TWI360284B - - Google Patents

Download PDF

Info

Publication number
TWI360284B
TWI360284B TW097138574A TW97138574A TWI360284B TW I360284 B TWI360284 B TW I360284B TW 097138574 A TW097138574 A TW 097138574A TW 97138574 A TW97138574 A TW 97138574A TW I360284 B TWI360284 B TW I360284B
Authority
TW
Taiwan
Prior art keywords
switch
winding
electrically connected
diode
output
Prior art date
Application number
TW097138574A
Other languages
English (en)
Other versions
TW201015837A (en
Original Assignee
Univ Hungkuang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Hungkuang filed Critical Univ Hungkuang
Priority to TW097138574A priority Critical patent/TW201015837A/zh
Priority to US12/389,085 priority patent/US8035361B2/en
Publication of TW201015837A publication Critical patent/TW201015837A/zh
Application granted granted Critical
Publication of TWI360284B publication Critical patent/TWI360284B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Description

1360284 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種昇壓裝置,特別是指一種直流轉 • 直流的昇壓裝置。 【先前技術】 . 直流轉直流的昇壓裝置在電力電子領域中具有相當重 • 要的地位,尤其目刖太以能電池和電動機車的使用曰益升 高,因此急需一種能將太陽能電池或電動機車内的蓄電池 • 組進行高效率轉換的昇壓裝置,以驅動相關的電器或電動 機車。 如圖1所示’習知一昇壓裝置包含:_電感u、—開 關12、一二極體13’及一輸出電容14。 該電感11具有一與一外部電源耦接的第一端及一第二 端❶該二極體13包括一電連接於該電感u之第二端的陽極 ^ ’及一陰極。 - 一負載與該輸出電容14並聯於該二極體13之陰極和 籲 地之間。 該開關12 —般來說是一種功率半導體開關,且包括— 電連接於該電感11之第二端的第一端、一接地的第二端和 一接收一外部控制信號的控制端,且基於該外部控制信號 ’該開關12可在導通狀態和不導通狀態間切換。 當開關12導通時,該外部電源供應電流至該電感11以 儲存電功率。 當開關I2不導通時,該二極體13被導通,進而該電 5 1360284—— 感11上儲存之電功率轉移至該輸出電容14和該負載上。 習知此昇壓裝置的缺點如下: (1) 當開關12不導通時,因為該開關12之兩端跨壓為 輸出電壓值’所以必須選擇耐壓大於或等於輸出電壓之功 率半導體開關,倘若採用金屬氧化物半導體場效電晶體 (MOSFET)元件,則因MOSFET的特性是含有較大的導通阻 抗’因此會導致較高之導通損失。 (2) 當該開關12導通瞬間,輸出端二極體丨3必須幾乎 以突波電流建立逆偏電壓,而此電流會流經該開關12,引 起嚴重之切換損失,以致於降低轉換效率。 (3) 昇壓比受限於該電感U,造成昇壓比過低,無法應 用於轉換太陽光電力上且也無法將電動機車内的蓄電池組( 如:鋰電池組)足夠昇壓以驅動電動機車。 如圖2所示,習知另一昇壓裝置包含:一耦合電感15 、一開關16、一二極體17,及一輸出電容18。 , 該輕合電感15包括一第一繞組151,及一第二繞組 152。且每一繞組151、152具有一極性點端和一非極性點鲁 端。該第一繞組151之極性點端連接於一外部電源,而該 第一繞組151的非極性點端與該苐二繞組152的極性點端 電連接。 ^ 該二極體17包括一電連接於該第二繞組152之非極性 點端的陽極,及一陰極。 一負裁與該輸出電容18並聯於該二極體17之陰極和 地之間。 = 6 1360284 〜開關16包括-電連接於該該第二繞組i52之極性點 ^的一端、-接地的第二端和—接收—外部控制信號的控 制端,且基於該外部控制信號,該開關16可在導通狀难和 不導通狀態間切換。 當開關導通時,該外部電源提供電流使該第一繞組 151激磁以儲存電功率’此時二極體17逆偏截止。當開關 16不導通時’該二極體17被導诵,推;人 慨等逋,進而該耦合電感15上 儲存之電磁能量,藉由第二繞組152轉
待移至該輸出電容18 和該負載上。 習知此昇壓裝置的缺點如下:
因為開關16之切換瞬間電流的高變化率,所以只要變 壓器存在漏感就會造成突波電壓,其將直接反映在該開關 16兩端’導致該關16會過壓而損壞,必須額外再加裝緩 震電路以消耗其能量,且低壓側(靠近外部電源的那一側)因 具有高電流’目此會產生較高的導通損失,導致轉換效率 被降低。且昇壓比受限於隨比例,目此昇壓比也無法提 高,因而也無法應用於轉換太陽光電力或電動機車内。 【發明内容】 因此,本發明之目的,即在提供一種具高昇壓比和高 轉換效率且能保護開關的昇壓裝置。 該昇壓裝置包含: 一變1器,具有一第一繞組、一第二繞組、一第三繞 組,及一第四繞組,且每一繞組具有一極性點端和一非極 性點端,該第一繞組之極性點端和該第三繞組的非極性點 7 1360284 端與該外部電源電連接’而該第—繞組的非極性點端與該 第二繞組的極性點端電連接,該第三繞組的極性點端與該 第四繞組的非極性點端電連接,其接線方式為非隔離架構 ’近似自麵變墨器昇壓連接方式,故本專利為一種自輕型 高壓電路; 一輸出電容,具有一第—端和一接地的第二端,且其· 兩端的跨壓為該輸出電壓; 一第一輸出二極體,且右 如斗吐 ^ m ,、有—與該第二繞組之非極性點 4電連接的陽極,及__盘a. Λ 及興該輸出電容之第一端電連接的险鲁 極; w 一第一輸出二極體,具有—金兮, ^ 與該第四繞組之極性點端 電連接的陽極,及_ jj ^ . ㈣&與該輸出電容之第-端f連接的陰極 一第一開關,具有一與該第 的第一端和一接地的第二端,且 態間切換; 一第二開關,具有一與該第 接的第—端和-接地的第二端, 狀態間切換; 二繞組之極性點端電連接 可在導通狀態和不導通狀 * 四繞組之非極性點端電連 且可在導通狀態和不導通 導中,該二開關實質上是呈交互導通,但當任 將由導通狀離等逋,但當任一開關 以使在切換::換成不導通狀態時’另-開關會先導通 、β兩開關的導通期間有部分重疊; 弟一切換電路,且古 該第-輪出-極體之陽:換地電連接或不電連接 -極體之%極的第—端,以及一接地的第二端 8 1360284 ;及 -第二切換電路,具有—可切換地電連接於該第二輸 出二極體之陽極或該第二開關之第一端的第一端,以及— 接地的第二端; 當該第-開關導通且第二開關不導通時,該第—切換 電路之第-端電連接於該第—輪出二極體之陽極,且_ 二切換電路之第一端不電連接於該第二輸出二極體之陽極 ) ❿ 當該第-開關不導通且第二開關導通時,該第二切換 電路之第-端電連接於該第二輸出二極體之陽極,且、 :切換電路之第—端不電連接於該第—輸出二極體之陽極 當該第-、第二開關皆導通時,該第 一端與該第二切換電路之第—端分別不電連接於ίΓί 出二極體之陽極與該第二輸出二極體之陽極/ 輸 t發明之功效在於因為使用兩個對稱性電路 導通貝任週期合計超過100%,所以 开1關 制低壓側因具有高電流所產生的導通損失效分散電流,抑 流傳送大部分之電能,達到高輪二失二利用感應電 成本。 鐵-之體積,便於製造且降低 【實施方式】 有關本發明之前述及其他技術内 以下配合參考圖式之一個較佳實施例的詳=與功效,在 j π啐細說明中,將可 9 1360284-- 清楚的呈現》 一如圖3所示,本發明昇壓裝置之較佳實施例適用於將 一外部電源的直流輸入電壓昇壓成一直流的輸出電壓,包 含丄-變壓器2、-第一開關Q1、一第二開關Q2、一輸出 電容C1、一第一切換電路3、一第二切換電路4、一第一昇 壓電容C3、一第二昇壓電容C5、一第一輸出二極體D3 , 及一第二輸出二極體D6。 該變壓器2包括四個繞於一鐵蕊(圖未示)上的繞組,分 別是一第一繞組L1 '一第二繞組L2、一第三繞組L3,及 一第四繞組L4,其中匝數比依序為丨:N:} :N。且每一繞組 LI、L2、L3、L4具有一極性點端和一非極性點端。該第一 繞組L1之極性點端和第三繞組L3的非極性點端與該外部 電源電連接,而該第一繞組L1的非極性點端與該第二繞組 L2的極性點端電連接,該第三繞組L3的極性點端與該第四 繞組L4的非極性點端電連接。 該第一開關Q1具有一與該第一繞組L1之非極性端電 連接的第4、一接地的第二端和一接收一外部控制信號 的控制端,且基於該外部控制信號,該第一開關Q1可在導 通狀態和不導通狀態間切換。 該第二開關Q2具有一與該第三繞組L3之極性端電連 接的第一端、一接地的第二端和一接收另一外部控制信號 的控制端,且基於該另一外部控制信號,該第二開關q2可 在導通狀態和不導通狀態間切換。該二開關(Q1、Q2)實質 上呈交互導通,也就是說,其中—開關(Q1、Q2)會先導通 10 1360284 一段期間,然後換另一開關(Q1、Q2)導通一段期間,但值 得注意的是,當其中一開關(Q1、Q2)將由導通切換成不導 通時另一開關(Q1、Q2)會先導通,以使兩開關(Ql、Q2) 的導通期間會有部分重疊,因此兩開關(Q1、(^2)導通的責 任週期(duty cycle)超過1〇〇%。且在本實施例中,該第一開 關Q1和該第二開關Q2具有相同的責任週期,例如,皆為 60% 〇
5玄第二繞組L2之非極性端依序與該第一昇壓電容C3 、該第一輸出二極體D3和該輸出電容ei串接到地,且該 輸出電容C1的跨壓即是經過此昇壓裝置昇壓後的輸出電壓 。而該第一輸出二極體D3具有一與該第一昇壓電容C3電 連接的陽極,及—與該輸出電容C1電連接的陰極。 该第四繞組L4之極性點端依序與該苐二昇壓電容c5 、該第二輪出二極體D6和該輸出電容C1串接到地,且該
^二輸出二極體D6具有—與該第二昇Μ電容C5電連接的 陽極,及一與該輸出電容(:丨電連接的陰極。 软罘一切換電路 ,Μ夂一接地的第一娜 ’該第—端可切換地電連接到該第—輪出二極體m之陽極 ,或可切換地電連接到該第—開關Q1之第—端,此外,且 第一端也可切換成*與第-輪出二極體D3之陽極或第一開 關Q1之第一端電連接。 該第一切換電路3包括:―坌 > 第一柑制二極體D1、一第 —充電二極體D2及一第一益生丨兩_ 及弟推制電容C2。該第一箝制二極 體D1具有一陰極及一電連接 次乐開關Q1之第一端的 11 +360284 陽極。該第一充電二極體D2具有一與該第一輸出二極體 D3之陽極電連接的陰極及一與該第一箝制二極體ο〗之降 極電連接的陽極。該第一箝制電容C2電連接於該第一箝制 二極體D1之陰極與地之間。當該第一箝制二極體〇1導通 且該第一充電二極體D2不導通時,該第一切換電路3之第 一端切換成與該第一開關Q1之第一端電連接;當該第—箝 制一極體D1不導通且該第一充電二極體D2導通時,該第 一切換電路3之第-端切換成與該第一輸出二極體出之陽 極電連接;當該第一箝制二極體m $導通且該第一充電二 極體D2也不導通時,該第一切換電路3之第一端切換成不 與該第一開關Q1或該第一輸出二極體D3電連接。 該第二切換電路4具有一第一端以及一接地的第二端 ,該第-端可切換地電連接到該第二輸出二極體加之陽極 ’或可切換地電連接到該第二開關Q2之第—端此外,复 第二端也可切換成不與該第二輸出二極體〇6之陽極或該第 二開關Q2之第一端電連接。 該第二切換電路4包括:-第二箝制二極體D4、一第 :充電二極體D5及一第二箝制電容C4。該第二籍制二極 e D4具有-陰極及一電連接於該第二開關w之第—端的 :極。該第二充電二極!t D5具有一與該第二輸出二極體 6之陽極電連接的陰極及一與該第二籍制二極體以之陰 極電連接的陽極。該第-絡制堂—^ _ 該第一柑制電谷C4電連接於該第二箝制 ^體D4之陰極與地之間。當第二㈣二極體D4導通且 充電二極體D5不導通時,該第二切換電路4之第一 12 上北0284 鸲切換成與該第二開關以之第一 _ 鳊電連接;當該第二箝制 —極體D4不導通且該第二充電-禾 兄电—極體D5導通時,該第二 刀換電路4之第一端切換成愈該第_ /、茨弟一輪出二極體D0之陽極 電連接;當該第二箝制二極體D4導 等通且該第二充電二極 體D5也不導通時,該第二切換 罨路4之第一端切換成不與 。弟二開關Q2或該第二輸出二極體D6電連接。 值得注意的是,該第-繞組L1、該第二繞组U、該第 -昇壓電容C3、該第一輸出二極體D3、該第一開關…及 該第-切換電路3形成的部分與該第三繞組u '該第四达 組L4'該第二昇麼電容C5、該第二輸出二極體D6、該ί 二開關Q2及該第二切換電路4所形成的部分實質上是對稱 設置的。 參閱圖4’依據該二開關Q1、Q2的切換,此昇壓裝置 會在六種模式下作動’以下分別針對每—模式進行說明。 且圖4中的κ2參數分別代表該第一開關qi之控制端的 電壓、該第二開關Q2之控制端的電壓、參數代表該變壓 器2之激磁電流、、分別代表流過該第—繞组 L1的電流、流過該第二繞組L2的電流、流過該第三繞植 L3的電流、流過該第四繞組L4的電流、、參數分別代 表流過該第-開關Q1的電流、該第一開關Qi之兩端的電 壓,bk參數分別代表流過該第二開關Q2的電流、該第 二開關Q2之兩端的電壓。 模式一(時間:K): 參閱圖5 ’在此模式一下,該第一開關Q1已導通一段 13 «60284 時間且該第二開關Q2不導通。且圖5中標示出在此模弋一 下’電流路徑的走向。而圖5中的Ά等參數分別代表 第一繞組L1的漏感、該第三繞組L3的漏感,且以下為了 方便說明’導通的二極體(在此模式為:第—充電二極體= 和第二輸出二極體D6)被塗黑,且不導通的開關(在此模式 為:第二開關Q2)以虛線表示,並忽略二極體的導通電壓。 在此模式一下,主要進行的動作有第一昇壓電容c3進^充 電且第二昇壓電容C5進行放電。 一、第一昇壓電容C3進行充電: 外部電源(電壓為心)提供電流使該變壓器i之該第一妗 組L1激磁,而產生一感應電壓心,且依照匝數比感應電^ 至其他三繞組⑹⑴^因此第二繞組^和第四繞組 L4上的感應電壓為,第三繞組L3上的感應電壓為匕, 所有繞組(LI、L2、L3、L4)的電壓在極性點端處為正。 其中,該第二繞組L2(感應電壓等同於#經由該第一 開關Q1串聯該第一箝制電容C2(電壓等同於2匕,詳細見模 式一)經由該第一充電二極體D2對該第一昇壓電容C3充電 至電壓為。 二、第二昇壓電容C5進行放電: 由於兩個開關(Ql、Q2)導通責任週期相同,且對稱性 疋件具有相同之特性,第二昇壓電容C5之電壓等於第—昇 壓電容C3之電壓(電壓等同於#心+2心),詳細見模式三、四 〇 由該外部電源(電壓為匕)、該第三繞組L3(感應電壓 14 1360284 、該第四繞組L4(感應電壓等同於·w),及該第二昇壓電容 C5(電壓等同於經由該第二輸出二極體〇6形成一 串聯的供電路徑,使輸出至該輸出電容ci的電壓為 vin + Vin + NV,n + NVin + 2Vm = VIN (4 + 2N) 整個昇壓倍率為 G = Vh/ Vin =4 + 2Λ^ 模式二(時間:: 如圖6所示,在模式二下,該第—開關Q1處於不導通 前的狀態且該第二開關Q2開始導通。圖6中標示出在此模 式二下,電流路徑的走向,且在模式二中,沒有二極體導 通0 卜因為第二開關Q2導通,所以會將該第三繞組L3和該 第且L4連接%的電壓拉下至零電位,因此輸入電壓和 第三繞組L3上的感應電壓(‘—(—^卜2。)會全部跨在第三繞 组L3之漏感^上,因此該第三繞組u之電流㈣上升斜 率關係式為 dijdt = iyw丨 Lki 由於&值遠小於激磁電感,因此該第三繞組u之電流 L迅速爬升對該第三繞組L3之漏感心充電,第一開關Q1 持、Λ導通,使得該第一繞组L1感應能量全部傳該第三繞組 L3 ’因此,該第一繞組L1電流微幅上升,而流經該第二繞 組L2與該第四繞組Η之電流(L、D下降為零。 模式三(時間:: 如圖7所示,在此模式三下,該第一開關Q1不導通且 15 1360284— “第_開關Q2持續導通,且圖7中標示出在此模式下,電 流路徑的走向,且在模式三中,有三個二極體導通,分別 是該第一箝制二極體D1、該第一輸出二極體D3,及該第二 充電一極體D5。此時可分成三個路徑操作: 一、釋放漏感能量操作: 該第-開關Q1不導通時,其兩端電壓瞬間上升,並使“ 該第—箝制二極體m順偏導通,該第一開關0之電流的 急遽下降斜率將使得第—繞組u之漏感^的電壓大幅提高 C、第㈤關Q1連接處之電壓極性為正),由於第—繞組[i · =漏感的電流不可瞬間中斷,因此該第一繞組Li之漏感電 壓(等同於。)_聯該外部電源(電壓透過該第一箝制二極 體D1導通路徑,對該第一繞組u和該第-箝制電容C2it 行充電(且第一箝制電容C2電壓充電至2心)。 此時該第一箝制電容C2不僅可提供該第一繞組乙丨之 漏感心續流路徑以及吸收來自該第一繞組L1之激磁電流。λ 月b量’同時其電壓等於第—開關q!兩端跨壓,可以抑制該 vei = FC2=2Fw=F///(2 + iV) 第二昇壓電容進行充電: 第開關Q1之突波電壓,達到電壓籍制功能,因此可以得 知S玄第一開關Q丨所承受電壓%為 ⑻ 該第二繞組L3之漏感心結合該外部電源,開始將能量 釋放給第二繞組&,並因此感應到其他繞組(L i、L2、l句以 產生電流,該第四繞組L4經由該第二開關Q2串聯該第二 柑制電谷C4,經由該第二充電二極體D5對該第二昇壓電 16 l^0U284 容C5充電 一 、 第-昇壓電容進行放電: 兩串如的第一繞組Ll和第二繞組L2 ’串聯該第一昇壓 電谷C 3經由該第一給 φ _上 輪出一極體D3供電至該輸出電容ci。 模式四(時間:丨3〜^ : 如圖8所不,在此模式下,該第一開關+導通 第二開關Q2已導诵一 吐Ββ 等通奴時間。且圖8中標示出在此模式下 ,電流路徑的走向,且在^ / 、飞下 立在柄式四中’有二個二極體導通, 刀別疋。玄第一輸出二極體D3和該第二充電二極體D5。當 變壓=1之激磁電流‘降為零時,開始進入本模式,此: 該第「繞組U之漏感、能量已完全釋放,該變 電流^轉向,改由哕坌-法& 截秘 宙°亥第二繞組L3迴路激磁,因此該第— 制二極體D1逆偏不導通。 該第三繞組L3所·吝/t 4 r+、rfc 八㈣处θ 戶斤產生之感應電流’透過鐵蕊分成兩部 刀傳遞且如同對稱於模式—的方式運作: 第四繞組乙4感應電壓(等同於 二箝制電容C4繼嬙糾·^哲 曰 弟 繼續對该第二昇壓電容c
於 NVW+2VW。 电 i 寺 R 第二部分則如模式三路徑,感 細T〗知笛认 汉應其他兩串聯的第—繞 ,-且 和第—繞組L2,串聯該第一戽厭帝a p 出電容Cl。 …#塵電容。供電至該輸 模式五(時間:: 如圖9所示,在此模式下,該第 前的狀態,而今第_ηι弟-開關以處於不導通 该第一開關Q1已開始導通,且沒有二極體導 17 ir^002S4— 通 因其工作原理與模式二實質上對稱,故在此不再贅 述 模式六(時間:K): 如圖Π)所示,在此模式下,該第二開關㈣導通且 1開關Q1持續導通。其卫作原理與模式三對稱,可分 成二個路徑操作: 其一為當該第二開關ο 一。 Q不導通時,該第二開關Q2之 兩=鱗間上升,並迫使該第二籍制二極體04順偏導通 雪二第二繞組L3之漏感U壓(等同於y串聯該外部電 m 柑制一極體D4,對該第三繞組L3和 im容c4進行充電(第二㈣電容C4的電壓充電 且藉由該第二籍制電容以吸收該第三繞组以之 漏^的、,流能量’以箝制該第二開關以之兩端跨 ,因此可以得知該第二開關 (Ql) 。 開關Q2之兩端所承受電壓(。為% 其二為該第二繞組L2經由兮·笛Ba 箝制電容C2,經由第—充電極;Γ開關Qi串聯該第-充電。 第充電-極體D2對第-昇壓電容C3 :三為兩串聯的第三繞組。和第四繞組 二昇壓電容C5經由該第二輸出 -第 容C!。 蚀體D6供電至該輸出電 當變壓器2之激磁電流⑹再度降 重新對該第一繞組L1數磁時,則回到模式_,一電源 實驗結果: 、工 。 18 如圖11〜18所示’當外部電源為3 7V鋰電池,輸出端 為36V電壓與3_功率時,各元件波形的狀態。 圖11為該第一開w Q1之電壓(vei)和電流(g波形,電 【甜制在8V左右’約為輪人f源之兩倍電壓,導通時具有 柔性切換(soft switch)特性,搭配適當的漏感與重疊導通責 任週期控制’ 流呈現類似方波形狀,且因導通責任週期 回,有效電流值較低,因此切換損失與導通損失皆可有效 降低。 圖12為該第一開關Q1和該第二開關Q2之兩端的電壓 (¾ ,¾)波形,部分時間為兩電壓值同時為零伏特,此乃重 疊導通時域。 圖13為該第一繞組L1和該第二繞組之電流(^, y)波形,由波形可觀察,因為該第一繞組u仍須包含傳遞 感應至該第三繞組L3和該第四繞組L4之電流,所以該第 /繞組L1之電流遠高於該第二繞組l2之電流乘以匝數比 之值。 圖14為該第一充電二極體D2之電壓(v02)和電流(z〇2)波 形,電壓箝制在30V左右,所以可以使用低導通電壓之蕭 基一極體(Schottky diode)。 圖15為該第一輸出二極體D3之電壓(%)和電流(心)波 形,電壓也同樣箝财30V左右,逆向恢復電流抑制在很 小的範圍。圖16顯示該第一充電二極體D2和該第一輸出 二極體D3具有電壓相互箝制功能,且兩端最高跨壓低於輸 出電壓。 19 1360284 如圖17所示’為避免、;勇泉電流(inrush current)過高, 該第一昇壓電容C3與該第二昇壓電容C5設計低等效串聯 電阻(Equivalent Series Resister,ESR)與較小容量之容值, 因該第一昇壓電容C3之容值小,所以電壓(〜)漣波較高, 配合漏感限制電流的爬升率,可以有效降低電流(之峰值 ’減少電容發熱量》 圖18為該第一輸出二極體D3和該第二輸出二極體 之電μ波形(與,其電流波形相加即為本架構之輸出電 流,由相加電流波形分析,大部分時間皆有電流輸送到高 疋的輸出端,因此可以降低該輸出電容之容量。 圖19為貫測輸出負載特性,負載從5〇w升至25〇w, 再卸載至50W,輸出人電壓變動情形。由波形顯示,輸入 有些許變動,但輸出電壓影響不冑,驗證本計畫之調 節能力,可以應付瞬間負載劇烈變化。 •圖20所不,為應用於本計畫設計電路之實測轉換; 会率圖其中,M電池模組採用全並聯、兩模组串聯與三;i 串如之組成二種輸入電源,該輸入電源之三種電壓分,
:3.7V、7.4V與U.1V,所對應之輸出電屋分別為36VD 雷riDC &11GVDC。於相同輸出功率條件下測試,輸/ ’電流越小,所流經之元件料通損失越小,g 7 4νΓ的轉換效率,同時最大輸出功率可以提高,尤其 電塵測試轉換效率皆可高於9°%,三種 。 之最尚輸出功率與轉換效率分別約為2kw與95% 20 1360284 综上所述’本發明昇壓裝置具有以下功效: (一) 因為使用兩個對稱性的電路且開關導通責任週期合 計超過1GG%’所以可以有效分散電流,抑制低側因^ 高電流所產生的導通損失,器具雙向磁路可以降低 變壓盗鐵蕊之體積,且利用感應電流傳送大部分之電能可 以使輸出功率高於習知的耦合電感架構,又充分利用少量 激磁電流能量以繼續昇壓。 (二) 所有開關與二極體皆具有電壓箝制效能,因為小於 輸出電壓’不需加裝緩震電路’可減少電路複雜度和成本 ’且有助於提高轉換效率。 (三) 使用重疊導通責任週期控制模式’藉由提早觸發 開關導通提供漏感電流,並轉換成昇壓能量,且漏感在該 二開關(Q1、Q2)剛導通時,提供其所需的電流,而使該二 開關(Qi、Q2)不需從電路中没取其他電流,具有柔性㈣ 特性,且在低壓條件下操作,達到降低切換損失。 (四) 該二開關(Q1、Q2)箝制在輸入電屋兩倍,因此可以 採用低壓低導通損《M〇SFET開關,大幅減少低壓側高電 流所造成之導通損失。 (五) 本發明之昇壓比為4+π,遠超過阻數比之兩倍,並 超過各種昇壓裝置之昇壓比例,應用的範圍更廣。 (六) 因為該二開關(Q1、Q2)必須承受的最大耐壓僅為 輸入電壓之兩倍電壓,且實驗結果,昇麗倍率可達十倍以 上,又同時兼顧高效率轉換,所以適用於太陽能電池或電 動機車荨眾多應用上。 21 Ή6Θ284- 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範園及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是習知一昇壓裝置的電路圖; 圖2是習知另一昇壓裝置的電路圖; 圖3是本發明之一較佳實施例的電路圖; 圖4是本發明之該較佳實施例的時序圖; 圖5是本發明之該較佳實施例的電路圖,說明在模式 一下的操作; 圖6是本發明之該較佳實施例的電路圖,說明在模式 二下的操作; 圖7是本發明之該較佳實施例的電路圖,說明在模式 三下的操作; 圖8是本發明之該較佳實施例的電路圖,說明在模式 四下的操作; 圖9是本發明之該較佳實施例的電路圖,說明在模式 五下的操作; 圖1〇是本發明之該較佳實施例的電路圖,說明在模式 六卞的操作; 圖11是本發明之該較佳實施例的實驗量測圖,說明該 第〆開關之電壓和電流波形; 圖12是本發明之該較佳實施例的實驗量測圖,說明該 22 1360284 第一開關和第二開關的電壓波形;; 圖13是本發明之該較佳實施例的實驗量測圖 第一繞組和第二繞組電流波形; 圖Η是本發明之該較佳實施例的實驗量測圖 第一充電二極體之電壓和電流波形; 圖15是本發明之該較佳實施例的實驗量測圖 第一輸出二極體之電壓和電流波形; 圖16疋本發明之該較佳實施例的實驗量測圖 第一充電二極體和第一輪出二極體的電壓波形; 圖17是本發明之該較佳實施例的實驗量測圖 第-昇壓電容之電壓和電流波形; 圖18是本發明之該較佳實施例的實驗量測圖 第-輸出二極體和第二輪出二極體的電流波形; 圖19是本發明之該較佳實施例的實驗量測圖 不同負載下的輸入出電壓情形;及 圖2〇是本發明之該較佳實施例的實驗量 換效率。 口 ,說明該 ,說明該 ,說明該 ,說明該 ’說明該 ’說明該 說明在 說明轉 23 【主要元件符號說明】 2…… •…變壓器 D3 . · ……第一輸出二極體 3…… •…第 一切換電路 D4 .··· 苐一推制一極體 4…… •…第二切換電路 D5 ·· •…第二充電二極體 CM .... •…輸出電容 D6 · •…第二輸出二極體 C2 ···· •…第 一箝制電容 L1 ··· •…第一繞組 C3… …第 一昇壓電容 L2 ··· •…第一繞組 C4 .... •…第 二箝制電容 L3 ·… 苐二繞組 C5 ·· .…第 二昇壓電容 L4 ·· ….第四繞組 D1 ‘·‘· …·第 一箝制二極體 Q1 ··· •…第一開關 D2 ·. •…第 一充電二極體 q2 .... •…第二開關 24

Claims (1)

1360284 十、申請專利範圍: i· 一種昇壓裝置,適用於將一外部電源之輸入電壓昇壓成 一輸出電壓,包含: 一變壓器’具有一第一繞組、一第二繞組、一第三 繞組,及一第四繞組,且每一繞组具有一極性點端和一 非極性點端’該第一繞組之極性點端和該第三繞組的非 極性點端與該外部電源電連接,而該第一繞組的非極性 點端與該第二繞組的極性點端電連接,該第三繞組的極 ) 生,-έ 與δ玄第四繞組的非極性點端電連接; 一輸出電容,具有一第一端和一接地的第二端,且 其兩端的跨壓為該輪出電壓; 一第一輸出二極體,具有一與該第二繞組之非極性 點端電連接的陽極,;你斗土人 幻闸徑及與該輸出電容之第—端電連接 的陰極; 輸出一極體’具有—與該第四繞組之極性點
端電連接的陽極,及一虚 -、該輸出電容之第一端電連接的 陰極; 二繞組之極性點端電連 且可在導通狀態和不導 一第一開關,具有一與該第 接的第一端和一接地的第二端, 通狀態間切換; 一第二開關’具有— 電 不 ^ ^ ^ 兴該第四繞組之非極性點端 狀態和 運接的苐一端和一接地的楚 的第二端,且可在導通 導通狀態間切換; 其中 該二開關實質 上是呈交互導通 但當任一開 25 1360284 關將由導通狀態切換成不導通狀態時,另一開關會先導 l X使在切換期間,該二開關的導通期間有部分重疊 t 一第—切換電路,具有一可切換地電連接或不電連 接該第-輸出二極體之陽極的第一端,以及一接地 二端,·及 ^第一切換電路,具有一可切換地電連接或不電連 接該第二輸出二極體之陽極&第一端’以及一接地 二端; 步 當該第—開關導通且該第二開關不導通時,該第一 刀換電路之第-端電連接於該第-輸出二極體之陽極, ::::切換電路之第一端不電連接於該第二輸出二極 田δ亥第一開關不導通且該第二開關導通時,該第二 切換雷故一 ^ 第—端電連接於該第二輸出二極體之陽極, ^第切換電路之第一端不電連接於該第一輸出一 體之陽極; 極 Sx第 第一開關皆導通時,該第一切換電路之 —端與該第二切換電路之第一端分別不電連接於該第 輪出—極體之陽極與該第二輸出二極體之陽極。 坌據申凊專利範圍第1項所述之昇壓裝置’其中,當兮 第一開關導通時且拎势 ^ 计咕 且該第二開關不導通時,該輸入電壓、 琢第三、繞紐in封· # —第四繞組經由導通的第二輸出二極體 孩輪出電玄:右Φ 办充電,而當該第二開關導通時且該第—開關 26 不導通時,該輸入電壓、該第一达 ^ 、兀組和該第二繞組經由 導通的第-輸出二極體對該輸出電容充電。 3. 依㈣請專利職第1項所述之昇壓裝置,其中,該第 :切換電路之第一端更可切換地電連接於該第-開關之 第一端,當該第一開關由邋 開關由V通變成不導通且該第二開關 持續導通時,該第一切換電 兴冤路之第一端切換成電連接於 該第一開關之第一端,曰产β 乐鹕且柑制該第一開關之第一端和第 二端間的跨壓。 4. 依據申請專利範圍第3頊ρ 乐項所述之昇壓裝置,其中,該第 一切換電路更吸收該第-繞组之漏感所釋放的能量。 5. 依據申請專利範圍第i項所述之昇壓裝置,其中,該第 ,㈣電路之第一端更可切換地電連接於該第二開關之 苐-端’當該第二開關由導通變成不導通且該第—開關 持續導通時,該第二切換電路之第—端切換成電連接於 5玄第一開關之第一端’且籍制該第二開關之第-端和第 二端間的跨壓。 6·依據申請專利範圍第5項所述之昇壓裝置,其中,該第 二切換電路更吸收該第三繞組之漏感所釋放的能量。 7.依射請專利範㈣1項所述之昇壓裝置,其中,更包 含: 二繞組之非極性點 四繞組之極性點端 一第一昇壓電容,電連接於該第 端和該第一輸出二極體之陽極間;及 一第二昇壓電容,電連接於該第 和該第二輸出二極體之陽極間。 27 8‘依據申請專利範園笛7 = 圍第7項所述之昇壓裝置,其中,當該 開關導通且第二開關不導通時,該第二繞组、第一 =關、第-切換電路與第_昇壓電容形成-迴路,且該 第一昇壓電容被該第二繞組充電; 當該第二開關導通且第一開關不導通時,該第四繞 組、第二開關、第二切換電路與第二昇壓電容形成一迴 路’且該第二昇廢電容被該第四繞組充電。 據申„月專利範圍帛丨項所述之昇壓裝置,其中,該第 —切換電路包括: 第箝制一極體,具有一陰極及一電連接於該第 —開關之第一端的陽極; 一第一充電二極體,具有—與該第一輸出二極體之 陽極電連接的陰極及_與該第_箝制二極體之陰極電連 接的陽極;及 一第一箝制電容’電連接於該第一箝制二極體之陰 極與地之間; 。玄苐一切換電路包括: -一第二箝制二極冑’具有一陰極及一電連接於該第 二開關之第一端的陽極; 一第二充電二極體,具有一與該第二輸出二極體之 陽極電連接的陰極及-與該第二箝制二極體之陰極電連 接的陽極;及 一第二箝制電容,電連接於該第二箝制二極體之陰 極與地之間。 28 1360284 10.依據申請專利範圍第1項所述之昇壓裝置,其中,該第 一開關和該第二開關具有相同的責任週期。
29
TW097138574A 2008-10-07 2008-10-07 Voltage-boosting device TW201015837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097138574A TW201015837A (en) 2008-10-07 2008-10-07 Voltage-boosting device
US12/389,085 US8035361B2 (en) 2008-10-07 2009-02-19 Boost device for voltage boosting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097138574A TW201015837A (en) 2008-10-07 2008-10-07 Voltage-boosting device

Publications (2)

Publication Number Publication Date
TW201015837A TW201015837A (en) 2010-04-16
TWI360284B true TWI360284B (zh) 2012-03-11

Family

ID=42075274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138574A TW201015837A (en) 2008-10-07 2008-10-07 Voltage-boosting device

Country Status (2)

Country Link
US (1) US8035361B2 (zh)
TW (1) TW201015837A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499186B (zh) * 2013-10-14 2015-09-01 Univ Nat Taipei Technology 疊加式高增壓轉換器
TWI581552B (zh) * 2015-11-27 2017-05-01 國立臺灣科技大學 升壓轉換裝置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893383A (en) * 1997-11-25 1999-04-13 Perfclean International Fluidic Oscillator
US8427120B1 (en) * 2010-05-05 2013-04-23 Arkansas Power Electronics International, Inc. Coupled inductor output filter
TWI429176B (zh) * 2011-03-31 2014-03-01 Nat Univ Tsing Hua 高升壓比直流轉換器
TWI418130B (zh) * 2011-05-19 2013-12-01 Univ Nat Taipei Technology Step-up conversion circuit
JP2013027124A (ja) * 2011-07-20 2013-02-04 Sanken Electric Co Ltd スイッチング電源回路
TWI452812B (zh) * 2011-09-16 2014-09-11 Univ Hungkuang High Efficiency Staggered Boost Converter
TWI452815B (zh) * 2011-09-16 2014-09-11 Univ Hungkuang High performance staggered boost converter
JP6511248B2 (ja) * 2014-11-05 2019-05-15 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 直流昇圧回路
MX367555B (es) * 2015-01-14 2019-08-27 Univ Plymouth Convertidor cd-cd.
US9582016B2 (en) * 2015-02-05 2017-02-28 Silicon Laboratories Inc. Boost converter with capacitive boost stages
CN108649797B (zh) * 2018-06-15 2023-05-26 广东机电职业技术学院 一种基于Boost正负输出的DC-DC电源结构
JP2021145435A (ja) * 2020-03-11 2021-09-24 日本電産モビリティ株式会社 スイッチング電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913000A (en) * 1973-05-29 1975-10-14 Hughes Aircraft Co Two-phase solid state power converter
US4504896A (en) * 1981-03-18 1985-03-12 Rca Corporation Switching dc-to-dc converters
US4683529A (en) * 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
US7176662B2 (en) * 2005-02-23 2007-02-13 Coldwatt, Inc. Power converter employing a tapped inductor and integrated magnetics and method of operating the same
TWI289971B (en) * 2005-11-01 2007-11-11 Asustek Comp Inc Boost converter and boost conversion method
US7382113B2 (en) * 2006-03-17 2008-06-03 Yuan Ze University High-efficiency high-voltage difference ratio bi-directional converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499186B (zh) * 2013-10-14 2015-09-01 Univ Nat Taipei Technology 疊加式高增壓轉換器
TWI581552B (zh) * 2015-11-27 2017-05-01 國立臺灣科技大學 升壓轉換裝置

Also Published As

Publication number Publication date
US20100085032A1 (en) 2010-04-08
US8035361B2 (en) 2011-10-11
TW201015837A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
TWI360284B (zh)
Lee et al. Isolated SEPIC DC–DC converter with ripple-free input current and lossless snubber
Hsieh et al. An interleaved flyback converter featured with zero-voltage transition
Hsieh et al. A novel high step-up DC–DC converter for a microgrid system
man Dwari et al. A novel high efficiency high power interleaved coupled-inductor boost DC-DC converter for hybrid and fuel cell electric vehicle
KR102098223B1 (ko) 다중 출력 직류/직류 컨버터 및 다중 출력 직류/직류 컨버터를 포함하는 전원 장치
US20110141785A1 (en) Dc-to-ac power converting device
KR20100115087A (ko) 양방향 dc-dc 컨버터 및 그의 제어방법
CN108988634B (zh) 一种三相交错式双向大变比dcdc变换器及其控制方法
TWI305076B (en) High-efficiency signle-stage bidirectional converter with multi-input power sources
TW201330474A (zh) 降壓型主動式功因修正裝置
TWI520472B (zh) High efficiency wide range of output voltage of the DC power boost circuit
Jia et al. A high power density and efficiency bi-directional DC/DC converter for electric vehicles
TWI569566B (zh) 高電壓增益電源轉換裝置
WO2011016854A1 (en) Soft switching using a lossless snubber circuit in a power converter
EP2221951A1 (en) Boost converter for voltage boosting
Murthy-Bellur et al. Two-switch flyback-forward PWM DC-DC converter with reduced switch voltage stress
WO2018123552A1 (ja) スナバ回路、及びそれを用いた電力変換システム
Elmes et al. High-voltage, high-power-density DC-DC converter for capacitor charging applications
Aamir et al. Analysis of ZVS non-isolated bidirectional DC-DC converter
Lu et al. Design and implementation of a bidirectional DC-DC forward/flyback converter with leakage energy recycled
Jabbari et al. A novel resonant LLC soft-switching buck converter
TWI443949B (zh) Single - Phase AC - DC Power Converter with Electrical Isolation
TW201236344A (en) Current feed high step-up DC-DC converter and device thereof
TWI362816B (zh)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees