TW201236344A - Current feed high step-up DC-DC converter and device thereof - Google Patents

Current feed high step-up DC-DC converter and device thereof Download PDF

Info

Publication number
TW201236344A
TW201236344A TW100105621A TW100105621A TW201236344A TW 201236344 A TW201236344 A TW 201236344A TW 100105621 A TW100105621 A TW 100105621A TW 100105621 A TW100105621 A TW 100105621A TW 201236344 A TW201236344 A TW 201236344A
Authority
TW
Taiwan
Prior art keywords
output
circuit
current
coupled
switch
Prior art date
Application number
TW100105621A
Other languages
Chinese (zh)
Inventor
Zone-Ching Lee
Hong-Tzer Yang
Original Assignee
Spirox Corp
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spirox Corp, Univ Nat Cheng Kung filed Critical Spirox Corp
Priority to TW100105621A priority Critical patent/TW201236344A/en
Publication of TW201236344A publication Critical patent/TW201236344A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A current fed high step-up DC-DC converter includes a step-up circuit, an output circuit, and a coupled inductor. The step-up circuit including a switch boosts an input voltage. The coupled inductor which has a primary-side winding, a secondary-side winding and a leakage inductance transfers energy from the step-up circuit to the output circuit. A first terminal of the primary-side winding is coupled to a first terminal of the step-up circuit, and a second terminal of the primary-side winding is coupled to a second terminal of the step-up circuit and a first terminal of the output circuit. A first terminal and a second terminal of the secondary-side winding are coupled to a second terminal and a third terminal of the output circuit, separately. When the switch is off, energy on the leakage inductance is transmitted to the output circuit. Accordingly, energy on the leakage inductance can be recycled.

Description

201236344 、發明說明: 【發明所屬之技術領域】 本發明有關於一種升壓型直流對直流轉換器,且特別 是有關於一種電流饋入高升壓比直流對直流轉換器。 【先前技術】 電源將電能轉換至電子裝置的過程中,當輸入電 低時,需要升壓型轉換器以提升其電壓,因此發展許多 壓轉換技術,但因許多轉換器之輸入電流為脈動型態,大 電流漣波會造成使用太陽能電池時,太陽能電池輸^功 無法保持運轉於最大輸出功率點,而導致其平均輸出功 減少等問題。且應綠_電池時,也f造成擴散層 擊,而影響燃料電池的壽命。某些解決方案使用大電容來 降低大電流漣波造成的衝擊,然而,大電容增加成本及尺 寸且降低轉換器的可靠度。另一方面,燃料電池且古 出阻抗,故電流饋人型態之升壓型轉換器較適合 源發電’特別是於燃料電池的應用。 傳統升壓型直流對直流轉換器10如圖丨所示,傳統升 壓型直流對直流轉換器10包含電感U、功率開關12、整 流元件13以及輸出電容14,而輸出負載15代表連接至傳 統升壓型直流對直流轉換器1〇的電子裝置。傳統升壓型直 巧對直流轉換器1G有待改進之處為其較低的輸出入電壓增 益及驅動該功率開關12的工作比(duty rati〇)較大時其功率 轉換效率較低。 因此’許多不同的電路被提出,如文獻:R. j. Wai and R. Y. Duan,“High Step-Up Converter with Coupled-Inductor,,, IEEE Transactions on Power Electronics, vol. 20, no. 5, 4/24 201236344 =p.、102:)_lG35, Sep· 2GG5 ’其ji作比為〇.6時其電壓增益約 可達到09然而其耦合電感的漏電感無法被再利用(recycle、 故其電壓if益,可能有進—步改善的空間。 【發明内容] 尚升壓型直流對直流轉換器的電壓增益以及接 實施例提供-種電流饋入高升心 轉換提供—種電流11人高升壓比直流對直产 ,而第二端,用以升壓輸人端之輸入電璧 二心月„路更包括主動開關。輪出電路具有第-端、第 ‘側if三端,用以輸出電能至輸出端。轉合電感具有 雷且、次級側繞組以及漏電感,用以將升壓電i的 電^轉換至輸出電路。初級側繞組具有第—端以 繞組亦具有第—端以及第二端。初級侧繞組之第 至升壓電路之第-端,初級側繞組之第二端』 ^以及輸出電路之第—端,而次級側繞 :山刼:一 輸出電路之第二端,次級側繞組之第二 ^ =輸出電路之第三端。當主動開關關閉時,耗合電 〜芡漏電感上的電能被傳送至輸出電路。 法μ仏本發明貫施例提供—種電流饋人高升壓比直流對直 机ί換裝置’其包括電流饋人高升壓比直流對直流轉換器 驅^驅動電路、第二驅動電路、第三驅動電路、半橋^ 路、電流模式脈衝寬度調變控㈣、第—輸出電組 之出;:二第一輸出電阻之第-端—至輸出端 —+弟一f出包阻之第二端耦接至輪出端之負端。第 一電路、第二驅動電路以及第三驅動電路,分別耦接 5/24 201236344 至第-整流開關、第二整流開關以及主 ==衝寬度調變控制器分別控制;第 器耗接至第-輸出電阻之第二端以及第二 流鑛人高升壓比直流對直流轉換器包括升壓電路、 以及耦合電感。其包括升壓電路、輸出電ί以及 =輸=,而升壓電路更包括主動開關用= :、㈡且ί二=第三端,用以輸出電能至輸出端 尸升壓電路的電能轉換至輸出電路。初級側繞^ 口 一々而以及弟二端,次級側繞組亦具有第—端以及第二端。 ,級=繞組之第-端祕至升壓電路之第—端,初級側繞 ,、且之第二翻接至㈣f路之第二端以及輸出電路之二 端,而次級側繞組之第一端耦接至輸出電路之第二浐,; 級側繞組之第二端耦接至輸出電路之第三端。#主=’= 關閉時’輕合電感之漏電感上的電能被傳送至輸出命ς。 而電流模式脈衝寬度調變控制器分別控制第一整流^ f二整流開關以及主動開關’且電流模式脈衝“丄 制益判斷輸出端之負載以調變輸出之脈衝寬度。 二 綜上所述,本發明實施例所提供的電流饋入高 直流對直流轉換器及其裝置使輸出端之電壓高於輸入ς之 電壓。 為使能更進一步瞭解本發明之特徵及技術内容,於來 閱以下有關本發明之詳細說明與附圖,但是此等說明^ 附圖式僅係用來說明本發明,而非對本發明的權利/圍 任何的限制。 祀固作 6/24 201236344 【實施方式】 〔電流饋入高升壓比直流對直流轉換器的實施例〕201236344, invention: TECHNICAL FIELD The present invention relates to a step-up DC-to-DC converter, and more particularly to a current-fed high-boost DC-to-DC converter. [Prior Art] When a power source converts electrical energy into an electronic device, a boost converter is required to increase its voltage when the input power is low, so many voltage conversion techniques are developed, but since many converter input currents are pulsating type State, high current chopping will cause problems when solar cells are used, and the solar cell output cannot be kept at the maximum output power point, resulting in a decrease in average output power. When it is green _ battery, it also causes diffusion layering, which affects the life of the fuel cell. Some solutions use large capacitors to reduce the impact of high current chopping. However, large capacitors increase cost and size and reduce converter reliability. On the other hand, the fuel cell has an impedance, so the current-feeding type of boost converter is more suitable for power generation, especially for fuel cell applications. The conventional step-up DC-to-DC converter 10 is shown in FIG. ,. The conventional step-up DC-to-DC converter 10 includes an inductor U, a power switch 12, a rectifying element 13 and an output capacitor 14, and an output load 15 represents a connection to the conventional Step-up DC-to-DC converter 1〇 electronic device. The conventional boost type direct-to-DC converter 1G needs to be improved in that its lower input-output voltage gain and the duty ratio of driving the power switch 12 are lower, and the power conversion efficiency is lower. Therefore, 'many different circuits have been proposed, as in the literature: R. j. Wai and RY Duan, "High Step-Up Converter with Coupled-Inductor,,, IEEE Transactions on Power Electronics, vol. 20, no. 5, 4/ 24 201236344 =p., 102:)_lG35, Sep· 2GG5 'When the ratio is 〇.6, its voltage gain can reach 09. However, the leakage inductance of its coupled inductor cannot be reused (recycle, so its voltage is beneficial) There may be space for further improvement. [SUMMARY OF THE INVENTION] The voltage gain of the boost-type DC-to-DC converter and the current embodiment provide a high-energy conversion to provide a current of 11 people with high boost ratio DC. For the direct production, the second end is used to boost the input of the input terminal. The road includes the active switch. The wheel circuit has a first end and a 'side if three ends for outputting electric energy to The output end has a lightning, a secondary side winding and a leakage inductance for converting the voltage of the boosting electric i to the output circuit. The primary side winding has a first end and the winding also has a first end and a second The first stage of the primary side winding to the boost circuit - the end, the second end of the primary side winding 』 ^ and the first end of the output circuit, and the secondary side winding: Hawthorn: the second end of an output circuit, the second side of the secondary side winding ^ = the output circuit When the active switch is turned off, the power on the inductor-to-leakage inductance is transmitted to the output circuit. The method of the present invention provides a current-feeding high-boost ratio DC-to-straight machine 'It includes a current-feeding high-boost ratio DC-to-DC converter drive circuit, a second drive circuit, a third drive circuit, a half-bridge circuit, a current mode pulse width modulation control (4), and a first output power group. The second end of the first output resistor is coupled to the negative terminal of the wheel terminal. The first circuit, the second driving circuit and the third driving are coupled to the second end of the second output resistor. The circuit is respectively coupled to the 5/24 201236344 to the first rectifier switch, the second rectifier switch, and the main == rush width modulation controller respectively; the first device is connected to the second end of the first output resistor and the second flow mine Human high boost ratio DC-to-DC converter including boost circuit and coupled inductor It includes a booster circuit, an output voltage, and a ==, and the booster circuit further includes an active switch =:, (2), and ί2 = a third terminal for converting electrical energy to the output of the corpse boost circuit to The output circuit has a primary side winding and a second end, and the secondary side winding also has a first end and a second end. The stage = the first end of the winding is secreted to the first end of the boosting circuit, and the primary side is wound. And the second end is connected to the second end of the (four) f path and the two ends of the output circuit, and the first end of the secondary side winding is coupled to the second end of the output circuit; the second end of the stage side winding is coupled Connect to the third end of the output circuit. #主=’= When turned off, the electrical energy on the leakage inductance of the light-sense inductor is transmitted to the output life. The current mode pulse width modulation controller respectively controls the first rectification and the active switch 'and the current mode pulse', and the load of the output terminal is used to adjust the pulse width of the output. The current fed by the embodiment of the present invention feeds the high DC to DC converter and the device thereof so that the voltage of the output terminal is higher than the voltage of the input port. To enable a better understanding of the features and technical contents of the present invention, the following The detailed description of the present invention and the accompanying drawings are only to illustrate the invention, and are not intended to limit the scope of the invention. 祀 作 6/24 201236344 [Embodiment] [Current Embodiment for feeding a high step-up ratio DC-to-DC converter]

請參照圖2 ’圖2為本發明實施例提供的一種電流饋入 高升壓比直流對直流轉換器的電路圖。電流饋入高升壓比 直流對直流轉換器’具有輸入端、輸出端,輸入端用以接 收輸入電壓Vin,輸出端用以產生高於輸入電壓之輸出電璧 ,電流饋入高升壓比直流對直流轉換器包括升壓電路21、 _合電感22以及輸出電路23。升壓電路21用以升壓輪入 電壓Vin,輸出電路23用以輸出電能至輸出端v〇。 耦合電感22具有初級側繞組np、次級側繞組ns以及 塢電感(未圖示)’用以將該升壓電路21的電能轉換至該輪 出電路23。初級側繞組Npi第一端c耦接至升壓電路^ 之第一端A,初級側繞組Np之第二端D耦接至升壓電路 21之第二端b以及輸出電路23之第一端〗,而次級側繞組 Ns之第一端E耦接至輸出電路23之第二端η,次級側繞組 Ns之第二端F耦接至輸出電路23之第三端〇。 復參照圖2,升壓電路21包括升壓電感L、第一整流 開關、第二整流開關〇2、主動開關s以及升壓電容& 升壓―電感L之第—端轉接至輸人端%,第—整流開關 1之第一端耦接至升壓電感[之第二端。且第二整流開關 」,第一端耦接至升壓電感L之第二端。主動開關s之第 一-妾至第2"IL開關之第二端以及升壓電路2〗之 =輸出端B,且主動開關s之第二_接至該輸入端〜 ' :升^屯合Cb之第一端耦接至第二整流開關D2之 —*而,β而第二端耦接至輪入端Vin之負端。 升壓電感L,用以儲存來自於輸入端vin之電能’炎 7/24 201236344 減少輸入電流漣波。第-整流開關Di以及第二整流開關 D!用以整祕人電流’且第—整流開關以及第二整流開 關^在本實施例中為二極體。主動開關s用以切換電流镇 =!1匕直流對直流轉換器20之操作模式,主動開關S 關s ^ 物半導體場效電晶體_SFET),且主動開 動開關s::為汲極’主動開關§之第二端為源極,而主 為間極。升壓電容Cb,用以儲存來自於 實施例中 之^及升壓電感L的之電能。須要注意的是,在本 關S僅為繁二整流開關D1、第二整流開關D2以及主動開 輪C明’並非用以限制本發明。 包括第―二3用以輸出電能至輸出端V。。輸出電路23 第二輪出電容= —輪出電容c〇i、第二二極體D4、 。第—二杻:n〇2、第三二極體〇5以及第三輸出電容C03 第一輪出·3之陽極輕接至輸出電路23之第三端G。 及輪出端V,⑺’第―端輕接至第—二極體D3之陰極以 輪出電路23°之,第—輸出電容Cqi之第二端輕接至 出電路23之第—:鳊Η。第二二極體D4之陰極耦接至輸 輪出電路<23 ^ ’第二輸出電容0)2之第-端輕接至 接至第二^ ’且第二輸出電容C〇2之第二端叙 輪出電路23之4 ^陽極。第三二極體D5之陽極_至 二極體D4< ^1’第三二極體〇5之陰極減至第二 出電容、之第Λ及第二輸出電容C〇2之第二端。第三輸 輪出電容C。 蠕轉接至第二二極體D52陰極以及第二 至輪出端V 2 且第三輸出電容C03之第二端祕 υ心貝jr而。Referring to FIG. 2, FIG. 2 is a circuit diagram of a current fed high-boost DC-to-DC converter according to an embodiment of the present invention. The current is fed into the high step-up ratio DC-to-DC converter, which has an input end and an output end. The input end is used to receive the input voltage Vin, and the output end is used to generate an output voltage higher than the input voltage, and the current is fed into the high boost ratio. The DC-to-DC converter includes a boost circuit 21, a combined inductor 22, and an output circuit 23. The boosting circuit 21 is for boosting the wheeling voltage Vin, and the output circuit 23 is for outputting electric energy to the output terminal v. The coupled inductor 22 has a primary side winding np, a secondary side winding ns, and a docking inductance (not shown) for converting the power of the boosting circuit 21 to the turn-on circuit 23. The first end c of the primary side winding Npi is coupled to the first end A of the boosting circuit ^, and the second end D of the primary side winding Np is coupled to the second end b of the boosting circuit 21 and the first end of the output circuit 23 The first end E of the secondary side winding Ns is coupled to the second end η of the output circuit 23, and the second end F of the secondary side winding Ns is coupled to the third end 〇 of the output circuit 23. Referring to FIG. 2, the boosting circuit 21 includes a boosting inductor L, a first rectifying switch, a second rectifying switch 〇2, an active switch s, and a boosting capacitor & boosting - the first end of the inductor L is transferred to the input The first end of the first rectifier switch 1 is coupled to the second end of the boost inductor. And the second rectifier switch is coupled to the second end of the boost inductor L. The first switch of the active switch s to the second end of the 2"IL switch and the output terminal B of the booster circuit 2, and the second switch of the active switch s is connected to the input terminal ~ ' : The first end of Cb is coupled to the second rectifier switch D2, and the second end is coupled to the negative terminal of the wheel terminal Vin. The boost inductor L is used to store the electrical energy from the input terminal vin' 7/24 201236344 to reduce the input current ripple. The first-rectifying switch Di and the second rectifying switch D! are used to simplify the human current' and the first-rectifying switch and the second rectifying switch are diodes in this embodiment. The active switch s is used to switch the current mode of the current-to-DC converter to the DC-to-DC converter 20, the active switch S is turned off, and the active switch s:: is the drain-active The second end of the switch § is the source and the main is the interpole. The boosting capacitor Cb is used to store the electrical energy from the boost inductor L in the embodiment. It should be noted that the conventional S is only the conventional rectification switch D1, the second rectification switch D2, and the active switch C', and is not intended to limit the present invention. Including the first two to output electrical energy to the output terminal V. . The output circuit 23 has the second round-out capacitance = - the round-out capacitance c 〇 i, the second diode D4, . The first two turns: n〇2, the third diode 〇5, and the third output capacitor C03. The anode of the first round trip 3 is lightly connected to the third end G of the output circuit 23. And the wheel end V, (7) 'the first end is lightly connected to the cathode of the second diode D3 to turn the circuit 23°, and the second end of the first output capacitor Cqi is lightly connected to the output circuit 23 -:鳊Hey. The cathode of the second diode D4 is coupled to the first end of the wheel output circuit <23 ^ 'second output capacitor 0) 2 to be connected to the second ^ ' and the second output capacitor C 〇 2 The two-terminal turn-out circuit 23 of the 4 ^ anode. The anode of the third diode D5 is connected to the cathode of the diode D4 < ^1' third diode 〇5 to the second terminal of the second output capacitor, the third transistor and the second output capacitor C〇2. The third output rounds out the capacitor C. The creep is transferred to the cathode of the second diode D52 and the second to the wheel end V 2 and the second end of the third output capacitor C03 is secreted.

弟 ~~' ~ I '極體D 、 卜 3从及第二二極體〇4用以整流次級側繞 8/24 201236344 組Ns的輸出電流,第一輸出電容C〇i以及第二輸出電容^⑺ 用以儲存次級側繞組Ns輸出之電能。第三二極體用以 整流初級側繞組NP的輸出電流,而第三輸出電容eh,用 以儲存初級側繞組NP輸出之電能。 值得注意的是,在本實施例中之升壓電容Cb之第二嶙 與苐二輸出電谷C03之第一端是共接的,其代表輸入端v 和輸出端V〇之負端是處於相同的電壓位準。此外,負栽之1 電能由輸出電容C〇i、C〇2及C〇3共同提供。 為進一步使貴審查委員得以了解本實施例的分析,幾 依以下條件陳述本發明之運作原理: 在此假設電流饋入高升壓比直流對直流轉換器運作在 連續電流模式(Continuous Current Mode, CCM),換句話含兒 ’電流饋入向升壓比直流對直流轉換器操作時,該升壓電 感之電流的最小值不降為零。且升壓電容、第一輸出電 容C01、第二輸出電容C〇2、第三輸出電容c〇3以及主動開 關S之寄生電容Cs足夠大,使得跨過主動開關s的電壓能 被當做定電壓。此外,二極體皆為理想的,且耦合電感22 被模型為漏電感Lk、磁化電感Lm、初級側繞組np以及次 級側繞組Ns。 本發明之電流饋入高升壓比直流對直流轉換器的實施 例可依序運作在下述五個模式中。請同時參照圖3及圖4 至圖8 ’圖3為本實施例之電流饋入高升壓比直流對直流轉 換器之波形圖,而圖4至圖8為本實施例之電流饋入高升 壓比直流對直流轉換器20操作在第一模式至第五模式的等 效電路圖。 復同時參照圖3及圖4,圖4為本實施例之電流饋入高 9/24 201236344 升壓比直流對直流轉換器2 0操作在第一模式的等效電路圖 。在第一模式中(tO<t<tl) ’主動開關s在t〇時導通(on), 輸入端Vin提供電能至升壓電感L,而跨過升壓電感L之電 壓為Vin ’使得流經升壓電感L的電流(iL)以L/Vin的斜率增 加。同時,跨過耦合電感22的電壓為Vb,流經在初級側 繞組NP之磁化電感Lm的電流(iLm)以l/vb的斜率增加。在 這個模式中,第二整流開關Dr第二二極體〇4以及第三二 極體A為反向偏壓。升壓電容4所儲存的電能轉移到第 一輸出電容C01,使第一二極體A導通,而流經第一二極 體D3的電流(ι〇3)持續地增加。當主動開關s關閉(〇FF)時, 第一模式結束。 需要注意的是,在本實施例中之主動開關s為金屬氧 化物半導體場效電晶體,*#絲_ s導通陶時,金 屬氧化物半導體場效電晶體之閘源極驗vgs在-高電壓 位準。當主動開關s _(〇FF)時,金屬氧化物半導體場效 電晶體之沒源極偏壓vds接近零。 β請同時參照@ 5及圖4,圖5為本實施例之電流饋入高 升f 5直:對直流轉換器2 〇操作在第二模式的等效電路圖 。二模式中(tl <t<t2),主動開關s被關趴〇哪閉源極 =vgs接近零)’流經升壓錢L的電雖)與流經在初級 ΐΓΐNp的磁化電感Lm的電流(iLm)—起對主動開關s的 充電。且流經第-整流開關D1的電流(h)逐漸 於私使知"丨上第—整流開_ 電流(^)逐漸增加至等 Ϊ。而流經第-二極體的電流(W逐漸降 卜=到第一輸出電容c〇丨的電流(L漸降低。此 ’弟二二極體d5也在tl時為導通_。由於在輸出迴路 10/24 201236344 的漏包感Lk ’大部分在初級側繞組NP的磁化電感Lm上的 電流(iLm)會流到第三輪出電容c〇3,而使得漏電感“之電 能可被再利用。當流經第—整流開關D,的電流(iD1)為零時 ,本模式結束。 拉請同時參照圖6及圖4,圖6為本實施例之電流饋入高 升壓^直流對直流轉換器2()操作在第三模式的等效電路圖 。在第三模式中(t2<t<t3),主動開關S仍被關閉(0FF),輸 一^、111,’、升【$感L釋放電能到升墨電容CB。且流經第 一 D2的電流(iD2)逐漸降低。而在初級側繞組NpBrother ~~' ~ I 'polar body D, Bu 3 slave and second diode 〇 4 are used to rectify the output current of the secondary side around 8/24 201236344 group Ns, the first output capacitor C〇i and the second output The capacitor ^(7) is used to store the electrical energy output from the secondary side winding Ns. The third diode is used to rectify the output current of the primary winding NP, and the third output capacitor eh is used to store the electrical energy output from the primary winding NP. It should be noted that, in the present embodiment, the second end of the boosting capacitor Cb is co-connected with the first end of the second output electric valley C03, and the negative end of the input terminal v and the output terminal V〇 are The same voltage level. In addition, the power of the load 1 is provided by the output capacitors C〇i, C〇2, and C〇3. In order to further enable your review committee to understand the analysis of this embodiment, the operation principle of the present invention is stated according to the following conditions: It is assumed here that the current feeding high-boost ratio DC-to-DC converter operates in a continuous current mode (Continuous Current Mode, CCM), in other words, when the current is fed to the step-up ratio DC-to-DC converter, the minimum value of the current of the boost inductor does not fall to zero. And the boosting capacitor, the first output capacitor C01, the second output capacitor C〇2, the third output capacitor c〇3, and the parasitic capacitance Cs of the active switch S are sufficiently large that the voltage across the active switch s can be regarded as a constant voltage . Further, the diodes are all ideal, and the coupled inductor 22 is modeled as a leakage inductance Lk, a magnetizing inductance Lm, a primary side winding np, and a secondary side winding Ns. The embodiment of the present invention for feeding a high step-up ratio DC-to-DC converter can be operated in the following five modes. Please refer to FIG. 3 and FIG. 4 to FIG. 8 simultaneously. FIG. 3 is a waveform diagram of a current fed high-boost DC-DC converter according to the embodiment, and FIG. 4 to FIG. 8 are high current feeds of the embodiment. The boosting ratio of the DC-to-DC converter 20 operates in an equivalent circuit diagram of the first mode to the fifth mode. Referring to FIG. 3 and FIG. 4 simultaneously, FIG. 4 is an equivalent circuit diagram of the current mode of the current feed high 9/24 201236344 boost ratio DC-to-DC converter 20 operating in the first mode. In the first mode (tO<t<tl) 'the active switch s is turned on at t〇, the input terminal Vin supplies power to the boost inductor L, and the voltage across the boost inductor L is Vin' makes the flow The current (iL) through the boost inductor L increases with a slope of L/Vin. At the same time, the voltage across the coupled inductor 22 is Vb, and the current (iLm) flowing through the magnetizing inductance Lm of the primary side winding NP increases with a slope of l/vb. In this mode, the second rectifier switch Dr second diode 〇4 and the third diode A are reverse biased. The electric energy stored in the boosting capacitor 4 is transferred to the first output capacitor C01, causing the first diode A to be turned on, and the current (ι3) flowing through the first diode D3 to continuously increase. When the active switch s is off (〇FF), the first mode ends. It should be noted that, in the embodiment, the active switch s is a metal oxide semiconductor field effect transistor, and when the wire is turned on, the gate of the metal oxide semiconductor field effect transistor is vgs at - high. Voltage level. When the active switch s _ (〇FF), the metal-free semiconductor field effect transistor has no source bias voltage vds close to zero. β Please refer to @5 and Fig. 4 at the same time. Fig. 5 is the equivalent circuit diagram of the current mode of the present embodiment in which the current is fed to the high rise f5 straight: the DC converter 2 is operated in the second mode. In the second mode (tl <t<t2), the active switch s is closed to which closed source = vgs is close to zero) 'the electricity flowing through the boosting money L') and the magnetizing inductance Lm flowing through the primary ΐΓΐNp Current (iLm) - charges the active switch s. And the current (h) flowing through the first rectifier switch D1 is gradually increased to the equal value of the first-rectifying open-current (^). And the current flowing through the first diode (W gradually decreases = the current to the first output capacitor c ( (L gradually decreases. This 'dipole di d5 is also turned on at tl. Because at the output Circuit 10/24 201236344 leakage inductance Lk 'most of the current (iLm) on the magnetizing inductance Lm of the primary winding NP will flow to the third rounding capacitor c〇3, so that the leakage inductance "the electrical energy can be re When the current (iD1) flowing through the first rectifier switch D is zero, the mode ends. Referring to FIG. 6 and FIG. 4 simultaneously, FIG. 6 is the current feeding high boosting ^ DC pair of the embodiment. The DC converter 2() operates on the equivalent circuit diagram of the third mode. In the third mode (t2 < t < t3), the active switch S is still turned off (0FF), and a ^, 111, ', 升 [$ The sense L releases the electric energy to the ink discharge capacitor CB, and the current flowing through the first D2 (iD2) is gradually lowered. On the primary side winding Np

Lk的電能繼續被傳送到第三輸出電容&,使漏 =〇二1能,利用。在這個模式中,第-二麟 ¥通(〇州’而流經第—二 、 第-輸出電容C01的+ w '出 、lD3)逐漸降低’且 電容C〇i正在提::=:2=負’代表第-輸出 W降低到零時,本模^束—㈣一二極體d3的電流 請同時參照圖7万图 , 升壓比直流對直她在=例之電流饋入高 。在第四模式中㈣,。:主動^二四,、式的等效電路圖 初級側繞組NP之## & ^乃被關閉(OFF),在 ^ ' — ΜΙ π V 送到第二輸出電容C02。且第 包感"的笔能也經由輕合電感22被傳 流經第二二極體〇 _ —性脰W為導通(0岣’而 第二輸出電容在這個操作模式中, 容正被充電,而第負k正’代表第二輸出電 二極 代表第三輸出電容Cw正提栽變負’ 11/24 201236344 請同時參照圖8及圖4,圖8為本實施例之電流饋入高 升壓比直流對直流轉換器20操作在第五模式的等效電路圖 。在第五模式中(t4<t<t0),主動開關S仍被關閉(off),且 第二二極體D5被關閉(OFF)。在初級側繞組np的磁化電感 Lm的電能經由耦合電感22持續地傳送至第二輸出電容c⑴ ’使得漏電感Lk之電能被再利用。同時,流經第二二極體 的電流(iDS)逐漸減少。當主動開關S再度導通(ON)時, 下一個循環開始。 理想的輸出電壓增益對於工作比的關係式為 n Vo /7 + 1The power of Lk continues to be transferred to the third output capacitor & In this mode, the first-two Lin ¥通 (〇州' and the second-th, the first-output capacitor C01 + w 'out, lD3) gradually decrease 'and the capacitance C〇i is mentioning::=:2 = negative 'represents the first - output W is reduced to zero, the current of the mode - (four) a diode d3 current please refer to Figure 7 million, the boost is higher than the DC direct current in the = example. In the fourth mode (four),. : Active ^ 2, 4, equivalent circuit diagram The primary side winding NP ## & ^ is turned off (OFF), and is sent to the second output capacitor C02 at ^ ' - ΜΙ π V . And the pen-feeling of the package sense is also transmitted through the second diode 〇 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Charging, and the first negative k positive 'represents the second output electric two poles, the third output capacitance Cw is being loaded and negativen' 11/24 201236344 Please refer to FIG. 8 and FIG. 4 simultaneously, FIG. 8 is the current feeding of the embodiment. The high-boost ratio DC-to-DC converter 20 operates in an equivalent circuit diagram of the fifth mode. In the fifth mode (t4 < t < t0), the active switch S is still off (off), and the second diode D5 Turned off (OFF). The electric energy of the magnetizing inductance Lm of the primary side winding np is continuously transmitted to the second output capacitor c(1) via the coupled inductor 22, so that the electric energy of the leakage inductance Lk is reused. At the same time, flowing through the second diode The current (iDS) is gradually reduced. When the active switch S is turned ON again, the next cycle begins. The ideal output voltage gain for the duty ratio is n Vo /7 + 1

Cj =-=-,Cj =-=-,

Vin (\-Df- 其中G為電壓增益,D為工作比,而n為閘數比值(Np/Ns) 。請參照圖9 ’當n=l時,輸出電壓增益對工作比的關係為 圖9中的實線A,而虛線B及C為相關技術之電路的電壓增益 對工作比的關係,虛線B為文獻:R. J. Wai and R. Y. Duan, aHigh Step-Up Converter with Coupled-Inductor,IEEE Transactions on Power Electronics, vol. 20, no. 5, pp.1025-1035, Sep. 2005.,所提出的電路的電壓增益特性。 虛線C為文獻:S. Κ· Changchien,T. J. Liang, J. F. Chen and L. S. Yang, “Novel High Step-Up DC-DC Converter for Fuel Cell Energy Conversion System,IEEE Transactions on Industrial vol, 57, no. 6, pp. 2007-2017, 2010.及文獻:C.T. Pan and C. M. Lai, “A High-Efficiency High Step-Up Converter with Low Switch Voltage Stress for Fuel-Cell System Applications,’’ IEEE Transactions on Industrial Eyec/TOmcs,vol. 57, no. 6,pp. 1998-2006,2010.所提出的電 12/24 201236344 路的電壓增益對工作比的關係。值得注意的是,當工作比 大於0.4時,相對於虛線B及C,本發明實施例之電流饋入言 升壓比直流對直流轉換器20具有較高的電壓增益。 门 〔電流饋入高升壓比直流對直流轉換裝置的實施例〕 圖10為本發明實施例所提供的一種電流饋入高升壓 比直流對直流轉換I置100的電路圖。電流饋入高升辦比 直流對直流轉換裝置100包括電流饋入高升壓比直流對直 流轉換器1】〇、第一驅動電路120、第二驅動電路13〇、第 三驅動電路140、半橋式驅動電路150、電流模式脈衝寬声 調變控制器】60、第一輸出電組以及第二輸出電組汉 。電流饋入高升壓比直流對直流轉換器110包括升壓電^ 、輸出電路】丨3以及耦合電感112。 第一輸出電阻Rx之第一端耦接至輸出端v〇之正端, 第二輸出電阻Ry之第一端库馬接至輸出端v0之負端。第— 驅動電路120、第二驅動電路130以及第三驅動電路14〇, 分別耦接至第一整流開關S!、第二整流開關&以及主動開 關S之控制端。電流模式脈衝寬度調變控制器16〇分別控 制苐一整流開關S1、弟—整流開關S:2以及主動開關s,且 電流模t脈衝寬度調變控制器160耦接至第一輸出電阻Rx 之第二端以及第二輸出電阻Ry之第一端。 x 在本Μ知例之電流饋入高升壓比直流對直流轉換器 .人$只施例之電流饋入高升壓比直流對直流轉換器20 近似’其差異僅在於第-整流關Si以及第二整流開關& 使用金屬氧化物半導體場效電晶體來取代二極體Dl以及二 極體h 1減少導通損失。第—整流開關&、第二整流開 13/24 201236344 ^2^^動開關S之控制端為祕,对別受控於第― 不再贅述。 貝轭例,為避免文字過多重複, _!!;;=技術應祕本電路,即第―整流_Sl、第 =^關S2以及主動開關s之閘極t壓的相位與跨接於 二關Sl、第二整流開關S2以及主動開關 二 之電壓的相位相同。且電流模式脈衝寬度調變 工制盗160用以判斷輸出端之負載以調變輸出之脈衝寬产 ’並透過半橋式驅動電路15G_至第1動電路m、^ 二驅動電路14(UX及第三_電路15G,以分難制第—敕 ,開關s,、第二整流開關S2以及主動開關s。值得注意= 是’般而言’第-驅動電路120、第二驅動電路13〇以^ 三驅動電路140可根據使用上的需要來調整設計,半柃 驅動電路150可僅作為本實施例中之驅動電路的一;式 〔實施例的可能功效〕 根據本發明實施例,上述的電流饋入高升壓比直节 直流轉換器及其裝置,其升壓電感之電流保持連續不^為 零,以減少電流漣波,而較低的電流漣波可減少升壓電二 之電容值’故升壓電容的尺寸可以被縮小並增加其壽命^ 可靠度。而搞合電感可透過選擇適當的匝數比,以亡 電壓轉換比,並據此避免過高的工作比。η冰 、问 〜7丨,不但輕人 電感之漏電感電能可被輸出負載再利用,且伞私M 〇 且王動開關上開 路瞬間所造成的電壓突波(spike)可被箝制。因 王動開關 上之電壓應力減少,而可採用低電壓規格及低導通電阻之 14/24 201236344 整流開關,以進一步減少其切換瞬間所形成之切換損失及 其導通損失。 以上所述僅為本發明之實施例,其並非用以侷限本發 明之專利範圍。 【圖式簡單說明】 圖1為傳統升壓型直流對直流轉換器的電路圖。 圖2為本發明實施例之電流饋入高升壓比直流對直流 轉換器的電路圖。 圖3為本發明實施例之電流饋入高升壓比直流對直流 轉換器之波形圖。 圖4為本發明實施例之電流饋入高升壓比直流對直流 轉換器操作在第一模式的等效電路圖。 圖5為本發明實施例之電流饋入高升壓比直流對直流 轉換器操作在第二模式的等效電路圖。 圖6為本發明實施例之電流饋入高升壓比直流對直流 轉換器操作在第三模式的等效電路圖。 圖7為本發明實施例之電流饋入高升壓比直流對直流 轉換器操作在第四模式的等效電路圖。 圖8為本發明實施例之電流饋入高升壓比直流對直流 轉換器操作在第五模式的等效電路圖。 圖9為為本發明實施例之電流饋入高升壓比直流對直 流轉換器當閘數比為一時之輸出電壓增益對工作比之關係 圖。 圖10為本發明實施例之電流饋入高升壓比直流對直流 轉換裝置的電路圖。 15/24 201236344 【主要元件符號說明】 ίο:傳統升壓型直流對直流轉換器 11 :電感 12 :功率開關 13 :整流元件 14 :輸出電容 15 :驅動負載 Vin :輸入端 V〇 :輸出端 20、110 :電流饋入高升壓比直流對直流轉換器 21 :升壓電路 22 :耦合電感 23 :輸出電路 L:升壓電感 S :主動開關 D,:第一整流開關 D2 :第二整流開關 CB :升壓電容 NP :初級側繞組 Ns :次級側繞組 D3 :第一二極體 D4 :第二二極體 D5 :第三二極體 C01 :第一輸出電容 C02 :第二輸出電容 16/24 201236344 c03:第三輸出電容 cs:寄生電容 Lm :磁化電感 Lk :漏電感 100:電流饋入高升壓比直流對直流轉換裝置 120 :第一驅動電路 130 :第二驅動電路 • 140 :第三驅動電路 • 150:半橋式驅動電路 160:電流模式脈衝寬度調變控制器 Rx :第一輸出電組 RY :第二輸出電組Vin (\-Df- where G is the voltage gain, D is the duty ratio, and n is the gate ratio (Np/Ns). Please refer to Figure 9 'When n=l, the relationship between the output voltage gain and the duty ratio is The solid line A in 9 and the broken lines B and C are the relationship of the voltage gain to the working ratio of the circuit of the related art, and the broken line B is the literature: RJ Wai and RY Duan, aHigh Step-Up Converter with Coupled-Inductor, IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sep. 2005., The voltage gain characteristics of the proposed circuit. The dotted line C is the literature: S. Κ· Changchien, TJ Liang, JF Chen and LS Yang , "Novel High Step-Up DC-DC Converter for Fuel Cell Energy Conversion System, IEEE Transactions on Industrial vol, 57, no. 6, pp. 2007-2017, 2010. and literature: CT Pan and CM Lai, "A High -Efficiency High Step-Up Converter with Low Switch Voltage Stress for Fuel-Cell System Applications,'' IEEE Transactions on Industrial Eyec/TOmcs, vol. 57, no. 6, pp. 1998-2006, 2010. /24 201236344 Road voltage gain versus duty ratio It should be noted that when the duty ratio is greater than 0.4, the current feed-in voltage of the embodiment of the present invention has a higher voltage gain than the DC-to-DC converter 20 with respect to the broken lines B and C. Embodiment for inputting a high step-up ratio DC-to-DC converter device FIG. 10 is a circuit diagram of a current-feeding high-boost ratio DC-to-DC converter I set to 100 according to an embodiment of the present invention. The DC conversion device 100 includes a current fed high boost ratio DC-to-DC converter 1 , a first driving circuit 120 , a second driving circuit 13 , a third driving circuit 140 , a half bridge driving circuit 150 , and a current mode pulse The wide-tone modulation controller 60, the first output power group and the second output power group, the current-feeding high-boost ratio DC-to-DC converter 110 includes a boosting circuit, an output circuit, and a coupled inductor 112. The first end of the first output resistor Rx is coupled to the positive terminal of the output terminal v, and the first terminal of the second output resistor Ry is coupled to the negative terminal of the output terminal v0. The first driving circuit 120, the second driving circuit 130, and the third driving circuit 14A are respectively coupled to the control terminals of the first rectifying switch S!, the second rectifying switch & and the active switch S. The current mode pulse width modulation controller 16 苐 controls the first rectifier switch S1, the di-rectifier switch S: 2 and the active switch s, respectively, and the current mode t pulse width modulation controller 160 is coupled to the first output resistor Rx. The second end and the first end of the second output resistor Ry. x In this case, the current is fed into a high step-up ratio DC-to-DC converter. The current application of the current is only a high boost ratio DC-to-DC converter 20 approximation 'the difference is only the first-rectifier off Si And the second rectifier switch & uses a metal oxide semiconductor field effect transistor to replace the diode D1 and the diode h 1 to reduce conduction loss. The first - rectifier switch & second rectification open 13/24 201236344 ^ 2 ^ ^ the control terminal of the switch S is secret, the other is controlled by the first - no longer repeat. In order to avoid excessive repetition of text, _!!;;=Technology should be the secret circuit, that is, the phase of the gate of the first-rectifier_Sl, the first=off S2 and the active switch s and the bridged voltage The phases of the voltages of the off Sl, the second rectifying switch S2, and the active switch 2 are the same. And the current mode pulse width modulation hacker 160 is used to determine the load of the output terminal to adjust the pulse width of the output 'and through the half bridge drive circuit 15G_ to the first dynamic circuit m, ^ two drive circuit 14 (UX And the third_circuit 15G is divided into a first-stage, a switch s, a second rectifier switch S2, and an active switch s. It is worth noting that the first-drive circuit 120 and the second drive circuit 13 are The driving circuit 140 can be adjusted according to the needs of the use, and the half-turn driving circuit 150 can be only used as one of the driving circuits in the embodiment; [the possible functions of the embodiment] According to the embodiment of the present invention, the above The current is fed into the high step-up ratio straight-line DC converter and its device, and the current of the boost inductor is kept continuously not zero to reduce the current chopping, and the lower current chopping can reduce the capacitance of the boosting electric two. The value 'so the size of the boost capacitor can be reduced and its lifetime reliability is increased. The inductance can be achieved by selecting the appropriate turns ratio to reduce the voltage conversion ratio and avoiding excessive work ratios. Ask ~7丨, not only the leakage of light inductance The inductive power can be reused by the output load, and the voltage spike caused by the open circuit on the king switch can be clamped. Because the voltage stress on the king switch is reduced, low voltage can be used. 14/24 201236344 rectifier switch with specifications and low on-resistance to further reduce the switching loss and its conduction loss caused by the switching instant. The above is only an embodiment of the present invention, and is not intended to limit the patent scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a circuit diagram of a conventional step-up DC-to-DC converter. Fig. 2 is a circuit diagram of a current fed high-boost DC-to-DC converter according to an embodiment of the present invention. The waveform of the embodiment is fed into the waveform diagram of the high step-up ratio DC-to-DC converter. Fig. 4 is an equivalent circuit diagram of the current feeding high-boost DC-to-DC converter operating in the first mode according to an embodiment of the present invention. 5 is an equivalent circuit diagram of a current feeding high step-up ratio DC-to-DC converter operating in a second mode according to an embodiment of the present invention. FIG. 6 is a current feeding high step-up ratio straight according to an embodiment of the present invention. FIG. 7 is an equivalent circuit diagram of a fourth mode of operation of a current-fed high-boost DC-to-DC converter according to an embodiment of the present invention. FIG. 8 is an implementation diagram of the present invention. For example, the current is fed into the high-boost ratio DC-to-DC converter operating in the fifth mode. FIG. 9 is a schematic diagram of the current-feeding high-boost DC-to-DC converter when the gate ratio is Fig. 10 is a circuit diagram of a current feeding high step-up ratio DC-to-DC converter device according to an embodiment of the present invention. 15/24 201236344 [Major component symbol description] ίο: Traditional boost Type DC-to-DC converter 11: Inductor 12: Power switch 13: Rectifier element 14: Output capacitor 15: Drive load Vin: Input terminal V〇: Output terminal 20, 110: Current fed to high step-up ratio DC-to-DC converter 21: booster circuit 22: coupled inductor 23: output circuit L: boost inductor S: active switch D, first rectifier switch D2: second rectifier switch CB: boost capacitor NP: primary side winding Ns: secondary side Winding D3: First diode D4: second diode D5: third diode C01: first output capacitor C02: second output capacitor 16/24 201236344 c03: third output capacitor cs: parasitic capacitance Lm: magnetizing inductance Lk : leakage inductance 100: current is fed into the high step-up ratio DC-to-DC converter 120: first drive circuit 130: second drive circuit • 140: third drive circuit • 150: half-bridge drive circuit 160: current mode pulse width Modulation controller Rx: first output electric group RY: second output electric group

17/2417/24

Claims (1)

201236344 七、申請專利範圍: L種電流饋入高升壓比直流對直流轉換器,其包括: 升壓電路,具有一第一端以及一第二端,用以升壓一輪 入端之一輸入電壓,該升壓電路更包括一主動開關; 』 輸出電路,具有一第一端、一第二端以及一第三端, 以輸出電能至一輸出端;以及 耦合電感,具有一初級側繞組、一次級側繞組以及一漏 =感’用卩將該升壓電路的電能轉換至該輸出電路,該初級側 =、.且具有一第一端以及一第二端,該次級側繞組亦具有一第— &以及一第二端,其中該初級側繞組之該第一端耦接至該升壓 電路玄第一端,該初級側繞組之該第二端耦接至該升壓電路 ,該=二端以及該輸出電路之該第一端,而該次級側繞組之該 第-端轉接至該輸出電路之該第二端,該植_組之該第二 啕耦接至該輸出電路之該第三端; 其中,當該主動開關關閉時’該耦合電感之該漏電感上的 電能被傳送至該輸出電路。 2·如申請專利範圍第1項所述之電流饋入高升壓比直流對 直流轉換n ’其巾該升壓電路包括: _ 升壓電感’用以儲存來自於輪入端之電能,並減少輸入 電μ連波,其中該升壓電感之一第一端耦接至該輸入端之一正 嘀; 一第一整流開關’用以整流輸入電流,其中該第一整流開 關之二第—端耦接至該升壓電感之一第二端,該第一整流開關 <-第—端_至該升壓電路之該第二端以及該主動開關之一 苐一端; 一第二整流開關’用以整流流入該初級側繞組之該第二端S 18/24 201236344 流,該第二整流開關之一第一端耦接至該升壓電感之該〜 而λ苐—整流開關之一弟一端搞接至該升壓電路之該〜〜 端;以及 、卑二 升二电各,用以儲存來自於該輸入端以及該升壓 S及容之—第——接至該第二整流開關之該第^ 請幹入^之二 該第—端’而升壓電容之—第二端執接至 亥輸入^之及触動關之-第二端。 直泣專利朗第2項所述之電流饋人高升壓比直流對 亩泣°。。、其中5亥主動開關控制該電流饋入高升壓比直流對 :°。運作在連續電流模式(Continuous Current Mode, 亥升壓電感之電流的最小值不降為零。 亩、、^專利㈣第2賴述之電流饋人高升壓比直流對 曰辟!"曰二其中该主動開關係為一金屬氧化物半導體場效電 二&開關之間極電壓的相位與跨接於該主動開關之 動開關之電=二端之電壓的相位相同’以同步整流流過該主 專利明第2柄述之電流饋人高升壓比直流對 息>;1L轉換益,盆中贫妓 弟—整流開關為一二極體或一金屬氧化物 體%政電晶體之内接二極體。 月專利關第2項所述之電流饋人高升壓比直流對 牟=二俨7,其中邊第二整流開關為一二極體或一金屬氧化物 切“致電晶體之内接二極體。 吉、申。δ"專利爛第2項所述之電流饋人高升壓比直流對 直流轉換器’其中該輪出電路包括: 一桌一二極薇,m _ 用以整流該次級側繞組的輸出電流,其中 7P '一 -0¾ §5 ^ — βθ X 吻極耦接至該輸出電路之該第三端; 19/24 201236344 一第一輸出電容,用以儲存該次級側繞組輸出之電能,其 中該第一輸出電容之一第一端耦接至該第一二極體之一陰極 以及該輸出端之一正端,且該第一輸出電容之一第二端耦接至 該輸出電路之該第二端; 一第二二極體,用以整流該次級側繞組的輸出電流,其中 該第二二極體之一陰極耦接至該輸出電路之該第三端; 一第二輸出電容,用以儲存該次級側繞組輸出之電能,其 中該第二輸出電容之第一端耦接至該輸出電路之該第二端,且 該第二輸出電容之一第二端耦接至該第二二極體之一陽極; 一第三二極體,用以整流該初級側繞組的輸出電流,其中 該第三二極體之一陽極耦接至該輸出電路之該第一端,該第三 二極體之一陰極耦接至該第二二極體之該陽極以及該第二輸 出電容之該第二端;以及 一第三輸出電容,用以儲存該耦合電感之該初級側繞組輸 出之電能,其中該第三輸出電容之一第一端耦接至該第三二極 體之一陰極以及該第二輸出電容之該第二端,且該第三輸出電 容之一第二端耦接至該輸出端之一負端。 8.—種電流饋入高升壓比直流對直流轉換裝置,包括; 一電流饋入高升壓比直流對直流轉換器,包括: 一升壓電路,具有一第一端以及一第二端,用以升壓一 輸入端之一輸入電壓,該升壓電路更包括一主動開 關, 一輸出電路,具有一第一端、一第二端以及一第三端 ,用以輸出電能至一輸出端;以及 一耦合電感,具有一初級側繞組、一次級側繞組以及一 漏電感,用以將該升壓電路的電能轉換至該輸出電s 20/24 201236344 路,該初級舰組具有% 一… 次級側繞組亦具有一第〜端以及 卜弟一端,該 初級側繞組之:第之;:該 該第二端以及該輸出電:;::=接至該升壓電路之 繞組之該第-糊至該輪出 =級側 端; %耦接至該輸出電路之該第三 其中,當該线關咖時,雜 的電能被傳送至該輸出電路; 心之5亥漏电感上 -第一輪出電阻’該第-輪出電阻之 h 輸出端之一正端; 而祸接至該 ‘第二端耦接至該輪 一第二輸出電阻,該第二輸出電阻之 出端之一負端; 一第一驅動電路,耦接至該第__ ; *棚關之-第-控制端 ;-第二驅動電路,_至該第二整流關之1二控制端 及-第三驅動電路’轉接至該主動開關之一第三控制端;以 一電流模式脈衝寬度調變控制器,控綱升壓 ,且該電流模式脈衝寬产^周掛 土i路的運作 -第二端以及該第二輸:電===第:, 之-負載以調變輪出之脈衝寬度。鳊’ M判斯該輪出端 9·如申請專利第8項所述 直流轉難置,其中該升壓電路包括 反比直流對 21/24 201236344 一升壓電感,用以儲存來自於輸入端之電能,並減少輸入 電流漣波,其中該升壓電感之一第一端耦接至該輸入端之一正 端; 一第一整流開關,用以整流輸入電流,其中該第一整流開 關之一第一端耦接至該升壓電感之一第二端,該第—整流開關 之一第二端耦接至該升壓電路之該第二端以及該主動開關之 一第一端; 第一正/爪開關,用以整流流入該初級側繞組之該第二端 之電流,销二整流開關之―第—端轉接至該升壓電感之該第 二端,該第二整流開關之—第二输接至該升壓電路之該第二 端;以及 ~ 升壓电谷,用以儲存來自於該輸入端以及該升壓電感之 電能’該升壓電容之—第一端墟至該第二整流開關之該第二 =及珊壓電路之該第—端,而升壓餘之—第二端減至 該輸入知之④負端以及該主動關之—第二端。 ίο.如申5胃專利_第9韻述之電流饋人高升磨比直流 對直流轉換裝置,其中該主動開關控制該電流饋入高升塵比直 *對直流轉換11運作在連續電流模式(Continuous Current Mode,CCM),,以使該升㈣感之電流的最小值不降為零。 直二^月專^1圍第9項所述之電流饋入高升麼比直流對 +二W 该主動開關係為—金屬氧化物半導體場效 ^曰體’“主動_之閘極電壓的相位 之該第-端與該第二端之㈣^ 、^職⑨王顧關 主動開關之電流。紅的相位相同,關步整流流過該 對第9項所述之電流饋入高升塵比直流 對直流轉換裝置,中兮楚私丄 ^ Μ弟一1¼開關為一金屬氧化物半導體S 22/24 201236344 出之電能,其中該第三輸出電容之一第一端耦接至該第三二極 體之一陰極以及該第二輸出電容之該第二端,且該第三輸出電 容之一第二端耦接至該輸出端之一負端。201236344 VII. Patent application scope: L kinds of currents are fed into a high step-up ratio DC-to-DC converter, which includes: a booster circuit having a first end and a second end for boosting one input of one round input Voltage, the boosting circuit further includes an active switch; the output circuit has a first end, a second end and a third end for outputting electrical energy to an output; and a coupled inductor having a primary side winding, a secondary side winding and a drain = sense 'for converting the power of the boosting circuit to the output circuit, the primary side =, and having a first end and a second end, the secondary side winding also having a first end, wherein the first end of the primary side winding is coupled to the first end of the boosting circuit, and the second end of the primary side winding is coupled to the boosting circuit, The second terminal and the first end of the output circuit, and the first end of the secondary side winding is switched to the second end of the output circuit, the second side of the group is coupled to the second end The third end of the output circuit; wherein, when the active switch is off When the 'power on the leakage inductance of the coupled inductor is transferred to the output circuit. 2. The current feeding as described in claim 1 is fed by a high step-up ratio DC-to-DC conversion n'. The boosting circuit includes: _ boosting inductor for storing electrical energy from the wheel-in terminal, and The input electric μ wave is reduced, wherein a first end of the boosting inductor is coupled to one of the input terminals; a first rectifying switch is configured to rectify the input current, wherein the first rectifying switch is the second The end is coupled to the second end of the boosting inductor, the first rectifying switch <-the first end _ to the second end of the boosting circuit and one end of the active switch; a second rectifying switch 'To rectify the flow of the second end S 18/24 201236344 flowing into the primary side winding, the first end of the second rectifying switch is coupled to the boosting inductor and the λ 苐 - the rectifying switch One end is connected to the ~~ terminal of the boosting circuit; and, the second and the second are respectively used for storing the input terminal and the boosting S and the capacitor - the second rectifier switch is connected to the second rectifier switch The first ^ please dry into the second of the first end - and the boost capacitor - the second end Hai ^ input to the touch and the off - the second end. The current described in the second paragraph of the so-called patent lang is high-boosting DC-to-mu. . The 5 hp active switch controls the current to be fed into the high boost ratio DC pair: °. In the continuous current mode (the continuous current mode, the minimum value of the current of the boost inductor is not reduced to zero. The mu, the patent (4) the second reliance on the current is fed by the high boost ratio DC !!"曰Wherein the active open relationship is the phase of the pole voltage between the metal oxide semiconductor field effect transistor and the switch is the same as the phase of the voltage across the power switch of the active switch of the active switch. According to the main patent, the current description of the second handle is high-boosting DC-converting information; 1L conversion benefit, the basin-poor brother-rectifier switch is a diode or a metal oxide body% political crystal The diode is connected to the current. The current is fed by the high-boosting DC-pair 牟=2俨7, and the second rectifier switch is a diode or a metal oxide cut. The internal diode is connected. Ji, Shen. δ " patent rotten second item of current feeding high boost ratio DC to DC converter' where the circuit includes: one table one two poles, m _ Used to rectify the output current of the secondary side winding, where 7P '--03⁄4 § 5 ^ — βθ X is coupled to the third end of the output circuit; 19/24 201236344 a first output capacitor for storing the output of the secondary side winding, wherein one of the first output capacitors The first end is coupled to one of the cathodes of the first diode and one of the positive ends, and the second end of the first output capacitor is coupled to the second end of the output circuit; a diode for rectifying an output current of the secondary side winding, wherein a cathode of the second diode is coupled to the third end of the output circuit; and a second output capacitor is configured to store the secondary The first output of the second output capacitor is coupled to the second end of the output circuit, and the second end of the second output capacitor is coupled to one of the second diodes An anode; a third diode for rectifying an output current of the primary winding, wherein one of the third diodes is coupled to the first end of the output circuit, and one of the third diodes a cathode coupled to the anode of the second diode and the second output capacitor And a third output capacitor for storing the electrical energy of the primary side winding of the coupled inductor, wherein the first end of the third output capacitor is coupled to the cathode of the third diode and the The second end of the second output capacitor, and the second end of the third output capacitor is coupled to one of the negative ends of the output terminal. 8. The current is fed into the high step-up ratio DC-to-DC converter, including A current is fed into the high step-up ratio DC-to-DC converter, comprising: a booster circuit having a first end and a second end for boosting an input voltage of an input terminal, the boost circuit further The utility model comprises an active switch, an output circuit, a first end, a second end and a third end for outputting electric energy to an output end, and a coupled inductor having a primary side winding and a primary side winding a leakage inductance for converting the power of the booster circuit to the output power s 20/24 201236344, the primary ship has %%... The secondary side winding also has a first end and a second end, the primary Side winding: ;: the second end and the output power: ;::= is connected to the first paste of the winding of the boosting circuit to the wheel-out side of the stage; % is coupled to the third of the output circuit When the line is closed, the mixed electric energy is transmitted to the output circuit; the 5th leakage inductance of the heart - the first round of the output resistor 'the first end of the first output of the resistance of the h output; The second end of the second output resistor is coupled to the second output resistor of the second output resistor, and the first output circuit is coupled to the first __; - a control circuit; - a second driving circuit, _ to the second rectifying off one of the two control terminals and - the third driving circuit 'transferred to one of the third control terminals of the active switch; pulse width modulation in a current mode The controller, the controller boosts, and the current mode pulse is wide-ranging, and the operation of the second-stage and the second input: the electric=== the first: the load is modulated by the pulse width.鳊' M judgments the round end 9 · as described in claim 8 of the DC transfer difficult, wherein the boost circuit includes an inverse ratio DC pair 21/24 201236344 a boost inductor for storing from the input The first step of the boosting inductor is coupled to one of the positive ends of the input terminal; the first rectifier switch is for rectifying the input current, wherein the first rectifier switch is The first end is coupled to the second end of the boosting inductor, and the second end of the first rectifying switch is coupled to the second end of the boosting circuit and the first end of the active switch; a positive/paw switch for rectifying a current flowing to the second end of the primary side winding, wherein a first end of the pin two rectifying switch is switched to the second end of the boosting inductor, and the second rectifying switch is a second terminal is connected to the second end of the boosting circuit; and a boosting voltage valley is configured to store the electrical energy from the input terminal and the boosting inductor The second end of the second rectifying switch and the first end of the voltage circuit The boosted I - was reduced to a second end of the known input terminal and the negative active ④ Off - The second end. Ίο.such as Shen 5 stomach patent _ ninth rhyme of the current feeding high-grinding ratio DC-to-DC converter, wherein the active switch controls the current to feed the high dust-to-dust ratio * direct-to-DC conversion 11 operates in continuous current mode (Continuous Current Mode, CCM), so that the minimum value of the current of the rise (four) sense does not fall to zero. Straight two ^ month special ^1 circumference of the current in the 9th feed is higher than the DC pair + two W The active open relationship is - metal oxide semiconductor field effect ^ body 'active_ gate voltage phase The first end and the second end of the (four) ^, ^ job 9 Wang Gu Guan active switch current. The red phase is the same, the step-by-step rectification flows through the pair of the current described in item 9 to feed the high dust-to-dust ratio DC For the DC conversion device, the switch is a metal oxide semiconductor S 22/24 201236344, wherein the first end of the third output capacitor is coupled to the third diode One of the cathodes and the second end of the second output capacitor, and the second end of the third output capacitor is coupled to one of the negative ends of the output. s 24/24s 24/24
TW100105621A 2011-02-21 2011-02-21 Current feed high step-up DC-DC converter and device thereof TW201236344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105621A TW201236344A (en) 2011-02-21 2011-02-21 Current feed high step-up DC-DC converter and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105621A TW201236344A (en) 2011-02-21 2011-02-21 Current feed high step-up DC-DC converter and device thereof

Publications (1)

Publication Number Publication Date
TW201236344A true TW201236344A (en) 2012-09-01

Family

ID=47222808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105621A TW201236344A (en) 2011-02-21 2011-02-21 Current feed high step-up DC-DC converter and device thereof

Country Status (1)

Country Link
TW (1) TW201236344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501532B (en) * 2014-04-30 2015-09-21 Univ Nat Taipei Technology Isolated voltage-boosting converter
TWI646760B (en) * 2013-07-15 2019-01-01 普利茅斯大學 Electric conversion device
TWI646768B (en) * 2017-09-12 2019-01-01 崑山科技大學 High boost converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646760B (en) * 2013-07-15 2019-01-01 普利茅斯大學 Electric conversion device
TWI501532B (en) * 2014-04-30 2015-09-21 Univ Nat Taipei Technology Isolated voltage-boosting converter
TWI646768B (en) * 2017-09-12 2019-01-01 崑山科技大學 High boost converter

Similar Documents

Publication Publication Date Title
US10581334B2 (en) DC-DC converter and control method
Kim et al. A fully soft-switched single switch isolated DC–DC converter
Tseng et al. High step-up converter with three-winding coupled inductor for fuel cell energy source applications
Tang et al. Hybrid switched-inductor converters for high step-up conversion
US10284093B2 (en) Power conversion apparatus and method for configuring the same
KR102098223B1 (en) Multiple output dc/dc converter and power supply having the same
Leu et al. A novel dual-inductor boost converter with ripple cancellation for high-voltage-gain applications
TWI511435B (en) AC - DC power converter
US9356526B2 (en) DC-DC power conversion apparatus and method
US9071161B2 (en) Single stage PFC power supply
Leu et al. A novel current-fed boost converter with ripple reduction for high-voltage conversion applications
US10566891B2 (en) Power supply device and control method thereof
US9130472B2 (en) High efficient single switch single stage power factor correction power supply
JP6840032B2 (en) Insulated switching power supply
TW201330474A (en) Active buck power factor correction device
Lin et al. New ZVS DC--DC converter with series-connected transformers to balance the output currents
TWI489750B (en) High-efficiency bidirectional single-input and multi-outputs dc/dc converter
EP3748834B1 (en) Power supply device
KR101140336B1 (en) Isolated buck-boost dc-dc converter
TW201724717A (en) High voltage gain power converter
TW201236344A (en) Current feed high step-up DC-DC converter and device thereof
Lu et al. Design and implementation of a bidirectional DC-DC forward/flyback converter with leakage energy recycled
TW201412001A (en) Forward-based power conversion apparatus
TW201332272A (en) High step-up DC-DC converter and method thereof
US8937463B2 (en) Common-core power factor correction resonant converter