, notebook computer (n〇teb〇〇k compUter) and flat thin TV. The liquid crystal display device comprises a liquid crystal display panel and a backlight module, wherein the liquid crystal display panel is composed of two substrates and a liquid crystal layer between the two substrates. In the process of assembling the two substrates, one of the substrates is first turned over by the flipping platform, and then the substrate is assembled. 1A and 1B are schematic top plan views of a conventional substrate flipping platform. Referring to FIG. 1A and FIG. 1B, the conventional substrate flipping platform 1 includes a flip frame 110 and a mounting frame 120, and the flip frame 11 is pivotally connected to the fixed ginger 120. A plurality of support tubes 114 are disposed on the surface 112 of the flip frame U0. Each of the support tubes 114 is provided with an adsorption pad 116 at the top end, and each of the adsorption pads "has a hole 117. In addition, the inside of the flip frame n〇 A plurality of pipelines (not shown) are provided, one end of each of the pipelines extends to the hole 117 of the adsorption pad 116 via the rotation of the inner wall, and the other end is connected to the main body, and the main line is connected to the vacuum outside the turnover frame UG. Therefore, when the source is turned on, the adsorption 塾116 can be used to adsorb the substrate. The first step is to use the 2C#f technology to shoot the two substrates (4). The process of assembling the substrate of the conventional technology is first used. The robot arm 朿 朿 carrier substrate 5 〇, the shooting robot arm 1Q has a plurality of face pads 12, which = 4 1361126 to adsorb the back surface 52 of the substrate ^, and the front side of the substrate % is formed with a color light layer 54 〇 then The robot arm 1放置 places the substrate brother on the adsorption bark. Then, the vacuum source is turned on to adsorb the face 52 of the substrate 50 by the adsorption pad 116, and the robot arm 1〇 is removed. 2B, flip the flip frame 110 180. to turn the substrate 50 over. The back surface 52 of the substrate 50 is adsorbed by the adsorption 塾 22 of the other robot arm 2G. Thereafter, the vacuum source is turned off and removed by the robot arm substrate 50.
然後,咕參照圖2C,將基板50移動至另一基板6〇的對 側中基板的正面形成有驅動電路層62,且塗佈有框膠 70而基板50的彩色滤光層與基板6〇的驅動電路層&相 對。接著’將基板5〇與基板6〇組立,並藉由框夥%來結合 基板50與基板60。 μ在習知技術中,由於設置於翻轉架丨1〇内部的管線是透過 主管線而連接至同—真空源,所以當真空源異常或是基板5〇 與吸附墊116的接觸面有微粒子時,容易導致吸附墊的吸 附力不足。如此,在翻轉基板5〇時容易產生破真空的情形, 因而導致基板50掉落。此不僅損失基板5〇,還需停止整個製 程來進行後續的清理動作,所以會浪費時間成本。 、 【發明内容】 本發明提供-種基板翻轉平台,以降低基板在翻轉 中掉落的機率。 以防止基板在翻轉的 本發明另提供一種翻轉基板的方法, 過程中掉落。 為達上述優點,本發明提出一種基板翻轉平台,其用以吸 附基板並翻轉基板。此基板翻轉平台包括固定架、翻&架與氣 5 1361126 流導引裝置。翻轉架樞接於固定架上,且翻轉架内部為中空。 翻轉架具有適於吸附基板的吸附面,且吸附面設有複數個第一 孔洞與複數個第二孔洞。氣流導引裝置包括第一管線單元與第 一管線單元。第一管線單元的一端伸入翻轉架内部並延伸至第 一孔洞,而第二管線單元的一端伸入翻轉架内部並延伸至第二 孔洞,且第一管線單元與第二管線單元彼此獨立、互不相通。 為達上述優點,本發明另提出一種基板翻轉平台’其包含 固疋架、翻轉架、複數個第一吸附勢、複數個第二吸附塾、第 一負壓源以及第二負壓源。翻轉架樞接於固定架上,第一吸附 墊與第二吸附墊呈矩陣且交替排列於翻轉架上。第一負壓源連 接於第一吸附墊’而第二負壓源連接於第二吸附墊。 為達上述優點,本發明提出一種翻轉基板的方法,其包含 下列步驟:首先,提供上述之基板翻轉平台與基板。接著,將 基板裝載於翻轉架上。之後,驅動第一負壓源,以使第—吸附 墊吸附基板。然後,18〇。翻轉翻轉架與基板。 θ在本發明之基板翻轉平台中,由於翻轉架是連接至不同的 負壓源,所以當其中一個負壓源所提供的負壓失效時,還可藉 由另一個負壓源所提供的負壓來吸附基板,如此可降其= 翻轉過程中掉落的機率。此外,本發明之基板的翻轉方法因使 f述之基板翻轉平台’所以可防止基板在翻轉的過程中掉 "為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉較佳實酬,並配合所_式,作詳細說明如 【實施方式】 ° 4^發明—實闕之—種基板翻轉平㈣俯視圖,圖 疋&圖3中R,線的剖面示意圖,而圖5是氣流導引裝置的 6 1361126 示思圖。睛參照圖3至圖5,本實施例之基板翻轉平台200是 用以吸附基板並翻轉基板。此基板翻轉平台2〇〇包括固定架 - 210與翻轉架220。翻轉架220樞接於固定架210上,且翻轉 、 架220内部為中空。翻轉架220具有適於吸附基板的吸附面 211,且吸附面211設有複數個第一孔洞222與複數個第二孔 /同223。此翻轉架220例如包括封閉框224與複數個中空柱 225。封閉框224與中空柱225的内部為中空,且中空柱225 連接於封閉框224。每一中空柱225的内部空間皆與封閉框2 2 4 φ 的内部空間相通,且上述之吸附面211例如是由這些中空柱 225之面向同一侧的表面所構成。此外,封閉框224具有轉軸, 此轉軸包括相對的二個樞接部226。此二個樞接部226位於封 閉框224的相對二側邊,且柩接於固定架21〇上。另外,每一 中工柱225设有第一孔洞222與第二孔洞223。每一中空柱225 的第一孔洞222與第二孔洞223例如是沿中空柱225的延伸方 向排列,且第一孔洞222與第二孔洞223係交替設置。 上述之基板翻轉平台200可更包括複數個支撐管,如複數 個第一支撐管230a與複數個第二支撐管230b。第一支撐管 230a的一端分別連接於一個第一孔洞222,而第二支撐管230b 的一端則分別連接於一個第二孔洞223,第一支撐管23〇a與 第二支撐管230b例如是沿中空柱225的延伸方向排列,且第 —支撐管230a與第二支撐管230b交替設置。此外,基板翻轉 平台200可更包括複數個吸附墊,如複數個第一吸附墊240a 與複數個第二吸附墊240b。第一吸附墊24〇a與第二吸附墊 240b分別具有一個第三孔洞242。第一吸附墊240a是套設於 第一支撐管B〇a的另一端,且第一吸附墊240a的第三孔洞242 是透過第一支撐管230a而與對應的第一孔洞222相通。第二 7 1361126 吸附墊240b是套設於第二支撐管230b的另一端,且第二吸附 墊240b的第三孔洞242是透過第二支撐管23〇b而與對應的第 . 二孔洞223相通。 • 承上述,第一吸附墊240a與第二吸附墊24〇b呈矩陣且交 • 替排列於翻轉架220上。更詳細地說,上述陣列的每一行中, 第一吸附墊240a與第二吸附墊240b係交替設置,且在上述之 陣列的每一列中,第一吸附墊240a與第二吸附墊24〇b係交替 設置。換言之,吸附面211上的第一孔洞222與第二孔洞223 φ 係王陣列排列,且在陣列的每一行中,第一孔洞222與第二孔 洞223係父替設置,在陣列的每一列中,第一孔洞222與第二 孔洞223係交替設置。此外,每一第一吸附整24〇a與第二吸 附墊240b具有一吸附墊直徑,且吸附墊直徑的範圍例如是介 於20公釐與32公釐之間。另外’相鄰第一吸附墊24〇a與第 二吸,附墊240b之間具有一最小距離ds,且此最小距離Ds的 範圍例如是介於12公分與29公分之間。相鄰第一吸附墊24〇a 之間具有一第一距離D1,且此第一距離D1大於最小距離Ds。 相鄰第二吸附墊240b之間具有一第二距離D2,且此第二距離 ® D2大於最小距離Ds。具體而言,第一距離D1的範圍例如是 介於35公分與45公分之間,而第二距離〇2的範圍例如介於 35公分與45公分之間。 本實施例之基板翻轉平台200可更包括一個第一負壓源 250a與一個第二負壓源250b,此第一負壓源25〇a與第二負壓 源250b例如為真空源。第一負壓源25〇a是連接於第一吸附墊 . 240a,而第二負壓源25〇b是連接於第二吸附墊240b。基板翻 轉平σ 200可更包括氣流導引裝置260,而第一吸附墊24〇a 與第二吸附墊240b是透過氣流導引裝置26〇而連接至第一負 8 1361126 壓源250a與第二負壓源250b。具體而言,氣流導引裝置26〇 包括第一管線單元262與第二管線單元264,其中第—吸附墊 .240a是透過第一管線單元262而連接至第一負壓源25〇a,且 - 第二吸附墊240b是透過第二管線單元264而連接至第二負壓 源250b。第一管線單元262的一端例如是透過第一控制閥27〇a 而連接至第—負壓源250a,另一端伸入翻轉架220内部且延 伸至第一孔洞222,並經由第一孔洞222與第一支撐管23〇a 而延伸至第一吸附墊240a的第三孔洞242。第二管線單元264 • 的一端例如是透過第二控制閥270b而連接至第二負壓源 250b,另一端伸入翻轉架22〇内部且延伸至第二孔洞223,並 經由第二孔洞223與第二支撐管23〇b而延伸至第二吸附墊 240b的第三孔洞242。此外,第一管線單元262與第二管線單 元264彼此獨立、互不相通。上述之第一控制閥27〇&與第二 控制閥270b例如為電磁閥。 上述之第一管線單元262包括第一管線262a、複數根第 二官線262b與複數根第三管線262c。第一管線262a的一端例 如是透過第一控制閥270a而連接至第一負壓源25〇a,另一端 • 伸入封閉框224内。每一第二管線262b的一端連接第一管線 262a,且另一端伸入一個中空柱225内,並沿中空柱225的延 伸方向延伸。第三管線262c位於第一支撐管23〇a内,且每一 第二管線262c的一端連接對應的第二管線262b,且經由第一 孔洞222,沿第一支撐管230a的延伸方向延伸至第一吸附墊 240a的第三孔洞242。此外,上述之第二管線單元264包括第 ' 四官線264a、複數根第五管線26仆與複數根第六管線264c。 第四管線264a的一端例如是透過第二控制闊27〇b而連接至第 二負壓源25Ob,另一端伸入封閉框224内。每一第五管線加牝 1361126 ΐΐί連接第四管線264a,且另—端伸人—個中空柱225内, 空柱225的延伸方向延伸。第六管線滅位於第 230b θ’且每一第六管線26如的一端連接對應的第五管 J祕,且經由第二孔洞223,沿第二支樓管230b的延伸方 向延伸至第二吸附塾鳩的第三孔洞242。另外,上 的内部例如為中空’而第一管線單元262與第: &線早兀264例如是經由此二個樞接部226 翻轉_内部。換言之,第一管線單元脱與第^ ,早=64可經由同一樞接部從的内部而伸入翻轉架22〇 ,疋、.二由不同樞接部226的内部而伸入翻轉架220内。 ,上述’第-官線262a例如為第—主幹真空軟管,每一 第二官線262b例如為-第—次枝真空軟管,而每—第三 6=如為末枝^軟管。這些第二管線臟例如是 < 亍而這些第二官線262c例如是彼此平行。此外,第 ==,例如為第二主幹真空軟管,每一第五管線鳩例 T 一第一次枝真空軟管,而每-第六管線264c例如是一第 j枝f空軟管。這些第五f線麟例如是彼此平行而這 二弟六官線264c例如是彼此平行。 喊之基板翻轉平台細中,用於吸附基板的第一吸 與第二吸附墊鳩拉接至不同的負壓源,所以當 原異常或是因吸附墊與基板的接觸面之間有微 ㈣壓源失效時’還可藉由另一負壓源所提 ί的機^〃吸喊板,此可降低基板在翻轉架22G翻轉時掉 t於本貫施例之基板翻轉平台期可僅藉由第一吸附塾 鐵或是僅藉由第二吸附塾纖來吸住基板,所以若第一吸 1361126 附墊240a或第二吸附墊24〇b的理論吸附力為w,且基板所需 的吸附力為F,則第一吸附墊24〇a或第二吸附墊24〇b的理論 吸附力W需大於或等於基板所需的吸附力F的二倍,即w ^ \ 2 F如此,§其中一個負壓源失效時,還可藉由另一負壓源 所提供的負壓來吸附基板。 承上述,上述第一吸附墊240a之任一或第二吸附墊240b 之任一的理論吸附力W = |P| xSx〇丨,其中p為第一負壓源25〇a 或第二負壓源250b所提供的負壓,s為所有第一吸附墊24〇a • 之任一個或所有第二吸附墊240b之任一個的面積❶在本實施 例中,理論吸附力W的範圍例如是介於24與39之間,負壓p 的範圍例如是介於-50千帕(kpa)與_8〇千帕之間,而面積s 的範圍例如是介於3平方公分與8平方公分之間。 此外,若基板的重量為]VI、所需的安全率為8,所有第一 吸附墊240a與第二吸附墊24〇b的總數量為N,則上述之基板 所需的吸附力F = (M/N)x8。在本實施例中,上述之基板所需 的吸附力F的範圍例如是介於9與丨丨之間,基板的重量M的 範圍例如是介於1〇〇與1〇5之間,而第一吸附墊240a與第二 • 吸附墊240b的總數量N的範圍例如是介於72與88之間。 下文將以一個實際的例子來說明本實施例之基板翻轉平 台200在其中一個負壓源失效時,仍可吸住基板。 若基板翻轉平台200之第一吸附墊240a與第二吸附墊 240b的總數量N為80,基板為玻璃基板,且其密度為2.69公 克/立方公分,其尺寸為220公分X250公分χθ.07公分,則基板 • 的重量M為10356.65公克,約為Η)ΐ·6牛頓,所以基板所需 的吸附力F等於10.16牛頓。換言之,每一第一吸附整240a 或每一第二吸附墊240b所需提供的吸附力需大於或等於1〇16 11 1361126 牛頓。 表一是吸附墊(即第一吸附墊240a與第二吸附墊240b) 之理論吸附力在不同參數下的數值,單位為牛頓(N)。 表一 吸附墊直徑 (mm) φ 13 φ 16 φ 20 φ25 φ3Ί φ 40 φ 50 吸附墊 (cm2) 面積 1.33 2.01 3.14 4.01 8.04 12.6 19.6 -85 11.3 17.1 26.7 41.7 68.3 107 167 -80 10.6 16.1 25.1 39.3 64.3 101 157 75 9.98 15.1 23.6 36.8 60.3 94.5 147 -70 9.31 14.1 22.0 34.4 56.3 88.2 137 負 壓 -65 8.65 13.1 20.4 31.9 52.3 81.9 127 (kPa) -60 7.98 12.1 18.8 29.5 48.2 75.6 118 -55 J32 丄U 17.3 27.0 44.2 69.3 108 -50 "F 6.65 10.1 15.7 24·6 40.2 63.0 96.0 -45 ---'—1 5.99 9.05 14.1 22.1 36.2 56.7 88.2 -40 ---—1 —5.32 8.04 12.6 19.6 32.2 50.4 78.4 如表一所示,若第一負壓源250a與第二負壓源250b所提 供的負壓P分別為-50千帕,且所有第一吸附墊240a之任一或 所有第二吸附墊240b之任一的吸附墊直徑為25公釐,面積S 為4.01平方公分,則上述第一吸附墊24〇a之任一或第二吸附 塾240b之任一的理論吸附力w等於24 6牛頓。Then, referring to FIG. 2C, the substrate 50 is moved to the front side of the opposite substrate of the other substrate 6A, and the driving circuit layer 62 is formed, and the masking glue 70 is coated and the color filter layer of the substrate 50 is bonded to the substrate 6〇. Drive circuit layer & relative. Next, the substrate 5A and the substrate 6 are assembled, and the substrate 50 and the substrate 60 are bonded by the frame %. μ In the prior art, since the pipeline disposed inside the flip frame 连接1〇 is connected to the same vacuum source through the main line, when the vacuum source is abnormal or there is fine particles on the contact surface of the substrate 5〇 and the adsorption pad 116 It is easy to cause insufficient adsorption force of the adsorption pad. Thus, when the substrate 5 is turned over, a vacuum is easily generated, and the substrate 50 is dropped. This not only loses the substrate 5 but also requires the entire process to be stopped for subsequent cleaning operations, which is a waste of time. SUMMARY OF THE INVENTION The present invention provides a substrate flipping platform to reduce the probability of a substrate falling during inversion. In order to prevent the substrate from being turned over, the present invention further provides a method of flipping the substrate, which is dropped during the process. To achieve the above advantages, the present invention provides a substrate flipping platform for absorbing a substrate and flipping the substrate. The substrate flipping platform includes a mounting frame, a turning frame, and a gas 5 1361126 flow guiding device. The flip frame is pivotally connected to the fixed frame, and the inside of the flip frame is hollow. The flip frame has an adsorption surface adapted to adsorb the substrate, and the adsorption surface is provided with a plurality of first holes and a plurality of second holes. The airflow guiding device includes a first pipeline unit and a first pipeline unit. One end of the first pipeline unit extends into the interior of the flip frame and extends to the first hole, and one end of the second pipeline unit extends into the interior of the flip frame and extends to the second hole, and the first pipeline unit and the second pipeline unit are independent of each other, They are not connected to each other. To achieve the above advantages, the present invention further provides a substrate inversion platform that includes a solid frame, a flip frame, a plurality of first adsorption potentials, a plurality of second adsorption ports, a first negative pressure source, and a second negative pressure source. The flip frame is pivotally connected to the mounting frame, and the first adsorption pad and the second adsorption pad are arranged in a matrix and alternately arranged on the flip frame. The first negative pressure source is coupled to the first adsorption pad and the second negative pressure source is coupled to the second adsorption pad. In order to achieve the above advantages, the present invention provides a method of flipping a substrate comprising the following steps: First, the substrate flipping platform and the substrate are provided. Next, the substrate is loaded on the flip frame. Thereafter, the first negative pressure source is driven to cause the first adsorption pad to adsorb the substrate. Then, 18〇. Flip the flip frame and the substrate. θ In the substrate flipping platform of the present invention, since the flip frame is connected to different negative pressure sources, when the negative pressure provided by one of the negative pressure sources fails, the negative pressure provided by the other negative pressure source can also be provided. Press to absorb the substrate, which can reduce the probability of falling during the flipping process. In addition, the method of inverting the substrate of the present invention can prevent the substrate from falling during the flipping process because the substrate is flipped over the substrate, so that the above and other objects, features and advantages of the present invention can be more clearly understood. The special offer is better, and it is described in detail with the formula, such as [Embodiment] ° 4^ Invention------------------------------------------------------------------------ Figure 5 is a 6 1361126 diagram of the airflow guiding device. Referring to Figures 3 to 5, the substrate flipping platform 200 of the present embodiment is for adsorbing a substrate and flipping the substrate. The substrate flipping platform 2 includes a holder - 210 and a flip frame 220. The flip frame 220 is pivotally connected to the mounting frame 210 and is turned over. The inside of the frame 220 is hollow. The flip frame 220 has an adsorption surface 211 adapted to adsorb the substrate, and the adsorption surface 211 is provided with a plurality of first holes 222 and a plurality of second holes / the same 223. The flip frame 220 includes, for example, a closed frame 224 and a plurality of hollow columns 225. The inside of the closed frame 224 and the hollow column 225 is hollow, and the hollow column 225 is connected to the closed frame 224. The inner space of each hollow column 225 is in communication with the inner space of the closed frame 2 2 4 φ, and the above-mentioned adsorption surface 211 is constituted, for example, by the surfaces of the hollow columns 225 facing the same side. In addition, the closed frame 224 has a rotating shaft, and the rotating shaft includes two opposite pivoting portions 226. The two pivoting portions 226 are located on opposite sides of the sealing frame 224 and are connected to the fixing frame 21A. In addition, each of the pillars 225 is provided with a first hole 222 and a second hole 223. The first hole 222 and the second hole 223 of each hollow column 225 are arranged, for example, along the extending direction of the hollow column 225, and the first hole 222 and the second hole 223 are alternately arranged. The substrate flipping platform 200 described above may further include a plurality of support tubes, such as a plurality of first support tubes 230a and a plurality of second support tubes 230b. One end of the first support tube 230a is respectively connected to one first hole 222, and one end of the second support tube 230b is respectively connected to a second hole 223, and the first support tube 23〇a and the second support tube 230b are, for example, along The hollow columns 225 are arranged in the extending direction, and the first support tube 230a and the second support tube 230b are alternately disposed. In addition, the substrate flipping platform 200 may further include a plurality of adsorption pads, such as a plurality of first adsorption pads 240a and a plurality of second adsorption pads 240b. The first adsorption pad 24a and the second adsorption pad 240b respectively have a third hole 242. The first adsorption pad 240a is sleeved on the other end of the first support tube B〇a, and the third hole 242 of the first adsorption pad 240a is communicated with the corresponding first hole 222 through the first support tube 230a. The second 7 1361126 adsorption pad 240b is sleeved on the other end of the second support tube 230b, and the third hole 242 of the second adsorption pad 240b is communicated with the corresponding second hole 223 through the second support tube 23〇b. . • In the above, the first adsorption pad 240a and the second adsorption pad 24〇b are matrixed and alternately arranged on the flip frame 220. In more detail, in each row of the array, the first adsorption pad 240a and the second adsorption pad 240b are alternately disposed, and in each column of the array, the first adsorption pad 240a and the second adsorption pad 24〇b Alternate settings. In other words, the first hole 222 on the adsorption surface 211 is aligned with the second hole 223 φ, and in each row of the array, the first hole 222 and the second hole 223 are arranged in a parent, in each column of the array. The first hole 222 and the second hole 223 are alternately arranged. Further, each of the first adsorption unit 24a and the second adsorption pad 240b has a suction pad diameter, and the adsorption pad diameter ranges, for example, between 20 mm and 32 mm. Further, the adjacent first adsorption pad 24a and the second suction, the attachment pad 240b have a minimum distance ds, and the minimum distance Ds ranges, for example, between 12 cm and 29 cm. There is a first distance D1 between the adjacent first adsorption pads 24A, and the first distance D1 is greater than the minimum distance Ds. There is a second distance D2 between adjacent second adsorption pads 240b, and the second distance ® D2 is greater than the minimum distance Ds. Specifically, the range of the first distance D1 is, for example, between 35 cm and 45 cm, and the range of the second distance 〇 2 is, for example, between 35 cm and 45 cm. The substrate inversion platform 200 of the present embodiment may further include a first negative pressure source 250a and a second negative pressure source 250b. The first negative pressure source 25A and the second negative pressure source 250b are, for example, vacuum sources. The first negative pressure source 25〇a is connected to the first adsorption pad 240a, and the second negative pressure source 25〇b is connected to the second adsorption pad 240b. The substrate inversion flat σ 200 may further include a gas flow guiding device 260, and the first adsorption pad 24〇a and the second adsorption pad 240b are connected to the first negative 8 1361126 pressure source 250a and the second through the air flow guiding device 26〇 Negative pressure source 250b. Specifically, the airflow guiding device 26 includes a first pipeline unit 262 and a second pipeline unit 264, wherein the first adsorption pad 240a is connected to the first negative pressure source 25A through the first pipeline unit 262, and - The second adsorption pad 240b is connected to the second negative pressure source 250b through the second line unit 264. One end of the first pipeline unit 262 is connected to the first negative pressure source 250a through the first control valve 27A, and the other end extends into the interior of the flip frame 220 and extends to the first hole 222, and is connected to the first hole 222 via the first hole 222. The first support tube 23〇a extends to the third hole 242 of the first adsorption pad 240a. One end of the second pipeline unit 264 is connected to the second negative pressure source 250b through the second control valve 270b, and the other end extends into the inside of the flip frame 22 and extends to the second hole 223, and is connected to the second hole 223 via the second hole 223. The second support tube 23〇b extends to the third hole 242 of the second adsorption pad 240b. Further, the first line unit 262 and the second line unit 264 are independent of each other and are not in communication with each other. The first control valve 27〇& and the second control valve 270b described above are, for example, solenoid valves. The first line unit 262 described above includes a first line 262a, a plurality of second official lines 262b, and a plurality of third lines 262c. One end of the first line 262a is connected to the first negative pressure source 25A through the first control valve 270a, and the other end is inserted into the closed frame 224. One end of each of the second lines 262b is connected to the first line 262a, and the other end extends into a hollow column 225 and extends in the extending direction of the hollow column 225. The third line 262c is located in the first support tube 23〇a, and one end of each second line 262c is connected to the corresponding second line 262b, and extends along the extending direction of the first support tube 230a to the first via the first hole 222. A third hole 242 of the adsorption pad 240a. Further, the second pipeline unit 264 described above includes a fourth quadruple line 264a, a plurality of fifth pipelines 26, and a plurality of sixth pipelines 264c. One end of the fourth line 264a is connected to the second negative pressure source 25Ob, for example, through the second control width 27〇b, and the other end extends into the closed frame 224. Each of the fifth pipelines is twisted 1361126 ΐΐί to connect the fourth pipeline 264a, and the other end extends into the hollow cylinder 225, and the extension pillar 225 extends in the extending direction. The sixth pipeline is located at the 230b θ′ and one end of each of the sixth pipelines 26 is connected to the corresponding fifth tube J, and extends along the extending direction of the second branch tube 230b to the second adsorption via the second hole 223. The third hole 242 of the crucible. Further, the upper portion is, for example, hollow, and the first line unit 262 and the &: line line 264 are, for example, inverted via the two pivot portions 226. In other words, the first pipeline unit is disengaged from the inside of the pivoting frame 22 from the inside of the same pivoting portion, and the second and second portions are extended into the flip frame 220 by the interior of the different pivoting portions 226. . The above-mentioned 'the first official line 262a is, for example, a first-thrinical vacuum hose, and each of the second official lines 262b is, for example, a -th-thick vacuum hose, and each -the third 6= is a hose. These second lines are, for example, < 亍 and these second lines 262c are, for example, parallel to each other. Further, the ==, for example, the second main vacuum hose, each of the fifth pipelines is a first branch vacuum hose, and each of the sixth pipelines 264c is, for example, a j-th hose. These fifth f-line linings are, for example, parallel to each other and the two squad lines 264c are, for example, parallel to each other. Shouting the substrate flipping platform, the first suction and the second adsorption pad for adsorbing the substrate are pulled to different negative pressure sources, so there is a slight difference between the original abnormality or the contact surface between the adsorption pad and the substrate. When the pressure source fails, the machine can also be sucked by another negative pressure source, which can reduce the substrate when the flip frame 22G is turned over, and can only borrow from the substrate flipping stage of the present embodiment. The substrate is attracted by the first adsorbed yttrium iron or only by the second adsorbed yttrium fiber, so if the theoretical absorption force of the first suction 1361126 pad 240a or the second adsorption pad 24 〇b is w, and the substrate is required If the adsorption force is F, the theoretical adsorption force W of the first adsorption pad 24〇a or the second adsorption pad 24〇b needs to be greater than or equal to twice the adsorption force F required by the substrate, that is, w ^ \ 2 F, § When one of the negative pressure sources fails, the substrate can be adsorbed by the negative pressure provided by another negative pressure source. In the above, the theoretical adsorption force W = |P| xSx〇丨 of any one of the first adsorption pads 240a or the second adsorption pads 240b, wherein p is the first negative pressure source 25〇a or the second negative pressure The negative pressure provided by the source 250b, s is the area of any one of all or all of the second adsorption pads 240b of the first adsorption pad 24〇a • In the present embodiment, the range of the theoretical adsorption force W is, for example, Between 24 and 39, the range of the negative pressure p is, for example, between -50 kPa and _8 kPa, and the range of the area s is, for example, between 3 and 8 square centimeters. . In addition, if the weight of the substrate is [VI], the required safety factor is 8, and the total number of all the first adsorption pads 240a and the second adsorption pads 24b is N, the required adsorption force of the substrate F = ( M/N) x8. In this embodiment, the range of the adsorption force F required for the substrate is, for example, between 9 and 丨丨, and the range of the weight M of the substrate is, for example, between 1 〇〇 and 1 〇 5, and the The total number N of one of the adsorption pad 240a and the second adsorption pad 240b is, for example, between 72 and 88. The substrate flipping platform 200 of the present embodiment will still be able to hold the substrate when one of the negative pressure sources fails in a practical example. If the total number N of the first adsorption pad 240a and the second adsorption pad 240b of the substrate inversion platform 200 is 80, the substrate is a glass substrate, and the density thereof is 2.69 g/cm 3 , and the size thereof is 220 cm X 250 cm χ θ.07 cm. , the weight of the substrate M is 10356.65 grams, which is about Η) 6·6 Newtons, so the required adsorption force F of the substrate is equal to 10.16 Newtons. In other words, the adsorption force required for each first adsorption integral 240a or each second adsorption pad 240b needs to be greater than or equal to 1〇16 11 1361126 Newtons. Table 1 is the value of the theoretical adsorption force of the adsorption pad (ie, the first adsorption pad 240a and the second adsorption pad 240b) under different parameters, and the unit is Newton (N). Table 1 Adsorption pad diameter (mm) φ 13 φ 16 φ 20 φ25 φ3 Ί φ 40 φ 50 Adsorption pad (cm2) Area 1.33 2.01 3.14 4.01 8.04 12.6 19.6 -85 11.3 17.1 26.7 41.7 68.3 107 167 -80 10.6 16.1 25.1 39.3 64.3 101 157 75 9.98 15.1 23.6 36.8 60.3 94.5 147 -70 9.31 14.1 22.0 34.4 56.3 88.2 137 Negative pressure -65 8.65 13.1 20.4 31.9 52.3 81.9 127 (kPa) -60 7.98 12.1 18.8 29.5 48.2 75.6 118 -55 J32 丄U 17.3 27.0 44.2 69.3 108 -50 "F 6.65 10.1 15.7 24·6 40.2 63.0 96.0 -45 ---'-1 5.99 9.05 14.1 22.1 36.2 56.7 88.2 -40 ----1 —5.32 8.04 12.6 19.6 32.2 50.4 78.4 As shown in Table 1 If the negative pressure P provided by the first negative pressure source 250a and the second negative pressure source 250b is -50 kPa, and any one of all or all of the second adsorption pads 240b of the first adsorption pad 240a is adsorbed. The pad has a diameter of 25 mm and an area S of 4.01 cm 2 , and the theoretical adsorption force w of either one of the first adsorption pads 24 〇 a or the second adsorption 塾 240 b is equal to 24 6 Newtons.
由於上述之第一吸附墊240a之任一或第二吸附塾24〇b之 任一的理論吸附力W為24.6,基板所需的吸附力F僅為 12 1361126 10.16,所以即使其中一負壓源失效,本實施例之基板翻轉平 台200仍可吸住基板。Since the theoretical adsorption force W of any one of the first adsorption pads 240a or the second adsorption 塾24〇b is 24.6, the required adsorption force F of the substrate is only 12 1361126 10.16, so even one of the negative pressure sources In failure, the substrate flipping platform 200 of the embodiment can still hold the substrate.
值得一提的是’理論吸附力W為24.6時,安全餘裕約為 2.4 (即24.6/10.16)倍,所以可使用雙真空源。依此類推,安 全餘裕大於3倍時可使用三真空源或雙真空源,例如使用吸附 墊直徑p為32公釐,且負壓為_4〇〜-85千帕,則吸附墊的理 論吸附力W可大於3倍的安全餘裕。安全餘裕大於4倍時可 使用四真空源、三真空源或雙真空溽,例如使用吸附墊直徑φ 為32公釐,且負壓為_5〇〜-85千帕,則吸附墊的理論吸附力 W可大於4倍的安全餘裕。因此,真空源的數目應小於安全餘 裕,安全餘裕最小為2,本發明並不對真空源的數目作其它的 限制。 因此,在另一實施例中,上述之基板翻轉平台2〇〇的吸附 面211可更設有複數個第四孔洞(圖未示),喊流導引裝置 260可更包括第二官線單元(圖未示),其一端伸入翻轉架 2口20内部並延伸至第四孔洞,且第—管線單元262、第二管線 單兀264與第三管線單元彼此獨立、互不相通。此外,吸附面 2U還可設有複數個第五孔洞(圖未示),而氣流導引裝置施 ,包括-第四管線單元(圖未示)’其一端伸入翻轉架22〇内 4並延伸至苐五孔洞’且第—管線單元如 管 264、第三管線單元與第四管線單元彼此獨立、Ϊ不/目^ —由於第二管線單元與第四管線單元與上述之第-管線單 線單元264相似,所屬技術領域中具有通常知 tit明書後當可明瞭,所以有關基板翻轉平台具有 第孔洞(甚至具有第五孔洞)與第三管線單元(甚至且有第 四管線單元)的實施例,將不_式說^ (甚至/、有第 13 1361126 圖6A至圖6C是本發明一實施例之一種翻轉基板的方法 之流程圖。請先參照圖6A,本實施例之翻轉基板的方法是先 - &供上述之基板翻轉平台200與基板80,接著將基板8〇裝載 - 於翻轉架220上。本實施例可藉由機械手臂30來承載基板8〇, 並將基板80放置於第一吸附塾240a與第二吸附墊240b上, 其中機械手臂30具有多個吸附墊32,其係用以吸附基板80。 之後’驅動第一負壓源250a,並開啟第一控制閥270a,以使 第一吸附墊240a吸附基板80,並將機械手臂30移開。 φ 接著’如圖6B所示’ 180。翻轉翻轉架220與基板80。 請參照圖6C ’本實施例之翻轉基板的方法可另包含切斷 或關閉f 一負壓源250a以使第一吸附墊24〇a不再吸附基板 80,其中切斷第一負壓源25〇a的方法例如是關閉第一控制閥 270a。接著,將基板8〇自翻轉架22〇上卸載。具體而言,本 實施例可藉由機械手臂40的吸附墊42來吸附基板。之後,切 斷或關閉第一負壓源250a,並藉由機械手臂4〇將基板80移 走。 上述之翻轉基板的方法可另包含驅動第二負壓源250b並 % 開啟第二控制閥27〇b,以使第二吸附墊240b吸附基板80。此 外,上述之翻轉基板的方法可另包含切斷或關閉第一負壓源 250a與第二負壓源250b其中之一,以使第一吸附墊24〇a與第 二吸附墊240b其中之一不再吸附基板8〇,之後將基板8〇自 翻轉架220上卸载。上述切斷或關閉第一負壓源25〇a與第二 負壓源250b其中之一的方法例如是有意地關閉第一控制閥 27(|a與第二控制閥270b其中之一,或第一負壓源25〇a與第二 負壓源250b其中之一或第一控制閥27〇a與第二控制閥27〇b 其中之一無意地或無預期地失效所致。 14 1361126 由於本實施例之翻轉基板的方法可同時藉由連接至不同 負壓源的第一吸附墊240a與第二吸附墊240b來吸附基板,當 其中一負壓源失效時,仍可藉由另一負壓源所提供的負壓來吸 附基板80,以防止基板80在翻轉的過程中掉落。 在本發明中’第一吸附塾240a與第二吸附塾24〇b的排列 方式(即第一孔洞222與第二孔洞223的排列方式)以及氣流 導引裝置260之管線的排列方式並不限定於圖3所示,以下將 另舉其他實施例來說明。It is worth mentioning that when the theoretical adsorption force W is 24.6, the safety margin is about 2.4 (ie 24.6/10.16) times, so a double vacuum source can be used. Similarly, when the safety margin is more than 3 times, a triple vacuum source or a double vacuum source can be used. For example, if the adsorption pad diameter p is 32 mm and the negative pressure is _4 〇 to -85 kPa, the theoretical adsorption of the adsorption pad is used. The force W can be greater than 3 times the safety margin. When the safety margin is more than 4 times, four vacuum sources, three vacuum sources or double vacuum ports can be used. For example, if the adsorption pad diameter φ is 32 mm and the negative pressure is _5 〇 to -85 kPa, the theoretical adsorption of the adsorption pad is used. The force W can be greater than 4 times the safety margin. Therefore, the number of vacuum sources should be less than the safety margin, and the safety margin is at least 2, and the present invention does not impose other restrictions on the number of vacuum sources. Therefore, in another embodiment, the adsorption surface 211 of the substrate flipping platform 2〇〇 may further include a plurality of fourth holes (not shown), and the shouting guiding device 260 may further include a second official line unit. (not shown), one end thereof extends into the inside of the flip frame 2 and extends to the fourth hole, and the first line unit 262, the second line unit 264 and the third line unit are independent of each other and are not in communication with each other. In addition, the adsorption surface 2U may also be provided with a plurality of fifth holes (not shown), and the air flow guiding device includes a fourth pipeline unit (not shown), one end of which extends into the flip frame 22 and Extending to the five-hole hole' and the first-line unit such as the tube 264, the third line unit and the fourth line unit are independent of each other, and the second line unit and the fourth line unit are connected to the first-line single line The unit 264 is similar, and it is known in the art that there is a general knowledge of the tith, so that the substrate flipping platform has the first hole (even with the fifth hole) and the third pipeline unit (even with the fourth pipeline unit). For example, there is a flow chart of a method for inverting a substrate according to an embodiment of the present invention. Referring first to FIG. 6A, the flip substrate of the present embodiment is first referred to. The method is to first-and-substrate the substrate flipping platform 200 and the substrate 80, and then load the substrate 8 onto the flip frame 220. In this embodiment, the substrate 8 can be carried by the robot arm 30, and the substrate 80 can be placed. At the first adsorption 塾 2 40a and the second adsorption pad 240b, wherein the robot arm 30 has a plurality of adsorption pads 32 for adsorbing the substrate 80. Then 'driving the first negative pressure source 250a and opening the first control valve 270a to make the first The adsorption pad 240a adsorbs the substrate 80 and removes the robot arm 30. φ then 'as shown in Fig. 6B' 180. The flip frame 220 and the substrate 80 are turned over. Referring to FIG. 6C, the method of flipping the substrate of the present embodiment may further include The negative pressure source 250a is cut or closed so that the first adsorption pad 24A does not adsorb the substrate 80, and the method of cutting off the first negative pressure source 25A is, for example, closing the first control valve 270a. Then, The substrate 8 is unloaded from the flip frame 22. Specifically, in this embodiment, the substrate can be adsorbed by the adsorption pad 42 of the robot arm 40. Thereafter, the first negative pressure source 250a is cut or closed, and the mechanical arm is removed. 4. The substrate 80 is removed. The method of flipping the substrate may further include driving the second negative pressure source 250b and opening the second control valve 27〇b so that the second adsorption pad 240b adsorbs the substrate 80. The method of flipping the substrate may further comprise cutting or turning off the first negative One of the source 250a and the second negative pressure source 250b is such that one of the first adsorption pad 24A and the second adsorption pad 240b no longer adsorbs the substrate 8A, and then the substrate 8 is unloaded from the flip frame 220. The above method of cutting off or closing one of the first negative pressure source 25A and the second negative pressure source 250b is, for example, intentionally closing one of the first control valve 27 (|a and the second control valve 270b, or One of the negative pressure source 25〇a and the second negative pressure source 250b or one of the first control valve 27〇a and the second control valve 27〇b is unintentionally or unexpectedly failed. 14 1361126 The method of flipping the substrate of the embodiment can simultaneously adsorb the substrate by the first adsorption pad 240a and the second adsorption pad 240b connected to different negative pressure sources, and when one of the negative pressure sources fails, the other negative pressure can still be used. The negative pressure provided by the source absorbs the substrate 80 to prevent the substrate 80 from falling during the flipping process. In the present invention, the arrangement of the first adsorption 塾 240a and the second adsorption 塾 24 〇 b (that is, the arrangement of the first holes 222 and the second holes 223) and the arrangement of the lines of the air flow guiding device 260 are not limited. As shown in FIG. 3, other embodiments will be described below.
圖7是本發明另一實施例之一種基板翻轉平台的第一吸 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖,圖 8是沿圖7的Π-Π’線與Π-!!’線的剖面示意圖。請參照圖7 與圖8,在本實施例中第一孔洞222排列成多列,而第二孔洞 223亦排列成多列,且第一孔洞222排列而成的這些列與第二 孔洞223排成的這些列係交替設置。換言之,第一吸附墊240a 排列成多列,而第二吸附墊240b排列成多列,且第一吸附墊 240a排列而成的這些列與第二吸附墊240b排成的這些列係交 替設置。 在本實施例中,氣流導引裝置包括第一管線單元261與第 二管線單元263。第一管線單元261包括一個第一真空導管 261a與複數根第一真空支管261b。第一真空導管261a伸入翻 轉架220内部,且延伸至第一孔洞222下方,而第一真空支管 261b位於第一支撐管230a内。這些第一真空支管261b的一 端連接至第一真空導管261a,另一端經由第一孔洞222沿第 一支撐管230a的延伸方向延伸至第一吸附墊240a。另外,第 二管線單元263包括一個第二真空導管263a與複數根第二真 空支管263b。第二真空導管263a伸入翻轉架22〇内部’且延 15 1361126 伸至弟一孔洞223下方。第二真空支管263b位於第二支撐管 230b内。第二真空支管263b的一端連接至第二真空導管 .263a,另一端經由第二孔洞223沿第二支撐管23〇13的延伸方 _ 向延伸至第二吸附墊240b。 • 更詳細地說,上述之第一真空導管261a包括一第一基段 265a與連接此第一基段265a的多個第一延伸段265b,且這些 第一延伸段265b的延伸方向與第一基段265a的延伸方向不 同。第二真空導管263a包括一第二基段267a與連接此第二基 % 段267a的多個第二延伸段267b。這些第二延伸段267b的延 伸方向與第一基段267a的延仲方向不同,且這些第一延伸段 265b與這些第二延伸267b段係交替設置。此外,第一基段265a 與第二基段267a相對,第一基段265a與第二基段267a沿一 第一方向A1延伸’而這些第一延伸段265b與這些第二延伸 段267b沿一第二方向A2延伸,且第一方向A1實質上垂直於 第二方向A2。 圖9是本發明另一實施例之一種基板翻轉平台的第一吸 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。請 參照圖9,本實施例之第一吸附墊24〇a與第二吸附塾240b的 排列方式與圖3相似,差別處在於氣流導引裝置。具體而言, 在本實施例中第一真空導管261a的第一基段265a與第二真空 導管263a的第二基段267a相對,且分別彎折成l形。第一基 段265a與第二基段267a係沿—矩形轨跡R設置,而第一延伸 段265b與第二延伸段267b係沿一預定方向A3延伸,且此預 定方向A3不垂直於矩形轨跡R的任一邊。具體而言,預定方 向A3與矩形轨跡之間所夾的銳角0丨可為45度。 圖10疋本發明另一貫施例之一種基板翻轉平台的第一吸 16 1361126 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。請 參照圖10’在本實施例中’第一真空導管261a的第一基段265a • 係沿矩形轨跡R之其中三邊彎折,而第二真空導管263a的第 • 一基段267a係部分或全部設置於矩形軌跡R内且彎折成u 形’且第二基段267a之相平行的兩邊係平行於第一基段265a 之相平行的兩邊。第一真空導管261a的第一延伸段265b與第 二真空導管263a的第二延伸段267b係位於矩形軌跡r内。第 一真空導管261a的第一延伸段265b例如是垂直於第一基段 會 265a ’而第二真空導管263a的第二延伸段267b例如是垂直於 第二基段267a。.第一吸附墊240a設置於第一真空導管261a 上方’而第二吸附墊240b設置於第二真空導管263a上方,且 第一吸附墊240a與第二吸附塾240b排成一陣列。 圖11是本發明另一實施例之一種基板翻轉平台的第一吸 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。請 參照圖11,在本實施例中,第一真空導管261a的第一基段265a 係沿矩形軌跡R之其中三邊彎折,而第二真空導管263a的第 二基段267a係設置於矩形執跡R内。第二基段267a包括平行 齡第一基段265a之其中兩邊的二平行段269a以及連接於這此平 行段269a之間的一連接段269b,其中連接段26%不平行且 不垂直於這些平行段269a,且第一真空導管261a的第一延伸 段265b與第二真空導管263a的第二延伸段267b係位於矩形 軌跡R内。第一吸附墊240a設置於第一真空導管261a上方, 而第二吸附墊240b設置於第二真空導管263a上方,且第一吸 附墊240a與第二吸附墊240b排成一陣列。 圖12是本發明另一實施例之一種基板翻轉平台的第一吸 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。請 17 1361126 參照圖12,在本實施例中,第一真空導管261a彎折形成具有 多個彎折處的螺旋狀,且第一真车導管261a之間有一螺旋狀 • 區域S。第二真空導管263a從位於螺旋狀區域S内的一端彎 • 折至位於螺旋狀區域S外的另一端’以形成具有多個彎折處的 • 螺旋狀,且第一真空導管261a與第二真空導管263a之彎折處 的彎折角度Θ2為90度。第一吸附墊240a設置於第一真空導 管261a上方’而第二吸附墊240b設置於第二真空導管263a 上方’且第一吸附墊240a與第二吸附墊240b排成一陣列。 寿 上述各實施例中,若第一孔洞222的數量與第二孔洞223 的數量相同’則第一真空支管261b的長度與第二真空支管 263b的長度可為相同’以避免不必要的真空損耗。此外,若 第一孔洞222的數量大於第二孔洞223的數量,則第一真空支 管261b的長度可小於第二真空支管263b的長度,亦可避免不 必要的真空損耗。 圖13是本發明另一實施例之一種基板翻轉平台之部分第 ,一孔洞與第二礼洞的排列方式的示意圖。請參照圖13,本實 施例之第一孔洞222與第二孔洞223的排列方式是在第一孔洞 • 222與第二孔洞223所排成的陣列之任一 3*3陣列中,當位於 3*3陣列的中心為第一孔洞222時(如陣列M1),此3*3陣 列Ml的周圍包括至少一個第一孔洞222。當第;孔洞223位 於3*3陣列的中心時(如陣列M2),此3*3陣列M2的周圍 包括至少一個第二孔洞223。需注意的是圖13中,陣列Ml、 M2僅為舉例之用,第一孔洞222與第二孔洞223的排 並不侷限於此。 圖14是本發明另一實施例之一種基板翻轉平台之第一孔 洞與第二孔洞的排列方式的示意圖。請參照圖14,在本實施 18 例中’以第—孔洞222與第二孔洞223所排成的陣列的幾何中 =^為原點定義出一直角座標系,使每一第一孔洞222與每一 一孔洞223分別具有一座標值。這些第一孔洞222的座標值 曰且這些第二孔洞223的座標值之和為零。需注意的 ^所^孔洞222與第二孔洞223的排列方式並不舰於圖 明已以較佳實施例揭露如上,_並_以限定 a ,本發明所屬技術領域中具有通常知識 ==和範圍内,當可作些許之更動與4,== 之保濩乾圍當視後附之申請專利範圍所界定者 【圖式簡單說明】 側視:二與圖汨是習知一種基板翻轉平台的俯視示意圖與 至圖2C是習知技術中將二基板組立的流程圖。 二是本發明一實施例之一種基板翻轉平台的俯視圖。 圖4是沿圖3中1-1,線的剖面示意圖。 圖5是氣流導引裝置的示意圖。 之流二从至圖6C是本發明一實施例之-種翻轉基板的方法 附墊是本實糊之—錄板轉平台的第1 附塾與第二吸附墊的排列方式以及氣流導Μ置的示意圖。 圖8是沿圖7的Π-n,線前_瓜,線的剖面示意圖。 糾執是本發明另—實施例之—種基板翻轉平台的第-吸 附塾”第二吸雜的排财式以及氣料引裝置的示意圖。 圖10是本發明另-實施例之一種基板翻轉平台的第—吸 附墊與第二吸雜_财;切及氣料料置的示意圖。 1361126 圖11是本發明另一實施例之一種基板翻轉平台的第一吸 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。 - 圖12是本發明另一實施例之一種基板翻轉平台的第一吸 _ 附墊與第二吸附墊的排列方式以及氣流導引裝置的示意圖。 • 圖13是本發明另一實施例之一種基板翻轉平台之部分第 一孔洞與第二孔洞的排列方式的示意圖。 圖14是本發明另一實施例之一種基板翻轉平台之第一孔 洞與第二孔洞的排列方式的示意圖。 I 【主要元件符號說明】 10、20、30、40 :機械手臂 12、22、32、42 :吸附墊 50、60、80 :基板 52 :背面 54 :彩色濾光層 62 :驅動電路層 70 :框膠 100、200 :翻轉平台 # 110、220 :翻轉架 112 :表面 114 :支撐管 116 :吸附墊 117:孔洞 120、210 :固定架 211 :吸附面 222 ··第一孔洞 223 :第二孔洞 20 1361126 224 :封閉框 225 :中空柱 226 :樞接部 230a ··第一支撐管 230b :第二支撐管 240a :第一吸附墊 240b :第二吸附墊 242 :第三孔洞 250a :第一負壓源 250b :第二負壓源 260 :氣流導引裝置 261、262 :第一管線單元 261a :第一真空導管 261b :第一真空支管 262a :第一管線 262b :第二管線 262c ··第三管線 263、264 :第二管線單元 263a :第二真空導管 263b :第二真空支管 264a :第四管線 264b :第五管線 264c :第六管線 265a :第一基段 265b :第一延伸段 267a :第二基段 21 1361126 267b :第二延伸段 269a :平行段 269b :連接段 270a :第一控制閥 270b :第二控制閥 A1 :第一方向 A2 :第二方向 A3 :預定方向 C:幾何中心 D1 :第一距離 D2 :第二距離 Ds :最小距離 Ml、M2 : 3*3 陣歹丨J 0 1 :夾角 02 :彎折角度 227 is a schematic view showing the arrangement of the first adsorption pad and the second adsorption pad of the substrate inversion platform and the airflow guiding device according to another embodiment of the present invention, and FIG. 8 is a line along the line Π-Π' of FIG. !!' Schematic diagram of the line. Referring to FIG. 7 and FIG. 8 , in the embodiment, the first holes 222 are arranged in a plurality of rows, and the second holes 223 are also arranged in a plurality of rows, and the columns and the second holes 223 are arranged by the first holes 222 . These columns are alternately set. In other words, the first adsorption pads 240a are arranged in a plurality of rows, and the second adsorption pads 240b are arranged in a plurality of columns, and the columns in which the first adsorption pads 240a are arranged and the columns in which the second adsorption pads 240b are arranged are alternately disposed. In the present embodiment, the airflow guiding device includes a first line unit 261 and a second line unit 263. The first line unit 261 includes a first vacuum conduit 261a and a plurality of first vacuum manifolds 261b. The first vacuum conduit 261a extends into the interior of the flip frame 220 and extends below the first aperture 222, while the first vacuum manifold 261b is located within the first support tube 230a. One end of these first vacuum manifolds 261b is connected to the first vacuum conduit 261a, and the other end extends through the first holes 222 in the extending direction of the first support tube 230a to the first adsorption pad 240a. Further, the second line unit 263 includes a second vacuum conduit 263a and a plurality of second vacuum manifolds 263b. The second vacuum conduit 263a extends into the interior of the flip frame 22 and extends 15 1361126 below the hole 223. The second vacuum branch pipe 263b is located inside the second support pipe 230b. One end of the second vacuum branch pipe 263b is connected to the second vacuum duct .263a, and the other end extends to the second adsorption pad 240b via the second hole 223 along the extending direction of the second support pipe 23〇13. In more detail, the first vacuum conduit 261a includes a first base segment 265a and a plurality of first extensions 265b connecting the first base segments 265a, and the first extension segments 265b extend in a first direction The direction in which the base segments 265a extend is different. The second vacuum conduit 263a includes a second base section 267a and a plurality of second extensions 267b that connect the second base section 267a. The second extensions 267b extend in a different direction than the extension of the first base section 267a, and the first extensions 265b are alternately disposed with the second extensions 267b. In addition, the first base segment 265a is opposite to the second base segment 267a, the first base segment 265a and the second base segment 267a extend along a first direction A1, and the first extension segment 265b and the second extension segment 267b are along a The second direction A2 extends, and the first direction A1 is substantially perpendicular to the second direction A2. FIG. 9 is a schematic view showing the arrangement of the first adsorption pad and the second adsorption pad of the substrate inversion platform and the airflow guiding device according to another embodiment of the present invention. Referring to FIG. 9, the arrangement of the first adsorption pad 24A and the second adsorption port 240b of the present embodiment is similar to that of FIG. 3, and the difference lies in the airflow guiding device. Specifically, in the present embodiment, the first base section 265a of the first vacuum duct 261a is opposed to the second base section 267a of the second vacuum duct 263a, and is bent into an l shape, respectively. The first base segment 265a and the second base segment 267a are disposed along a rectangular track R, and the first extension segment 265b and the second extension segment 267b extend along a predetermined direction A3, and the predetermined direction A3 is not perpendicular to the rectangular track. Either side of the trace R. Specifically, the acute angle 0 夹 between the predetermined direction A3 and the rectangular track may be 45 degrees. Figure 10 is a schematic view showing the arrangement of the first suction 16 1361126 pad and the second adsorption pad and the air flow guiding device of a substrate inversion platform according to another embodiment of the present invention. Referring to FIG. 10', in the present embodiment, the first base section 265a of the first vacuum duct 261a is bent along three sides of the rectangular locus R, and the first base section 267a of the second vacuum duct 263a is Part or all are disposed in the rectangular trajectory R and are bent into a u-shape and the two parallel sides of the second base segment 267a are parallel to the two parallel sides of the first base segment 265a. The first extension 265b of the first vacuum conduit 261a and the second extension 267b of the second vacuum conduit 263a are located within the rectangular trajectory r. The first extension 265b of the first vacuum conduit 261a is, for example, perpendicular to the first base section 265a' and the second extension 267b of the second vacuum conduit 263a is, for example, perpendicular to the second base section 267a. The first adsorption pad 240a is disposed above the first vacuum conduit 261a and the second adsorption pad 240b is disposed above the second vacuum conduit 263a, and the first adsorption pad 240a and the second adsorption buffer 240b are arranged in an array. Figure 11 is a schematic view showing the arrangement of the first and second adsorption pads of the substrate reversing platform and the airflow guiding device according to another embodiment of the present invention. Referring to FIG. 11, in the embodiment, the first base segment 265a of the first vacuum conduit 261a is bent along three sides of the rectangular track R, and the second base segment 267a of the second vacuum conduit 263a is disposed on the rectangle. Execution in R. The second base segment 267a includes two parallel segments 269a on either side of the parallel first base segment 265a and a connecting segment 269b connected between the parallel segments 269a, wherein the connecting segments are 26% non-parallel and not perpendicular to the parallel Segment 269a, and the first extension 265b of the first vacuum conduit 261a and the second extension 267b of the second vacuum conduit 263a are located within the rectangular trajectory R. The first adsorption pad 240a is disposed above the first vacuum conduit 261a, and the second adsorption pad 240b is disposed above the second vacuum conduit 263a, and the first adsorption pad 240a and the second adsorption pad 240b are arranged in an array. Figure 12 is a schematic view showing the arrangement of the first and second adsorption pads of the substrate inversion platform and the airflow guiding device according to another embodiment of the present invention. Referring to Fig. 12, in the present embodiment, the first vacuum duct 261a is bent to form a spiral having a plurality of bends, and a spiral shape region S is formed between the first real vehicle conduits 261a. The second vacuum conduit 263a is bent from one end located in the spiral region S to the other end 'outside the spiral region S to form a spiral having a plurality of bends, and the first vacuum conduit 261a and the second The bending angle Θ2 of the bend of the vacuum conduit 263a is 90 degrees. The first adsorption pad 240a is disposed above the first vacuum conduit 261a and the second adsorption pad 240b is disposed above the second vacuum conduit 263a and the first adsorption pad 240a and the second adsorption pad 240b are arranged in an array. In the above embodiments, if the number of the first holes 222 is the same as the number of the second holes 223, the length of the first vacuum branch pipe 261b and the length of the second vacuum branch pipe 263b may be the same 'to avoid unnecessary vacuum loss. . Further, if the number of the first holes 222 is larger than the number of the second holes 223, the length of the first vacuum branch pipe 261b may be smaller than the length of the second vacuum branch pipe 263b, and unnecessary vacuum loss may be avoided. FIG. 13 is a schematic diagram showing the arrangement of a portion, a hole and a second hole of a substrate flipping platform according to another embodiment of the present invention. Referring to FIG. 13, the first hole 222 and the second hole 223 of the embodiment are arranged in any 3*3 array of the array arranged by the first hole 222 and the second hole 223. *3 When the center of the array is the first hole 222 (such as the array M1), the periphery of the 3*3 array M1 includes at least one first hole 222. When the first hole 223 is located at the center of the 3*3 array (e.g., the array M2), the periphery of the 3*3 array M2 includes at least one second hole 223. It should be noted that in FIG. 13, the arrays M1 and M2 are for example only, and the rows of the first holes 222 and the second holes 223 are not limited thereto. FIG. 14 is a schematic diagram showing the arrangement of a first hole and a second hole of a substrate flipping platform according to another embodiment of the present invention. Referring to FIG. 14, in the embodiment 18 of the present embodiment, 'the geometry of the array arranged by the first hole 222 and the second hole 223 is defined as a origin coordinate system, so that each first hole 222 is Each hole 223 has a nominal value. The coordinates of these first holes 222 are 曰 and the sum of the coordinate values of these second holes 223 is zero. It should be noted that the arrangement of the holes 222 and the second holes 223 is not disclosed in the preferred embodiment. As described above, _ and _ define a, which has the usual knowledge in the technical field of the invention == and Within the scope, when some changes can be made and 4, ==, the scope of the patent application is defined by the scope of the patent application. [Simplified drawing] Side view: 2 and Figure 汨 is a kind of substrate flipping platform. FIG. 2C is a flow chart showing the assembly of two substrates in the prior art. The second is a top view of a substrate inversion platform according to an embodiment of the present invention. Figure 4 is a cross-sectional view taken along line 1-1 of Figure 3. Figure 5 is a schematic illustration of a gas flow guiding device. The flow of the second embodiment of the present invention is an embodiment of the present invention. The method of attaching the substrate is the arrangement of the first and second adsorption pads of the tablet-to-plating platform and the airflow guiding device. Schematic diagram. Figure 8 is a cross-sectional view taken along line Π-n of Figure 7, line _ melon, line. The tampering is a schematic diagram of a second gettering type and a gas guiding device of a substrate-inverting platform of the present invention. FIG. 10 is a substrate flipping of another embodiment of the present invention. Schematic diagram of the first adsorption pad and the second adsorption pad of the platform. 1361126 FIG. 11 is an arrangement of the first adsorption pad and the second adsorption pad of a substrate flipping platform according to another embodiment of the present invention. FIG. 12 is a schematic view showing the arrangement of the first suction-attachment pad and the second adsorption pad of the substrate inversion platform and the airflow guiding device according to another embodiment of the present invention. FIG. 14 is a schematic diagram showing the arrangement of a first hole and a second hole of a substrate flipping platform according to another embodiment of the present invention. FIG. 14 is a first hole and a second hole of a substrate flipping platform according to another embodiment of the present invention. Schematic diagram of the arrangement. I [Description of main components] 10, 20, 30, 40: Robotic arms 12, 22, 32, 42: Adsorption pads 50, 60, 80: Substrate 52: Back surface 54: Color filter layer 62: Drive power Layer 70: frame glue 100, 200: flip platform # 110, 220: flip frame 112: surface 114: support tube 116: adsorption pad 117: hole 120, 210: holder 211: adsorption surface 222 · · first hole 223: Second hole 20 1361126 224 : closed frame 225 : hollow column 226 : pivot portion 230 a · first support tube 230 b : second support tube 240 a : first adsorption pad 240 b : second adsorption pad 242 : third hole 250 a : First negative pressure source 250b: second negative pressure source 260: air flow guiding device 261, 262: first pipeline unit 261a: first vacuum conduit 261b: first vacuum manifold 262a: first pipeline 262b: second pipeline 262c Third line 263, 264: second line unit 263a: second vacuum duct 263b: second vacuum branch 264a: fourth line 264b: fifth line 264c: sixth line 265a: first base section 265b: first extension Section 267a: second base section 21 1361126 267b: second extension section 269a: parallel section 269b: connection section 270a: first control valve 270b: second control valve A1: first direction A2: second direction A3: predetermined direction C : geometric center D1: first distance D2: second distance Ds: minimum distance Ml, M2: 3*3歹丨J 0 1 : Angle 02 : Bending angle 22