TWI356654B - Organic electroluminescent apparatus and manufactu - Google Patents

Organic electroluminescent apparatus and manufactu Download PDF

Info

Publication number
TWI356654B
TWI356654B TW96128542A TW96128542A TWI356654B TW I356654 B TWI356654 B TW I356654B TW 96128542 A TW96128542 A TW 96128542A TW 96128542 A TW96128542 A TW 96128542A TW I356654 B TWI356654 B TW I356654B
Authority
TW
Taiwan
Prior art keywords
organic electroluminescent
electroluminescent device
layer
substrate
driving
Prior art date
Application number
TW96128542A
Other languages
Chinese (zh)
Other versions
TW200908783A (en
Inventor
Seok-Woon Lee
Te Hua Teng
jia hong Chen
Yun Sheng Chen
Chin Feng Cheng
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW96128542A priority Critical patent/TWI356654B/en
Publication of TW200908783A publication Critical patent/TW200908783A/en
Application granted granted Critical
Publication of TWI356654B publication Critical patent/TWI356654B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

1356654 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種有機電激發光裝置及其製造方法。 【先前技術】 有機電激發光裝置係具有輕薄、可撓曲、易攜帶、全 彩' 高亮度、省電、視角寬廣及高應答速度等優點,因此 被期待成為下一代顯示裝置的主流。另外,作為有機電激 ,光裝置中的驅動元件’低溫多晶矽薄膜電晶體的各項電 氣特性皆優於非晶矽薄膜電晶體。因此,現在使用之驅動 凡件亦多以低溫多晶矽薄膜電晶體為主。 而低溫多晶矽薄膜電晶體中多晶矽層的形成係需利 用金屬誘發結晶(met;ai induced crystallization)技術將一 非晶石夕(amorphous Si )層轉變為多晶矽(p〇iy Si )層。 其中’誘發金屬例如為鎳。請參照圖1所示,基板U具 有一驅動區11a及一發光區Ub。首先於一基板11上形成 至少一緩衝層15a ’接著於驅動區lla的緩衝層15a上形 成一非晶矽層。於結晶過程中,誘發金屬容易與矽形成複 數個金屬矽化物(metal silicide) NS而殘留於驅動區lla 的矽層15c内及發光區lib的緩衝層15a上。且該等金屬 石夕化物NS無法藉由圖案化矽層15c的乾式蝕刻製程一併 去除。 清參照圖2所示’由於習知技術並未對基板1的發 光區lib内的金屬矽化物NS進行去除《因此,當發光區 6 lib内的各膜層依序形成而完成有機電激發光裝置1,該 等金屬矽化物NS會造成各膜層不平整。而當發光區lib 之金屬矽化物NS的密度過大時,則會造成有機電激發光 元件14所發出的光線通過各膜層時,由於膜層的不平整 而產生散射,降低有機電激發光元件14的出光效率。更 有甚者,可能導致有機電激發光元件14的第一電極141 與第二電極143接觸形成短路,而使晝素不發光形成缺陷 (defect)。 因此,如何提供一種能夠降低基板的發光區内金屬石夕 化物的密度,以確保出光效率並減少晝素缺陷產生之有機 電激發光裝置及其製造方法,實屬重要的課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種有機電激 發光裝置及其製造方法,能夠降低基板的發光區内金屬矽 化物的密度,以確保出光效率並減少畫素缺陷產生。 緣是,為達上述目的,依據本發明之一種有機電激發 光裝置係包含一基板、至少二驅動元件以及一有機電激發 光元件。基板係具有一驅動區及一發光區,基板上殘留有 金屬矽化物。該等驅動元件係設置於基板上並位於驅動 區。有機電激發光元件係設置於基板上並位於發光區,有 機電激發光元件與該等驅動元件其中之一電性連接。其 中,驅動區所含金屬矽化物的密度係高於發光區所含金屬 矽化物的密度。 1356654 為達上述目的,依據本發明之一種有機電激發光裝置 的製造方法係包含以下步驟:首先,形成一矽層於一基 板上。接著’金屬誘發石夕層,並圖案化石夕層。最後,去除 基板之一驅動區以外的石夕層所含的金屬碎化物。 為達上述目的,依據本發明之一種有機電激發光裝置 的製造方法係包含以下步驟:首先,提供一基板,基板係 具有一驅動區及一發光區。接著,形成至少二驅動元件於 基板之驅動區上。最後,去除發光區所含的金屬矽化物, 使驅動區所含金屬矽化物的密度係高於發光區所含金屬 石夕化物的密度。 承上所述,依據本發明之一種有機電激發光裝置及其 製造方法係藉由增加一去除製程來降低位於發光區内金 屬矽化物的密度,並藉此確保有機電激發光元件的出光效 率,以及減少晝素缺陷的產生。與習知技術比較,本發e 於發光區内金屬矽化物的密度降低,使得後續製程中各月1356654 IX. Description of the Invention: [Technical Field] The present invention relates to an organic electroluminescent device and a method of manufacturing the same. [Prior Art] The organic electroluminescence device is expected to be the mainstream of next-generation display devices because of its advantages of being thin, flexible, portable, full-color, high brightness, power saving, wide viewing angle, and high response speed. Further, as the organic electro-excitation, the driving characteristics of the optical device, the low-temperature polycrystalline germanium thin film transistor, are superior to those of the amorphous germanium thin film transistor. Therefore, most of the drives used today are mainly low-temperature polycrystalline germanium film transistors. The formation of a polycrystalline germanium layer in a low-temperature polycrystalline germanium film transistor requires the conversion of an amorphous Si layer into a polycrystalline germanium (p〇iy Si) layer by a metal induced crystallization technique. Wherein the induced metal is, for example, nickel. Referring to FIG. 1, the substrate U has a driving area 11a and a light emitting area Ub. First, at least one buffer layer 15a' is formed on a substrate 11, and then an amorphous germanium layer is formed on the buffer layer 15a of the driving region 11a. In the crystallization process, the induced metal easily forms a plurality of metal silicides NS with ruthenium and remains in the ruthenium layer 15c of the drive region 11a and the buffer layer 15a of the light-emitting region lib. Moreover, the metal ceramsite NS cannot be removed by the dry etching process of the patterned germanium layer 15c. Referring to FIG. 2, the metal germanide NS in the light-emitting region lib of the substrate 1 is not removed by the prior art. Therefore, the organic light-emitting light is completed when the respective film layers in the light-emitting region 6 lib are sequentially formed. In the device 1, the metal halides NS cause unevenness of the respective film layers. When the density of the metal telluride NS of the light-emitting region lib is too large, the light emitted by the organic electroluminescent device 14 passes through the respective layers, and scattering occurs due to the unevenness of the film layer, and the organic electroluminescent device is lowered. 14 light output efficiency. What is more, the first electrode 141 of the organic electroluminescent device 14 may be brought into contact with the second electrode 143 to form a short circuit, so that the halogen does not emit light to form a defect. Therefore, it is an important subject to provide an organic electroluminescence device and a method for manufacturing the same that can reduce the density of the metallization in the light-emitting region of the substrate to ensure light-emitting efficiency and reduce the occurrence of halogen defects. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an organic electroluminescence device and a method of fabricating the same that can reduce the density of metal halides in a light-emitting region of a substrate to ensure light-emitting efficiency and reduce occurrence of pixel defects. In order to achieve the above object, an organic electroluminescent device according to the present invention comprises a substrate, at least two driving elements, and an organic electroluminescent element. The substrate has a driving region and a light-emitting region, and metal halide remains on the substrate. The drive elements are disposed on the substrate and located in the drive region. The organic electroluminescent device is disposed on the substrate and located in the light emitting region, and the electromechanical excitation light device is electrically connected to one of the driving components. The density of the metal halide contained in the driving region is higher than the density of the metal halide contained in the light-emitting region. 1356654 In order to achieve the above object, a method of fabricating an organic electroluminescent device according to the present invention comprises the steps of: first, forming a layer of germanium on a substrate. Then the metal induces a layer of stone, and the layer is patterned. Finally, the metal fragments contained in the layer other than the driving region of one of the substrates are removed. To achieve the above object, a method of fabricating an organic electroluminescent device according to the present invention comprises the steps of: first, providing a substrate having a driving region and a light emitting region. Next, at least two driving elements are formed on the driving region of the substrate. Finally, the metal halide contained in the light-emitting region is removed, so that the density of the metal halide contained in the driving region is higher than the density of the metal-containing compound contained in the light-emitting region. According to the present invention, an organic electroluminescent device and a method of fabricating the same according to the present invention reduce the density of metal telluride located in the light-emitting region by adding a removal process, thereby ensuring the light-emitting efficiency of the organic electroluminescent device. And reduce the production of halogen defects. Compared with the prior art, the density of the metal telluride in the light-emitting region is reduced, so that each month in the subsequent process

層的平整度提高,故能夠減少因突起造成有機電激發光; 件電極短_成的缺陷。此外,各膜層的平整度提高亦$ 约降低有機電激發光元件發出的光線通過各膜層所產 的散射。 · 【實施方式】 佳實施例之 種有機電激 —以下將參照相關圖式,說明依據本發明較 —種有機電激發光裝置及其製造方法。 讀參照圖3所示,本發明較佳實施例之一 8 1356654 發光裝置的製造方法係包含步驟S1至步驟S4。請同時參 照圖3及圖4A所示,步驟S1係為形成一矽層25c於一基 板21上。基板21例如為玻璃基板並具有一驅動區21a及 一發光區21b。基板21上可先形成至少一緩衝層25a,避 免玻璃材質基板21内的雜質遷移至有機電激發光元件, 而造成有機電激發光元件劣化。本實施例係以二緩衝層 25a及25b為例說明,其中緩衝層25a的材質係為氮化石夕 (SiN),缓衝層25b的材質則為氧化矽(SiO);當然,依 據不同的製程需求亦可只設置一緩衝層25a或使用不同的 材質。接著,於緩衝層25a及25b上形成矽層25c,石夕層 25c係為一非晶矽層。 步驟S2係為金屬誘發石夕層25c。非晶石夕層係可藉由金 屬誘發結晶技術轉變為一多晶石夕層。先形成一金屬層(圖 中未表示)於碎層25c上’再利用金屬層作為晶種,並同 時加熱矽層25c與金屬層,經雷射退火(laserannealing;) 方式促使非晶碎結晶轉變為多晶發。其中,誘發金屬例如 為鎳,而形成鎳石夕化物(nickel silicide)。 然而,於多晶石夕結晶過程中,誘發金屬也容易與石夕形 成金屬矽化物NS殘留於基板21上的矽層25c内。而金屬 矽化物NS的粒徑若大於100人,則會降低後續膜層形成的 平整度,進而影響畫素結構的功能。 步驟S3係為圖案化石夕層仏。藉由一遮罩保護層(_ mask layer) 26覆蓋欲保留石夕層25c的區域,其中遮罩保 護層26例如為光阻材料所構成。再先藉由離子轟擊石夕層 25c,使梦層25c的結構變為較鬆散,㈣後續製程進行。 接著’利m細製程將遮罩保彻26未覆蓋之區 域蝕刻去除,以圖案化矽層25c。 請同時參照圖3及圖4B所示,步輝S4係去除基板21 之驅動區21a以外的石夕層25c所含的金屬石夕化物NS。藉由 圖案化㈣25e之高選擇比的乾式_製程,—併餘刻未 受遮罩保護層26保護的石夕層25c與至少部分緩衝層25b, 藉此降低發光區2:lb所含金屬矽化物Ns的密度。因此’ 步驟S3與步驟S4係可同時進行。 另外,去除發光區21b所含的金屬矽化物NS亦可有 不同的實施態樣。請參照圖5A所示,葬由一遮罩保謹声 26·覆蓋驅動區21a,以利後續對發光區之緩衝層2二 及25b進行去除,藉此同時去除緩衝層25b上的金屬矽化 物NS。請參照圖5B所示,藉由與矽層2允的離子佈植 (implantation)製程整合,使用相同的遮罩保護層26•以 節省成本。最後,請參照圖5C所示,藉由去除發光區21b 之緩衝層25a及25b即可將發光區21b所含的金屬矽化物 NS —併去除,而去除方式係可利用乾式蝕刻、濕式蝕刻 或乾溼式蝕刻合併使用。 凊參照圖6A所示,於矽層25c上形成一介電層25d, 介電層25d上則形成並圖案化一第一金屬層25e,第一金 屬層25e上則再形成二介電層25f及25g。如此,即完成 二驅動元件22及一電容元件23的製作。矽層25c係作為 驅動元件22的源極(source)及汲極(drain),第一金屬 1356654 層25e係作為驅動το件22的開極(gate )。其中該等驅動 元件22係為.低溫多晶梦薄膜電晶體。 該等介電層25d、25f、25g的材質係選自氧化矽、氮 化石夕、氮氧化矽(SiON)及其組合所構成的群組。而其他 膜層的設置與材質依據需求亦可有不同的變化,然其並非 本發明之重點,於此不予以詳述。Since the flatness of the layer is improved, it is possible to reduce the organic electroluminescence light caused by the protrusions; In addition, the flatness of each film layer is also increased by about a reduction in the scattering of light emitted by the organic electroluminescent device through the various layers. [Embodiment] Organic electro-excitation of a preferred embodiment - Hereinafter, an organic electroluminescent device and a method of manufacturing the same according to the present invention will be described with reference to the related drawings. Referring to FIG. 3, a preferred embodiment of the present invention 8 1356654 A method of fabricating a light-emitting device includes steps S1 through S4. Referring to FIG. 3 and FIG. 4A simultaneously, step S1 is to form a layer 25c on a substrate 21. The substrate 21 is, for example, a glass substrate and has a driving region 21a and a light emitting region 21b. At least one buffer layer 25a may be formed on the substrate 21 to prevent impurities in the glass substrate 21 from migrating to the organic electroluminescent device, thereby causing deterioration of the organic electroluminescent device. In this embodiment, the two buffer layers 25a and 25b are exemplified, wherein the buffer layer 25a is made of silicon nitride (SiN), and the buffer layer 25b is made of cerium oxide (SiO); of course, according to different processes. It is also possible to provide only one buffer layer 25a or use different materials. Next, a buffer layer 25c is formed on the buffer layers 25a and 25b, and the stone layer 25c is an amorphous germanium layer. Step S2 is a metal-induced stone layer 25c. The amorphous Astragalus layer can be converted into a polycrystalline layer by a metal-induced crystallization technique. First, a metal layer (not shown) is formed on the fracture layer 25c to reuse the metal layer as a seed crystal, and simultaneously heat the tantalum layer 25c and the metal layer to promote the transformation of the amorphous crystal by laser annealing (laser annealing). It is a polycrystalline hair. Among them, the inducing metal is, for example, nickel, and forms a nickel silicide. However, in the process of polycrystalline crystallization, the induced metal is also easily deposited in the ruthenium layer 25c on the substrate 21 with the yttrium metal hydride NS. If the particle size of the metal telluride NS is more than 100, the flatness of the subsequent film formation is lowered, thereby affecting the function of the pixel structure. Step S3 is a patterned stone layer. The area where the layer of stone layer 25c is to be retained is covered by a mask layer 26, wherein the mask layer 26 is made of, for example, a photoresist material. Then, by ion bombardment of the stone layer 25c, the structure of the dream layer 25c is made loose, and (4) the subsequent process is carried out. Then, the region of the mask 26 is unetched and removed to pattern the germanium layer 25c. Referring to FIG. 3 and FIG. 4B simultaneously, the step S4 is for removing the metal lithium NS contained in the layer 25c other than the driving region 21a of the substrate 21. By patterning (4) a high-selective dry-type process of 25e, and remaining a layer of stone layer 25c that is not protected by the mask protective layer 26 and at least a portion of the buffer layer 25b, thereby reducing the metalization of the light-emitting region 2: lb The density of the substance Ns. Therefore, step S3 and step S4 can be performed simultaneously. Further, the removal of the metal halide NS contained in the light-emitting region 21b may have different embodiments. Referring to FIG. 5A, the masking layer 26a is covered by a masking sound 26 to facilitate subsequent removal of the buffer layers 2 and 25b of the light-emitting region, thereby simultaneously removing the metal halide on the buffer layer 25b. NS. Referring to Figure 5B, the same mask protection layer 26 is used to achieve cost savings by integrating with the ion implantation process of the germanium layer 2. Finally, as shown in FIG. 5C, the metal halide NS contained in the light-emitting region 21b can be removed by removing the buffer layers 25a and 25b of the light-emitting region 21b, and the removal method can be performed by dry etching or wet etching. Or dry and wet etching combined. Referring to FIG. 6A, a dielectric layer 25d is formed on the germanium layer 25c, a first metal layer 25e is formed and patterned on the dielectric layer 25d, and a second dielectric layer 25f is formed on the first metal layer 25e. And 25g. Thus, the fabrication of the two driving elements 22 and one capacitive element 23 is completed. The germanium layer 25c serves as a source and a drain of the driving element 22, and the first metal 1356654 layer 25e serves as a gate for driving the member 22. The driving elements 22 are low temperature polycrystalline dream film transistors. The materials of the dielectric layers 25d, 25f, and 25g are selected from the group consisting of cerium oxide, nitrogen oxynitride, cerium oxynitride (SiON), and combinations thereof. The arrangement and material of other film layers may also vary according to requirements, but it is not the focus of the present invention and will not be described in detail herein.

接著,於介電層25g上形成並圖案化一第二金屬層 25h,並使第二金屬層25h與矽層2父導通,第二金屬層 25h並延設至部分介電層25§上。於本實施例中,第二金 屬層25h係只延設至介電層心上。接著,形成一純化層 (passivation laye〇 25i於第二金屬層25h及發光區2讣 的基板21上。鈍化層25i的材質係選自氧化石夕、氮化石夕、 氮氧化梦(SiON)及其組合所構成的群組。 接著於純化層25ι之上形成並圖案化一第一電極241 並使其與第二金屬層25h遙福 。 等通’且延設至發光區21b,即Next, a second metal layer 25h is formed and patterned on the dielectric layer 25g, and the second metal layer 25h is electrically connected to the germanium layer 2, and the second metal layer 25h is extended to the portion of the dielectric layer 25'. In this embodiment, the second metal layer 25h is extended only to the core of the dielectric layer. Next, a purification layer (passivation laye 25i is formed on the substrate 21 of the second metal layer 25h and the light-emitting region 2A. The material of the passivation layer 25i is selected from the group consisting of oxidized stone, cerium nitride, and oxynitride (SiON). a group formed by the combination. Then, a first electrode 241 is formed and patterned on the purification layer 25 ι and is made to be adjacent to the second metal layer 25 h. The same is applied to the light-emitting region 21 b, that is,

完成驅動元件22與有機雷电义 另機電激發光元件的第一電極241的 電性連接。接著’藉由一逆置+ 遮罩(圖未顯示)形成覆蓋層25j 而覆盍於驅動區2la。发φ,话从 # , ^ Τ 覆盍層25j的材質係選自氧 化矽、氮化矽、氮氧化發' έ 尤阻材料及其組合所構成的群 最後,形成一有機電激發光 區21b上。首先,將一有拖 午24於基板21之發先 上,接著再將-第二^極243層242形成於第一電極241 以完成有機電激發光元件2屯^於有機發光層242上’ 问I作’並完成晝素結構2。 !356654 本實施例係應用於小分子有機電激發光元件的製作。 請參照圖6B所示,其與圖6A的差異在於:依據設計 的需求,鄰近發光區21b之第二金屬層25h更可包覆緩衝 層253、251)及介電層25心25卜25呂的斷面,並延設至基 板21上。由於’驅動區3與發光區21b具有較大的高度差, 故可將本實施例應用於高分子有機電激發光元件的製作。 如圖6A及圖6B所示,本發明較佳實施例之一種有機 電激發光裝置2係包含一基板21、至少二驅動元件22以 及一有機電激發光元件24。基板21係具有一驅動區21a 及—發光區21b,基板21上殘留有金屬石夕化物。該等驅動 元件22係設置於基板21上並位於驅動區2la。有機電激 發光元件24係設置於基板21上並位於發光區21b,有機 電激發光元件24與該等驅動元件22至少一電性連接,其 中’驅動區21a所含金屬石夕化物NS的密度係高於發光區 21b所含金屬矽化物NS的密度。 其中,有機發光層242之材料係可以使用高分子有機 發光材料或小分子有機發光材料,而其形成方式高分子有 機發光材料則可以利用濕製程之喷墨印刷(Ink Jet Printing)或網版印刷(Screen Printing),小分子則可利用 蒸鍍方式。 請參照圖7所示’本發明較佳實施例之另一種有機電 激發光裴置之畫素結構的製造方法係包含步驟P1至步驟 P3。 首先’步驟P1係提供一基板,基板具有一驅動區及 12 1356654 一發光區。接著,步驟P2係形成至少二驅動元件於基板 之驅動區上。最後’步驟P3係去除發光區所含的金^矽 化物,使驅動區所含金屬矽化物的密度係高於發光區所含 金屬矽化物的密度。 - 本實施例與前述實施例的差異在於:本實施例係於完 - 成驅動元件的設置後,再藉由去除發光區内不需要的膜 層’同時去除發光區内所含的金屬石夕化物。 I示上所述,依據本發明之—種有機電激發光裝置及其 • 製造方法係藉由增加一去除製程來降低位於發光區内金 屬矽化物的密度,並藉此確保有機電激發光元件的出光效 率,以及減少晝素缺陷的產生。與習知技術比較,本發明 於發光區内金屬矽化物的密度降低,使得後續製程中各膜 層的平整度提高,故能夠減少因突起造成有機電激發光元 件電極紐路形成的缺陷。此外,各膜層的平整度提高亦能 夠降低有機電激發光元件發出的光線通過各膜層所產生 的散射。 隹 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範.,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為一種習知之有機電激發光裝置於基板上具有金 屬矽化物的示意圖; 圖2為一種習知之有機電激發光裝置之晝素結構的示 13 1356654 意圖; 圖3為依據本發明較佳實施例之一種有機電激發光裝 置之晝素結構的製造方法的流程圖; 圖4A及圖4B為依據本發明較佳實施例之晝素結構各 製程步驟的示意圖; 圖5A至圖5C為依據本發明較佳實施例之晝素結構各 製程步驟的示意圖; 圖6A及圖6B為依據本發明較佳實施例之一種有機電 激發光裝置的晝素結構的示意圖;以及 圖7為依據本發明較佳實施例之另一種有機電激發光 裝置之晝素結構的製造方法的流程圖。 【主要元件符號說明】 I、 2 :有機電激發光裝置 II、 21 :基板 11 a、21 a .驅動區 lib、21b :發光區 14、24 :有機電激發光元件 141、 241 :第一電極 142、 242 :有機發光層 143、 243 :第二電極 15a、25a、25b :缓衝層 15c、25c :石夕層 22 :驅動元件 14 1356654 23 :電容元件 25d、25f、25g :介電層 25e :第一金屬層 25h :第二金屬層 25i :鈍化層 25j :覆蓋層 26、26':遮罩保護層 NS :金屬矽化物 S1〜S4、P1〜P3 :有機電激發光裝置之製造方法的流程步The electrical connection of the driving element 22 to the first electrode 241 of the organic lightning-exciting electro-optical element is completed. Then, the cover layer 25j is formed by a reverse + mask (not shown) to cover the driving region 2la. φ, 从 from # , ^ 盍 The material of the covering layer 25j is selected from the group consisting of yttrium oxide, tantalum nitride, oxynitride ' 尤 particularly resistive materials and combinations thereof, finally forming an organic electroluminescent region 21b on. First, a dummy 24 is applied to the substrate 21, and then a second electrode 243 layer 242 is formed on the first electrode 241 to complete the organic electroluminescent device 2 on the organic light-emitting layer 242. Ask I to 'and complete the morpheme structure 2. !356654 This embodiment is applied to the fabrication of small molecule organic electroluminescent elements. Please refer to FIG. 6B, which differs from FIG. 6A in that, according to the design requirements, the second metal layer 25h adjacent to the light-emitting region 21b can cover the buffer layer 253, 251) and the dielectric layer 25. The section is extended to the substrate 21. Since the 'driving region 3 and the light-emitting region 21b have a large height difference, the present embodiment can be applied to the fabrication of a polymer organic electroluminescent device. As shown in FIG. 6A and FIG. 6B, an organic electroluminescent device 2 according to a preferred embodiment of the present invention comprises a substrate 21, at least two driving elements 22, and an organic electroluminescent element 24. The substrate 21 has a driving region 21a and a light-emitting region 21b, and a metallite remains on the substrate 21. The driving elements 22 are disposed on the substrate 21 and located in the driving region 21a. The organic electroluminescent device 24 is disposed on the substrate 21 and located in the light-emitting region 21b. The organic electro-optic element 24 is electrically connected to the driving elements 22, wherein the density of the metal-lithium NS contained in the driving region 21a is It is higher than the density of the metal halide NS contained in the light-emitting region 21b. The material of the organic light-emitting layer 242 may be a polymer organic light-emitting material or a small-molecule organic light-emitting material, and the form of the polymer organic light-emitting material may be inkjet printing (Ink Jet Printing) or screen printing. (Screen Printing), small molecules can use evaporation. Referring to Fig. 7, a method of fabricating a pixel structure of another organic electroluminescent device according to a preferred embodiment of the present invention includes steps P1 to P3. First, step P1 provides a substrate having a driving region and 12 1356654 a light emitting region. Next, step P2 forms at least two driving elements on the driving region of the substrate. Finally, the step P3 removes the gold oxide contained in the light-emitting region, so that the density of the metal halide contained in the driving region is higher than the density of the metal halide contained in the light-emitting region. - The difference between this embodiment and the foregoing embodiment is that the present embodiment is used to remove the unnecessary film layer in the light-emitting area after the installation of the driving element, and to remove the metal stone contained in the light-emitting area. Compound. In the above description, an organic electroluminescent device and a method of manufacturing the same according to the present invention reduce the density of metal telluride located in the light-emitting region by adding a removal process, thereby ensuring the organic electroluminescent device. The light output efficiency, as well as the reduction of the production of halogen defects. Compared with the prior art, the density of the metal telluride in the light-emitting region is lowered, so that the flatness of each film layer in the subsequent process is improved, so that the defects of the electrode formation of the organic electroluminescent element by the protrusion can be reduced. In addition, the flatness of each film layer can also reduce the scattering of light emitted by the organic electroluminescent device through the various layers.隹 The above description is for illustrative purposes only and not as a limitation. Any equivalent modifications or alterations of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional organic electroluminescent device having a metal telluride on a substrate; FIG. 2 is a schematic view of a conventional organic electroluminescent device shown in FIG. 13 1356654; FIG. FIG. 4A and FIG. 4B are schematic diagrams showing respective steps of a process for preparing a halogen structure according to a preferred embodiment of the present invention; FIG. 5A to FIG. 5C are schematic diagrams showing various process steps of a halogen structure according to a preferred embodiment of the present invention; FIG. 6A and FIG. 6B are schematic diagrams showing a structure of a halogen of an organic electroluminescent device according to a preferred embodiment of the present invention; 7 is a flow chart showing a method of fabricating a halogen structure of another organic electroluminescent device according to a preferred embodiment of the present invention. [Description of main component symbols] I, 2: Organic electroluminescent device II, 21: Substrate 11 a, 21 a. Driving region lib, 21b: Light-emitting region 14, 24: Organic electroluminescent device 141, 241: First electrode 142, 242: organic light-emitting layer 143, 243: second electrode 15a, 25a, 25b: buffer layer 15c, 25c: layer 12: driving element 14 1356654 23: capacitive element 25d, 25f, 25g: dielectric layer 25e : first metal layer 25h: second metal layer 25i: passivation layer 25j: cover layer 26, 26': mask protective layer NS: metal halides S1 to S4, P1 to P3: manufacturing method of organic electroluminescent device Process step

1515

Claims (1)

1356654 100年10月12日修正替換頁 十、申請專利範圍: 1、 一種有機電激發光裝置的製造方法,係包含以下步驟: 形成一石夕層於一基板上,其中該基板具有一驅動區及一 發光區; 金屬誘發結晶該碎層; 圖案化該矽層; 去除該基板之該驅動區以外的該矽層所含的金屬矽化 物; 形成至少二驅動元件於該基板之該驅動區上;以及 形成一有機電激發光元件於該基板上並位於該發光 區,該有機電激發光元件與該些驅動元件至少其中之 一電性連接。 2、 如申請專利範圍第1項所述之製造方法,其中該金屬 石夕化物係為鎳石夕化物。 3、 如申請專利範圍第1項所述之製造方法,其中該等金 屬矽化物的粒徑係大於100A。 4、 如申請專利範圍第1項所述之製造方法,於圖案化該 砍層前包含一步驟: 離子轟擊該&gt;5夕層。 5、 如申請專利範圍第4項所述之製造方法,於離子轟擊 16 1356654 100年10月12曰修正替換頁 該矽層之步驟前包含一步驟: 形成一遮罩保護層。 6、 如申請專利範圍第5項所述之製造方法,其中該遮罩 保護層係由光阻材料所構成。 7、 如申請專利範圍第1項所述之製造方法,其中圖案化 該矽層之步驟與去除該矽層所含的金屬矽化物之步驟 係同時實施。 8、 如申請專利範圍第1項所述之製造方法,其中該去除 方式係為一蝕刻方式。 9、 如申請專利範圍第8項所述之製造方法,其中該蝕刻 方式係選自乾式蝕刻、濕式蝕刻及其組合所構成的群 組。 10、 如申請專利範圍第1項所述之製造方法,其中該基板 上具有至少一緩衝層,去除該金屬矽化物的步驟係同 時去除至少部分該緩衝層。 11、 如申請專利範圍第1項所述之製造方法,其中金屬誘 發結晶該矽層的步驟包含以下子步驟: 形成一金屬層於該矽層上;以及 17 1356654 100年丨0月丨2曰修正替換頁 加熱該石夕層與該金屬層。 12、 一種有機電激發光裝置的製造方法,係包含以下步驟: 提供一基板,該基板係具有一驅動區及一發光區; 形成至少二驅動元件於該基板之該驅動區上; 去除該發光區所含的金屬矽化物,使該驅動區所含金 屬矽化物的密度係高於該發光區所含金屬矽化物的 密度;以及 形成一有機電激發光元件於該基板上並位於該發光 區,該有機電激發光元件與該些驅動元件至少其中之 一電性連接。 13、 如申請專利範圍第12項所述之製造方法,其中該等 驅動元件所含金屬矽化物的密度係高於該發光區所 含金屬石夕化物的密度。 14、 如申請專利範圍第12項所述之製造方法,其中該金 屬石夕化物係為鎳石夕化物。 15、 如申請專利範圍第12項所述之製造方法,其中該等 金屬矽化物的粒徑係大於100Α。 16、 如申請專利範圍第12項所述之製造方法,其中該去 除方式係為一钱刻方式。 18 1356654 100年10月12日修正替換頁 17、 如申請專利範圍第16項所述之製造方法,其中該蝕 刻方式係選自乾式蝕刻、濕式蝕刻及其組合所構成的 群組。 18、 如申請專利範圍第12項所述之製造方法,其中該基 板上具有至少一緩衝層,去除該金屬矽化物的步驟係 同時去除至少部分該缓衝層。 19、 如申請專利範圍第12項所述之製造方法,其中該等 驅動元件係為低溫多晶梦薄膜電晶體。 20、 如申請專利範圍第19項所述之製造方法,其中形成 該等驅動元件的步驟包含以下子步驟: 形成一非晶矽層於該基板上;以及 將該非晶矽層轉變為一多晶矽層。 21、 如申請專利範圍第20項所述之製造方法,其中轉變 方式係為金屬誘發結晶方式。 22、 一種有機電激發光裝置,包含: 一基板,係具有一驅動區及一發光區,該基板上殘留 有金屬石夕化物; 至少二驅動元件,係設置於該基板上並位於該驅動 19 1356654 100年10月丨2日修正替換頁 區,以及 一有機電激發光元件,係設置於該基板上並位於該發 光區,該有機電激發光元件與至少一驅動元件電性 連接,其中,該驅動區所含金屬矽化物的密度係高 於該發光區所含金屬矽化物的密度。 23、 如申請專利範圍第22項所述之有機電激發光裝置, 其中該金屬矽化物係為鎳矽化物。 24、 如申請專利範圍第22項所述之有機電激發光裝置, 其中該等金屬矽化物的粒徑係大於100A。 25、 如申請專利範圍第22項所述之有機電激發光裝置, 其中該等驅動元件係為薄膜電晶體。 26、 如申請專利範圍第25項所述之有機電激發光裝置, 其中該等驅動元件係為低溫多晶矽薄膜電晶體。 27、 如申請專利範圍第22項所述之有機電激發光裝置, 其中該有機電激發光元件係為小分子有機電激發光 元件或高分子有機電激發光元件。 28、 一種有機電激發光裝置的晝素結構,係利用申請專利 範圍第1項所述之製造方法所形成,其中該基板之該 20 1356654 100年10月12日修正替換頁 驅動區係具有至少二驅動元件,該基板更具有一發光 區,該發光區係具有一有機電激發光元件,該有機電 激發光元件與該等驅動元件其中之一電性連接。 29、 如申請專利範圍第28項所述之有機電激發光裝置的 晝素結構,其中該金屬矽化物係為鎳矽化物。 30、 如申請專利範圍第28項所述之有機電激發光裝置的 晝素結構,其中該等金屬矽化物的粒徑係大於100A。 31、 如申請專利範圍第28項所述之有機電激發光裝置的 晝素結構,其中該等驅動元件係為薄膜電晶體。 32、 如申請專利範圍第31項所述之有機電激發光裝置的 晝素結構,其中該等驅動元件係為低溫多晶矽薄膜電 晶體。 33、 如申請專利範圍第28項所述之有機電激發光裝置的 畫素結構,其中該有機電激發光元件係為小分子有機 電激發光元件或高分子有機電激發光元件。 211356654 October 12, 100 revised replacement page X. Patent application scope: 1. A method for manufacturing an organic electroluminescent device, comprising the steps of: forming a layer of a layer on a substrate, wherein the substrate has a driving region and a light-emitting region; metal-induced crystallization of the layer; patterning the layer; removing metal halide contained in the layer other than the driving region of the substrate; forming at least two driving elements on the driving region of the substrate; And forming an organic electroluminescent device on the substrate and located in the light emitting region, the organic electroluminescent device being electrically connected to at least one of the driving components. 2. The method according to claim 1, wherein the metal cerium compound is nickel cerium. 3. The method of manufacture of claim 1, wherein the metal halide has a particle size greater than 100A. 4. The manufacturing method of claim 1, wherein the step of patterning the chopped layer comprises the step of: ion bombarding the &gt; 5. A method of manufacturing as described in claim 4, in the ion bombardment 16 1356654 October 12, 2014 Revision of the replacement page The step of the layer includes a step: forming a mask protective layer. 6. The manufacturing method of claim 5, wherein the mask protective layer is composed of a photoresist material. 7. The manufacturing method according to claim 1, wherein the step of patterning the ruthenium layer and the step of removing the metal ruthenium contained in the ruthenium layer are carried out simultaneously. 8. The manufacturing method according to claim 1, wherein the removing method is an etching method. 9. The method of manufacturing of claim 8, wherein the etching method is selected from the group consisting of dry etching, wet etching, and combinations thereof. 10. The method of manufacturing of claim 1, wherein the substrate has at least one buffer layer, and the step of removing the metal halide further removes at least a portion of the buffer layer. 11. The method of claim 1, wherein the step of inducing crystallization of the ruthenium layer comprises the steps of: forming a metal layer on the ruthenium layer; and 17 1356654 100 years 丨0月丨2曰The modified replacement page heats the layer and the metal layer. 12. A method of fabricating an organic electroluminescent device, comprising the steps of: providing a substrate having a driving region and a light emitting region; forming at least two driving elements on the driving region of the substrate; removing the light The metal halide contained in the region is such that the density of the metal halide contained in the driving region is higher than the density of the metal halide contained in the light-emitting region; and an organic electroluminescent device is formed on the substrate and located in the light-emitting region The organic electroluminescent device is electrically connected to at least one of the driving elements. The manufacturing method according to claim 12, wherein the driving element contains a metal halide having a higher density than the metal cerium contained in the light-emitting region. 14. The method according to claim 12, wherein the metal-based compound is nickel-lithium. 15. The method of manufacture of claim 12, wherein the metal halide has a particle size greater than 100 Å. 16. The method of manufacturing of claim 12, wherein the method of removing is a method of engraving. The method of manufacturing of the invention of claim 16, wherein the etching method is selected from the group consisting of dry etching, wet etching, and combinations thereof. 18. The method of manufacturing of claim 12, wherein the substrate has at least one buffer layer, and the step of removing the metal halide simultaneously removes at least a portion of the buffer layer. 19. The method of manufacturing of claim 12, wherein the driving elements are low temperature polycrystalline dream film transistors. The manufacturing method of claim 19, wherein the step of forming the driving elements comprises the substeps of: forming an amorphous germanium layer on the substrate; and converting the amorphous germanium layer into a poly germanium layer . 21. The method of manufacture of claim 20, wherein the mode of transformation is a metal induced crystallization mode. 22. An organic electroluminescent device, comprising: a substrate having a driving region and a light emitting region, wherein a metallization remains on the substrate; at least two driving components are disposed on the substrate and located in the driving 19 1356654 </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The density of the metal halide contained in the driving region is higher than the density of the metal halide contained in the light-emitting region. 23. The organic electroluminescent device of claim 22, wherein the metal telluride is nickel telluride. 24. The organic electroluminescent device of claim 22, wherein the metal halide has a particle size greater than 100A. 25. The organic electroluminescent device of claim 22, wherein the driving elements are thin film transistors. 26. The organic electroluminescent device of claim 25, wherein the driving elements are low temperature polycrystalline germanium film transistors. 27. The organic electroluminescent device of claim 22, wherein the organic electroluminescent device is a small molecule organic electroluminescent device or a polymeric organic electroluminescent device. 28. A halogen structure of an organic electroluminescent device, which is formed by the manufacturing method described in claim 1, wherein the substrate of the substrate is modified by the replacement page driving zone on October 12, 100 In the second driving component, the substrate further has an illuminating region, wherein the illuminating region has an organic electroluminescent device, and the organic electroluminescent device is electrically connected to one of the driving components. 29. The halogen structure of an organic electroluminescent device according to claim 28, wherein the metal telluride is nickel telluride. 30. The halogen structure of an organic electroluminescent device according to claim 28, wherein the metal halide has a particle size greater than 100 Å. 31. The halogen structure of an organic electroluminescent device according to claim 28, wherein the driving elements are thin film transistors. 32. The halogen structure of an organic electroluminescent device according to claim 31, wherein the driving elements are low temperature polycrystalline germanium thin film transistors. 33. The pixel structure of an organic electroluminescent device according to claim 28, wherein the organic electroluminescent device is a small molecule organic electroluminescent device or a polymeric organic electroluminescent device. twenty one
TW96128542A 2007-08-03 2007-08-03 Organic electroluminescent apparatus and manufactu TWI356654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96128542A TWI356654B (en) 2007-08-03 2007-08-03 Organic electroluminescent apparatus and manufactu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96128542A TWI356654B (en) 2007-08-03 2007-08-03 Organic electroluminescent apparatus and manufactu

Publications (2)

Publication Number Publication Date
TW200908783A TW200908783A (en) 2009-02-16
TWI356654B true TWI356654B (en) 2012-01-11

Family

ID=44723760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128542A TWI356654B (en) 2007-08-03 2007-08-03 Organic electroluminescent apparatus and manufactu

Country Status (1)

Country Link
TW (1) TWI356654B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999775B2 (en) 2013-03-25 2015-04-07 Au Optronics Corp. Method of fabricating pixel structure and pixel structure thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999775B2 (en) 2013-03-25 2015-04-07 Au Optronics Corp. Method of fabricating pixel structure and pixel structure thereof
US9224868B2 (en) 2013-03-25 2015-12-29 Au Optronics Corp. Pixel structure

Also Published As

Publication number Publication date
TW200908783A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
JP6430456B2 (en) Method for manufacturing semiconductor device
JP4690187B2 (en) Organic light emitting display device and method for manufacturing the same
JP5072157B2 (en) Method for manufacturing semiconductor device
KR100515279B1 (en) Semiconductor device and method for fabricating the same
TWI327447B (en) Method of fabricating a thin film transistor
TWI278009B (en) Semiconductor device and manufacturing method thereof, integrated circuit, electro-optic device, and electronic equipment
WO2013104228A1 (en) Method for manufacturing tft array substrate
US7319236B2 (en) Semiconductor device and electronic device
JP2003174153A (en) Peeling method, semiconductor device, and manufacturing method therefor
JP2003163337A (en) Stripping method and method for producing semiconductor device
TW201808628A (en) Manufacturing method of semiconductor device
JP2008047913A (en) Image display system including thin film transistor device and its fabrication system
TW201029174A (en) System for displaying images and fabrication method thereof
WO2017067336A1 (en) Array substrate, manufacturing method therefor, display panel, and display apparatus
JP5515287B2 (en) DISPLAY DEVICE, ELECTRONIC DEVICE, AND DISPLAY DEVICE MANUFACTURING METHOD
JP4567282B2 (en) Method for manufacturing light emitting device
TWI356654B (en) Organic electroluminescent apparatus and manufactu
JP2005340377A (en) Semiconductor device and method for manufacturing the same
TW201207999A (en) Organic light emitting diode display and method for manufacturing the same
JP4468326B2 (en) Method for manufacturing semiconductor device
JP2009064831A (en) Semiconductor apparatus, display device, and their manufacturing methods
CN100485872C (en) Method for preparing amorphous semiconductor film and semiconductor device
JP2005243938A (en) Thin-film transistor and its manufacturing method
JP4560708B2 (en) Semiconductor device and manufacturing method thereof
TW200941104A (en) System for display images and fabrication method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees