TWI353640B - Method of forming semiconductor structure - Google Patents

Method of forming semiconductor structure Download PDF

Info

Publication number
TWI353640B
TWI353640B TW96146066A TW96146066A TWI353640B TW I353640 B TWI353640 B TW I353640B TW 96146066 A TW96146066 A TW 96146066A TW 96146066 A TW96146066 A TW 96146066A TW I353640 B TWI353640 B TW I353640B
Authority
TW
Taiwan
Prior art keywords
gate stack
dielectric layer
spacer
gate
layer
Prior art date
Application number
TW96146066A
Other languages
Chinese (zh)
Other versions
TW200926305A (en
Inventor
Ching Jung Li
Yi Chun Chang
Hsinching Shih
Lu Ping Chiang
Hsiu Han Liao
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW96146066A priority Critical patent/TWI353640B/en
Publication of TW200926305A publication Critical patent/TW200926305A/en
Application granted granted Critical
Publication of TWI353640B publication Critical patent/TWI353640B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

1353640 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導>§# έ士 1« 徑干分锻結構,且特別是有關於具 有至少三種間隙壁厚度之記憶體裝置。 【先前技#f】 根據電晶體之設計及其内在特性,調整電晶體源極與 # &極間之_下方通道長度或可藉著於閘極周圍的間隙壁 來定義通道區的長度,以改變通道區之電阻而影響電晶體 .之效能。例如,源極/没極區可藉著使用間極及間隙壁作為 -罩幕,經由離子植入製程而定義出來。因此,閉極周圍之 間隙壁之見度會直接影響源極/沒極區的尺寸及位置。間隙 壁越薄時,閘極下方之源極/汲極區會越接近,較短之通道 區長度可使電晶體之操作速度提升。 例如在記憶體之應用中,位於陣列區之閘極周圍之間 • 隙壁,便會盡可能地作薄以增加電晶體之操作速度,因而 增加記憶體寫入或輸出的效率。位於周邊區中需要較高操 作電壓之電晶體需要較厚之間隙壁以增加其通道區長度而 使其具有較咼之崩潰電壓(breakdown voltage),且亦需要 一種以上之間隙壁厚度以於個別用途之電晶體定義適合的 通道區長度。 因此’業界亟需於積體電路中之不同區域形成不同厚 度之間隙壁’以定義適合的通道區長度而符合個別元件之 操作需求,並且形成不同厚度間隙壁過程中,還要能避免1353640 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a semi-conductive >§# gentleman 1«-diameter dry-forging structure, and more particularly to a memory device having at least three spacer thicknesses . [Previous technique #f] According to the design of the transistor and its intrinsic characteristics, the length of the channel region can be defined by the length of the lower channel between the source of the transistor and the # & or by the spacer around the gate. The effect of the transistor is affected by changing the resistance of the channel region. For example, the source/no-polar region can be defined by an ion implantation process by using a spacer and a spacer as a mask. Therefore, the visibility of the gap around the closed pole directly affects the size and position of the source/no-polar region. The thinner the gap wall, the closer the source/drain regions under the gate will be, and the shorter channel length will increase the operating speed of the transistor. For example, in memory applications, the gap between the gates of the array region is as thin as possible to increase the operating speed of the transistor, thereby increasing the efficiency of memory writing or output. A transistor located in the peripheral region that requires a higher operating voltage requires a thicker spacer to increase the length of its channel region to have a lower breakdown voltage, and more than one spacer thickness is required for individual The transistor of use defines the length of the channel region that is suitable. Therefore, there is a need in the industry to form spacers of different thicknesses in different regions of an integrated circuit to define a suitable length of the channel region to meet the operational requirements of individual components, and to avoid gaps in different thicknesses.

Clienfs Docket No.:96-040 TT5s Docket No:0492-A41402-TW/f/JYChen 6 1353640 影響後續製程之良率。 【發明内容】 本發明提供一種半導體結構的形成方法, =括:列區及周邊區’且陣列區中包括複數個第:堆 宜,而周邊區中包括低電壓元件之第二閘極堆最 隹 ^ ^ β 及向電壓元件 之弟二閘極堆g ’形成第一介電層覆蓋於第一閘極 閘極堆疊、及第三閘極堆疊之上方及側壁,沉積第二 弟-介電層上,移除位於第—閘極堆疊及第二閘極堆疊上^第 二介電層,而留下第三閘極堆疊上之第二介電層,再= 二介電層於第-間極堆疊、第二閘極堆疊、及第三閘極I ^回_第二介電層,以露出第—介電層,移除陣列區中ς 第二介電層以露出第一介電層,以及回蝕刻第一介電層以露出 第一閘極堆疊、第二閘極堆疊、及第三閘極堆疊之上表面,而 於第一閘極堆疊、第二閘極堆疊、及第三閘極堆疊之侧壁分別 形成第一間隙壁、第二間隙壁、及第三間隙壁,其中第三間隙 壁之厚度大於第二間隙壁,而第二間隙壁之厚度大於第一間隙 壁。 為讓本發明之上述和其他目的、特徵、和優點能更明顯 易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細 說明如下: 【實施方式】 本發明所提供之間隙壁結構及其製法適用於許多種半Clienfs Docket No.: 96-040 TT5s Docket No:0492-A41402-TW/f/JYChen 6 1353640 Affects the yield of subsequent processes. SUMMARY OF THE INVENTION The present invention provides a method of forming a semiconductor structure, including: a column region and a peripheral region 'and includes a plurality of layers in the array region, and the second gate stack including the low voltage component in the peripheral region隹^^β and the second gate stack g' of the voltage component form a first dielectric layer overlying the first gate gate stack, and above the third gate stack and sidewalls, depositing a second brother-dielectric On the layer, removing the second dielectric layer on the first gate stack and the second gate stack, leaving a second dielectric layer on the third gate stack, and then = two dielectric layers on the first An inter-electrode stack, a second gate stack, and a third gate I^back_second dielectric layer to expose the first dielectric layer, and remove the second dielectric layer in the array region to expose the first dielectric a layer, and etching back the first dielectric layer to expose the first gate stack, the second gate stack, and the upper surface of the third gate stack, and the first gate stack, the second gate stack, and the first gate stack The sidewalls of the three gate stacks respectively form a first spacer wall, a second spacer wall, and a third spacer wall, wherein the third spacer wall is thick A gap larger than the second wall, and the wall thickness of the second gap is larger than the first spacer. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. The spacer structure and its preparation method are applicable to many kinds of

Client’s Docket No. :96-040 TT's Docket No:0492-A4I402-TW/f/JYChen 7 1353640 導體結構,特別適用於結構中部分區域元件間之開口(或間 隙)的深寬比(aSpect ratio)較高且區域中之元件需要較薄的 間隙壁’而在其他區域之元件又需要較厚的間隙壁。例如, 在非揮發性記憶體(nonvolatile memory cell)之應用中,記 隐肋·可例如區分成陣列區(array region)及周邊區(periphery region) ° 第1圖至第10圖是一系列製程剖面圖,用以說明本發 明一實施例中形成三種不同厚度間隙壁的製作流程。 現睛參照第1圖,首先提供基底1 〇。基底1 〇包括陣 列區12與周邊區14。基底10可為半導體基底,例如矽基 底、矽鍺基底、其他半導體化合物基底、或絕緣層上覆矽 (SOI)等。在陣列區12中’包括複數個第一閘極堆疊16, 其間具有複數個寬度不一的開口(或間隙),這些開口中至 少一開口之深寬比高於2.6。在周邊區14中,包括低電壓 元件之第二閘極堆疊18及高電壓元件之第三閘極堆疊 20。第二閘極堆疊18與第三閘極堆疊2〇間之基底可包括 淺溝槽、纟&緣區11。上述的閘極堆疊可以習知的方' 制作 其中,第-閘極堆疊16、第二閘極堆疊18、及第三=極堆 疊20中皆分別包括例如閘極電極、閘極介電層、及/或其 他材料層·#’此處為簡化圖示不顯示於圖中。此外二' 需要以第一閘極堆疊16、第二閘極堆疊18、及第二,可視 疊20為遮罩層,並對基底1G進行輕摻雜離子植入 分別於閘極堆疊兩旁的基底1〇上形成第一輕換 王 極區16a、第二輕摻雜源極/汲極區18a、 二*源極/汲 汉卑三輕摻雜源Client's Docket No. :96-040 TT's Docket No:0492-A4I402-TW/f/JYChen 7 1353640 Conductor structure, especially suitable for the aspect ratio (aSpect ratio) of the opening (or gap) between components in a part of the structure High and regional components require thinner spacers and components in other regions require thicker spacers. For example, in the application of nonvolatile memory cells, the hidden ribs can be divided into, for example, an array region and a peripheral region. FIG. 1 to FIG. 10 are a series of processes. A cross-sectional view for explaining a manufacturing process for forming three different thickness spacers in an embodiment of the present invention. Referring now to Figure 1, the substrate 1 is first provided. The substrate 1 〇 includes an array region 12 and a peripheral region 14. Substrate 10 can be a semiconductor substrate such as a germanium substrate, a germanium substrate, other semiconductor compound substrates, or an insulating layer overlying germanium (SOI) or the like. The array region 12 includes a plurality of first gate stacks 16 having a plurality of openings (or gaps) of varying widths, at least one of which has an aspect ratio of greater than 2.6. In the peripheral region 14, a second gate stack 18 of low voltage components and a third gate stack 20 of high voltage components are included. The substrate between the second gate stack 18 and the third gate stack 2 may include shallow trenches, germanium & edge regions 11. The above-described gate stack can be fabricated by a conventional method in which the first gate stack 16, the second gate stack 18, and the third electrode stack 20 respectively include, for example, a gate electrode and a gate dielectric layer. And/or other material layers·#' is not shown in the figure for the simplified illustration. In addition, the first gate stack 16, the second gate stack 18, and the second, the visible stack 20 is a mask layer, and the substrate 1G is lightly doped and implanted on the substrate on both sides of the gate stack. Forming a first light-changing king pole region 16a, a second lightly doped source/drain region 18a, a two-source/汲汉卑 three lightly doped source

Client's Docket No.:96-040 TT's Docket N〇:0492-A41402-TW/f/JYChen 8 1353640 極/汲極區20a。輕摻雜源極/汲極區之來 或碌離子讀低之能量與摻雜量植人基底iq中:=離子 極/汲極區之形成可有效地避免熱電子效應。輕摻雜源 為了增進元件的操作速度與密度,在^ 閘極堆疊16將被形成上較薄之間隙壁,而需中第-壓元件之第二閘極堆疊18與第 :-刼作電 成上次厚及之間_,分別被形 在免於發生崩潰(breakdown)的前提τ呆:壓之兀件能 度。 …下,具有較快操作速 接著,如第1圖所示,可透過例如 $ 法或氧化法形成第一介電層22於基底川:虱—目'儿積的方 22可順應性地覆蓋於第—閘極堆疊16 。第—介電層 及第三閘極堆疊20之上方及側壁。其中,/極18、 之厚度將決定第一閘極堆疊16於後續:之::電層22 隙壁厚度,可視需要來調整第—介電層、2广:所形成之間 件之操作需求。由於第一問極堆叠;需 薄’因此所需形成的第一介電層22 " 子度較Client's Docket No.: 96-040 TT's Docket N〇: 0492-A41402-TW/f/JYChen 8 1353640 Polar/bungee area 20a. Lightly doped source/drain region or low energy and doping amount implanted in the substrate iq: = ion The formation of the pole/drain region can effectively avoid the hot electron effect. Lightly doped source In order to increase the operating speed and density of the component, the gate stack 16 will be formed with a thinner spacer, while the second gate stack 18 of the first-voltage component is required to be: The last time between the thick and the _, respectively, is shaped to avoid the premise of a breakdown (the τ stay: the ability of the pressure. ...therefore, having a faster operating speed, as shown in Fig. 1, the first dielectric layer 22 can be formed by, for example, a method or an oxidation method, and the square 22 of the substrate can be compliantly covered. On the first - gate stack 16 . Above and to the sidewalls of the first dielectric layer and the third gate stack 20. Wherein, the thickness of the /pole 18 will determine the thickness of the first gate stack 16 in the following::: the thickness of the interlayer of the electrical layer 22, the first dielectric layer can be adjusted as needed, and the operation requirements of the formed components are . Due to the first stack of electrodes; it is required to be thin so that the first dielectric layer 22 "

予度較镇,LV I 米製程為例,約100Α至約200Α,較伟生 90奈 電層22之材質包括氧化矽、氮化矽、’、1約l6〇A’第—介 合的材料。 H切、或其他適 接下來,為了在高電壓元件製作厚間隙壁, 陣列區12形成缺陷,本發明將厚間隙壁的第-八:t尤在 階段沉積。第二介電層第一階段之沉積^即第—^電層分兩 請參照第2-4圖’在細上形成第二介電;介2=For example, the LV I meter process is an example, about 100 Α to about 200 Α. The material of the Weisheng 90 奈 electrical layer 22 includes yttrium oxide, tantalum nitride, ', 1 about l6 〇 A' first-intermediate material. . H-cut, or other suitable Next, in order to form a thick spacer in the high-voltage element, the array region 12 is formed with defects, and the present invention deposits the VIII:t of the thick spacer particularly at the stage. The deposition of the first stage of the second dielectric layer, that is, the first layer of the second dielectric layer, please refer to the second layer of the second dielectric layer with reference to Figure 2-4.

Clients Docket N〇.:96-040 TT5s Docket No:0492-A41402-TW/f/JYChen 9 1353640 .行選擇性地移除,而只留下第三閘極堆疊20之第二介電層 24a 〇 請參照第2圖,在形成第一介電層22之後,可透過例 ' 如化學氣相沉積的方法沉積第二介電層24a於第一介電層 - 22上。第二介電層24a將與第一介電層22及後續將再次 沉積之第二介電層24b共同組成第三閘極堆疊20之間隙 壁。第二介電層24a之厚度可視所需的第三閘極堆疊20之 間隙壁厚度、後續將再次沉積之第二介電層24b之厚度、 • 及陣列區12中之高長寬比開口所能容忍之厚度等來作調 整。第二介電層24a之厚度以90奈米的製程為例,約600A 至約1000A,較佳為約800A。第二介電層24a需選用不同 於第一介電層22之材質,以利於後續製程中可選擇性地移 除第二介電層24a。第二介電層24a之材質在不同於第一 介電層22之前提下,可包括氮化矽、氧化矽、氮氧化矽、 或其他適合的材料。舉凡所有可選擇性地移除其一之材料 組合,皆可在不影響元件操作下用以作為第一介電層及第 •二介電層。 如第3圖所示,在形成了第二電層24a後,可形成保 護材料例如第一光阻層26於第三閘極堆疊20上。在後續 例如以蝕刻法移除第一閘極堆疊16及第二閘極堆疊18上 之第二介電層24a時,第一光阻層26可用以保護第三閘極 堆疊20上之第二介電層24a免於受到蝕刻移除。第一光阻 層26之形成可包括塗布光阻層於基底10上,並接著對光 阻層進行曝光及顯影製程以形成僅覆蓋第三閘極堆疊20Clients Docket N〇.: 96-040 TT5s Docket No:0492-A41402-TW/f/JYChen 9 1353640. The row is selectively removed leaving only the second dielectric layer 24a of the third gate stack 20. Referring to FIG. 2, after the first dielectric layer 22 is formed, the second dielectric layer 24a may be deposited on the first dielectric layer 22 by a method such as chemical vapor deposition. The second dielectric layer 24a will form a spacer wall of the third gate stack 20 together with the first dielectric layer 22 and the second dielectric layer 24b to be deposited again. The thickness of the second dielectric layer 24a can be tolerated by the desired thickness of the spacer of the third gate stack 20, the thickness of the second dielectric layer 24b to be deposited again, and the high aspect ratio opening in the array region 12. The thickness and the like are adjusted. The thickness of the second dielectric layer 24a is exemplified by a 90 nm process, about 600 A to about 1000 A, preferably about 800 A. The second dielectric layer 24a needs to be different from the material of the first dielectric layer 22 to facilitate selective removal of the second dielectric layer 24a in subsequent processes. The material of the second dielectric layer 24a may be removed prior to being different from the first dielectric layer 22, and may include tantalum nitride, hafnium oxide, hafnium oxynitride, or other suitable materials. All combinations of materials that can be selectively removed can be used as the first dielectric layer and the second dielectric layer without affecting the operation of the device. As shown in Fig. 3, after the second electrical layer 24a is formed, a protective material such as the first photoresist layer 26 may be formed on the third gate stack 20. The first photoresist layer 26 can be used to protect the second gate stack 20 on the second dielectric layer 24a on the first gate stack 16 and the second gate stack 18, for example, by etching. Dielectric layer 24a is protected from etching removal. The formation of the first photoresist layer 26 may include coating a photoresist layer on the substrate 10, and then exposing and developing the photoresist layer to form only the third gate stack 20

Client's Docket N〇.:96-040 TT5s Docket No:0492-A41402-TW/f/JYChen 10 1353640 . 之第一光阻層26。然而,亦可使用其他的罩幕層來替代第 一光阻層26。 接著,請參照第4圖,移除未受第一光阻層26所保護 之第—介電層24a而露出第一閘極堆叠16及第二閘極堆疊 U上之第一介電層22。第二介電層24a之移除可使用包括 乾式蝕刻法或濕式蝕刻法。由於第二介電層24a之材質與 弟’丨電層22不同,再配合以適合的移除製程,可選擇性 地移除第二介電層24a。例如當第一介電層22之材質是氧 化石夕,而第二介電層24a之材質是氮化石夕時,適合的乾式 蝕刻較佳是利用非等向性反應離子蝕刻法(anis〇tr〇pic • RIE) ’ 適合的蝕刻劑包括 chf4/o2、CF4/H2、c2F6、c3F8、 ΝΙ?3、或前述之組合等。適合的濕式钱刻法包括使用熱碟酸 洛液(約15〇。〇約200X:間)來蝕刻第二介電層24a(氮化矽 層)。接著,移除第三閘極堆疊20上之保護材料,例如顯 不於第3圖之第一光阻層26。第一光阻層26之移除可以 濕式剝除法或乾式剝除法來進行。濕式剝除法包括使用内 酉同及芳香族等有機溶劑或硫酸及雙氧水等無機溶液來去除 光阻。乾式剝除法包括使用乳電裝來灰化(ashing)光阻,使 光阻材料反應成氣態的CO、C〇2、及H2〇等而去除。 接著進行第二介電層第二階段之沉積(即第二介電層 24b)。如第5圖所示,在移除部份的第二介電層24a及第 一光阻層26後’可以例如化學氣相沉積的方法再次形成第 二介電層於基底10上(即第二介電層24b)。再次形成之第 二介電層24b與第一介電層22將在後續製程中共同組成第Client's Docket N〇.: 96-040 TT5s Docket No: 0492-A41402-TW/f/JYChen 10 1353640. The first photoresist layer 26. However, other mask layers may be used in place of the first photoresist layer 26. Next, referring to FIG. 4, the first dielectric layer 24 on the first gate stack 16 and the second gate stack U is exposed by removing the first dielectric layer 24a not protected by the first photoresist layer 26. . The removal of the second dielectric layer 24a may be performed using a dry etching method or a wet etching method. Since the material of the second dielectric layer 24a is different from that of the second layer 22, the second dielectric layer 24a can be selectively removed by a suitable removal process. For example, when the material of the first dielectric layer 22 is oxidized stone and the material of the second dielectric layer 24a is nitrided, a suitable dry etching is preferably by anisotropic reactive ion etching (anis〇tr). 〇pic • RIE) ' Suitable etchants include chf4/o2, CF4/H2, c2F6, c3F8, ΝΙ?3, combinations of the foregoing, and the like. A suitable wet-money engraving method involves etching the second dielectric layer 24a (tantalum nitride layer) using a hot liquid acid solution (about 15 Å. 〇 about 200X: between). Next, the protective material on the third gate stack 20 is removed, such as the first photoresist layer 26 of FIG. The removal of the first photoresist layer 26 can be carried out by wet stripping or dry stripping. The wet stripping method involves the use of an organic solvent such as an internal and an aromatic solvent or an inorganic solution such as sulfuric acid or hydrogen peroxide to remove the photoresist. The dry stripping method includes using a milk electric device to ash a photoresist, and reacting the photoresist material into gaseous CO, C〇2, and H2〇 to remove. A second stage of deposition of the second dielectric layer (i.e., second dielectric layer 24b) is then performed. As shown in FIG. 5, after removing a portion of the second dielectric layer 24a and the first photoresist layer 26, a second dielectric layer may be formed on the substrate 10 by, for example, chemical vapor deposition (ie, Two dielectric layers 24b). The second dielectric layer 24b formed again and the first dielectric layer 22 will be combined in a subsequent process.

Client’s Docket No.:96-040 TT's Docket No:0492-A41402-TW/f/JYChen 1353640 二閘極堆疊18之間隙壁。第二介電層24b之厚度可視第二 閘極堆疊18所屬之低電壓元件之需求作調整,然仍不宜過 厚以避免於陣列區12中之高深寬比開口中形成缺陷,第二 • 介電層24b之厚度以90奈米的製程為例,約200A至約 - 600A,較佳為約400A。 接著,如第6圖所示,回银刻(etch back)再次形成之第 二介電層24b及第二介電層24a以露出第一閘極堆疊16、 第二閘極堆疊18、及第三閘極堆疊20之頂部部分的第一 • 介電層22。類似於第4圖中第二介電層24a之移除,由於 第二介電層24b之材質與第一介電層22不同,再配合以適 合的回蝕刻製程,可選擇性地移除第二介電層24b。較佳 使用非等向性蝕刻來回蝕刻第二介電層24b,例如使用反 應離子蝕刻法(RIE),所用之蝕刻劑可視第二介電層24b之 材質來選用。此外,由於第三閘極堆疊20先前受到第一光 阻層26之保護而曾沉積了兩次的第二介電層24a與24b, 因此第三閘極堆疊20周圍之第二介電層(24a與24b)之厚 ® 度大於第二閘極堆疊18周圍之第二介電層(24b)。其中, 第三閘極堆疊20周邊之第二介電層24a與24b之總厚度以 90奈米的製程為例,約1000A至約1400A,較佳為約 1200A。 請接著參照第7圖,可形成保護材料例如第二光阻層 28於基底10上以保護周邊區14中之第二介電層24。第二 光阻層28可以相似於第一光阻層26之方法來形成。 如第8圖所示,在形成周邊區14之保護材料(例如第7Client's Docket No.: 96-040 TT's Docket No: 0492-A41402-TW/f/JYChen 1353640 The gap between the two gate stacks 18. The thickness of the second dielectric layer 24b can be adjusted according to the requirement of the low voltage component to which the second gate stack 18 belongs, but it is still not too thick to avoid defects in the high aspect ratio opening in the array region 12, the second The thickness of the electrical layer 24b is exemplified by a 90 nm process, from about 200 A to about -600 A, preferably about 400 A. Next, as shown in FIG. 6, the second dielectric layer 24b and the second dielectric layer 24a are formed again by etch back to expose the first gate stack 16, the second gate stack 18, and the first The first dielectric layer 22 of the top portion of the three gate stack 20. Similar to the removal of the second dielectric layer 24a in FIG. 4, since the material of the second dielectric layer 24b is different from that of the first dielectric layer 22, it can be selectively removed by a suitable etch back process. Two dielectric layers 24b. Preferably, the second dielectric layer 24b is etched back and forth using an anisotropic etch, such as by reactive ion etching (RIE), and the etchant used may be selected from the material of the second dielectric layer 24b. In addition, since the third gate stack 20 was previously protected by the first photoresist layer 26 and the second dielectric layers 24a and 24b were deposited twice, the second dielectric layer around the third gate stack 20 ( The thicknesses of 24a and 24b) are greater than the second dielectric layer (24b) around the second gate stack 18. The total thickness of the second dielectric layers 24a and 24b around the third gate stack 20 is exemplified by a 90 nm process, about 1000 A to about 1400 A, preferably about 1200 A. Referring next to FIG. 7, a protective material such as a second photoresist layer 28 may be formed on the substrate 10 to protect the second dielectric layer 24 in the peripheral region 14. The second photoresist layer 28 can be formed similar to the method of the first photoresist layer 26. As shown in Fig. 8, the protective material forming the peripheral region 14 (for example, the seventh

Client’s Docket No.:96-040 TT's Docket No:0492-A41402-TW/f/JYChen 12 1353640 .圖中之第二光阻層28)後,可使用例如乾式蝕刻法或濕式蝕 刻法來移除陣列區12中之第二介電層24b。相似於前兩次 第二介電層24a或24b之移除,由於第二介電層24b之材 • 質不同於第一介電層22,因此可選擇性地移除陣列區12 中之第二介電層24b。 請接著參照第9圖,在移除第二光阻層28後,對第一 介電層22進行回蝕刻製程以露出第一閘極堆疊16、第二 閘極堆疊18、及第三閘極堆疊20之上表面,而於第一閘 • 極堆疊16、第二閘極堆疊18、及第三閘極堆疊20之側壁 分別形成第一間隙壁、第二間隙壁、及第三間隙壁。較佳 使用非等向性蚀刻來回钱刻第一介電層22,例如使用反應 離子蝕刻法(RIE),所用之蝕刻劑可視第一介電層22之材 質來選用。其中,第一間隙壁之厚度大抵由第一介電層22 之厚度決定,而第二間隙壁及第三間隙壁分別由第一介電 層22及第二介電層(24b或24a與24b)共同組成。在本發 明一實施例中,第二間隙壁及第三間隙壁是由第一介電層 • 22及第二介電層(24b或24a與24b)共同組成之複合間隙壁 (composite spacer),且其中第一介電層22是“L”型(如第9 圖所示)。 接著可對基底10進行離子植入製程以形成源極/汲極 區。如第10圖所示,以所形成之第一間隙壁、第二間隙壁、 及第三間隙壁為罩幕而對基底10進行離子植入製程,分別 於第一閘極堆疊16、第二閘極堆疊18、及第三閘極堆疊 20之間隙壁兩旁的基底10分別形成第一源極/汲極區Client's Docket No.: 96-040 TT's Docket No: 0492-A41402-TW/f/JYChen 12 1353640. After the second photoresist layer 28), it can be removed by, for example, dry etching or wet etching. The second dielectric layer 24b in the array region 12. Similar to the removal of the first two dielectric layers 24a or 24b, since the material of the second dielectric layer 24b is different from the first dielectric layer 22, the first of the array regions 12 can be selectively removed. Two dielectric layers 24b. Referring to FIG. 9, after the second photoresist layer 28 is removed, the first dielectric layer 22 is etched back to expose the first gate stack 16, the second gate stack 18, and the third gate. The upper surface of the stack 20 and the sidewalls of the first gate stack 16, the second gate stack 18, and the third gate stack 20 respectively form a first spacer, a second spacer, and a third spacer. Preferably, the first dielectric layer 22 is etched back and forth using an anisotropic etch, such as by reactive ion etching (RIE), and the etchant used may be selected from the material of the first dielectric layer 22. Wherein, the thickness of the first spacer is largely determined by the thickness of the first dielectric layer 22, and the second spacer and the third spacer are respectively formed by the first dielectric layer 22 and the second dielectric layer (24b or 24a and 24b) )Composed together. In an embodiment of the invention, the second spacer and the third spacer are composite spacers composed of the first dielectric layer 22 and the second dielectric layer (24b or 24a and 24b). And wherein the first dielectric layer 22 is of the "L" type (as shown in FIG. 9). The substrate 10 can then be subjected to an ion implantation process to form a source/drain region. As shown in FIG. 10, the substrate 10 is subjected to an ion implantation process by using the formed first spacer, the second spacer, and the third spacer as masks, respectively, in the first gate stack 16, and the second The gate stack 18 and the substrate 10 on both sides of the spacer of the third gate stack 20 respectively form a first source/drain region

Client’s Docket No.:96-040 TT^ Docket No:0492-A41402-TW/f/JYChen 13 /原極/;及極區18a、及第三源極/汲極區20a。 例作丰2 ’本發明具有需多優點,例如本發明之實施 構Γ之不同元件㈣,形成不时度之間 斑没拖p/者不同厚度之間隙壁形成不同長度之通道(源極 :求。曰1之距離)或輕摻雜源極/汲極區以符合不同元件之 辟,且透過分次沉積較薄的介電層來組合成較厚之間隙 免形成較厚的介電層時所產生之缺陷,例如因階 制[所產生之孔洞或懸突(GVei"hang)等不利後續 、陷。且在本發明—實施例中,僅需兩道光罩製程 便可%成二種厚度之間隙壁’可節省成本。 ^技藝人士當可了解’半導體結構中之元件有許多 二:、然其最佳的間隙壁厚度彼此不同,本發明之實施例 '、田最佳化元件整體性能之三種厚度之間隙壁。 此技藝人士t可視f要在不脫離本發明精神下,形成三種 =厚度之間隙壁以符合個別半導體結構之需求。且亦可 些三種以上厚度之間隙壁來形成三種長度以上的通 道區或輕摻雜源極級極區來最佳化半導體結構之運作。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明’任何所屬技觸域巾具有通常知識者, 在不脫離本發明之精神和範圍内,當可作任意之更動與潤 飾,因此本發明之保護範圍當視後附之申料利範圍;斤界 定者為準。 【圖式簡單說明】Client's Docket No.: 96-040 TT^ Docket No: 0492-A41402-TW/f/JYChen 13 / primary pole/; and pole region 18a, and third source/drain region 20a. For example, the present invention has many advantages, such as different components (4) of the implementation of the present invention, forming a channel of different lengths between the gaps of the thicknesses of the gaps (sources: seeking曰1 distance) or lightly doped source/drain regions to meet the requirements of different components, and by combining thinner dielectric layers to form thicker gaps to avoid thicker dielectric layers The resulting defects, for example, due to the order [cavity or overhang (GVei " hang) and other unfavorable follow-up. Moreover, in the present invention-embodiment, only two mask processes can be used to form a spacer of two thicknesses, which can save costs. It will be appreciated by those skilled in the art that there are many components in a semiconductor structure: however, the optimum spacer thicknesses are different from each other, the embodiment of the present invention, and the spacers of the three thicknesses that optimize the overall performance of the component. Those skilled in the art will be able to form three gaps of thickness = thickness to meet the needs of individual semiconductor structures without departing from the spirit of the invention. Three or more thickness spacers may also be formed to form three or more channel regions or lightly doped source regions to optimize the operation of the semiconductor structure. The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the invention. Any of the embodiments of the present invention can be used in any way without departing from the spirit and scope of the present invention. The scope of protection of the present invention is subject to the scope of application of the invention; [Simple description of the map]

Clienfs Docket No.:96-040 TT,s Docket No:0492-A41402-TW/f/JYChen 1353640 第1圖至第10圖是一系列製程剖面圖,用以說明本發 明一實施例中形成三種不同厚度間隙壁的製作流程。 【主要元件符號說明】 10〜基底;12〜陣列區;14〜周邊區;16〜第一閘極堆疊; 18〜第二閘極堆疊;20〜第三閘極堆疊;11〜淺溝槽絕緣區; 16a〜第一輕摻雜源極/没極區;18a〜第二輕摻雜源極/汲極 區;20a〜第三輕摻雜源極/汲極區;22〜第一介電層;24a〜(第 一次沉積之)第二介電層;26〜第一光阻層;24b〜(第二次沉 積之)第二介電層;28〜第二光阻層;16b〜第一源極/汲極 區,181)~弟二源極/〉及極區,20b〜第二源極/及極區。Clienfs Docket No.: 96-040 TT, s Docket No: 0492-A41402-TW/f/JYChen 1353640 FIGS. 1 to 10 are a series of process cross-sectional views for explaining three different forms in an embodiment of the present invention. The manufacturing process of the thickness spacer. [Main component symbol description] 10~substrate; 12~array area; 14~peripheral area; 16~first gate stack; 18~second gate stack; 20~third gate stack; 11~ shallow trench insulation 16a~first lightly doped source/nopole region; 18a~second lightly doped source/drain region; 20a~third lightly doped source/drain region; 22~first dielectric Layer; 24a~ (first deposited) second dielectric layer; 26~ first photoresist layer; 24b~ (second deposited) second dielectric layer; 28~ second photoresist layer; 16b~ The first source/drain region, 181) to the second source/> and the polar region, 20b to the second source/pole region.

Client's Docket No.:96-040 TT's Docket No:0492-A41402-TW/f/JYChen 15Client's Docket No.: 96-040 TT's Docket No:0492-A41402-TW/f/JYChen 15

Claims (1)

1353640 第96146066號申請專利範圍修正本 100年6月14 a修i替換頁 月,f日修正本 十、申請專利範圍: 1.一種半導體結構的形成方法,包括: 提供一基底,該基底包括一陣列區及一周邊區,且 該陣列區中包括複數個第一閘極堆疊,而該周邊區中包 括一低電壓元件之第二閘極堆疊及一高電壓元件之第三 閘極堆疊; 形成一第一介電層覆蓋於該些第一閘極堆疊、該第 二閘極堆疊、及該第三閘極堆疊之上方及側壁; 沉積一第二介電層於該第一介電層上; 移除位於該些第一閘極堆疊及該第二閘極堆疊上之 該第二介電層,而留下該第三閘極堆疊上之該第二介電 層; 再次沉積該第二介電層於該些第一閘極堆疊、該第 二閘極堆疊、及該第三閘極堆疊上; 回ϋ刻該第二介電層,以露出該些第一閘極堆疊、 該第二閘極堆疊、及該第三閘極堆疊之上的該第一介電 •層; 移除該陣列區中之該第二介電層以露出該第一介電 層;以及 回姓刻該第一介電層以露出該些第一閘極堆疊、該 第二閘極堆疊、及該第三閘極堆疊之上表面,而於該些 第一閘極堆疊、該第二閘極堆疊、及該第三閘極堆疊之 側壁分別形成一第一間隙壁、一第二間隙壁、及一第三 間隙壁; 其中該第三間隙壁之厚度大於該第二間隙壁,而該 Client^ Docket No.:96-040 TT’s Docket No:0492-A41402TWFl/JYChen 16 ^53640 f96146066射請專利細修正本 第—間隙壁之厚度大於該第-間隙壁。 2.如申請專利範圍第】項所述之 方法’其令該第一介電層 構的形成 下列之相異材料,包括氧化石夕^ 材質係選自 3·如申請專利範圍第〗項所=導="。 方法,其中在移除位㈣m崎的形成 堆疊上之該第二介電層之前,更包第二開極 層以保護該第三閘極堆疊。 4帛~光阻 (如申請專利範㈣!項所述 方法’其中在移除該阵列區中之該第二介電;=成 第:介電層之前更包括先形成—第二光“= 一閘極堆疊及該第三閘極堆疊。 亥第 5.如申請專利範圍第!項所述之半 :法’其中該第-介電層之回兹刻將該第二二3 苐二間隙壁中之該第一介電層蝕刻成L型。 μ 6·如中請專利範圍第!項所述之半導體結構的形成 方法,更包括以該第-間隙壁、該第二間隙壁、或 三間隙壁為罩幕而對該基底進行—離子植人製程以= 至少一源極/汲極區。 / Client’s Docket ΤΜ〇.:96-040 TT^ Docket Νο:0492-Α4 1402TWF1 /JYChen 171353640 No. 96146066 Application Patent Revision Amendment 100 years June 14 a repair i replacement page month, f day revision ten, patent application scope: 1. A method for forming a semiconductor structure, comprising: providing a substrate, the substrate comprising a An array region and a peripheral region, and the array region includes a plurality of first gate stacks, wherein the peripheral region includes a second gate stack of a low voltage component and a third gate stack of a high voltage component; forming a a first dielectric layer covering the first gate stack, the second gate stack, and the third gate stack and sidewalls; depositing a second dielectric layer on the first dielectric layer; Removing the second dielectric layer on the first gate stack and the second gate stack, leaving the second dielectric layer on the third gate stack; depositing the second dielectric again An electric layer is disposed on the first gate stack, the second gate stack, and the third gate stack; the second dielectric layer is etched back to expose the first gate stacks, the second a gate stack, and the first dielectric on the third gate stack a layer; removing the second dielectric layer in the array region to expose the first dielectric layer; and returning the first dielectric layer to expose the first gate stack, the second gate And stacking the upper surface of the third gate stack, and forming a first spacer and a second sidewall respectively on the sidewalls of the first gate stack, the second gate stack, and the third gate stack a spacer, and a third spacer; wherein the thickness of the third spacer is greater than the second spacer, and the Client^ Docket No.: 96-040 TT's Docket No: 0492-A41402TWFl/JYChen 16 ^53640 f96146066 Please refer to the patent fine revision section - the thickness of the spacer is larger than the first spacer. 2. The method of claim 2, wherein the first dielectric layer is formed of the following different materials, including a oxidized stone material selected from the group consisting of: =导=". The method further includes encapsulating a second open layer to protect the third gate stack prior to removing the second dielectric layer on the stack. 4帛~ photoresist (such as the method described in the patent application (4)!] wherein the second dielectric is removed in the array region; = before forming: the dielectric layer is further formed first - second light "= a gate stack and a third gate stack. Hai. 5. The half of the method described in the scope of the patent: [the method] wherein the second dielectric layer is backed by the second and third gaps The first dielectric layer in the wall is etched into an L-shape. The method for forming a semiconductor structure according to the above-mentioned patent scope includes the first spacer, the second spacer, or The three spacers are masks and the substrate is subjected to an ion implantation process to = at least one source/drain region. / Client's Docket ΤΜ〇.: 96-040 TT^ Docket Νο:0492-Α4 1402TWF1 /JYChen 17
TW96146066A 2007-12-04 2007-12-04 Method of forming semiconductor structure TWI353640B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96146066A TWI353640B (en) 2007-12-04 2007-12-04 Method of forming semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96146066A TWI353640B (en) 2007-12-04 2007-12-04 Method of forming semiconductor structure

Publications (2)

Publication Number Publication Date
TW200926305A TW200926305A (en) 2009-06-16
TWI353640B true TWI353640B (en) 2011-12-01

Family

ID=44729663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96146066A TWI353640B (en) 2007-12-04 2007-12-04 Method of forming semiconductor structure

Country Status (1)

Country Link
TW (1) TWI353640B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796876B (en) * 2021-08-27 2023-03-21 台灣積體電路製造股份有限公司 Memory device and method of making the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890214B2 (en) 2011-12-22 2014-11-18 Nan Ya Technology Corporation Method of manufacturing sidewall spacers on a memory device
CN112614843B (en) * 2020-12-16 2024-01-26 上海华力微电子有限公司 Semiconductor structure and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796876B (en) * 2021-08-27 2023-03-21 台灣積體電路製造股份有限公司 Memory device and method of making the same
US11854621B2 (en) 2021-08-27 2023-12-26 Taiwan Semiconductor Manufacturing Company Limited ONON sidewall structure for memory device and methods of making the same
US12009033B2 (en) 2021-08-27 2024-06-11 Taiwan Semiconductor Manufacturing Company Limited ONON sidewall structure for memory device and method for making the same

Also Published As

Publication number Publication date
TW200926305A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TWI302029B (en) Self-aligned conductive spacer process for sidewall control gate of high-speed random access memory
JP5091487B2 (en) Manufacturing method of semiconductor device
JP5404671B2 (en) Semiconductor device
TW200417013A (en) Tri-gate and gate around MOSFET devices and methods for making same
JP4551795B2 (en) Manufacturing method of semiconductor device
KR100437451B1 (en) Method Of Fabricating Trap-type Nonvolatile Memory Device
JP4093855B2 (en) Manufacturing method of semiconductor device
TW529134B (en) Method of forming an NROM embedded with mixed-signal circuits
US9418864B2 (en) Method of forming a non volatile memory device using wet etching
TWI353640B (en) Method of forming semiconductor structure
CN111490046B (en) High-erasing-writing speed semi-floating gate memory and preparation method thereof
TW574746B (en) Method for manufacturing MOSFET with recessed channel
US11943918B2 (en) Memory structure and fabrication method thereof
JP3746907B2 (en) Manufacturing method of semiconductor device
JP2008244108A (en) Semiconductor device and method of manufacturing the same
TWI240414B (en) A double-gate field effect transistor (DGFET) structure and method of forming such a structure
TWI277179B (en) Non-volatile memory device
US6821853B1 (en) Differential implant oxide process
CN111446286B (en) Semiconductor structure and forming method thereof
JP2008135765A (en) Semiconductor device
KR100314151B1 (en) A method for forming a transistor of semiconductor device
TWI233690B (en) Flash memory structure and method for fabricating the same
TW201635445A (en) Method for fabricating semiconductor device
KR101030298B1 (en) Method for manufacturing a stack gate type flash memory device
CN114284211A (en) Manufacturing method of semiconductor device and manufacturing method of memory