TW201014789A - Method for making carbon nanotube yarn - Google Patents

Method for making carbon nanotube yarn Download PDF

Info

Publication number
TW201014789A
TW201014789A TW97138145A TW97138145A TW201014789A TW 201014789 A TW201014789 A TW 201014789A TW 97138145 A TW97138145 A TW 97138145A TW 97138145 A TW97138145 A TW 97138145A TW 201014789 A TW201014789 A TW 201014789A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
yarn
preparing
array
Prior art date
Application number
TW97138145A
Other languages
Chinese (zh)
Other versions
TWI386366B (en
Inventor
Yun-Hsin Kevin Liao
Kai-Li Jiang
Shou-Shan Fan
Yuan Yao
Chang-Shen Chang
Hsien-Sheng Pei
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97138145A priority Critical patent/TWI386366B/en
Publication of TW201014789A publication Critical patent/TW201014789A/en
Application granted granted Critical
Publication of TWI386366B publication Critical patent/TWI386366B/en

Links

Abstract

The present invention relates to a method for fabricating a carbon nanotube yarn includes providing a plurality of carbon nanotube arrays; pulling out a first carbon nanotube structure from one of the carbon nanotube arrays; pulling out a second carbon nanotube structure from another one of the carbon nanotube arrays; joining a leading end of the second carbon nanotube structure to the first carbon nanotube structure by contacting the leading end of the second carbon nanotube structure with the trailing portion of the first carbon nanotube structure, with the contact occurring along a common lengthwise direction of the two carbon nanotube structures, thereby forming a lengthened carbon nanotube structure; repeating the pulling and the joining until the lengthened carbon nanotube structure has a desired length; and treating the lengthened carbon nanotube structure with an organic solvent.

Description

201014789 九、發明說明: ;【發明所屬之技術領域】 : 本發明涉及一種奈米碳管材料的製備方法。尤其涉及 一種奈米碳管紗的製備方法。 【先前技術】 奈米碳官係一種由石墨稀片卷成的中空管狀物,其具 有優異的力學、熱學及電學性質。奈米碳管應用領域非常 鲁廣闊,如,它可用於製作場效應晶體管、原子力顯微鏡針 尖、場發射電子搶、奈米模板等等。特別的,範守善等人 在 Nature, 2002, 419:801,Spinning Continuous CNT Yarns 一文中揭露了一種從超順排奈米碳管陣列中拉出的純奈米 碳管紗,這種奈米碳管紗包括多個在凡德瓦爾力作用下首 尾相接的奈米碳管片段,每個奈米碳管片段具有大致相等 的長度,且每個奈米碳管片段由多個相互平行的奈米碳管 構成,一般的,這種奈米碳管紗的直徑在微米左 Φ右,經過有機溶劑處理後這種奈米碳管紗可方便的用於宏 觀2域。上述奈来碳管紗在徑向上具有良好的導電及導熱 性能,並且具有優異的韌性和機械强度,被認爲係一種具 有取代碳纖維、石墨纖維及玻璃纖維潜力的新型材料,可 廣泛的應用於電磁屏蔽電鏡、印刷電路板及特種防護服裝 的紡織等領域。 然而,目前奈米碳管紗的製備長度受到奈米碳管陣列 丄的限制’從先則的4英寸的石夕片上生長的高度爲獅 X的不求奴管陣列巾’所拉出的奈米碳管紗的長度有 7 201014789 限,使這種奈米碳管紗在宏觀上的應用受到 有鑒於此’提供一種連續的太 爲必要。 ㉟運續的不未妷皆紗的製備方法實 【發明内容】 -種奈米碳管紗的製備方法,包括以下㈣ 個^米碳管陣列;從一奈米碳管陣列中拉取獲得一第二 米碳管結構;從另一奈米碳管陣列中拉取獲得二太: ❹=結構:沿拉伸方向將第二奈米碳管結構的:二 奈米碳管結構靠近奈米碳管陣列的一端相接觸,得到^長 碳管結構;重複上述延長步驟,使奈米碳管 =構的長度進-步延長;及通較时機溶誠理上述奈 米碳管結構得到一奈米碳管紗。 相較於μ技術,本技術方案提供的奈米碳管紗的製 備方法具有以下優點:其一,利用將多個奈采碳管膜或奈 t碳管長線通過首尾相連的方式相連接,使原有的奈米碳 ❹官膜或奈米碳管長線的長度得到延長,經過有機溶劑處理 後得到奈米碳管紗,使奈米碳管紗的長度不受基底大小的 限制,從而可方便的得到需要長度的奈米碳管紗。其二, 通過上述方法得到的奈米碳管紗具有良好的導電、導熱及 力予性能,並且具有足够的長度,可廣泛的應用於電磁屏 蔽電纜、印刷電路板及各種防護服裝的紡織等宏觀領域。 【實施方式】 以下將結合附圖詳細說明本技術方案奈米碳管紗的製 備方法。 8 201014789 : 請參閱圖1並結合圖3,本實施例奈米碳管紗的製備 .方法主要包括以下步驟: 步驟一:提供多個奈米碳管陣列1〇,優選地,該陣列 爲超順排奈米碳管陣列。 請參閱圖2,本實施例中,奈米碳管陣列1〇的製備方 法採用化學氣相沈積法,其具體步驟包括:(a)提供多個 平整基底12,該基底12可選用P型、N型矽基底12、有 .氧化層的矽基底12,或選用氧化鋁、石英及鋁碳化矽基底 12,本實施例優選爲採用4英寸的矽基底12 ;( b )在上述 每個基底12表面形成一均勻催化劑層14,所述催化劑層 形成於基底的方法爲電鍍方法或濺鍍方法,該催化劑層14 可選用鐵(Fe)、銘(Co)、錄(Ni)或其任意組合的合金 之一;(c)將上述多個基底12置於一傳送帶22上,上述 傳送帶22可將基底12以一定的速度連續運送到一反應室 20中,其中,上述基底12在上述傳送帶22上間隔一定的 ⑩距離叹置,(d)在上述反應室2〇中,在上述多個基底12 表面的催化劑層14上生長奈米碳管陣列。 其中,上述反應室20具多個自動機械門24,該多個 自動機械門將反應室20劃分出多個溫度區間26,每一溫 度區間的溫度均由程序控制。上述反應室2〇中不同溫度區 間26中選擇性的通入相同或不同的氣體,並通過控制上述 反應室20不同溫度區間26中氣體的溫度、壓力及比例, 在基底12表面生長單壁、雙壁或多壁奈米碳管陣列1〇。 優選地’该反應室20具有三個溫度區間26,分別爲 9 201014789 第溫度區間262、第二溫度區間264及第三溫度區間 ’ :°。該第一溫度區間262中的氣體爲空氣,溫度爲700〇C 900 C:第—溫度區間264中的氣體爲保護氣體與碳源氣 的,口氣體,溫度爲500〇c 〜740oC。第三溫度區間268中 的乳體爲保護氣體,溫度爲室溫。其甲,形成催化劑層Μ 的基底12在第一溫度區間262内退火,退火後的基底12 通I傳送帶22進入第二溫度區間264,在催化劑層μ上 ⑩生長超順排奈米碳管陣列1〇,最後該超順排奈米碳管陣列 10通過傳送帶22進入第三溫度區間268内降溫。 上述第二溫度區間264中的碳源氣可選用乙炔等化學 性質較活潑的碳氫化合物,上述第二溫度區間264及第三 溫度區間268中的保護氣體可選用氮氣、氨氣或惰性氣 體。可以理解,上述傳送帶22不斷的使上述基底Μ通過 反應室20,從而實現在基底12上生長奈米碳管陣列⑺的 連續生產。 讓該超順排奈米碳管陣列1〇爲多個彼此平行且垂直於 基底生長的奈米碳管形成的純奈米碳管陣 陣…奈米碳管的高度在一定範圍内可通過 長時間來控制,一般爲i微米〜5毫米。本實施例中,所述 奈米碳管陣列10中奈米碳管的高度爲200微米。通過上述 控制生長條件,該超順排奈米碳管陣列10中基本不含有雜 質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管 陣列10中的奈米碳管彼此通過凡德瓦爾力緊密接觸形^ 奈米碳管陣列10。 201014789 步驟二:採用一拉伸工具從一奈米碳管陣歹U ι〇中拉取 广獲传一第一奈米碳管結構3〇。其具體包括以下步驟:(&) :從上述-奈米碳管陣列1〇中選定一定寬度的多個夺米碳 管片段,本實施例優選爲採用具有一定寬度的膠帶或一針 尖接觸奈米碳管陣列10,以選定一定寬度的多個奈米碳管 片段Kb)以一定速度沿基本垂直於奈米碳管陣列ι〇生長201014789 IX. Description of the invention: [Technical field to which the invention pertains]: The present invention relates to a method for preparing a carbon nanotube material. In particular, it relates to a method for preparing a carbon nanotube yarn. [Prior Art] The nanocarbon official is a hollow tubular body rolled from a graphite flake having excellent mechanical, thermal and electrical properties. The application of carbon nanotubes is very broad, for example, it can be used to make field effect transistors, atomic force microscope tips, field emission electrons, nano templates, and so on. In particular, Fan Shoushan et al., Nature, 2002, 419: 801, Spinning Continuous CNT Yarns, discloses a pure carbon nanotube yarn drawn from a super-sequential carbon nanotube array. The carbon tube yarn comprises a plurality of carbon nanotube segments which are connected end to end under the action of van der Waals force, each of the carbon nanotube segments having substantially equal lengths, and each of the carbon nanotube segments is composed of a plurality of mutually parallel The carbon nanotubes are composed of carbon nanotubes. Generally, the diameter of the carbon nanotube yarn is micrometer left Φ right. After the organic solvent treatment, the carbon nanotube yarn can be conveniently used in the macroscopic 2 domain. The above-mentioned nylon fiber yarn has good electrical and thermal conductivity in the radial direction, and has excellent toughness and mechanical strength. It is considered to be a novel material having the potential to replace carbon fiber, graphite fiber and glass fiber, and can be widely applied. Electromagnetic shielding electron mirrors, printed circuit boards and textiles for special protective clothing. However, the current preparation length of the carbon nanotube yarn is limited by the carbon nanotube array ' 'the height of the lion X's unsuccessful array towel from the height of the first 4-inch Shi Xi tablet. The length of the carbon tube yarn has a limit of 7 201014789, making this nano carbon tube yarn a macroscopic application in view of this 'providing a continuous too necessary. 35. The preparation method of the unmanned yarn is carried out. [Summary of the invention] - a method for preparing a carbon nanotube yarn, comprising the following (four) carbon nanotube arrays; drawing one from a carbon nanotube array The second meter carbon tube structure; the second carbon tube is taken from another nano carbon tube array: ❹ = structure: the second carbon nanotube structure in the direction of stretching: the carbon nanotube structure is close to the nano carbon One end of the tube array is in contact with each other to obtain a long carbon tube structure; the above extension step is repeated to extend the length of the carbon nanotubes to the structure; and the above-mentioned carbon nanotube structure is obtained by the timing of the solution. Carbon tube yarn. Compared with the μ technology, the preparation method of the carbon nanotube yarn provided by the technical solution has the following advantages: First, by connecting a plurality of carbon nanotube membranes or long carbon nanotubes through the end-to-end connection, The length of the original nanocarbon carbon film or the long carbon wire of the carbon nanotube is prolonged, and the carbon nanotube yarn is obtained by the organic solvent treatment, so that the length of the carbon nanotube yarn is not limited by the size of the substrate, thereby being convenient Get the length of the carbon nanotube yarn. Secondly, the carbon nanotube yarn obtained by the above method has good electrical conductivity, thermal conductivity and strength, and has sufficient length, and can be widely applied to electromagnetic shielding cables, printed circuit boards and textiles of various protective garments. field. [Embodiment] Hereinafter, a method of preparing a carbon nanotube yarn of the present invention will be described in detail with reference to the accompanying drawings. 8 201014789 : Please refer to FIG. 1 and in conjunction with FIG. 3 , the preparation method of the carbon nanotube yarn of the embodiment mainly comprises the following steps: Step 1: providing a plurality of carbon nanotube arrays 1 , preferably, the array is super Align the array of carbon nanotubes. Referring to FIG. 2, in this embodiment, the method for preparing the carbon nanotube array 1〇 adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a plurality of flat substrates 12, and the substrate 12 may be P type, The N-type ruthenium substrate 12, the ruthenium substrate 12 having an oxide layer, or the alumina, quartz, and aluminum ruthenium carbide substrate 12, which is preferably a 4-inch ruthenium substrate 12; (b) each of the substrates 12 described above Forming a uniform catalyst layer 14 on the surface, the method of forming the catalyst layer on the substrate is an electroplating method or a sputtering method, and the catalyst layer 14 may be selected from iron (Fe), inscription (Co), recording (Ni) or any combination thereof. One of the alloys; (c) placing the plurality of substrates 12 on a conveyor belt 22 that continuously transports the substrate 12 to a reaction chamber 20 at a rate at which the substrate 12 is on the conveyor belt 22 The carbon nanotube array is grown on the catalyst layer 14 on the surface of the plurality of substrates 12 in the reaction chamber 2〇 at a constant distance of 10 distances. The reaction chamber 20 has a plurality of automatic mechanical doors 24 that divide the reaction chamber 20 into a plurality of temperature intervals 26, the temperature of each temperature interval being controlled by a program. Selectively introducing the same or different gases into the different temperature zones 26 in the reaction chamber 2, and growing a single wall on the surface of the substrate 12 by controlling the temperature, pressure and ratio of the gases in the different temperature zones 26 of the reaction chamber 20, Double-walled or multi-walled carbon nanotube arrays. Preferably, the reaction chamber 20 has three temperature intervals 26, respectively 9 201014789 temperature interval 262, second temperature interval 264, and third temperature interval ':°. The gas in the first temperature interval 262 is air, and the temperature is 700 〇C 900 C: the gas in the first temperature interval 264 is a shielding gas and a carbon source gas, and the gas is at a temperature of 500 〇c to 740 °C. The milk in the third temperature zone 268 is a shielding gas and the temperature is room temperature. A, the substrate 12 forming the catalyst layer 退火 is annealed in the first temperature interval 262, and the annealed substrate 12 passes through the transfer belt 22 into the second temperature interval 264, and the super-sequential carbon nanotube array is grown on the catalyst layer μ. 1〇, finally, the super-sequential carbon nanotube array 10 enters the third temperature interval 268 through the conveyor belt 22 to cool down. The carbon source gas in the second temperature interval 264 may be a chemically active hydrocarbon such as acetylene, and the shielding gas in the second temperature interval 264 and the third temperature interval 268 may be nitrogen, ammonia or an inert gas. It will be appreciated that the conveyor belt 22 described above continuously passes the substrate crucible through the reaction chamber 20 to effect continuous production of the carbon nanotube array (7) grown on the substrate 12. The super-sequential carbon nanotube array 1 is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. The height of the carbon nanotubes can be long within a certain range. Time to control, generally i microns ~ 5 mm. In this embodiment, the height of the carbon nanotubes in the carbon nanotube array 10 is 200 microns. The super-sequential carbon nanotube array 10 is substantially free of impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions as described above. The carbon nanotubes in the carbon nanotube array 10 are in close contact with each other through the van der Waals force to form the carbon nanotube array 10. 201014789 Step 2: Pulling from a carbon nanotube array U 〇 采用 using a stretching tool to obtain a first carbon nanotube structure 3 广. Specifically, the method includes the following steps: (&): selecting a plurality of carbon nanotube segments of a certain width from the above-mentioned carbon nanotube array 1〇, and the embodiment preferably uses a tape having a certain width or a tip contact with the needle. The carbon nanotube array 10, with a plurality of carbon nanotube segments Kb selected to have a certain width, grows at a constant speed along a substantially vertical array of carbon nanotubes

方向拉伸該多個奈米碳管片段,以形成一連續的第一 ▲ 碳管結構30。 ’T 在上述拉伸過程中,選定的奈米碳管片段包括多個基 本平行的I米碳管。該多個奈来碳管片段在拉力作用下产 拉伸方向逐漸脫離基底12的同時,由於凡德瓦爾力作用°, 該選定的多個奈米碳管片段分別與其他奈米碳管片段首尾 相連地連續地被拉出,從而形成一第一奈米碳管結構%。 該第一奈米碳管結構30爲擇優取向排列的多個奈米碳管 首尾相連形成。該第一奈米碳管結構3〇中奈米碳管的排列 ❹方向基本平行於拉伸方向。 可以理解’該第一奈米碳管結構30可爲一奈米碳管膜 或一奈米碳管線。具體地,當所選定的多個奈米碳管片段 的寬度較大時,所獲得的第一奈米碳管結構3〇爲一奈米碳 管膜,其微觀結構請參閱圖4;當所選定的多個奈米碳管 片段的寬度較小時,所獲得的第一奈米碳管結構3〇可近似 爲一奈米碳管線。 本實施例中’該第一奈米碳管結構3〇的寬度與拉伸工 具的寬度有關。本實施例中採用4英寸的基底生長超順排 11 201014789 奈米碳管陣列,該第一奈米碳管結構3〇的寬度可爲〇.5奈 .米〜10厘米,厚度爲0.5奈米〜100微米。當第一奈米碳管 …構30中的奈米峡管爲單壁奈米碳管時,該單壁奈米碳管 的直徑爲0.5奈米〜50奈米。當第一奈米碳管結構3〇中的 奈米碳管爲雙壁奈米碳管時,該雙壁奈米碳管的直徑爲1〇 奈米〜50奈米。當第一奈米碳管結構3〇中的奈米碳管爲多The plurality of carbon nanotube segments are drawn in a direction to form a continuous first ▲ carbon tube structure 30. 'T During the above stretching process, the selected carbon nanotube segments comprise a plurality of substantially parallel I-meter carbon tubes. The plurality of carbon nanotube segments are gradually pulled away from the substrate 12 under tensile force, and the selected plurality of carbon nanotube segments are respectively end to end with other carbon nanotube segments due to the van der Waals force. Connected continuously and continuously to form a first carbon nanotube structure %. The first carbon nanotube structure 30 is formed by connecting a plurality of carbon nanotubes arranged in a preferred orientation end to end. The arrangement of the first carbon nanotube structure in the middle of the carbon nanotubes is substantially parallel to the direction of stretching. It will be understood that the first carbon nanotube structure 30 can be a carbon nanotube membrane or a nanocarbon pipeline. Specifically, when the width of the selected plurality of carbon nanotube segments is larger, the obtained first carbon nanotube structure 3 is a carbon nanotube film, and the microstructure thereof is shown in FIG. 4; When the width of the selected plurality of carbon nanotube segments is small, the obtained first carbon nanotube structure 3 〇 can be approximated as a nano carbon line. The width of the first carbon nanotube structure 3 in the present embodiment is related to the width of the stretching tool. In this embodiment, a 4-inch substrate is used to grow a super-aligned 11 201014789 carbon nanotube array, and the first carbon nanotube structure has a width of 〇.5 na.m. to 10 cm and a thickness of 0.5 nm. ~100 microns. When the nanochannel tube in the first carbon nanotube structure 30 is a single-walled carbon nanotube, the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm. When the carbon nanotubes in the first carbon nanotube structure 3 are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is from 1 nanometer to 50 nanometers. When the first carbon nanotube structure 3〇 is the number of carbon nanotubes

壁奈米碳管時,該多壁奈米碳管的直徑爲15奈米〜5〇奈 米0 步驟三··重複步驟 ,τ %々 冰不紙言丨早夕丨J 1ϋ中拉取 獲得第一奈米碳管結構32。優選地,該第二奈米碳管結 構32與第—奈米碳管結構30具有基本相同的寬度。^ 步驟四··沿拉伸方向將第二奈米碳管結構32的一端與 第-,米碳管結構3G靠近奈米碳管陣列1()的―端相接 觸,得到一長度延長的第三奈米碳管結構34。 可以理解,由於本實施例超順排奈米碳管陣太 米碳管非常純淨’ ^由於奈米碳管本身的比表面積非常 大:戶:以:第二奈米碳管結構32本身具有較强的粘性。因 $田用工具’如-録子爽取該第二奈米碳管結構% _ ^ 伸方向使該第二奈米碳管結構3 2的—端與第 構30靠近奈米碳管陣列1G的—端相接觸, j 一不米碳管結構32與第—奈来碳管結構30部分重叠 、過凡德瓦爾力枯附在-起。因此,通過將第一太乎石山 管結構30與第二夺 社 不米反 产大致a绝一 * ' 、 、、"構32首尾相連,可得到一長 又爲第一不米碳管結構30與第二奈米碳管結構32之 12 201014789 和的第三奈米碳管結構34。 步驟五:重複步驟三和步驟四,使第三奈米碳管結構 34的長度進一步延長。 步驟六:通過使用有機溶劑處理上述第三奈米碳管結 構34得到一奈米碳管紗4〇。 ❹ ❹ 具體地,可通過試管或滴瓶將有機溶劑⑷祕在上述 第三奈米碳管結構34表面浸潤整個第三奈米碳管結構 34。'本實施例中,將一滴瓶42放置於第三奈米碳管結構 34 ,方’滴瓶42底部具有一滴〇46,有機溶劑從滴口私 =於第三奈米碳管結構34表面。該有機溶劑44爲具有 易揮發性的有機溶劑44,如乙醇、甲醇、丙明、二氯乙烷 或氯仿’本實施例中優選採用乙醇。該第三奈来碳管結^ 34經有機溶劑44浸潤處理後’在揮發性有機溶劑44的表 的作用下’平行的奈米碳管片段會部分聚集成奈米 炭&束’進而使該第三奈米碳管結構34收縮成—奈来碳管 f經有機溶劑44處理後的奈米碳管紗扣表面體積比 田、’無枯性’且具有良好的機械强度及勒性 用於宏觀領域。 由進一步地,可採用一烘乾步驟烘乾該採用有機溶劑44 處理後的奈米碳管紗4〇。 具體地’可使上述經過有機溶劑44處理的與紗 4〇穿過:烘乾箱48’該烘乾箱48的溫度爲8〇γΓ1〇〇 = 使該奈米碳管紗中的有機溶劑揮發。#,也可採 機將該經過有機溶劑卢# 人風 ㈣办劑處理的奈米碳管紗4〇中的有機溶劑 13 201014789 44吹幹。 步驟七.收集所制得的奈米碳管紗4〇。具體爲採用電 機52將該奈米碳管紗4〇纏繞到一卷轴%上,另,也可採 用手工的方法將該奈米碳管紗4〇卷到卷軸5〇上。 請參閱圖3,由於奈米碳管結構具有較大粘性,因此, 爲了避免奈米碳管結構與周圍環境㈣結,上述拉取、延In the case of a wall-nanocarbon tube, the diameter of the multi-walled carbon nanotube is 15 nm to 5 〇N. 0. Step 3·· Repeat the step, τ % 々冰不纸言丨早丨丨J 1ϋ The first carbon nanotube structure 32. Preferably, the second carbon nanotube structure 32 has substantially the same width as the first carbon nanotube structure 30. ^ Step 4 · Contact one end of the second carbon nanotube structure 32 with the first, m-carbon tube structure 3G near the end of the carbon nanotube array 1 () in the direction of stretching to obtain a length extension Three carbon nanotube structure 34. It can be understood that since the super-sequential carbon nanotube array of the present embodiment is very pure ' ^ because the specific surface area of the carbon nanotube itself is very large: household: to: the second carbon nanotube structure 32 itself has a relatively Strong sticky. Because the field tool 'such as - the recording of the second carbon nanotube structure % _ ^ extension direction makes the second carbon nanotube structure 3 2 end and the third structure close to the carbon nanotube array 1G The end-to-end contact, the j-n-carbon tube structure 32 partially overlaps with the first-nine carbon tube structure 30, and the van der Waals force is attached. Therefore, by connecting the first Taishan stone tube structure 30 with the second seizure of the non-productive anti-products, the first and second carbon nanotube structures can be obtained. 30 with a second carbon nanotube structure 32 of 12 201014789 and a third carbon nanotube structure 34. Step 5: Repeat steps 3 and 4 to further lengthen the third carbon nanotube structure 34. Step 6: A carbon nanotube yarn 4 is obtained by treating the above third carbon nanotube structure 34 with an organic solvent. Specifically, the organic solvent (4) may be infiltrated into the entire third carbon nanotube structure 34 on the surface of the third carbon nanotube structure 34 by a test tube or a drop bottle. In the present embodiment, a drop bottle 42 is placed in the third carbon nanotube structure 34, and a drop 45 is placed at the bottom of the drop bottle 42 with the organic solvent from the drip opening = on the surface of the third carbon nanotube structure 34. The organic solvent 44 is a volatile organic solvent 44 such as ethanol, methanol, propylamine, dichloroethane or chloroform. In the present embodiment, ethanol is preferably employed. After the third carbon nanotubes 34 are infiltrated by the organic solvent 44, 'the parallel carbon nanotube fragments will partially aggregate into the nano carbon & bundle' under the action of the volatile organic solvent 44. The third carbon nanotube structure 34 is contracted into a carbon nanotube gauze treated with an organic solvent 44, and the surface area of the carbon nanotube yarn is smaller than that of the field, and has no mechanical strength and good character. In the macro field. Further, the carbon nanotube yarn treated with the organic solvent 44 may be dried by a drying step. Specifically, the above-mentioned treatment with the organic solvent 44 can be passed through: the drying box 48'. The temperature of the drying box 48 is 8 〇 γ Γ 1 〇〇 = the organic solvent in the carbon nanotube yarn is volatilized . #, It is also possible to dry the organic solvent 13 201014789 44 of the carbon nanotube yarn treated by the organic solvent Lu #人风(四) agent. Step 7. Collect the prepared carbon nanotube yarn 4〇. Specifically, the carbon nanotube yarn 4 is wound onto a reel % by a motor 52. Alternatively, the carbon nanotube yarn 4 can be wound onto the reel 5 by a manual method. Referring to Figure 3, since the carbon nanotube structure has a large viscosity, in order to avoid the carbon nanotube structure and the surrounding environment (four), the above pull and extension

⑩ 長及採用有機溶劑處理該奈米碳管結構的步驟需同時進 行0 山”具體地,首先,在從奈米碳管陣列10中拉取第一奈米 碳管結構3G的同時,採用有機溶劑料處理該拉出的部分, 使該第—奈米碳管結構3G從奈米碳管陣列1G中拉出的部 分收縮成奈米碳管紗4G,並穿過—洪乾箱48纏繞到一卷 ^ 50上。其次’捲動該卷軸%使該第—奈米碳管結構 的剩餘部分從奈米碳管❹MG中繼續拉出。盛有有機 t糾44的滴瓶42放置於第一奈米碳管結構30上方,有機 滴口 46不斷滴落於第—奈来碳管結構%表面,使 4續拉出的第一奈米碳管結構3〇不斷收縮成奈米碳管紗 _ W 4〇㈣㈣_ 48的㈣’最㈣繞於 管陣列’當第—奈米碳管結構30將要從奈米碳 礙營社Μ 4凡全拉出時,採用一拉伸工具,將第二奈米 出===奈 中部分拉出,並將拉 溶劑處理的部分相重叠,使經有機 米碳管結構32相連接。Li,奈 戒後通過卷軸50的捲動,第二 201014789 奈米碳管結構32也被不斷從另—奈米碳管㈣ι〇中拉 出,隨第-奈米碳管結構3〇 一起,經過錢溶劑料處理 及供乾箱48純後,形成奈米碳管紗40並纏繞於卷抽50 上,從而使奈米碳管紗40的長度得到延長。 一經過上述步驟得到的奈米碳管紗的直徑爲〇·5奈来〜i 毫米。可以理解,爲適合實際應用的需要,可採用先前紡 紗工藝中的常賴紗方法將上料個奈米碳管紗進一步進 打扭轉、合股、編織等加工處理,得到不同粗細 管紗線。 本技術方案提供的奈米碳管紗的製備方法具有以下優 點:其一,利用將多個奈米碳管結構通過首尾相連的方式 相連接’使原有的奈米碳管結構的長度得到延長,經過有 機溶劑處理後得到奈米碳管紗,使奈米碳管紗的長度不受 基底大小的限制,從而可方便的得到需要長度的奈米碳管 鈔。其- ’通過上述方法得到的奈米碳管紗具有良好的導 電、導熱及力學性能’並且具有足够的長度,可廣泛的應 用於電磁屏蔽㈣、印刷電路板及各種防護服裝的纺織等 宏觀領域。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實 自不能以此限制本案之申請專利範圍。舉凡習知本案技菽 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 15 201014789 • 圖1係本技術方案實施例奈米碳管紗的製備方法的流 程圖。 二 圖2係本技術方案實施例反應室的頂視圖。 圖3係本技術方案實施例奈米碳管紗的製備過程的示 意圖。 圖4係本技術方案實施例的奈米碳管骐掃描電鏡照 片。 …、 奈米碳管陣列 1〇 基底 12 催化劑層 14 反應室 20 傳送帶 22 自動機械門 24 ilHL度區間 26 Ο 第一溫度區間 262 第二溫度區間 264 第三溫度區間 268 第一奈米碳管結構 30 第一奈米碳管結構 32 第三奈米碳管結構 34 奈米碳管紗 40 滴瓶 42 有機溶劑 44 φ 【主要元件符號說明】 16 201014789 滴口 46 烘乾箱 48 卷軸 50 電機 52 ⑩ 1710 The process of treating the carbon nanotube structure with an organic solvent needs to be carried out simultaneously. Specifically, first, while the first carbon nanotube structure 3G is pulled from the carbon nanotube array 10, organic The solvent material treats the drawn portion, and the portion of the first carbon nanotube structure 3G pulled out from the carbon nanotube array 1G is shrunk into the carbon nanotube yarn 4G, and is wound through the flooding box 48 to One roll ^ 50. Secondly, 'rolling the reel % causes the remaining portion of the first carbon nanotube structure to continue to be pulled out from the carbon nanotube MG. The drop bottle 42 containing the organic t correct 44 is placed first Above the carbon nanotube structure 30, the organic drip 46 is continuously dripped on the surface of the first carbon nanotube structure, so that the first carbon nanotube structure 3 which is continuously pulled out is continuously shrunk into a nano carbon tube yarn _ W 4 〇 (4) (4) _ 48 (4) 'The most (four) around the tube array 'When the first-nano carbon nanotube structure 30 is going to be pulled out from the nano-carbon barrier Μ 4, using a stretching tool, the second 奈The rice is out === the middle portion is pulled out, and the solvent-treated portions are overlapped to connect the organic rice carbon nanotube structure 32. Li After the ring is rotated by the reel 50, the second 201014789 carbon nanotube structure 32 is also continuously pulled out from the other carbon nanotube (four) ι, along with the first carbon nanotube structure 3〇, through the money solvent After the material processing and the dry box 48 are pure, the carbon nanotube yarn 40 is formed and wound on the coil 50, thereby lengthening the length of the carbon nanotube yarn 40. The carbon nanotube yarn obtained through the above steps The diameter is 〇·5奈来~i mm. It can be understood that, in order to meet the needs of practical applications, the conventional carbon fiber yarn can be further twisted, plied and woven by the conventional yarn method in the prior spinning process. The processing method can obtain different thick and thin tube yarns. The preparation method of the nano carbon tube yarn provided by the technical solution has the following advantages: First, the connection of a plurality of carbon nanotube structures by end-to-end connection is used to make the original Some nano carbon tube structures are extended in length, and after being treated with an organic solvent, nano carbon tube yarns are obtained, so that the length of the nano carbon tube yarn is not limited by the size of the substrate, so that the required length of nano carbon can be conveniently obtained. Banknotes. Its - The carbon nanotube yarn obtained by the above method has good electrical conductivity, thermal conductivity and mechanical properties' and has sufficient length, and can be widely applied to macroscopic fields such as electromagnetic shielding (4), printed circuit boards and various protective clothing textiles. The invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the invention, and the scope of the patent application of the present invention cannot be limited thereto. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be included in the scope of the following claims. [Simplified description of the drawings] 15 201014789 • Figure 1 is a preparation of a carbon nanotube yarn of the embodiment of the present technical solution Flowchart of the method. Fig. 2 is a top view of the reaction chamber of the embodiment of the technical solution. Fig. 3 is a schematic illustration of the preparation process of the carbon nanotube yarn of the embodiment of the present technical solution. Fig. 4 is a scanning electron microscope photograph of a carbon nanotube according to an embodiment of the present technical solution. ..., carbon nanotube array 1 〇 substrate 12 catalyst layer 14 reaction chamber 20 conveyor belt 22 automatic mechanical door 24 ilHL degree interval 26 Ο first temperature interval 262 second temperature interval 264 third temperature interval 268 first carbon nanotube structure 30 First carbon nanotube structure 32 Third carbon nanotube structure 34 Nano carbon tube yarn 40 Drop bottle 42 Organic solvent 44 φ [Main component symbol description] 16 201014789 Drip mouth 46 Drying box 48 Reel 50 Motor 52 10 17

Claims (1)

201014789 _、申請專利範圍 .一種奈米碳管紗的製備方法, 提供多個奈米碳管陣列; 包括以下步驟· 從-奈米碳管陣列令拉 從另一太本,山拉成, 昂佘水碳官結構; 伙另不未奴吕陣列中拉取獲得一第一太 沿拉伸方向將第二奈米碳管^碳官結構; 其社接告< * , σ構的一端與第一奈米碳 長的奈米碳管結構; 接觸’㈣—長度延 :複土述延長步驟,使奈米碳管結構的長度 長,及 =用有機溶劑處理上述奈米碳管結構得到一奈米 2如申請專利範圍第U所述的奈米碳管紗的 法,f中,該拉取、延長奈米碳管結構’及採用有機 溶劑處理該奈米碳管結構的步驟同時進行。 機 ❹ 3.如申請㈣範㈣1項所述的奈米碳管紗的製備方 法,其中,所述的奈来碳管結構爲―奈来 ^ 米碳管線。 狀4奈 4·如申明專利範圍帛1 $所述的奈来碳管紗的製 法,其中,該奈米碳管紗的直徑爲〇5奈米〜丨毫米。 5. 如申請專利範圍第1項所述的奈米碳管紗的製備方 法,其中’該奈米碳管紗中的奈米碳管爲單壁 管、雙壁奈米碳管或多壁奈米碳管。 " 6. 如申請專利範圍第5項所述的奈米碳管紗的製備 法,其中,所述單壁奈米碳管的直徑爲〇 5奈米〜夬 201014789 .米,所述雙壁奈米碳管的直徑爲^.0奈米〜5〇奈米,所 ;述多壁奈米碳管的直徑爲1·5奈米〜50奈米。 7. 如申凊專利範圍帛1 #所述的奈米碳管紗的製備方 法、’其中,所述奈米碳管結構包括多個通過凡德瓦爾 力首尾相連的奈米碳管沿同一方向擇優取向排列。 8. 如申請專利範圍第i項所述的奈米碳管紗的製備方 法,其中,所述從奈米碳管陣列拉取獲得奈米碳管結 構的方法包括以下步驟: ° β從上述奈米碳管陣列中選定—定寬度的多個奈米碳管 片段;及 以一定速度沿基本垂直於奈米碳管陣歹,】生長方向拉伸 該多個奈米碳管片段,以形成一連續的奈米碳管結構。 9·如申請專利1項所述的奈米|管紗的製備方 法,其中’奈米碳管陣列的製備方法包括以下步驟: 提供多個平整基底; 在上述每個基底表面形成一均勻催化劑層; ❿將上❹個基底m送帶上,上述傳送帶將基底以 一定的速度連續運送到一反應室中;及 在上述反應室中,在上述多個基底表面的催化劑層上生 長奈米碳管陣列。 10. 如申凊專利圍f 9項所述的奈米碳管紗的製備方 法’其中’所述反應室具多個溫度區間。 11. 如申請專利範圍第9項所述的奈米碳管紗的製備方 法’其中’所述反應室具三個溫度區間,第一溫度區間 中的氣體爲空氣’溫度爲7〇〇°c〜9〇〇°c,第二溫声區門 19 201014789 中的氣體爲保護氣體與碳源氣的混合氣體, 500oC〜740oC,第二、、®择p p日丄 /皿度爲 度爲室溫。一度&間中的氣體爲保護氣體,溫 12·如申請專利範圍第1 法,其中,太平W所述的奈米碳管紗的製備方 ^米其中奈h管陣列中奈米碳管的高度爲!微米〜5 '如申請專利範圍…所述的奈米碳 響 ❹ 法,其中,所述有機溶劑爲 製備方 乙烷或氣仿。 ⑼甲醉@,、二氯 14. 如申請專利範圍第1 法’其中,該奈米碳管紗的製備;製:方 乾上述有機溶劑處理的奈米碳管紗的步驟。, 供 15. 如權利要求14所述的奈米碳管紗的製備方法 在於,所述烘乾步驟包括將奈 其特徵 奈米碳管紗中的右應w漁丨甘'、B v、過供乾箱使 米碳管二有機有溶機=發’或採用,機將奈 '如申:專利範圍第i項所述的奈米後管 法,其中’該奈米碳管紗的製備方備方 個該奈米碳管紗扭轉、合股或編織的過程Μ括將多 17.如申請專利範圍第i項所述的奈 法’其中,該奈米碳管紗的製備方進二勺備方 集奈米碳管紗的步驟。 ^匕括一收 η:=隹1項:述的奈米碳管紗的製備方 將該奈米碳管紗卷到-卷轴上,或將該奈米 201014789 工卷到該卷軸上。201014789 _, the scope of patent application. A method for preparing nano carbon tube yarn, providing a plurality of carbon nanotube arrays; including the following steps: from the - carbon nanotube array pull from another Taiben, Shan Lacheng, Ang The water carbon structure of the water; the other side does not pull the array of slaves to obtain a first carbon along the direction of the extension of the second carbon nanotubes ^ carbon official structure; its community informed < *, the end of the σ structure The first nanometer carbon carbon nanotube structure; the contact '(four)-length extension: the extension of the soil, the length of the carbon nanotube structure is long, and the treatment of the above carbon nanotube structure with an organic solvent gives a Nano 2 is a method of applying the carbon nanotube yarn described in Patent No. U, f, the step of pulling and extending the carbon nanotube structure', and the step of treating the carbon nanotube structure with an organic solvent simultaneously.机 3. The method for preparing a carbon nanotube yarn according to the application of (4), wherein the structure of the carbon nanotubes is a Nile carbon line. 4, 4, 4, and 4, wherein the diameter of the carbon nanotube yarn is 〇5 nm to 丨m. 5. The method for preparing a carbon nanotube yarn according to claim 1, wherein the carbon nanotube in the carbon nanotube yarn is a single-walled tube, a double-walled carbon nanotube or a multi-walled naphthalene Carbon tube. < 6. The method for preparing a carbon nanotube yarn according to claim 5, wherein the single-walled carbon nanotube has a diameter of 〇5 nm to 夬201014789 m, the double wall The diameter of the carbon nanotubes is ^.0 nm ~ 5 〇 nanometer, and the diameter of the multi-walled carbon nanotubes is from 1. 5 nm to 50 nm. 7. The method for preparing a carbon nanotube yarn according to the patent scope 帛1 #, wherein the carbon nanotube structure comprises a plurality of carbon nanotubes connected end to end by van der Waals force in the same direction Preferred orientation. 8. The method for preparing a carbon nanotube yarn according to the invention of claim 1, wherein the method for obtaining a carbon nanotube structure from the carbon nanotube array comprises the following steps: Selecting a plurality of carbon nanotube segments of a predetermined width in the carbon nanotube array; and stretching the plurality of carbon nanotube segments in a growth direction substantially perpendicular to the carbon nanotube array at a certain speed to form a Continuous carbon nanotube structure. 9. The method for preparing a nano tube yarn according to claim 1, wherein the method for preparing a carbon nanotube array comprises the steps of: providing a plurality of flat substrates; forming a uniform catalyst layer on each of the substrate surfaces ❿ feeding a substrate m to the substrate, the conveyor belt continuously transports the substrate to a reaction chamber at a certain speed; and in the reaction chamber, growing the carbon nanotubes on the catalyst layer of the plurality of substrate surfaces Array. 10. The method for preparing a carbon nanotube yarn according to claim 9 wherein the reaction chamber has a plurality of temperature intervals. 11. The method for preparing a carbon nanotube yarn according to claim 9, wherein the reaction chamber has three temperature intervals, and the gas in the first temperature range is air 'temperature is 7 〇〇 ° c ~9〇〇°c, the second warm sound zone door 19 201014789 The gas in the gas is a mixed gas of shielding gas and carbon source gas, 500oC~740oC, the second, the pp 丄 丄 / the degree is the room temperature . The gas in the first time & is a protective gas, and the temperature is 12, as in the first method of the patent application range, wherein the preparation of the carbon nanotube yarn described in Taiping W is in the middle of the carbon nanotube Height is! Micron to 5', as described in the scope of the patent application, wherein the organic solvent is ethane or gas. (9) A drunk @,, dichloro 14. As in the patent application, the first method ', wherein the preparation of the carbon nanotube yarn; the method: the step of drying the above organic solvent-treated carbon nanotube yarn. 15. The method for preparing a carbon nanotube yarn according to claim 14, wherein the drying step comprises: arranging the right side of the nano-characterized carbon nanotube yarn, and bv, For the dry box to make the carbon nanotubes two organic solvent machine = send 'or use, machine will be Nai 'Rushen: patent range of the i-th tube method described in item i, where 'the preparation of the carbon nanotube yarn The process of twisting, plying or weaving the carbon nanotube yarns of the preparation side will be more than 17. The method of the invention is as described in the scope of the patent application, wherein the preparation of the nano carbon tube yarn is prepared in two tables. The steps of collecting square carbon nanotube yarns. ^ 匕 一 收 η: = 隹 1 item: the preparation of the carbon nanotube yarn described above, the carbon nanotube yarn is wound onto a reel, or the nano 201014789 is wound onto the reel.
TW97138145A 2008-10-03 2008-10-03 Method for making carbon nanotube yarn TWI386366B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97138145A TWI386366B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97138145A TWI386366B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube yarn

Publications (2)

Publication Number Publication Date
TW201014789A true TW201014789A (en) 2010-04-16
TWI386366B TWI386366B (en) 2013-02-21

Family

ID=44829781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138145A TWI386366B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube yarn

Country Status (1)

Country Link
TW (1) TWI386366B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631248B (en) * 2013-07-22 2018-08-01 村田機械股份有限公司 Yarn manufacturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992745B1 (en) 2019-01-24 2019-06-26 어썸레이 주식회사 Emitter with Superior Structural Stability and Improved Efficiency of Electron Emission and X-Ray Tube Comprising the Same
KR102099411B1 (en) 2019-07-26 2020-04-09 어썸레이 주식회사 Field Emission Apparatus with Superior Structural Stability and X-Ray Tube Comprising the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411979C (en) * 2002-09-16 2008-08-20 清华大学 Carbon nano pipe rpoe and preparation method thereof
CN100555529C (en) * 2005-11-04 2009-10-28 清华大学 A kind of field emission component and preparation method thereof
US8246874B2 (en) * 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device
CN100500556C (en) * 2005-12-16 2009-06-17 清华大学 Carbon nano-tube filament and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631248B (en) * 2013-07-22 2018-08-01 村田機械股份有限公司 Yarn manufacturing device

Also Published As

Publication number Publication date
TWI386366B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
Zhang et al. Spinning and processing continuous yarns from 4‐inch wafer scale super‐aligned carbon nanotube arrays
Avigal et al. Growth of aligned carbon nanotubes by biasing during growth
Lan et al. Physics and applications of aligned carbon nanotubes
TWI277376B (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
JP5243478B2 (en) Nanomaterial thin film
US9708189B2 (en) Carbon fiber film
WO2009107603A1 (en) Process and apparatus for producing carbon nanotube, carbon nanotube fiber, and the like
US20130295320A1 (en) Carbon nanotube structure
US20100124622A1 (en) Method for making nanowire structure
US10011488B2 (en) Method for making carbon fiber film
KR101638947B1 (en) Method for producing carbon nanotube array, spinning source member, and structure provided with carbon nanotubes
Cao et al. An effective way to lower catalyst content in well-aligned carbon nanotube films
JPH10203810A (en) Production of carbon nanotube
TW201136828A (en) Fullerene-doped nanostructures and methods therefor
TW200938481A (en) Carbon nanotube yarn strucutre
TWI342027B (en) Method for making twisted yarn
Chen et al. The characterization of boron-doped carbon nanotube arrays
Zhang et al. Self-organized arrays of carbon nanotube ropes
TW201014789A (en) Method for making carbon nanotube yarn
JP2004002103A (en) Method for manufacturing carbon nano wire
Kurt et al. Structure and field emission properties of decorated C/N nanotubes tuned by diameter variations
CN103011124A (en) Preparation method of carbon nano tube composite film