TWI358516B - Method for managing air conditioning power consump - Google Patents

Method for managing air conditioning power consump Download PDF

Info

Publication number
TWI358516B
TWI358516B TW98100451A TW98100451A TWI358516B TW I358516 B TWI358516 B TW I358516B TW 98100451 A TW98100451 A TW 98100451A TW 98100451 A TW98100451 A TW 98100451A TW I358516 B TWI358516 B TW I358516B
Authority
TW
Taiwan
Prior art keywords
energy consumption
air conditioning
energy
air
target value
Prior art date
Application number
TW98100451A
Other languages
Chinese (zh)
Other versions
TW201027014A (en
Inventor
Shyang Yih Chen
Yu Huan Wang
Chen Kun Hus
Shu Fen Lin
Pinchuan Chen
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW98100451A priority Critical patent/TWI358516B/en
Publication of TW201027014A publication Critical patent/TW201027014A/en
Application granted granted Critical
Publication of TWI358516B publication Critical patent/TWI358516B/en

Links

Description

1358516 „六、發明說明: 【發明所屬之技術領域】 本發明係關於一種空調耗能管理方法,更詳而言之, 係關於一種應用智慧型演算法估算優化之空調裝置攤分比 例之空調耗能管理方法。 【先前技術】1358516 „6. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for managing energy consumption of an air conditioner, and more particularly to an air conditioner consumption for estimating the proportion of an air conditioner that is optimized by applying a smart algorithm Ability to manage methods. [Prior technology]

隨著科技進步與文化發展,大多數的產業開發及經濟 活動均需要消耗大量的能源。然而,能源並非取之不盡用 之不竭,自從工業革命開始進行能源大規模開採後,地球 能源的儲量到底還剩多少,科學家至今也沒有確切答案。 再者,任何形式的能源消耗皆會帶來環境污染,由於近年 來環保意識抬頭,在國際能源環境多變狀況之下,在面對 溫室效應、能源高價格趨勢以及傳統能源的耗竭等種種問 題時,對於如何節能及提昇能源效率,遂成為全球最關心 的議題。 依據台電資料顯示,我國住宅與商業兩部門之耗電量 與曰倶增,已達到總耗電量的三成,其中空調與照明耗電 又佔了一半以上,顯見空調系統是電力消耗的最主要來 源。目前習知技術中針對空調系統的節能方法主要可從兩 個方面著手,分別為硬體設備改善以及軟體方面改進。 硬體設備的改善例如加裝變頻器、高效率馬達及/或進 相補償電容器以進行節能。以變頻器為例,於硬體部分加 裝變頻器所開發之變頻式空調設備,係利用改.善壓縮機之 運作方法以維持人體舒適的溫度,避免了以往非變頻式空 4 111112 1358516 調系統之運作達到節能目標值,因此解決習知技術中無法 事前預期控制節約費用比例或金額、無法即時修正空調系 統之節能方法以及無法有效管理監控空調系統之缺點。 【實施方式】With the advancement of science and technology and cultural development, most industrial development and economic activities require a large amount of energy. However, energy is not inexhaustible. Since the industrial revolution began mass mining, there is still a lot of energy left in the earth. Scientists have no definitive answer so far. Furthermore, any form of energy consumption will bring environmental pollution. Due to the rising awareness of environmental protection in recent years, in the face of changing international energy environment, in the face of greenhouse effect, high energy price trends and the exhaustion of traditional energy sources. At the time, how to save energy and improve energy efficiency has become the most concerned issue in the world. According to the Taipower data, the power consumption and the increase in the residential and commercial sectors in China have reached 30% of the total electricity consumption, of which air conditioning and lighting consume more than half of the electricity. It is obvious that the air conditioning system is the most important power consumption. source. At present, the energy-saving methods for air-conditioning systems in the prior art can be started from two aspects, namely, improvement of hardware equipment and improvement of software. Improvements in hardware equipment such as the installation of frequency converters, high efficiency motors and/or phase compensation capacitors for energy savings. Taking the frequency converter as an example, the inverter type air conditioner developed by the inverter in the hardware part is used to change the operating mode of the compressor to maintain the comfortable temperature of the human body, avoiding the previous non-inverted air type 4 111112 1358516 The operation of the system reaches the energy-saving target value, so the conventional technology can not be expected to control the cost-saving ratio or amount in advance, the energy-saving method of the air-conditioning system cannot be corrected immediately, and the shortcomings of the air-conditioning system cannot be effectively managed. [Embodiment]

以下係藉由特定的具體實施例說明本發明之實施方 式,熟悉此技術之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效。本發明亦可藉由其他不同 的具體實施例加以施行或應用,本說明書中的各項細節亦 可基於不同觀點與應用,在不悖離本發明之精神下進行各 種修飾與變更。 請參閱第1圖,其係本發明之空調耗能管理方法之基 本流程圖,如第1圖所示,本發明之空調耗能管理方法包 括以下步驟。 於步驟S11中,令電能管理監控裝置依據設備運作資 料計算耗能估算值,其中,設備運作資料之決定係依據設 備參數以及環境參數。接著進至步驟S12。 於步驟S12中,依據耗能估算值設定節能目標值,其 中,該節能目標值依據空調系統之使用者所能接受之舒適 範圍所設定。接著進至步驟S13。 於步驟S13中,依據該節能目標值計算攤分比例。電 能管理監控裝置會採用至少一組推論規則進行演算以獲得 空調系統中各個裝置的攤分比例。接著進至步驟S14。 於步驟S14中,令空調系統依據該攤分比例進行運 作。接著進至步驟S15。 7 111112 1358516 成節能目標為止。 請參閱第2圖,其係本發明之空調耗能管理方法之耗 能估算值的計算方法流程圖,如第2圖所示,耗能估算值 的詳細計算方法包括以下步驟。 於步驟S110中,於計算該耗能估算值之前,取得該 空調系統之設備參數及該環境參數。接著進至步驟S111。 於步驟Sill中,依據該設備參數以及環境參數決定 該設備運作資料。接著進至步驟S112。The embodiments of the present invention are described below by way of specific embodiments, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention. Referring to Fig. 1, which is a basic flowchart of the air conditioning energy management method of the present invention, as shown in Fig. 1, the air conditioning energy management method of the present invention comprises the following steps. In step S11, the power management monitoring device calculates the energy consumption estimated value according to the equipment operation data, wherein the device operation data is determined according to the device parameter and the environmental parameter. Then it proceeds to step S12. In step S12, the energy saving target value is set according to the energy consumption estimated value, wherein the energy saving target value is set according to the comfort range acceptable to the user of the air conditioning system. Then it proceeds to step S13. In step S13, the sharing ratio is calculated according to the energy saving target value. The power management monitoring device uses at least one set of inference rules to calculate the proportion of each device in the air conditioning system. Then it proceeds to step S14. In step S14, the air conditioning system is operated in accordance with the sharing ratio. Then it proceeds to step S15. 7 111112 1358516 Until the goal of energy saving. Referring to Fig. 2, which is a flow chart for calculating the estimated energy consumption of the air conditioning energy management method of the present invention, as shown in Fig. 2, the detailed calculation method of the energy consumption estimation value includes the following steps. In step S110, before calculating the energy consumption estimation value, the equipment parameters of the air conditioning system and the environmental parameters are obtained. Then it proceeds to step S111. In step Sill, the device operation data is determined according to the device parameter and the environment parameter. Then it proceeds to step S112.

於步驟S112中,令電能管理監控裝置依據設備運作 資料計算耗能估算值。 於一較佳實施例中,上述之設備參數可為設備運轉時 數統計、設備耗能比例紀錄、該空調系統之設備規格及/ 或該空調糸統之熱負啊需求資料。 另外,環境參數可為歷史溫度資料、歷史濕度資料、 目前溫度資料、目前濕度資料、氣象預報資料、該空調系 統所在之環境室内與室外之相對溫度資料及/或相對濕度 資料。當電能管理監控裝置計算耗能估算值時,必須透過 大量的參考數據進行評估,因此,本實施例整合多種設備 參數與環境參數,使所計算的耗能估算值較能符合實施狀 況。 以下透過例示詳細列出本發明之空調耗能管理方法 所需之各種參數。 設備規格包括空調系統配置如冰水主機、冷卻水塔、 空調箱、泵浦、風機、外氣空調箱及/或壓縮機、設備之型 9 111112 1358516 號、冷凍噸數、功率因數及/或電壓以及設備之效率比值 (EER)及/或性能係數(COP)。 熱負荷需求如構造體之熱負荷(例如外牆、屋簷等)、 產生於室内之熱負荷(例如照明、人體等)及/或滲透風之熱 負荷(例如接觸外界空氣的門),亦即冷房負荷等於外部發 熱源加上室内發熱源。In step S112, the power management monitoring device calculates the energy consumption estimate based on the device operation data. In a preferred embodiment, the device parameters described above may be a device operating hours count, a device energy consumption ratio record, a device specification of the air conditioning system, and/or a heat load requirement of the air conditioning system. In addition, the environmental parameters may be historical temperature data, historical humidity data, current temperature data, current humidity data, weather forecast data, relative temperature data and/or relative humidity data of the indoor and outdoor environments in which the air conditioning system is located. When the power management monitoring device calculates the energy consumption estimate, it must be evaluated through a large amount of reference data. Therefore, the present embodiment integrates various device parameters and environmental parameters, so that the calculated energy consumption estimate is more consistent with the implementation state. The various parameters required for the air conditioning energy management method of the present invention are exemplified in detail below. Equipment specifications include air conditioning system configurations such as ice water mainframes, cooling towers, air conditioning tanks, pumps, fans, external air conditioning units and/or compressors, equipment type 9 111112 1358516, refrigeration tonnage, power factor and / or voltage And equipment efficiency ratio (EER) and / or coefficient of performance (COP). Thermal load requirements such as the thermal load of the structure (such as external walls, eaves, etc.), the thermal load generated in the room (such as lighting, human body, etc.) and/or the thermal load of the infiltrated wind (such as the door that contacts the outside air), that is, The cold room load is equal to the external heat source plus the indoor heat source.

上述之設備規格參數及熱負荷需求參數通常於空調 系統裝設於建築物前已經透過實驗的方式取得,至於其他 參數,可由空調系統運作一段時間進行記錄。 設備運轉時數統計為設備依據季節、氣候、室内外環 境溫度差及/或相對濕度以統計各設備每‘日運轉時數、運轉 曰數、總運轉時數及/或總運轉度數。 設備耗能比例紀錄為設備依據節、氣候、室内外環境 溫度差及/或相對濕度以記錄各設備耗電比例,例如冰水主 機佔了 60%、冰水泵佔了 11%。 以上所有參數(包括其他參數)之紀錄均為了決定設備 運作資料。 具體實施時,電能管理監控裝置可依據上述參數得知 紀錄中類似的氣候狀況所應進行的空調運作,而依據所應 進行的空調運作以計算耗能估算值。 其中,電能管理監控裝置可依據耗能估算值設定最低 限值、有段節能降載及/或無段節能降載模式提供使用者作 為節能目標的選擇,舉例而言,因為空調主機運載有一定 的最低耗能(如40%的耗能估算值),過低的節能會導致主 ]〇 111112 1358516 時間之各設備之耗能,例如節能目標值為耗能估算值的 70%,則空調系統之所有設備均於單位時間内減少30%之 耗電量。 時間比例攤分法為依據該節能目標值利用推論規則 決定分配各單位時間之各設備之耗能比例,因為計價電費 有分尖峰、半尖峰、離峰費率,可計算各時段最佳攤分比 例進行能源抑制。The above-mentioned equipment specification parameters and heat load demand parameters are usually obtained through experiments before the air-conditioning system is installed in the building. As for other parameters, the air-conditioning system can be operated for a period of time to record. The equipment operating hours are counted by the device according to the season, climate, indoor and outdoor environmental temperature difference and / or relative humidity to count the number of "days of operation, operating hours, total operating hours and / or total operating degrees of each device. The energy consumption ratio of the equipment is recorded as the equipment according to the section, climate, indoor and outdoor environmental temperature difference and / or relative humidity to record the proportion of power consumption of each equipment, such as ice water main machine accounted for 60%, ice water pump accounted for 11%. The records of all the above parameters (including other parameters) are the equipment for determining the operation of the equipment. In the specific implementation, the power management monitoring device can learn the air conditioning operation that should be performed in the similar climatic conditions in the record according to the above parameters, and calculate the energy consumption estimate according to the air conditioning operation that should be performed. Among them, the power management monitoring device can set the minimum limit according to the energy consumption estimation value, the segment energy saving load reduction and/or the no-segment energy saving load mode to provide the user with the choice of energy saving target, for example, because the air conditioning host carries a certain amount of Minimum energy consumption (such as 40% energy consumption estimate), too low energy saving will lead to the energy consumption of each device in the main 11112 1358516 time, for example, the energy saving target value is 70% of the estimated energy consumption, then the air conditioning system All devices reduce power consumption by 30% per unit time. The time-proportioning method uses the inference rule to determine the energy consumption ratio of each device allocated to each unit time according to the energy-saving target value, because the metering electricity fee has a peak, a half-peak, and a peak rate, and the best score can be calculated in each time period. Proportion for energy suppression.

設備比例攤分法為依據該節能目標值利用推論規則 決定分配各設備之耗能比例’例如冰水主機隶耗電’則設 定冰水主機減少較多單位時間耗電量,而風機較不粍電, 則風機運轉設定不變,空調系統之溫度可能較高但因為風 機運轉不變而使空調環境仍維持在人體感覺舒適的範圍。 因此,由上述之攤分比例可讓各設備依據該攤分比例 進行設定與動態調整以有效管理空調系統並防止能源過度 浪費。 請參閱第4B圖,其係本發明之空調耗能管理方法之 推論規則的具體實施例之示意圖,如第4B圖所示,推論 規則可為外氣空調負荷計算、冷卻水塔負載計算、主機負 載計算、群組運作最佳化計算、最佳耗能平衡點計算、最 佳室内舒適度計算、室内空氣品質計算及/或需量控制計 算。 以外氣空調負荷計算為例,係透過外氣與室内的焓值 差,可估算目前可能的空調負荷,例如當空調系統啟動之 後,若室外氣溫低於室内溫度時,開啟外氣風門以引進低 12 111112 1358516 溫之外氣,預先冷卻室内較熱之溫度,約30分鐘後再由冰 水供給室内之空調,如此可減少室内空調負荷。又例如最 佳耗能平衡點計算係參考冰水主機與冷卻水塔在不同的冷 卻水溫度下的耗電率變化,低的冷卻水溫度可降低冰水主 機耗電,但風機的耗電量會提高,因此整體的耗電量會有 一個最佳點。The equipment proportional sharing method is based on the energy saving target value and uses the inference rule to determine the energy consumption ratio of each device to be allocated. For example, the ice water main unit consumes electricity, and the ice water host is set to reduce the power consumption per unit time, and the fan is less expensive. Electric, the fan operation setting is unchanged, the temperature of the air conditioning system may be higher, but the air conditioning environment is still maintained in the comfortable range of the human body because the fan operates unchanged. Therefore, the above-mentioned sharing ratio allows each device to set and dynamically adjust according to the sharing ratio to effectively manage the air conditioning system and prevent excessive energy waste. Please refer to FIG. 4B , which is a schematic diagram of a specific embodiment of the inference rule of the air conditioning energy management method of the present invention. As shown in FIG. 4B , the inference rule can be an external air conditioning load calculation, a cooling tower load calculation, and a host load. Calculation, group operation optimization calculation, optimal energy balance point calculation, optimal indoor comfort calculation, indoor air quality calculation and/or demand control calculation. For example, the external air-conditioning load calculation can estimate the current possible air-conditioning load by the difference between the external air and the indoor enthalpy. For example, when the air-conditioning system is started, if the outdoor air temperature is lower than the indoor temperature, the external air damper is opened to introduce low. 12 111112 1358516 Warm outside the air, pre-cool the hot temperature in the room, about 30 minutes later, the ice water is supplied to the indoor air conditioner, thus reducing the indoor air conditioning load. For example, the calculation of the optimal energy balance point refers to the change of the power consumption rate of the ice water main unit and the cooling water tower at different cooling water temperatures. The low cooling water temperature can reduce the power consumption of the ice water main unit, but the power consumption of the fan will be Improve, so the overall power consumption will have an optimal point.

因此,由上述之推論規則可讓空調系統在維持空氣品 質及環境舒適度之下,電能管理監控裝置對該空調系統進 行優化控制。 請參閱第4C圖,其係本發明之空調耗能管理方法之 智慧型演算法的具體實施例之示意圖,其中,智慧型演算 法可為模糊控制演算法及/或類神經網路演算法,其系統之 參數或訓練(training)樣本越多、越正確、差異性越大,智 慧型演算法的能力就越強。 因此,由上述之智慧型演算法得以使空調系統進行優 化運作,且每一次的運作都會增進耗能預估值及攤分比例 的精嫁性。 請參閱第5圖,其係本發明之空調耗能管理方法一具 體實施例之流程圖。如第5圖所示,於步驟S20中,使電 能管理監控裝置紀錄環境參數與設備參數,並依該環境參 數與設備參數決定設備運作資料。接著進至步驟S21。 於步驟S21中,電能管理監控裝置依據設備運作資料 以及當曰的環境狀況計算空調系統之耗能估算值,其中, 1358516 決定設備運作資料的參數愈多其所計算之耗能估算值越準 確。接著進至步驟S22。 於步驟S22中,由使用者自行設定節能目標值。於本 實施例中尚可依據節能目標值進行步驟S221的耗能移轉 評估,利用該設備運作資料估算尖峰時間耗能成本與離峰 時間耗能成本,並透過特定空調運作方式將部分尖峰時間 的耗能移轉到離峰時間,俾達成節能目標值。接著進至步 驟 S23。Therefore, the above-mentioned inference rule allows the air conditioning system to optimally control the air conditioning system while maintaining air quality and environmental comfort. Please refer to FIG. 4C , which is a schematic diagram of a specific embodiment of a smart algorithm of the air conditioning energy management method of the present invention, wherein the smart algorithm can be a fuzzy control algorithm and/or a neural network algorithm. The more parameters, the more correct, and the more diverse the system's parameters or training samples, the stronger the ability of intelligent algorithms. Therefore, the above-mentioned intelligent algorithm enables the air conditioning system to be optimized, and each operation will increase the energy consumption estimation value and the proportion of the marriage. Please refer to Fig. 5, which is a flow chart of a specific embodiment of the air conditioning energy management method of the present invention. As shown in Fig. 5, in step S20, the power management monitoring device records the environmental parameters and the device parameters, and determines the device operation data according to the environmental parameters and the device parameters. Then it proceeds to step S21. In step S21, the power management monitoring device calculates the energy consumption estimation value of the air conditioning system according to the equipment operation data and the environmental condition of the vehicle, wherein the more the parameters of the equipment operation data are determined by 1358516, the more accurate the energy consumption estimation value is calculated. Then it proceeds to step S22. In step S22, the energy saving target value is set by the user. In this embodiment, the energy consumption transfer evaluation of step S221 can be performed according to the energy saving target value, and the energy consumption cost of the peak time and the energy cost of the peak time are estimated by using the operating data of the device, and a part of the peak time is obtained through a specific air conditioning operation mode. The energy consumption is transferred to the peak time, and the energy saving target value is reached. Then proceed to step S23.

於步驟S23中,依據該節能目標值計算攤分比例,也 就是決定各設備或各設備於單位時間内所應攤分的耗能比 例。電能管理監控裝置從多項推論規則中選擇所需要的推 論規則並利用智慧型演算法(模糊控制演算法及/或類神經 網路演算法)計算攤分比例。接著進至步驟S24。 於步驟S24中,空調系統依據該攤分比例以進行優化 節能運作。接著進至步驟S25。 於步驟S25中,電能管理監控裝置監控空調系統,並 紀錄空調系統依據該攤分比例運作時所產生之設備運作資 料與實際耗能值,以作為日後回饋修正參數的依據。接著 進至步驟S26。 於步驟S26中,若實際耗能值落入節能目標值特定誤 差範圍内,即判斷該實際耗能值符合該節能目標值,回到 步驟S24,空調系統依據該攤分比例繼續進行節能運作; 若該實際耗能值不符合該節能目標值,回到步驟S23,重 新計算攤分比例。本發明利用回饋機制持續對空調系統進 14 111112 1358516 行監控,每隔一段時間獲得實際耗能值並判斷該實際耗能 值是否符合該節能目標值以決定是否重新計算攤分比例。 實際應用時,請參閱第6圖,其係應用本發明之空調 、 耗能管理方法的空調系統之架構示意圖。如第6圖所示, . 該空調系統包括電能管理監控裝置3、中央控制單元30、 軟體301、監測元件31、冰水主機32、冷卻水塔33、水泵 34以及風機35,該空調耗能管理系統為閉迴路(close-loop) 系統。 具體實施時,在軟體程式中建立一組資料庫,該資料 庫中有多個參數(如設備規格、熱負荷需求、設備運轉時數 統計、設備耗能比例、溫度差、相對濕度、氣流及/或氣象 預報紀錄),依據該參數決定各設備的運作資料,例如依據 歷年的氣象預報、室内外溫差以及相對濕度來決定冰水主 機32·之運轉度數、耗電量與耗電比例,·風機35之耗電比 例與運轉時數以及冷卻水塔33與水泵34之耗電比例。In step S23, the sharing ratio is calculated according to the energy saving target value, that is, the energy consumption ratio that each device or each device should share in a unit time is determined. The power management monitoring device selects the required inference rules from a plurality of inference rules and calculates the sharing ratio using a smart algorithm (fuzzy control algorithm and/or neural network algorithm). Then it proceeds to step S24. In step S24, the air conditioning system performs an optimized energy saving operation according to the sharing ratio. Then it proceeds to step S25. In step S25, the power management monitoring device monitors the air conditioning system and records the equipment operation data and the actual energy consumption value generated by the air conditioning system according to the sharing ratio, as a basis for the future feedback correction parameter. Then, it proceeds to step S26. In step S26, if the actual energy consumption value falls within the specific error range of the energy saving target value, that is, it is determined that the actual energy consumption value meets the energy saving target value, and the process returns to step S24, and the air conditioning system continues to perform the energy saving operation according to the sharing ratio; If the actual energy consumption value does not meet the energy saving target value, return to step S23 to recalculate the sharing ratio. The invention continuously monitors the air conditioning system by using a feedback mechanism, obtains the actual energy consumption value at intervals and determines whether the actual energy consumption value meets the energy saving target value to determine whether to recalculate the sharing ratio. For practical application, please refer to Fig. 6, which is a schematic diagram of the architecture of an air conditioning system to which the air conditioning and energy management methods of the present invention are applied. As shown in Fig. 6, the air conditioning system includes a power management monitoring device 3, a central control unit 30, a software body 301, a monitoring component 31, an ice water host 32, a cooling water tower 33, a water pump 34, and a fan 35, which manages energy consumption of the air conditioner. The system is a close-loop system. In the specific implementation, a set of database is established in the software program, and the database has multiple parameters (such as equipment specifications, heat load requirements, equipment running hours statistics, equipment energy consumption ratio, temperature difference, relative humidity, airflow and / or weather forecast record), according to the parameters to determine the operational data of each device, for example, based on weather forecasts over the years, indoor and outdoor temperature differences and relative humidity to determine the operating degree, power consumption and power consumption ratio of the ice water host 32 · The power consumption ratio of the blower 35 and the number of operating hours and the power consumption ratio of the cooling water tower 33 and the water pump 34.

另外,可事先設定一整年的行事曆,例如上班日、休 假日及/或會議室啟用時段。 空調系統開始運作後,舉例說明:2008年11月26 曰星期三(上班曰),冬季,相對濕度50%,室内外溫度差3 度,電能管理監控裝置搜尋軟體資料庫得知歷史資料中的 類似天氣狀況之設備運作資料,依據該設備運作資料計算 耗能估算值,該號預估值可為耗電量(KW)或電費,我們可 設定其預計的電費目標值,軟體301將換算為耗電量並得 知節能目標值,例如節能目標值為70%的耗能估算值,此 15 111112 1358516 時内建於中央控制單元3〇之軟體3〇lii過多項推論規則來 &十鼻3 〇%耗能的攤分比例。 除此之外’當室外溫度比室内溫度低,還可引進部份 ..外氣來冷卻室内溫度’以降低冰水主機32之負載,或透過 -分區域、分時段空调供應來降低風機35之能源消耗,亦或 關閉部份没備或部份設借進行降載操作,以使總耗電量低 於或僅略南於原本預計的耗能預計值以及以降低水泵34 流量來降低水泵34耗電量。 上述推論規則考量多元環境因素,可採用模糊控制 (fuzzy)演算法以評估攤分比例,因此,中央控制單元30 使空調系統依據該攤分比例進行運作,同時監測元件32 監測各設備運作情況以獲得各設備耗能值以及整體實際耗 能值,若依據該攤分比例所獲得之實際耗能值為 7889KW ’而原本設定的節能目標值為7〇〇〇KW,因為誤差 超過5%(可另設定其它值),則軟體3〇1透過多項推論規則 來重新計算攤分比例,若實際耗能值為7051,其誤差小於 5%,則中央控制單元31紀錄依據該攤分比例運作之設備 運作資料而空調系統依此攤分比例進行優化運作。 此空調耗能管理系統為智慧型空調管理系統,讀取相 關參數進行後續分析,以控制運作狀態,透過愈多參數以 及愈多訓練(training),其預估之耗能估算值愈精準’且依 據攤分比例進行運作所獲得之實際耗能值愈接近耗能估算 值。若尚未達到節能目標,則以回饋機制修炎攤分比例或 修正決定耗能估算值的參數,重新進行優化速作。 111112 1358516 本發明之空調耗能管理方法,可達到以下功效: (1)事前預估耗電量。依據耗能估算值而設定節能目 -- 標值以提供可節約電量的比例,可事前設限空調系統的耗 ·. 電量進而抑制能源的消耗,解決了習知技術中無法事先預 . 期、控制節約費用比例或金額的問題。 建立系統回饋機制。本發明採用的回饋機制可立即修 正攤分比例或修正決定耗能估算值的參數以進行優化運 作,並紀錄用電資料並回饋至軟體之資料庫,使空調系統 ®在經過每一次的運作後可以增加軟體資料庫參數,俾使依 據攤分比例進行運作之實際耗能值符合節能目標值。 上述實施例僅例示性說明本發明之原理及功效,而非 用於限制本發明。任何熟習此項技術之人士均可在不違背 本發明之精神及範疇下,對上述實施例進行修飾與改變。 因此,本發明之權利保護範圍,應如後述之申請專利範圍 所列。 φ 【圖式簡單說明】 第1圖係本發明之空調耗能管理方法之基本流程圖; 第2圖係本發明之空調耗能管理方法之耗能估算值的 計算方法流程圖; 第3圖係本發明之空調耗能管理方法之攤分比例的估 算方法流程圖; 第4A圖係本發明之空調耗能管理方法之估算攤分比 例的具體實施例之示意圖; 第4B圖係本發明之空調耗能管理方法之推論規則的 17 111112 1358516 具體實施例之示意圖; 第4C圖係本發明之空調耗能管理方法之智慧型演算 法的具體實施例之示意圖; 第5圖係本發明之空調耗能管理方法一具體實施例之 流程圖;以及 第6圖係應用本發明之空調耗能管理方法的空調系統 之架構不意圖。 【主要元件符號說明】In addition, a full year calendar can be set in advance, such as a business day, a holiday, and/or a meeting room activation period. After the air conditioning system starts to operate, for example: November 26, 2008, Wednesday (working), winter, relative humidity 50%, indoor and outdoor temperature difference of 3 degrees, power management monitoring device search software database to learn similar in historical data The equipment operation data of the weather condition calculates the energy consumption estimate based on the equipment operation data. The estimated value of the equipment can be the power consumption (KW) or the electricity fee. We can set the estimated electricity cost target value, and the software 301 will be converted into consumption. The amount of electricity and the energy saving target value, for example, the energy saving target value is 70% of the energy consumption estimate, this 15 111112 1358516 built in the central control unit 3〇 software 3〇lii has a number of inference rules to & ten nose 3摊% of energy consumption is divided. In addition, when the outdoor temperature is lower than the indoor temperature, part of the external air can be introduced to cool the indoor temperature to reduce the load of the ice water main unit 32, or to reduce the fan 35 through the sub-area and time-divided air supply. The energy consumption, or the shutdown part is not prepared or partially borrowed for the load shedding operation, so that the total power consumption is lower or only slightly south than the originally estimated energy consumption estimate and the water pump 34 flow rate is reduced to reduce the water pump. 34 power consumption. The above inference rule considers multiple environmental factors, and a fuzzy control algorithm can be used to evaluate the sharing ratio. Therefore, the central control unit 30 operates the air conditioning system according to the sharing ratio, and the monitoring component 32 monitors the operation of each device. Obtain the energy consumption value of each device and the overall actual energy consumption value. If the actual energy consumption value obtained according to the sharing ratio is 7889KW', the originally set energy saving target value is 7〇〇〇KW, because the error exceeds 5%. If another value is set, the software 3〇1 recalculates the sharing ratio through a plurality of inference rules. If the actual energy consumption value is 7051 and the error is less than 5%, the central control unit 31 records the device operating according to the sharing ratio. The operational data and the air-conditioning system are optimized for this purpose. The air conditioning energy management system is a smart air conditioning management system, which reads relevant parameters for subsequent analysis to control the operating state. The more parameters and the more training, the more accurate the estimated energy consumption estimates are. The actual energy consumption obtained by operating according to the share ratio is closer to the energy consumption estimate. If the energy saving target has not been reached, the feedback mechanism will be used to adjust the proportion of the fire or to correct the parameters that determine the energy consumption estimate, and the optimization will be resumed. 111112 1358516 The air conditioning energy management method of the invention can achieve the following effects: (1) Estimating power consumption beforehand. According to the estimated energy consumption value, the energy-saving target--the standard value is set to provide a ratio of saving electricity, and the consumption of the air-conditioning system can be limited beforehand. The power consumption and the energy consumption are suppressed, and the conventional technology cannot be pre-predicted. Control the issue of cost savings or amount. Establish a system feedback mechanism. The feedback mechanism used in the present invention can immediately correct the sharing ratio or modify the parameters determining the energy consumption estimation value for optimal operation, and record the power consumption data and feed back to the software database, so that the air conditioning system® after each operation The software database parameters can be increased, so that the actual energy consumption value based on the sharing ratio is in line with the energy saving target value. The above-described embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Modifications and variations of the above-described embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the appended claims. Φ [Simple description of the drawing] Fig. 1 is a basic flow chart of the air conditioning energy consumption management method of the present invention; Fig. 2 is a flow chart of the calculation method of the energy consumption estimation value of the air conditioning energy consumption management method of the present invention; A flow chart of a method for estimating the share ratio of the air-conditioning energy management method of the present invention; FIG. 4A is a schematic view showing a specific embodiment of the estimated share ratio of the air-conditioning energy management method of the present invention; FIG. 4B is a view of the present invention 17 111112 1358516 A schematic diagram of a specific embodiment of the air conditioning energy management method; FIG. 4C is a schematic diagram of a specific embodiment of the intelligent algorithm of the air conditioning energy management method of the present invention; FIG. 5 is an air conditioner of the present invention A flowchart of a specific embodiment of the energy management method; and FIG. 6 is not intended to be an architecture of an air conditioning system to which the air conditioning energy management method of the present invention is applied. [Main component symbol description]

3 電能管理監測裝置 30 中央控制單元 301 軟體 31 監測元件 32 冰水主機 33 冷卻水塔 34 水泵 35 風機 S10-S16 步驟 S101〜S102 步驟 S131-S132 步驟 S20〜S26 步驟 18 1111123 Power management monitoring device 30 Central control unit 301 Software 31 Monitoring component 32 Ice water main unit 33 Cooling water tower 34 Water pump 35 Fan S10-S16 Step S101~S102 Step S131-S132 Step S20~S26 Step 18 111112

Claims (1)

第98100451號專利申請案 , 100年吖月彳曰修正替換頁 、申請專利範圍: $工調耗此官理方法,係應用於空調系統之電能管 理瓜控震置’該空調耗能管理方法係包括以下步驟: ^ (1)令該電能管理監控裝置依據設備運作資料計 算耗能估算值; (2) 依據該耗能估算值設定節能目標值; (3) 依據該節能目標值計算攤分比例; (4) 令該空調系統依據該攤分比例進行運作; (5) 令該電能管理監控裝置對該空調系統進行監 控以獲得實際耗能值;以及 (6) 判斷該實際耗能值是否符合該節能目標值,若 符合’則返回步驟(4)由該空調系統依據該攤分比例進 行運作,若不符合,則返回步驟(3)重新計算另一組攤 分比例。 如申請專利範圍第1項之空調耗能管理方法,其中, 步驟(1)復包括以下步驟: (i-i)於計算該耗能估算值之前,取得該空調系統 之設備參數及環境參數;以及 (U)依據該設備參數與該環境參數決定該設備 運作資料。 如申請專利範圍第2項之空調耗能管理方法,其中, 該設備參數為設備運轉時數統計、設備耗能比例紀 錄、該空調系統之設備規格及/或該空調系統之熱負荷 需求資料。 19 π八wvwi现寻刊甲諝荼 I 1〇0年气月f日修正替換頁- /請相I㈣第2項〇難能 =境參數為歷史溫度資料、歷史濕度資料、目前溫 又貧料1目前濕度資料、氣象預報資料、該空調系統 二境室内與室外之相對溫度資料及/或相對濕 度負料。 如申請料丨項之空難能管财法,其令, 步驟(2)设包括依據該節能目標值進行耗能移轉評估。 如申=專利_第5項之空調耗能管理方法,其中, j Γ移轉係利用該設備運作資料估算尖峰時間耗能 ”離峰h間耗能成本,並透過特定空調運作方式 將部分尖峰時間的耗能移轉到離峰時間。 t申請專簡圍第1項之空難能管理方法,其中, ッ驟(3)復包括以下步驟: (3_D令該電能管理監控裝置選擇推論規則;以及 (32)依據該推論規則以智慧型演算法計算該攤 分比例。 如申响專利範圍第7項之空調耗能管理方法,其中, Ϊ推論規料外氣空調負荷計算、冷卻水塔負載計 ^主機貞料算、群組運作最佳化計算、最佳耗能 狄衡點計算、最佳室内舒適度計算、室内空氣品質計 异及/或需量控制計算。 如申清專利_第7項之空調耗能管理方法,其中, 〜曰慧型㉝算法為模糊控制演算法及/或類 演算法。 111112(修正版) 20 1358516 ___ 第98100451號專利申請案 100年9月曰修正替換頁 1G.如申請專利範圍第1項之空調耗能管理方法,其中, 右該實際耗能值落入該節能目標值之特定誤差範圍 . β ’即判斷該實際耗能值符合該節能目標值。 11·如申請專利範圍第i項之空調耗能管理方法其中, 估算該攤分比例的方式為時間均攤法、時間比例攤分 法及設備比例攤分法所組群組之其中一種方式。 12. 如申請專利範圍第u項之空調耗能管理方法,其中, 該時間均攤法係依據該節能目標值以等比例縮減單位 春 時間之各設備之耗能。 13. 如申請專利範圍第丨丨項之空調耗能管理方法,其中, 該時間比例攤分法係依據該節能目標值則推論規則 決定分配各單位時間之各設備之耗能比例。 14. 如申請專利範圍第u項之空調耗能管理方法,其中, 該設備比例攤分法係依據該節能目標值利用推論規則 決定分配各設備之耗能比例。Patent Application No. 98100451, 100-year-old 彳曰 revised replacement page, patent application scope: $ 调 耗 此 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官 官The following steps are included: ^ (1) The power management monitoring device calculates the energy consumption estimated value according to the equipment operation data; (2) setting the energy saving target value according to the energy consumption estimated value; (3) calculating the sharing ratio according to the energy saving target value (4) causing the air conditioning system to operate according to the sharing ratio; (5) having the power management monitoring device monitor the air conditioning system to obtain an actual energy consumption value; and (6) determining whether the actual energy consumption value is consistent If the energy saving target value meets ' then the returning step (4) is operated by the air conditioning system according to the sharing ratio. If not, return to step (3) to recalculate another group of sharing proportions. For example, in the air conditioning energy management method of claim 1, wherein the step (1) includes the following steps: (ii) obtaining the equipment parameters and environmental parameters of the air conditioning system before calculating the energy consumption estimated value; U) determining the operating data of the device according to the device parameters and the environmental parameters. For example, the air conditioning energy management method of claim 2, wherein the equipment parameter is a device running hours count, a device energy consumption ratio record, a device specification of the air conditioning system, and/or a heat load demand data of the air conditioning system. 19 π八wvwi is now searching for a 谞荼I 1〇0 year gas month f day correction replacement page - / please phase I (four) item 2 〇 能 = = 境 境 境 境 境 境 境 境1 Current humidity data, weather forecast data, relative temperature data of indoor and outdoor areas of the air-conditioning system and/or relative humidity. If the application of the item is difficult to manage the financial method, the order (2) includes the energy consumption transfer assessment based on the energy saving target value. For example, the air-conditioning energy management method of Shen=Patent_5, in which the jΓ shift system uses the operating data of the equipment to estimate the energy consumption of the peak time, the energy cost from the peak h, and the partial peaks through the specific air conditioning operation mode. The energy consumption of time is transferred to the peak time. t Apply for the air disaster management method of the first item, wherein the step (3) includes the following steps: (3_D causes the power management monitoring device to select an inference rule; (32) Calculate the sharing ratio according to the inference rule with a smart algorithm. For example, the air conditioning energy management method of claim 7 of the patent scope, wherein, Ϊ inference measures the calculation of the external air conditioning load, the cooling tower load meter ^ Host data calculation, group operation optimization calculation, optimal energy consumption Di Heng point calculation, optimal indoor comfort calculation, indoor air quality meter difference and / or demand control calculation. Such as Shen Qing patent _ 7th item The air conditioning energy management method, wherein the ~曰慧33 algorithm is a fuzzy control algorithm and/or a class algorithm. 111112 (Revised Edition) 20 1358516 ___ Patent application No. 98100451, September 100, revised replacement Page 1G. The air conditioning energy management method of claim 1, wherein the actual energy consumption value falls within a specific error range of the energy saving target value. β 'is to determine that the actual energy consumption value meets the energy saving target value 11. The method for managing air-conditioning energy consumption according to item i of the patent application scope, wherein the method of estimating the share ratio is one of a group of groups of time equalization method, time proportion sharing method and equipment proportion sharing method. 12. The method for managing air-conditioning energy consumption according to item wu of the patent application scope, wherein the time-sharing method reduces the energy consumption of each unit in the unit spring time according to the energy-saving target value. The air conditioning energy management method of the item, wherein the time proportionalization method determines the energy consumption ratio of each device allocated to each unit time according to the energy saving target value inference rule. 14. The air conditioner of claim u The energy consumption management method, wherein the device proportional sharing method determines the energy consumption ratio of each device by using an inference rule according to the energy saving target value. 21twenty one
TW98100451A 2009-01-08 2009-01-08 Method for managing air conditioning power consump TWI358516B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98100451A TWI358516B (en) 2009-01-08 2009-01-08 Method for managing air conditioning power consump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100451A TWI358516B (en) 2009-01-08 2009-01-08 Method for managing air conditioning power consump

Publications (2)

Publication Number Publication Date
TW201027014A TW201027014A (en) 2010-07-16
TWI358516B true TWI358516B (en) 2012-02-21

Family

ID=44853062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100451A TWI358516B (en) 2009-01-08 2009-01-08 Method for managing air conditioning power consump

Country Status (1)

Country Link
TW (1) TWI358516B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551830B (en) * 2013-12-12 2016-10-01 財團法人工業技術研究院 Controlling device and method for hvac system
TWI619910B (en) * 2017-01-23 2018-04-01 神達電腦股份有限公司 Ice water host control method
US10578329B2 (en) 2017-10-05 2020-03-03 Chicony Power Technology Co., Ltd. Performance forecasting method
TWI738094B (en) * 2019-10-23 2021-09-01 行政院原子能委員會核能研究所 Method of controlling cooling water flow rate by using pattern recognition based on algorithms of inner product and gravity center

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454903B (en) * 2011-11-22 2014-10-01 Ind Tech Res Inst Method of controlling for saving energy
TWI435038B (en) 2011-12-14 2014-04-21 Ind Tech Res Inst Air conditioning control device and method thereof
CN114876782B (en) * 2022-05-13 2024-03-12 三一汽车制造有限公司 Hydraulic pump fault detection method and device and working machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551830B (en) * 2013-12-12 2016-10-01 財團法人工業技術研究院 Controlling device and method for hvac system
US9891636B2 (en) 2013-12-12 2018-02-13 Industrial Technology Research Institute Controlling device and method for HVAC system
TWI619910B (en) * 2017-01-23 2018-04-01 神達電腦股份有限公司 Ice water host control method
US10578329B2 (en) 2017-10-05 2020-03-03 Chicony Power Technology Co., Ltd. Performance forecasting method
TWI738094B (en) * 2019-10-23 2021-09-01 行政院原子能委員會核能研究所 Method of controlling cooling water flow rate by using pattern recognition based on algorithms of inner product and gravity center

Also Published As

Publication number Publication date
TW201027014A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
CN101782258B (en) Energy-saving method for air conditioner
TWI358516B (en) Method for managing air conditioning power consump
WO2020107851A1 (en) Low-cost commissioning method and system for air conditioning system based on existing large-scale public building
Hu et al. Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030
US9350562B2 (en) Energy management control system and method based on cloud computing
CN101424436B (en) Intelligent optimizing control system and method for central air-conditioning
WO2011106914A1 (en) Device monitoring system and method based on cloud computing
WO2011106918A1 (en) Computer room energy management control system and method for electronic information system based on cloud computing
JP7148057B2 (en) Energy management system and energy management method
Zhang et al. Influence of occupant behavior on the energy performance of variable refrigerant flow systems for office buildings: A case study
CN111680880A (en) Building load characteristic analysis method based on combined cooling heating and power supply and ground source heat pump
CN201335488Y (en) Intelligently optimized control device for central air conditioner
CN112747419A (en) Wind-water linkage control method, device and equipment for central air conditioner and storage medium
CN114784811A (en) Power demand response method and device
Yan et al. An adaptive controller based dynamic simulation of household air-conditioner with indirect evaporative cooler as dedicated outdoor air system
CN113887079A (en) Air source heat pump control method and system considering uncertainty of new energy power generation
TW202014648A (en) Ice storage amount adjusting system and adjusting method for the same
CN114811857B (en) Cold station system operation optimization method
CN107563547B (en) Comprehensive energy management and control method for optimizing depth of energy consumption of user side
TWI776544B (en) Energy-saving control method and device for temperature control equipment
CN110942262B (en) Regional regulation and control method for air-conditioning demand response in incremental power distribution park
CN114240470A (en) Method for measuring and calculating marginal contribution degree of diversified market main body
Teo et al. Energy management controls for chiller system: A review
CN112902392A (en) Adaptive adjustment air conditioner control method, electronic equipment and storage medium
Yuan et al. Two-level collaborative demand-side management for regional distributed energy system considering carbon emission quotas

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees