TWI353616B - Thermionic source - Google Patents

Thermionic source Download PDF

Info

Publication number
TWI353616B
TWI353616B TW97102851A TW97102851A TWI353616B TW I353616 B TWI353616 B TW I353616B TW 97102851 A TW97102851 A TW 97102851A TW 97102851 A TW97102851 A TW 97102851A TW I353616 B TWI353616 B TW I353616B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
substrate
electrode
carbon
nanotube film
Prior art date
Application number
TW97102851A
Other languages
Chinese (zh)
Other versions
TW200933686A (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97102851A priority Critical patent/TWI353616B/en
Publication of TW200933686A publication Critical patent/TW200933686A/en
Application granted granted Critical
Publication of TWI353616B publication Critical patent/TWI353616B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

1353616 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種熱電子源,尤其涉及一種基於奈米碳 管的熱電子源。 【先前技術】 主從1991年曰本科學家Iijima首次發現奈米碳管以來 (請參見 Helical microtubules 〇f graphitic carb〇n,Nature,1353616 IX. Description of the Invention: [Technical Field] The present invention relates to a source of hot electrons, and more particularly to a source of thermoelectrons based on carbon nanotubes. [Prior Art] Since the first discovery of carbon nanotubes by Ijima, a scientist in 1991, (see Helical microtubules 〇f graphitic carb〇n, Nature,

Sumio Iijima,v〇i 35七卩56^99”),以奈米碳管為代表的奈 米材料以其獨特的結構和性質引起了人們極大的關注。近 4年來,隨著奈米碳管及奈米材料研究的不斷深入,其廣 闊的應用前景不斷顯現出來。如,由於奈米碳管所具有的 獨特的電磁學、光學、力學、化學等性能,大量有關其在 電子發射裝置、感測器、新型光學材料、軟鐵磁材料等領 域的應用研究不斷被報導。 通常,電子發射裝置採用熱電子發射體或者冷電子發 射體作為電子發射源。利用熱電子發射體從電子發射裝置 發射電子的現象稱為熱電子發射現象。熱電子發射係利用 加熱的方法使發射體内部電子的動能增加,以致使一部分 電子的動能大到足以克服發射體表面勢壘而逸出體外。從 發射體表面發射的電子可以稱為熱電子,發射熱電子的發 射體可以稱為熱電子發射體。 先前技術中,熱電子源一般包括一熱電子發射體、一 第一電極和一第二電極。所述熱電子發射體設置於所述第 一電極和第二電極之間並與所述第一電極和第二電極電接 觸。所述熱電子源進一步包括一基板,所述熱電子發射體 1353.616 •與所述基板接觸’在對熱電子發射體進行加熱的過程中, 發射體材料,借助於真空沈積、 •基板會導熱從而將所述熱電子發射體的大部分熱量傳導進 .·大氣中’影響所製備的熱電子源的熱電子發射性能。通常 採用金屬、硼化物材料或者氧化物材料作為熱電子發射體 材料。熱電子源一般分為直熱式和間熱式兩類。直熱式即 採用金屬作為熱電子發射體材料,將金屬做成帶狀或者極 細的絲’通過焊接等技術將金屬固定到所述第一電極和第 二電極之間。在所述第一電極和第二電極之間施加一電 •麼,流過金屬的電流產生熱量而使金屬内部的電子逸出體 外。間熱式即採用硼化物材料或者氧化物材料作為熱電子 導電聚料直接塗覆或者電漿喷塗在一加熱子上;通過焊接 等技術將加熱子固定到所述第一電極和第二電極之間。在 所述第-電極和第二電極之間施加—電壓,流過加教子的 電流產生熱量加熱錢物材料或者氧化物材料,而使侧化 物材料成去-窗 «feL rki irrSumio Iijima, v〇i 35 卩 ^ 56^99”), nano-materials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. In the past 4 years, along with carbon nanotubes And the research of nano materials continues to deepen, and its broad application prospects are constantly emerging. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of related electronic emission devices and senses Applications such as detectors, new optical materials, and soft ferromagnetic materials have been reported. In general, electron-emitting devices use a hot electron emitter or a cold electron emitter as an electron-emitting source, which is emitted from an electron-emitting device using a thermal electron emitter. The phenomenon of electrons is called the phenomenon of thermal electron emission. The thermal electron emission system uses heating to increase the kinetic energy of electrons in the emitter, so that the kinetic energy of a part of the electrons is large enough to escape the surface barrier of the emitter and escape from the body. The electrons emitted from the surface may be referred to as hot electrons, and the emitter emitting the hot electrons may be referred to as a thermal electron emitter. The electron source generally includes a thermal electron emitter, a first electrode and a second electrode. The thermal electron emitter is disposed between the first electrode and the second electrode and is opposite to the first electrode and the second electrode Electrical contact. The hot electron source further includes a substrate, the thermal electron emitter 13536.16 • in contact with the substrate 'in the process of heating the thermal electron emitter, the emitter material, by means of vacuum deposition, • substrate It conducts heat to conduct most of the heat of the thermal electron emitter into the atmosphere. It affects the thermal electron emission properties of the prepared hot electron source. Usually, a metal, a boride material or an oxide material is used as the thermal electron emitter. Materials: The hot electron source is generally divided into two types: direct heat type and inter-heat type. The direct heat type uses metal as the hot electron emitter material, and the metal is made into a strip or a very fine wire. Between the first electrode and the second electrode, an electric current is applied between the first electrode and the second electrode, and a current flowing through the metal generates heat to make the metal The electrons of the part escape outside the body. The intercalation type is directly coated with a boride material or an oxide material as a thermoelectric conductive material or sprayed onto a heater; the heater is fixed to the above by welding or the like. Between the first electrode and the second electrode, a voltage is applied between the first electrode and the second electrode, and a current flowing through the teaching element generates heat to heat the money material or the oxide material, so that the side material is formed. -Window «feL rki irr

一 IA百赋土盆屬磁 濺射或其他適用的技術將 酸鹽材料的塗層具有相當高的電阻率 ’所製備熱電子源在An IA is a magnetic sputtering or other suitable technique to coat a coating of a salt material with a relatively high electrical resistivity.

的熱電子源實為必要。 1353616 【發明内容】 • 一種熱電子源,該熱電子源包括一基板、一熱電子發 V 射體、一第一電極和一第二電極,所述基板具有一凹槽, 所述熱電子發射體對應該凹槽並設置於所述基板表面,且 至少部分通過所述基板的凹槽與所述基板間隔設置,所述 第一電極和第二電極間隔設置,並與該熱電子發射體電接 與先前技術相比較,所述的熱電子源為一面熱電子 ⑩源’所述熱電子發射體通過所述基板的凹槽與該基板間隔 設置’基板不會將加熱所述熱電子發射體而產生的熱量傳 導進大氣中,故所製備的熱電子源的熱電子發射性能優 異。而且,該奈米碳管薄膜電阻率低,所製備的熱電子源 在較低的熱功率下即可實現熱電子的發射,降低了熱發射 時加熱產生的功耗,可用於大電流密度和高亮度的平板顯 示和邏輯電路等多個領域。 【實施方式】 鲁 以下將結合附圖詳細說明本技術方案熱電子源及其製 備方法。 請參閱圖1,本技術方案實施例所製備的熱電子源10 包括一基板12、一熱電子發射體18、一第一電極14和一 第二電極16。所述基板12表面121具有一凹槽122。所述 熱電子發射體18對應該凹槽122並設置於所述基板12表 面121,且至少部分通過所述基板12表面的凹槽 與所述基板12間隔設置。所述第一電極14和第二電極ι6 間隔設置,並與該熱電子發射體18電接觸。 1353-616 • 所述熱電子源1〇進一步包括一低逸出功層20,該低 .逸出功層2〇設置在所述熱電子發射體18的表面。該低逸 *出功層的材料為氧化鎖或者敍等,可以使所述熱電子源10 •在較低的溫度下實現熱電子的發射。 所述基板12採用絕緣材料,可為陶瓷、玻璃、樹脂、 石英等。其中,所述基板12的形狀大小不限,可依據實際 而要進行改變。本技術方案實施例中所述基板12優選為一 玻璃基板。所述凹槽122的凹陷深度為1〇微米〜5〇微米。 #所述凹槽122的形狀不限,只需使所述熱電子發射體18 至少部分通過所述基板12的凹槽122與所述基板12間隔 設置即可。本技術方案實施例中所述凹槽為長方體形,長 度為200微米〜500微米,寬度為1〇〇微米〜3〇〇微米,高 度為10微米〜50微米。 所述熱電子發射體18為一薄膜結構或者至少一根長 線。所述熱電子發射體18的材料為硼化物、氧化物、金屬 或者奈米碳管。本技術方案實施例中所述熱電子發射體18 •=選為-奈米碳管薄膜結構。該奈米碳管薄膜結構包括一 奈米碳管薄膜或者至少兩個重疊設置的奈米碳管薄膜。該 奈米碳管薄膜申的奈米碳管沿同一方向擇優取向排列。所 述單層奈米碳管薄膜中的奈米碳管沿從所述第一電極14 向第二電極16延伸的方向排列。所述重疊設置的奈米碳管 薄膜中相鄰的兩個奈米碳管薄膜中的奈米碳管的排列方向 ^有一交叉角度α,且〇。^^9〇<^所述奈米碳管薄膜包括 夕個首尾相連且擇優取向排列的奈米碳管束,相鄰的奈米 妷管束之間通過凡德瓦爾力連接。該奈米碳管束包括多個 丄切616 長度相等且相互間隔排列的奈米碳管相鄰奈米碳管之 通過凡德瓦爾力連接。 本技術方案實施例中,由於採用CVD法在4英寸的 基底^生長超順排奈米碳管陣列,並進行進一步地處理得 到一奈米碳管薄膜。該奈米碳管薄膜中的奈米碳管為單壁 :米碳管、雙壁奈米碳管或者多壁奈来碳管。當奈米碳管 膜中的不米碳管為單壁奈米碳管時,該單壁奈米碳管的 直徑為0.5奈米〜50奈米。當奈米碳管薄膜中的奈米碳管 為雙壁奈米碳管時,該雙壁奈米碳管的直徑為1〇奈米〜% 奈米。當奈米碳管薄膜中的奈求碳管為多壁奈米碳管時, 該多壁奈米碳管的直徑為1.5奈米〜50奈米。 可以理解,所述奈米碳管薄臈中的奈米碳管均沿同一 方向擇優取向排列。當採用較大的基底生長超順排奈米碳 皆陣列時’可以得到更寬的奈米碳管薄臈。本技術方案實 施例中’由於採用CVD法在4英寸的基底上生長超順排 奈米碳管陣列,並進行進—步地處理得到—奈米碳管薄 膜,故該奈米碳管薄膜的寬度為〇〇1厘米〜1〇厘米,厚度 為10奈米〜100微米。所述奈米碳管薄膜可根據實際需要 切割成具有預定尺寸和形狀的奈米碳管薄膜。由於本實施 例超順排奈米碳管陣列中的奈求石炭管非常純淨,且由於奈 米碳管本身的比表面積非常大’故該奈来碳管薄膜本身具 有較強的粘性。該奈米碳管薄膜可利用其本身的粘性直接 固定於所述基板12的表面。所述熱電子發射體18還可以 通過一導電粘結劑固定於所述基板12的表面。本技術方案 實施例優選將所述熱電子發射體18通過一導電粘結劑固 1353616 定於所述基板12的表面。 所述第一電極14和第二電極16的 等導電金屬。所述第-電極14和第二電極Μ 2和銅 層或者-金屬落片,通過-耗結劑(圖未定 電子發射體18表面。所述第一電極14 )疋於所述熱 w和第二電極16的从 ^可選擇為石墨、奈米碳管等導電材料。所述第一= U和第二電極16可以係一石墨層,通過一枯結劑(圖 固定於所述熱電子發射體18表面,還可 ) ^ ^ ®遇了以係一奈米碳管長 線或者-奈来碳管薄膜通過本身的枯性直接固定於所述熱 電子發射體18表面。所述第一電極14和第二電極16的厚 度為10微米〜50微米。所述第一電極14和第二電極“之 間的間隔為150微米〜450微米。本技術方案第一實施例中 所述第一電極14和第二電極16優選為銅鍍層,分別通過 一枯結劑固定於所述熱電子發射體18的表面。 請參閱圖2,本技術方案實施例提供一種上述熱電子 源10的製備方法,其具體包括以下步驟: 步驟一:提供一基板12’在該基板12的表面121形 成一凹槽122。 本技術方案實施例的基板12優選為玻璃基板,在該玻 璃基板上刻蝕形成一凹槽122。 步驟二:提供一熱電子發射體18,將該熱電子發射體 18對應所述凹槽122並鋪設所述基板12表面121,該熱電 子發射體18通過所述基板12表面121的凹槽122與所述 基板12間隔設置。 本技術方案實施例的熱電子發射體18優選為一奈米The source of hot electrons is really necessary. 1353616 SUMMARY OF THE INVENTION A thermal electron source includes a substrate, a thermal electron emitting body, a first electrode, and a second electrode, the substrate having a recess, the thermal electron emission The body corresponds to the groove and is disposed on the surface of the substrate, and is disposed at least partially through the groove of the substrate, the first electrode and the second electrode are spaced apart from each other and electrically connected to the thermal electron emitter In contrast to the prior art, the source of the hot electrons is a source of hot electrons 10. The hot electron emitter is spaced from the substrate by a recess of the substrate. The substrate does not heat the hot electron emitter. The generated heat is conducted into the atmosphere, so that the prepared hot electron source has excellent thermal electron emission performance. Moreover, the carbon nanotube film has low resistivity, and the prepared hot electron source can realize the emission of hot electrons at a low thermal power, thereby reducing the power consumption caused by heating during heat emission, and can be used for high current density and High-brightness flat panel display and logic circuits and other fields. [Embodiment] Lu The hot electron source of the present technical solution and a preparation method thereof will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1, a hot electron source 10 prepared in an embodiment of the present technical solution includes a substrate 12, a thermal electron emitter 18, a first electrode 14, and a second electrode 16. The surface 121 of the substrate 12 has a recess 122. The thermal electron emitter 18 corresponds to the recess 122 and is disposed on the surface 121 of the substrate 12, and is spaced apart from the substrate 12 at least partially through a recess in the surface of the substrate 12. The first electrode 14 and the second electrode ι6 are spaced apart from each other and are in electrical contact with the thermionic emitter 18. 1353-616 • The hot electron source 1 further includes a low work function layer 20 disposed on a surface of the thermionic emitter 18. The material of the low-power layer is an oxidative lock or the like, which enables the hot electron source 10 to realize the emission of hot electrons at a lower temperature. The substrate 12 is made of an insulating material and may be ceramic, glass, resin, quartz or the like. The shape and size of the substrate 12 are not limited, and may be changed according to actual conditions. The substrate 12 in the embodiment of the technical solution is preferably a glass substrate. The recess 122 has a recess depth of 1 μm to 5 μm. The shape of the groove 122 is not limited, and the hot electron emitter 18 may be disposed at least partially through the groove 122 of the substrate 12 to be spaced apart from the substrate 12. In the embodiment of the technical solution, the groove has a rectangular parallelepiped shape with a length of 200 μm to 500 μm, a width of 1 μm to 3 μm, and a height of 10 μm to 50 μm. The thermal electron emitter 18 is a thin film structure or at least one long line. The material of the thermal electron emitter 18 is a boride, an oxide, a metal or a carbon nanotube. The thermal electron emitter 18 in the embodiment of the technical solution is selected as a carbon nanotube film structure. The carbon nanotube film structure comprises a carbon nanotube film or at least two carbon nanotube films arranged in an overlapping manner. The carbon nanotubes of the carbon nanotube film are arranged in a preferred orientation along the same direction. The carbon nanotubes in the single-layered carbon nanotube film are arranged in a direction extending from the first electrode 14 to the second electrode 16. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films in the overlapped carbon nanotube film has an intersection angle α and 〇. ^^9〇<^ The carbon nanotube film comprises a bundle of carbon nanotubes arranged in an end-to-end orientation and preferentially oriented, and adjacent nanotube bundles are connected by van der Waals force. The carbon nanotube bundle includes a plurality of tantalum 616 carbon nanotubes adjacent to each other and connected to each other by a van der Waals force. In the embodiment of the present invention, a super-sequential carbon nanotube array is grown on a 4-inch substrate by a CVD method, and further processed to obtain a carbon nanotube film. The carbon nanotubes in the carbon nanotube film are single-walled: a carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. When the carbon nanotubes in the carbon nanotube membrane are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled carbon nanotube is 1 〇 nanometer ~ % nanometer. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. It can be understood that the carbon nanotubes in the thin carbon nanotubes are arranged in a preferred orientation in the same direction. When a large substrate is used to grow ultra-sequential nanocarbon arrays, a wider carbon nanotube thinner can be obtained. In the embodiment of the technical solution, the width of the carbon nanotube film is obtained by growing a super-aligned carbon nanotube array on a 4-inch substrate by a CVD method and performing a step-by-step process to obtain a carbon nanotube film. It is 1 cm ~ 1 cm and has a thickness of 10 nm ~ 100 μm. The carbon nanotube film can be cut into a carbon nanotube film having a predetermined size and shape according to actual needs. Since the carbon nanotube tube in the super-sequential carbon nanotube array of the present embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. The carbon nanotube film can be directly fixed to the surface of the substrate 12 by its own viscosity. The thermal electron emitter 18 can also be attached to the surface of the substrate 12 by a conductive adhesive. The embodiment of the present invention preferably defines the hot electron emitter 18 on the surface of the substrate 12 by a conductive adhesive 1353616. The electrically conductive metal of the first electrode 14 and the second electrode 16. The first electrode 14 and the second electrode Μ 2 and the copper layer or the metal falling film pass through the consuming agent (the surface of the undetermined electron emitter 18, the first electrode 14) is entangled in the heat w and the second The electrode 16 may be selected from a conductive material such as graphite or a carbon nanotube. The first=U and the second electrode 16 may be a graphite layer, and a tantalum-carrying agent (the figure is fixed on the surface of the thermionic emitter 18) may also be subjected to a length of carbon nanotubes. The wire or the carbon nanotube film is directly fixed to the surface of the thermionic emitter 18 by its own dryness. The first electrode 14 and the second electrode 16 have a thickness of 10 μm to 50 μm. The interval between the first electrode 14 and the second electrode is 150 micrometers to 450 micrometers. The first electrode 14 and the second electrode 16 in the first embodiment of the present technical solution are preferably copper plating layers, respectively The bonding agent is fixed on the surface of the thermal electron emitter 18. Referring to FIG. 2, the embodiment of the present invention provides a method for preparing the thermal electron source 10, which specifically includes the following steps: Step 1: providing a substrate 12' A surface of the substrate 12 is formed with a recess 122. The substrate 12 of the embodiment of the present invention is preferably a glass substrate, and a recess 122 is formed on the glass substrate. Step 2: providing a thermal electron emitter 18, The hot electron emitter 18 corresponds to the recess 122 and lays the surface 121 of the substrate 12 . The hot electron emitter 18 is spaced apart from the substrate 12 by the recess 122 of the surface 121 of the substrate 12 . The example of the thermal electron emitter 18 is preferably one nanometer.

11 1353616 .碳管薄膜結構。將該奈米碳管薄膜結構對應所述凹槽i22 •並覆蓋所述基板12表面121,並通過所述基板12表曰 -的凹槽I22與所述基板12間隔設置的方法具體包括: 驟: (1)製備至少一奈米碳管薄膜。 該奈米碳管薄膜的製備方法包括以下步驟: 首先,提供一奈米碳管陣列形成於一基底,優選地 該陣列為超順排奈米碳管陣列。11 1353616 . Carbon tube film structure. The method for the carbon nanotube film structure corresponding to the groove i22 and covering the surface 121 of the substrate 12 and being spaced from the substrate 12 by the groove I22 of the substrate 12 includes: (1) Preparing at least one carbon nanotube film. The method for preparing the carbon nanotube film comprises the following steps: First, an array of carbon nanotubes is provided on a substrate, preferably the array is a super-sequential carbon nanotube array.

本實施例中,超順排奈米碳管陣列的製備方法採用化 學氣相沈積法,其具體步驟包括:(a)提供一平整美底, 該基底可選用P型或N型石夕基底,或選用 ^声 石夕基底’本實施例優選為採用4英寸的石夕基底;⑴= 底表面均勻形成一催化,該催化劑層#料可選用鐵 Fe )、鈷(c〇 )、鎳(Ni )或其任意組合的合金之一 .(c ) 將上述形成有催化劑層的基底在7〇(TC〜90(TC的空氣中退 ,約30分鐘〜90分鐘;⑷將處理過的基底置於反應爐中, 氣體環境下加熱到則。c〜7贼,然後通入碳源氣 約5 77鐘〜3〇分鐘,生長得到超順排奈米碳管陣列, 其高度為200微米〜_微米。該超順排奈米碳管陣列為至 此平行且垂直於基底生長的奈米碳管形成的純奈 ^ ^ ^通過上述控制生長條件,該超順排奈米碳管 基本不含有雜質,如無定型碳或殘留的催化劑金屬 。該奈米碳管陣列令的奈米碳管彼此通過凡德瓦爾 =接觸形成陣列。該奈米碳管陣列的面積與上述基底 面積基本相同。 (S ) 12 1353.616 • 上述碳源氣可選用乙炔、乙烯、曱烷等化學性質較活 *潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 *體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法’也可為石墨電極恒流電弧放電沈積法、 蒗 發沈積法等。 ^ 其次,採用一拉伸工具拉取上述奈米碳管陣列從而獲 得一奈米碳管薄膜。 & > 本實施例中,採用一拉伸工具拉取上述奈米碳管陣列 從而獲得一奈米碳管薄膜的方法包括以下步驟·(a)從上 述奈米碳管陣列中選定一定寬度的多個奈米碳管束片斷; (b )以一定速度沿基本垂直于奈米碳管陣列生長方向拉伸 該多個奈米碳管束片斷,獲得一連續的奈米碳管薄膜,該 奈米碳管薄膜中的奈米碳管沿拉伸方向排列。 在上述拉伸過程中,該多個奈米碳管束片斷在拉力作 用下沿拉伸方向逐漸脫離基底的同時’由於凡德瓦爾力作 用,該選定的多個奈米碳管束片斷分別與其他奈米碳管束 片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈米碳管薄膜為擇優取向排列的多個奈米碳管束首 尾相連形成的具有一定寬度的奈米碳管薄膜。可以理解, 所述奈米碳管薄膜中的奈米碳管均沿同一方向擇優取向排 所、十、2將至少—奈㈣管薄輯應所相槽122鋪設於 所述基板12的表面121,形成一太 成不未奴官薄臈結構作為熱 發射^ 18 ’該奈米碳管賴結糾騎祕板12表In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat bottom, and the substrate may be a P-type or N-type stone base. Or use the sound of the stone base substrate 'this embodiment is preferably a 4 inch stone base; (1) = the bottom surface uniformly forms a catalysis, the catalyst layer # material can be selected from iron Fe), cobalt (c〇), nickel (Ni Or one of the alloys of any combination thereof. (c) The substrate on which the catalyst layer is formed is at 7 〇 (TC~90 (TC air retreat, about 30 minutes to 90 minutes; (4) the treated substrate is placed in the reaction In the furnace, the gas is heated to the thief, then the carbon source gas is passed into the carbon source gas for about 5 77 to 3 〇 minutes, and the growth is obtained by super-sequential carbon nanotube array, the height of which is 200 μm~_micron. The super-sequential carbon nanotube array is pure nano-tube formed by parallel and perpendicular to the growth of the carbon nanotubes. The super-sequential carbon nanotubes contain substantially no impurities, such as none. Shaped carbon or residual catalyst metal. The carbon nanotube array makes the nano carbon The array is formed by van der Waals=contact. The area of the carbon nanotube array is substantially the same as the area of the above substrate. (S) 12 1353.616 • The above carbon source gas may be made of acetylene, ethylene, decane, etc. The carbon source gas of the present embodiment is acetylene; the gas of the shielding gas is nitrogen or an inert gas, and the preferred shielding gas of the embodiment is argon. It can be understood that the carbon nanotube array provided by the embodiment It is not limited to the above preparation method', but it may also be a graphite electrode constant current arc discharge deposition method, a burst deposition method, etc. ^ Next, a carbon nanotube array is taken by a stretching tool to obtain a carbon nanotube film. > In the present embodiment, the method for drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film comprises the following steps: (a) selecting a certain width from the carbon nanotube array. a plurality of carbon nanotube bundle segments; (b) stretching the plurality of carbon nanotube bundle segments at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth direction to obtain a continuous carbon nanotube film, The carbon nanotubes in the carbon nanotube film are arranged in the stretching direction. During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the pulling force, due to the van der Waals By force, the selected plurality of carbon nanotube bundle segments are continuously pulled out end to end with other carbon nanotube bundle segments to form a carbon nanotube film. The carbon nanotube film is arranged in a preferred orientation. A plurality of carbon nanotube bundles are formed end to end to form a carbon nanotube film having a certain width. It is understood that the carbon nanotubes in the carbon nanotube film are preferentially oriented in the same direction, and the ten and two will be at least - Nai (four) tube thin layer should be placed on the surface 121 of the substrate 12, forming a Taicheng not a slave official thin structure as a heat emission ^ 18 'The carbon nanotubes tie knots toughness 12 table

13 1353616 .面121的凹槽122與所述基板12間隔設置。 進步地’還可以通過濺射、真空蒸鍍等方法在所述 、奈米碳管薄膜結構的表面上形成一逸出功層2〇,該逸出功 層20的材料可為氧化鋇或者敲,從而使所述熱電子源⑺ 在較低的溫度下實現熱電子的發射。 所述將至少-奈米碳管薄膜對應所述凹槽122鋪設所 述基板12表面121的方法包括以下步驟:將—奈米碳管薄 膜沿從所述第-電極14向第二電極16延伸的方向直接鋪 籲設於在所述基板12表面121,形成一奈米碳管薄膜結構 18。或料至少兩個奈米碳f薄膜依據奈米碳管的排列方 向以一乂又角度《重疊直接鋪設於所述基板12表面, 且03C90。,形成一奈米碳管薄膜結構18。所述奈米碳管 薄膜結構18可利用本㈣純直接固定於所述基板i 面 121。 可以理解,所述將至少一奈米碳管薄膜對應所述凹槽 122鋪設所述基板12表面m的方法還可以包括以下步 •驟:提供-支撐體;將至少兩個奈米碳管薄膜依據奈米碳 管的排列方向以-交叉角度α重疊直接鋪設於所述支樓體 表面,且0SK90。,得到一奈米碳管薄膜結構18;去除所 述支樓體外多餘的奈米碳管薄膜;採用有機溶劑處理所述 奈米碳管薄膜结構18;將使用有機溶劑處理後的 薄膜結構18從所述支撐體上取下,形成一自支撐的^米碳 管薄膜結構18 ;將該自支撐的奈米碳管薄膜結構18對應 所述凹槽122鋪設於所述基板12表面121。所述奈米碳^ 薄膜可利用其本身的粘性直接固定於支撐體。 1353616 —本實%例令,上述支撐體的大小可依據實際需求確 疋。可以理解,通過在所述基板12表面121塗覆一導電粘 結劑’可將上述奈米碳管薄膜結構18 @定於所述基板η 表面121。13 1353616. The groove 122 of the face 121 is spaced apart from the substrate 12. Progressively, a work function layer 2〇 may be formed on the surface of the carbon nanotube film structure by sputtering, vacuum evaporation, or the like, and the material of the work function layer 20 may be ruthenium oxide or knock So that the hot electron source (7) achieves the emission of hot electrons at a lower temperature. The method of laying at least the carbon nanotube film on the surface 121 of the substrate 12 corresponding to the groove 122 includes the step of extending a film of the carbon nanotube from the first electrode 14 to the second electrode 16 The direction is directly applied to the surface 121 of the substrate 12 to form a carbon nanotube film structure 18. Or at least two nano-carbon f films are laid directly on the surface of the substrate 12 at an angle and an angle according to the arrangement direction of the carbon nanotubes, and 03C90. Forming a carbon nanotube film structure 18. The carbon nanotube film structure 18 can be directly fixed to the substrate i surface 121 by the present invention. It can be understood that the method of laying at least one carbon nanotube film corresponding to the groove 122 on the surface m of the substrate 12 may further include the following steps: providing a support body; and at least two carbon nanotube films According to the arrangement direction of the carbon nanotubes, the surface of the support body is directly laid at an overlap angle α, and is 0SK90. Obtaining a carbon nanotube film structure 18; removing excess carbon nanotube film outside the support; treating the carbon nanotube film structure 18 with an organic solvent; and processing the film structure 18 using an organic solvent The support body is removed to form a self-supporting carbon nanotube film structure 18; the self-supporting carbon nanotube film structure 18 is laid on the surface 121 of the substrate 12 corresponding to the groove 122. The nanocarbon film can be directly fixed to the support by its own viscosity. 1353616 — The actual % of the case, the size of the above support can be determined according to actual needs. It is understood that the above-described carbon nanotube film structure 18 can be positioned on the substrate η surface 121 by coating a surface of the substrate 12 with a conductive adhesive.

掛雍’本實施例還可進一步在將至少一奈米碳管薄膜 ^ V凹槽122直接鋪設於所述基板12表面121形成夯 二::工臈結· 18的步驟之後採用有機溶劑處理該奈米 反B 4膜結構18。所述使时機溶劑處理所述奈米碳管薄 Ξ = 程包括:通過試^將有機溶劑滴落在奈米碳 半=表面浸潤整個奈米碳管薄膜,或者將整個奈 機膜結構18浸人盛有有機溶劑的容器中浸潤。該有 機命劑為揮發性有機溶劑,如乙醇、甲醇、丙網、 3二:構Τ技術方案實施例中採用乙醇。所述的奈米碳 的機溶劑浸潤處理後,在揮發性有機溶劑 ㈣片斷會Γ!用下,奈米碳管薄膜結構18中平行的奈米 碳管薄膣姓聚集成奈米碳管束。因此’處理後該奈米 用。/ 、、”°構18機械強度及韌性增強,粘性減弱,方便應 -電在所述熱電子發射體18的表面間隔形成1 面形成電接觸一第二電極16’並與該熱電子發射體18㈣ 接觸’從而得到-熱電子源10。 電子=!!第冑極14和第二電極16間隔設置在所述旁 電子源10時U表面’以使所述熱電子發射體18應用㈣ -電極定的阻值避免短路現象的產生。所述第 第一電極可以通過絲網列印法、膠印列印法 15 1353616 靜電喷塗法、電泳法、光刻鍍膜法 法形成於所述熱電子發射體18的表面,還;= 劑(圖未示)固定於所述熱電子發射體18表面。、’Ή 本技術方案實施例優選通過絲網 發射體表面形成一第一電極14和」;法=熱:子 體包括以下步驟: 第一電極16,其具 (1)提供一導電漿料。The present embodiment can further process the organic solvent by placing the at least one carbon nanotube film V groove 122 directly on the surface 121 of the substrate 12 to form the second layer: Nano anti-B 4 membrane structure 18. The timing solvent treatment of the carbon nanotube thinner includes: passing the organic solvent to the nano carbon half surface to infiltrate the entire carbon nanotube film, or the entire nanomembrane structure 18 Soaked in a container filled with organic solvents. The organic agent is a volatile organic solvent, such as ethanol, methanol, propylene mesh, and the like: ethanol is used in the embodiment of the technical scheme. After the solvent infiltration treatment of the carbon nanocarbon is carried out, in the volatile organic solvent (four) segment, the parallel carbon nanotubes in the carbon nanotube film structure 18 are aggregated into a carbon nanotube bundle. Therefore, the nanometer is used after the treatment. /, "," 18 mechanical strength and toughness is enhanced, the viscosity is weakened, and it is convenient to form an electrical contact with a second electrode 16' at the surface of the surface of the thermal electron emitter 18 to form an electrical contact with the thermal electron emitter. 18(d) contact 'and thereby obtain-thermal electron source 10. Electron=!! The first drain 14 and the second electrode 16 are spaced apart from the side electron source 10 when the U surface 'to apply the thermal electron emitter 18 (4) -electrode The first resistance is formed by the screen printing method, the offset printing method 15 1353616, the electrostatic spraying method, the electrophoresis method, the photolithography method, and the thermal electron emission. The surface of the body 18, further; = agent (not shown) is fixed on the surface of the thermionic emitter 18, ''the embodiment of the present invention preferably forms a first electrode 14 and the surface of the screen emitter"; = Thermal: The sub-body comprises the following steps: A first electrode 16 having (1) providing a conductive paste.

所述導電漿料包括導電材料、枯結劑、有機 機助劑。其中所述導電材料為金、銀、鋼等導電金^ ^ :枯自無機枯結劑、有機枯結劑和低 =種或者多種。無機㈣劑可以包括玻璃粉、我= 玻璃。有機粘結劑可以包括纖維樹脂如乙美 =素:丙稀酸樹脂如聚醋丙烯酸醋、縣丙婦酸和^ ?1乙知丙烯酸g旨;和乙縣樹脂。所述枯結劑具有一定 的枯度,能使導電材料的顆粒減在—起,並使導電浆 熱電子發射體18表面。所述導電材料與點結劑 曰里$ ο.1.10〜1〇:ι。如果所述導電材料與粘結劑的重 :比小於〇.1:10,由於應力作用容易產生裂縫脫落等現 。如果所述導電材料與點結劑的重量比大於阳,則合 影響所述熱電子源10的發射性能。 、θ 進一步地,導電漿料中可以添加多種有機溶劑和有機 助劑,包括增㈣、分散劑、增塑劑或者表面活性劑等, 以調節所述導電襞料的枯度、流動性、乾燥速度等物理性 質’以便於塗覆。所用的有機溶劑和助劑沒有特別的限 除了一般的有機溶劑如乙醇、乙二醇、乙丙醇、碳氫化合 16 1353616 .物、水及其混合溶劑,還可以適當選擇其他經常添加的成 .分,如草酸二乙酯、低玻粉、乙醚丁酯等增塑劑,它們係 -揮發性較慢的溶劑,加入後能增強所述導電漿料的塑性。 .所述有機溶劑和助劑的添加量主要根據列印工藝而確定。 將上述導電漿料配好後,放入一攪拌裝置^將所=導 電^料混合均勻。本技術方案實施例優選的導電漿料中含 ,罝百分比為75%的銀、重量百分比為2〇%的粘結劑、重 量百分比為3%的低玻粉和重量百分比為2%的乙醇。其中 •點結劑係乙基纖維素在松油醇裏所形成的溶液。將按一定 比例配好的導電漿料放入三輥犧軋機中研磨,使該導電聚 料中的各個成分混合均勻。 (2) 將上述導電漿料按照預定圖案塗覆於所述埶 發射體18表面。 將上述導電漿料按照預定圖案通過絲網列印法塗覆於 所述熱電子發射體18表面。採用該方法可以製備出較精細 的熱電子發射體圖案,從而可應用於較高解析度的平面顯 響示器件。 (3) 對上述塗覆有導電漿料的熱電子發射體18進行熱 處理,從而在該熱電子發射體18表面相互間隔地形成一第、 一電極14和一第二電極16。 …、處理的方式通常採用在大氣或者含氧化性氣體的環 境中對所述塗覆有導電漿料的熱電子發射體18進行加 $。所述熱處理的加熱溫度根據所述導體漿料的成分來確 疋。所述熱處理的目的係去除導電漿料中的有機成分,使 所述導電漿料中不含有不揮發或不能分解的成分,並使所 17 < S ) 1353616 .述第一電極14和第二電極16和所述熱電子發射體18之間 .形成良好的機械連接和電接觸。通常,熱處理的加熱溫度 •不要高於6001。因為當熱處理的加熱溫度高於6〇〇〇c時, 奈米碳管可能被破壞。 本技術方案實施例優選對所述導電漿料進行熱處理的 過程包括以下步驟:首先從2〇。(:開始將所述導電漿料升溫 10分鐘後達到120。(:,在120°C下保溫10分鐘,以去除導 電漿料中的松油醇和乙醇;其次,將所述導電漿料繼續升 •溫30分鐘直至35(rc,在35(rc下保溫3〇分鐘,以去除導 電漿料中的乙基纖維素;再次,將所述導電漿料繼續升溫 30分鐘直至515t,在5151下保溫30分鐘,以使所述導 電漿料與所述熱電子發射體18緊密結合,最後自然冷卻所 述導電漿料,從而在該熱電子發射體18表面形成一第一電 極14和一第二電極16,並使所述第一電極14和第二電極 16和所述熱電子發射體18之間形成良好的機械連接和電 接觸。 ® 與先前技術相比較,所述的熱電子源為一面熱電子 源,所述熱電子發射體通過所述基板的凹槽與該基板間隔 設置,基板不會將加熱所述熱電子發射體而產生的熱量傳 導進大氣中,故所製備的熱電子源的熱電子發射性能優 異。而且,該奈米碳管薄膜電阻率低,所製備的熱電子源 在較低的熱功率下即可實現熱電子的發射,降低了熱發射' 時加熱產生的功耗,可用於大電流密度和高亮度的平^顯 示和邏輯電路等多個領域。 综上所述,本發明確已符合發明專利之要件,遂依法 18 (S ) 專利申凊。惟,以上所述者僅為本發明之較佳實施例, 不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 ^人士扱依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例的熱電子源的結構示意圖。 圖2係本技術方案實施例的熱電子源的製備方法的流 程示意圖。The conductive paste includes a conductive material, a dry agent, and an organic machine auxiliary. The conductive material is conductive gold such as gold, silver, steel, etc.: dry from inorganic binder, organic binder and low = species or multiple. Inorganic (four) agents can include glass powder, I = glass. The organic binder may include a fiber resin such as acetaminophen: an acrylic resin such as polyacetal vinegar, a county propylene ketone, and a ketone acrylic acid; and a B-resin resin. The dry agent has a certain degree of dryness, which enables the particles of the conductive material to be reduced and the conductive paste to be on the surface of the electron emitter 18. The conductive material and the knotting agent are in the range of ο.1.10~1〇:ι. If the weight of the conductive material and the binder is less than 〇.1:10, cracks are likely to occur due to stress. If the weight ratio of the conductive material to the junctioning agent is greater than yang, the emission properties of the hot electron source 10 are affected. Further, θ, a plurality of organic solvents and organic auxiliaries may be added to the conductive paste, including adding (four), a dispersing agent, a plasticizer or a surfactant, etc., to adjust the dryness, fluidity, and drying of the conductive material. Physical properties such as speed 'to facilitate coating. The organic solvent and the auxiliary agent to be used are not particularly limited except for a general organic solvent such as ethanol, ethylene glycol, ethyl propanol, hydrocarbon 16 1353616, water, a mixed solvent thereof, and other frequently added ones may be appropriately selected. A plasticizer such as diethyl oxalate, low glass powder, or butyl ether, which is a slower solvent, can enhance the plasticity of the conductive paste after the addition. The amount of the organic solvent and the auxiliary agent added is mainly determined according to the printing process. After the above conductive paste is prepared, it is placed in a stirring device to uniformly mix the conductive material. The preferred conductive paste of the embodiment of the present invention contains 75% silver, 2% by weight binder, 3% by weight low glass powder and 2% by weight ethanol. Among them • The knotting agent is a solution of ethyl cellulose in terpineol. The conductive paste prepared in a certain proportion is ground in a three-roller, so that the components in the conductive polymer are uniformly mixed. (2) The above conductive paste is applied to the surface of the ruthenium emitter 18 in a predetermined pattern. The above conductive paste is applied to the surface of the thermionic emitter 18 by screen printing in a predetermined pattern. With this method, a finer thermal electron emitter pattern can be prepared, which can be applied to a higher resolution flat display device. (3) The above-described thermal electron emitters 18 coated with a conductive paste are thermally treated to form a first electrode 14 and a second electrode 16 spaced apart from each other on the surface of the hot electron emitter 18. The treatment is usually carried out by adding the thermal electron emitter 18 coated with the conductive paste in an atmosphere or an oxidizing gas-containing environment. The heating temperature of the heat treatment is confirmed in accordance with the composition of the conductor paste. The purpose of the heat treatment is to remove the organic component in the conductive paste, so that the conductive paste does not contain non-volatile or non-decomposable components, and the first electrode 14 and the second are described. A good mechanical and electrical contact is formed between the electrode 16 and the hot electron emitter 18. Usually, the heating temperature of the heat treatment • Do not exceed 6001. Since the heat treatment temperature is higher than 6 〇〇〇c, the carbon nanotubes may be destroyed. Preferably, the process of heat-treating the conductive paste in the embodiment of the technical solution comprises the following steps: first from 2 Torr. (: The conductive paste was initially heated for 10 minutes to reach 120. (:, held at 120 ° C for 10 minutes to remove terpineol and ethanol in the conductive paste; secondly, the conductive paste was continued to rise • Warm for 30 minutes up to 35 (rc, hold at 35 (rc for 3 〇 minutes to remove ethylcellulose in the conductive paste; again, continue to heat the conductive paste for 30 minutes until 515t, keep warm at 5151 After 30 minutes, the conductive paste is tightly bonded to the thermal electron emitter 18, and finally the conductive paste is naturally cooled, thereby forming a first electrode 14 and a second electrode on the surface of the thermal electron emitter 18. 16. A good mechanical and electrical contact is formed between the first electrode 14 and the second electrode 16 and the thermionic emitter 18. The thermal electron source is a side heat compared to the prior art. An electron source, the hot electron emitter is disposed apart from the substrate by a groove of the substrate, and the substrate does not conduct heat generated by heating the thermal electron emitter into the atmosphere, so the prepared hot electron source Excellent thermal electron emission performance. Moreover, the carbon nanotube film has low resistivity, and the prepared hot electron source can realize the emission of hot electrons at a low heat power, reducing the power consumption generated by heating at the time of heat emission, and can be used for large current density. And high-brightness flat display and logic circuits and the like. In summary, the present invention has indeed met the requirements of the invention patent, and is stipulated in accordance with the law 18 (S) patent application. However, the above is only the present invention. The preferred embodiment of the present invention is not limited to the scope of the patent application. The equivalent modifications or variations of the present invention in the spirit of the present invention are intended to be included in the following claims. 1 is a schematic structural view of a hot electron source according to an embodiment of the present technical solution. FIG. 2 is a schematic flow chart of a method for preparing a hot electron source according to an embodiment of the present technical solution.

【主要元件符號說明】 熱電子源 基板[Main component symbol description] Thermoelectron source substrate

10 12 14 16 18 20 121 122 第一電極 第一電極 熱電子發射體 低逸出功層 基板表面 凹槽 c S ) 1910 12 14 16 18 20 121 122 First electrode First electrode Thermal electron emitter Low work function layer Substrate surface Groove c S ) 19

Claims (1)

1353616 •十、申請專利範圍 1· 一種熱電子源,包括一基板、一熱電子發射體、一第 一電極和一第二電極,所述第一電極和第二電極間隔 設置,並與該熱電子發射體電接觸,其改良在於,所 述基板具有一凹槽,所述熱電子發射體對應該凹 設置於所述基板表面。 θ 2.如申请專利範圍第1項所述的熱電子源,其中,所述 熱電子發射體至少部分通過所述基板的凹槽與所述 基板間隔設置。 3·如申請專利範圍第1項所述的熱電子源,其中,所 述凹槽的凹陷深度為1〇微米〜50微米。 4. 如申請專利範圍第1項所述的熱電子源,其中,所 述熱電子發射體為一薄膜結構或者至少一根長線。 5. 如申請專利範圍第4項所述的熱電子源,其中,所述 熱電子發射體為一奈米碳管薄膜結構,該奈米碳管 1 薄膜結構包括至少一奈米碳管薄膜,該奈米碳管薄 膜中的奈米碳管沿同一方向擇優取向排列。 6. 如申請專利範圍第5項所述的熱電子源,其中,所 述奈米碳管薄膜結構包括一奈米碳管薄膜,該奈米 碳管薄膜中的奈米碳管沿從所述第一電極向所述第 一電極延伸的方向排列。 7·如申請專利範圍第5項所述的熱電子源,其中,所 述奈米碳管薄膜結構包括至少兩個重疊設置的奈米 碳管薄膜,該重疊設置的奈米碳管薄膜中相鄰兩個 20 奈米碳管薄膜中的奈米破管的排列方向具有一交叉 角度 α,且 〇γα59〇。。 ’、 如申明專利範圍第5項所述的熱電子源其中所 述奈米碳管薄臈的寬度為〇.〇1厘米〜1〇厘^,厚度 為10奈米〜100微米。 9.如申請專利範圍第5項所述的熱電子源其中,所 述不米碳官薄膜包括多個首尾相連且擇優取向排列 的奈米碳管|,相鄰的奈米碳管束之間冑過凡德瓦 爾力連接。 10·如申請專利範圍第9項所述的熱電子源,其中,所 述奈米蛟官束包括多個長度相等且相互間隔排列的 奈米碳管,相鄰的奈米碳管之間通過凡德瓦爾力連 接。 11.如申請專利範圍第i項所述的熱電子源,其中,所 述熱電子源進一步包括一低逸出功層,該低逸出功 層設置在所述熱電子發射體的表面。 12·如申請專利範圍第11項所述的熱電子源,其中,所 述低逸出功層的材料為氧化鋇或者灶。 211353616 • X. Patent Application 1 1. A source of thermal electrons comprising a substrate, a thermal electron emitter, a first electrode and a second electrode, the first electrode and the second electrode being spaced apart from each other The electron emitter electrical contact is improved in that the substrate has a recess, and the thermal electron emitter corresponds to a concave surface of the substrate. The thermal electron source of claim 1, wherein the thermal electron emitter is spaced apart from the substrate at least partially through a recess of the substrate. 3. The hot electron source of claim 1, wherein the recess has a recess depth of from 1 μm to 50 μm. 4. The hot electron source of claim 1, wherein the thermal electron emitter is a thin film structure or at least one long line. 5. The hot electron source according to claim 4, wherein the thermal electron emitter is a carbon nanotube film structure, and the carbon nanotube 1 film structure comprises at least one carbon nanotube film. The carbon nanotubes in the carbon nanotube film are arranged in a preferred orientation in the same direction. 6. The hot electron source according to claim 5, wherein the carbon nanotube film structure comprises a carbon nanotube film, and the carbon nanotubes in the carbon nanotube film are from the The first electrodes are arranged in a direction in which the first electrodes extend. The hot electron source according to claim 5, wherein the carbon nanotube film structure comprises at least two carbon nanotube films arranged in an overlapping manner, and the phase of the carbon nanotube film disposed in the overlap The arrangement of the nanotubes in the adjacent two 20 carbon nanotube films has an angle of intersection α and 〇γα59〇. . The hot electron source according to claim 5, wherein the carbon nanotubes have a width of from 1 cm to 1 cm and a thickness of from 10 nm to 100 μm. 9. The hot electron source according to claim 5, wherein the non-carbon carbon film comprises a plurality of carbon nanotubes arranged end to end and in a preferred orientation, and between adjacent carbon nanotube bundles Connected to Van der Valli. The hot electron source according to claim 9, wherein the nano beam comprises a plurality of carbon nanotubes of equal length and spaced apart from each other, and adjacent carbon nanotubes pass between Van der Valli is connected. 11. The hot electron source of claim i, wherein the source of thermal electrons further comprises a low work function layer disposed on a surface of the hot electron emitter. The hot electron source according to claim 11, wherein the material of the low work function layer is ruthenium oxide or a cooker. twenty one
TW97102851A 2008-01-25 2008-01-25 Thermionic source TWI353616B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97102851A TWI353616B (en) 2008-01-25 2008-01-25 Thermionic source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97102851A TWI353616B (en) 2008-01-25 2008-01-25 Thermionic source

Publications (2)

Publication Number Publication Date
TW200933686A TW200933686A (en) 2009-08-01
TWI353616B true TWI353616B (en) 2011-12-01

Family

ID=44866042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97102851A TWI353616B (en) 2008-01-25 2008-01-25 Thermionic source

Country Status (1)

Country Link
TW (1) TWI353616B (en)

Also Published As

Publication number Publication date
TW200933686A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
US8247023B2 (en) Method for making thermionic electron source
TWI485099B (en) Carbon nanotube structure and method for making the same
TWI312165B (en)
US7772755B2 (en) Thermionic emission device
TWI462873B (en) Method for making carbon nanotube structure
US20090167137A1 (en) Thermionic electron emission device and method for making the same
CN104795296B (en) Electron emitting device and display
CN104795295B (en) Electron emission source
Uh et al. Enhanced field emission properties from titanium-coated carbon nanotubes
TWI339465B (en) Electromagnetic shielding layer and method for making the same
Li et al. Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods
Cui et al. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire
US7915797B2 (en) Thermionic electron source
TWI343591B (en) Field emission componet and method for making same
TWI353616B (en) Thermionic source
TWI581664B (en) Field emission device
TWI360830B (en) Method for making thermionic electron source
JP4770017B2 (en) CNT film, method for producing the same, field emission cold cathode using the CNT film, and image display device
CN105742139A (en) Composite type field emission negative electrode emission source and preparation method therefor
Chen et al. Fabrication and characterization of carbon nanotube arrays using sandwich catalyst stacks
TWI362677B (en) Method for making field emission electron source
Hosokawa et al. Filament discharge enhances field emission properties by making twisted carbon nanofibres stand up
TW201014789A (en) Method for making carbon nanotube yarn
Shang et al. Enhanced field emission from printed CNTs by high-temperature sintering and plasma bombarding in hydrogen
TWI401209B (en) Field emission componet and method for making same