1362677 « I1362677 « I
[0001] [0002] [0003] [0004] 100年11.月07日核正替换頁發明說明: 【發明所屬之技術領域】 本發明涉及一種場發射電子源的製備方法,尤其涉及一 種基於奈米碳管的場發射電子源的製備方法。 【先前技術】 場發射電子源在低溫或者室溫下工作,與電真空器件中 的熱發射電子源相比具有能耗低、响應速度快及低放電 等優點,因此用場發射電子源替代電真空器件中的熱發 射電子源成為了人們研究的一個熱點。 奈米碳管(Carbon Nanotube,CNT)係一種新型礙材料 ,由曰本研究人員Ii jima在1991年發現,請參見"Hel-ical Microtubules of Graphitic Carbon", S. Iijima,Nature, vol.354,p56 (1 991 )。奈米碳管 具有極優異的導電性能、良好的化學穩定性和大的長徑 比,且其具有幾乎接近理論極限的尖端表面積(尖端表面 積愈小,其局部電場愈集中),因而奈米碳管在場發射真 空電子源領域具有潛在的應用前景。目前的研究表明, 奈米碳管係已知的最好的場發射材料之一,它的尖端尺 、 寸只有幾奈米至幾十奈米,具有低的開啟電壓,可傳輸 極大的電流密度,並且電流穩定,使用壽命長,因而非 常適合作為一種極佳的點電子源,應用在掃描電子顯微 鏡(Scanning Electron Microscope)、透射電子顯微 鏡(Transmission Electron Microscope)等設備的 電子發射部件中。 先前的奈米碳管場發射電子源一般至少包括一導電基體 096142410 表單編號A0101 第3頁/共25頁 1003412032-0 [0005] [0006] [0007] 096142410 和作為發射料_月〇7日梭正自 ^ ^ ^碳^ ’该奈米碳管形成於該導電基 體上β目刖,奈井 i …、啜管形成於導電基體上的方法主要包 括機械方法和原位 女〇 長法。其中,機械方法係通過原子 力顯微鏡或者電子 碟管組裝到-㈣^單根奈米碳管,㈣奈米 單根奈米碳管尺^體上,此種方法程序簡單’但由於 外,Mw、 導致操作不容易域率低。另 電流小。^法得到的奈米碳管場發射電子源的場發射 二克&上述機械法組裝的奈来碳管場發射電子源的場發 電Li及操作複雜的缺點。先前技術提供了-種採用 原位生長的方法’該方法係先在導電基體上鐘上金屬催 齊1 ’’、、:後通過化學氣相沈積、電弧放電或错射蒸發法 等方法在導電基體上直接生長出奈米碳管陣列作為場發 射電子源’此種方法操作簡單,奈米碳管與導電基體的 電接觸良好。‘然’奈米碳管與導電基體的結合力較弱, 在使用時奈米碳管易脫落或被電場力拔出,從而導致場 發射電子源損壞。另外,這種場發射電子源結構中奈求 碳皆陣列的奈米碳管之間存在電場屏蔽效應,工作時往 往只有極少部分奈米碳管發射電子,亦無法有效提高場 發射電子源的電流密度》 有鑒於此,提供一種具有較大的場發射電流的場發射電 子源的製備方法實為必要。 【發明内容】 —種場發射電子源的製備方法,包括以下步驟:提供— 奈米碳管長線;加熱該奈米碳管長線;提供一電子發射 表單編號A0101 帛4頁/共25頁 1003412032-0 1362677 • * 100年.11月07日慘正替换頁 源,使用該電子發射源轟擊該奈米碳管長線,使該奈糸 碳管長線在被轟擊處熔斷;將熔斷後的奈米碳管長線設 置於導電基體上即得到場發射電子源。 [0008] 與先前技術相比較,該場發射電子源的製備方法具有以 下優點:其一,該電子發射源所發射的電子束較為集中 ,電子束的局域轟擊作用可以加快該奈米碳管長線的熔 斷;其二,該場發射電子源的製備實現了對奈米碳管長 線的定點熔斷,可以較精確地控制該奈米碳管長線的熔 斷位置且該製備方法簡單,可以提高該場發射電子源的 製備效率;其三,該方法可以獲得基於奈米碳管長線的 場發射電子源,該場發射電子源具有較大的場發射電流 ;其四,該方法可使奈米碳管長線熔斷並形成多個場發 射尖端,可以有效降低奈米碳管之間的電磁屏蔽效應。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方案場發射電子源及其 製備方法。 [0010] 請參閱圖1,本技術方案實施例提供一種場發射電子源10 ,其包括一導電基體14和一奈米碳管長線12。該奈米碳 管長線12具有一第一端122及與第一端122相對的第二端 124,該奈米碳管長線12的第一端122與該導電基體14電 連接,該奈米碳管長線12的第二端124從導電基體14向外 延伸作為電子發射端。 [0011] 進一步地,所述的奈米碳管長線12係由多個平行的首尾 相連的奈米碳管束組成的束狀結構或由多個首尾相連的 奈米碳管束組成的絞線結構,該相鄰的奈米碳管束之間 096142410 表單編號 A0101 第 5 頁/共 25 頁 1003412032-0 1362677 100年11月07日核=正替換貧 通過凡德瓦爾力緊密結合,該奈米碳管束中包括多個首 尾相連且定向排列的奈米碳管。該奈米碳管長線1 2的直 徑為1微米~100微米。所述的奈米碳管長線12的第二端 124為類圓錐形,該奈米碳管長線12第二端的直徑沿遠離 導電基體14的方向逐漸減小。請參閱圖2,該奈米碳管長 線12的第二端124包括多個突出的場發射尖端16。所述的 場發射尖端16包括多個基本平行的奈米碳管,該多個奈 米碳管之間通過凡德瓦爾力緊密結合。所述的場發射尖 端16為類圓錐形。該場發射尖端16的頂端突出有一根奈 米碳管162。該奈米碳管長線12中的奈米碳管為單壁、雙 € 壁或多壁奈米碳管。該奈米碳管長線12中奈米碳管的直 徑小於5奈米,長度範圍為10微米〜100微米。 [0012] 請參閱圖3及圖4,我們可以看出奈米碳管長線中的場發 射尖端的頂端突出有一根奈米碳管。這係由於奈米碳管 長線在電子束轟擊的作用下定點熔斷,熔斷的瞬間碳熔 化產生的毛細力將這些奈米碳管緊緊束缚在一起。使該 奈米碳管長線具有很好的機械性能和電性能,可以有效 4 提高該奈米碳管長線的場發射電子的能力。該奈米碳管 長線中奈米碳管具有更少的壁數和更細的直徑,其壁數 少於5層一般為2層或者3層,其直徑通常小於5奈米。而 直接生長的超順排奈米碳管陣列的奈米碳管的層數多於5 層,直徑為15奈米左右。奈米碳管壁數減少的原因係由 於在電子束轟擊的作用下,不斷升高的溫度使一些富含 缺陷的石墨層崩潰,碳元素蒸發。而直徑的減少係被加 熱至高溫的奈米碳管受一定的拉力作用發生塑性形變, 096142410 表單编號A0101 第6頁/共25頁 1003412032-0 1362677 • t 100年.11·月0>日核正替換頁 變長變細。該奈米碳管長線中的場發射尖端的頂端的奈 米碳管與其他遠離該場發射尖端的頂端的奈米碳管緊密 結合,使得該場發射尖端的頂端的奈米碳管在場發射過 程中產生的熱量可以很有效地被傳導出去,並且可以承 受較強的電場力。 [0013] 該導電基體14由導電材料製成,如銅、鎮、鎢、金、钥 、鉑等。該導電基體14可依實際需要設計成其他形狀, 如錐形、細小的柱形或者圓臺形。該導電基體14也可為 ^ 形成在一絕緣基底上的導電薄膜。 [0014] 可以理解,該奈米碳管長線12的第一端122可以通過一導 電膠與該導電基體14電連接。該電連接的方式也可以通 過分子間力或者其他方式實現。該奈米碳管長線12與導 電基體14之間的位置關係不限,只需確保該奈米碳管長 線12的第一端122與該導電基體14電連接即可。如奈米碳 管長線12與導電基體14的轴向的夾角為銳角,奈米碳管 長線12與導電基體14的軸向的夾角為直角或者奈米碳管 • 長線12與導電基體14的軸向相互平行。 [0015] 請參閱圖5及圖6,本技術方案實施例提供一種製備上述 場發射電子源10的方法,具體包括以下步驟: [0016] 步驟一:提供一奈米碳管陣列形成於一基底,優選地, 該陣列為超順排奈米碳管陣列。 [0017] 本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管 陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種 。該奈米碳管陣列的製備方法採用化學氣相沈積法,其 096142410 表單編號A0101 第7頁/共25頁 1003412032-0 136.2677 _, 100年11.月07日梭正替換亩 具體步驟包括:(a)提供一平整基底,該基底可選用P 型或N型矽基底,或選用形成有氧化層的矽基底,本實施 例優選為採用4英寸的矽基底;(b)在基底表面均勻形 成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a field emission electron source, and more particularly to a method based on Nai A method of preparing a field emission electron source of a carbon nanotube. [Prior Art] The field emission electron source operates at low temperature or room temperature, and has the advantages of low energy consumption, fast response, and low discharge compared with the heat-emitting electron source in the electric vacuum device, so the field emission electron source is replaced. The heat-emitting electron source in electric vacuum devices has become a hot spot of research. Carbon Nanotube (CNT) is a new type of barrier material discovered by the researcher Ii jima in 1991. See "Hel-ical Microtubules of Graphitic Carbon", S. Iijima, Nature, vol.354 , p56 (1 991). The carbon nanotubes have excellent electrical conductivity, good chemical stability and large aspect ratio, and have a tip surface area close to the theoretical limit (the smaller the tip surface area, the more concentrated the local electric field), thus the nanocarbon The field of field emission vacuum electron source has potential application prospects. The current research shows that the carbon nanotube system is one of the best field emission materials known. Its tip size and inch are only a few nanometers to several tens of nanometers. It has a low turn-on voltage and can transmit a very large current density. The current is stable and the service life is long, so it is very suitable as an excellent point electron source for use in electron-emitting components of equipment such as Scanning Electron Microscope and Transmission Electron Microscope. The previous carbon nanotube field emission electron source generally includes at least one conductive substrate 096142410 Form No. A0101 Page 3 / Total 25 Page 1003412032-0 [0005] [0006] [0007] 096142410 and as a launch material _月〇7日梭The method of forming a carbon nanotube from the ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Among them, the mechanical method is assembled by atomic force microscopy or electronic tube to - (4) ^ single carbon nanotubes, (4) nano-single nano carbon tube ruler, this method is simple 'but because of the outside, Mw, The operation is not easy and the domain rate is low. The other current is small. ^ Field emission of the carbon nanotube field emission electron source obtained by the method 2 g & The above-mentioned mechanically assembled Nyle carbon nanotube field emission electron source field emission Li and the disadvantage of complicated operation. The prior art provides a method for in-situ growth, which is first performed on a conductive substrate by a metal priming 1 '', followed by chemical vapor deposition, arc discharge or a mis-evaporation method. The carbon nanotube array is directly grown on the substrate as a field emission electron source. This method is simple in operation, and the electrical contact between the carbon nanotube and the conductive substrate is good. The binding force of the 'nano' carbon nanotubes to the conductive substrate is weak, and the carbon nanotubes are easily detached or pulled out by the electric field force during use, thereby causing damage to the field emission electron source. In addition, in the field emission electron source structure, there is an electric field shielding effect between the carbon nanotubes in which the carbon is arrayed, and at least some of the carbon nanotubes emit electrons during operation, and the current of the field emission electron source cannot be effectively improved. Density In view of this, it is necessary to provide a method of preparing a field emission electron source having a large field emission current. SUMMARY OF THE INVENTION A method for preparing a field emission electron source includes the steps of: providing a long line of carbon nanotubes; heating the long line of the carbon nanotube; providing an electron emission form number A0101 帛 4 pages / total 25 pages 1003412032- 0 1362677 • * 100 years. On November 7th, the source of the page was replaced. The electron emission source was used to bombard the long carbon nanotube line, so that the long carbon nanotube line was blown at the bombardment; the carbon carbon after the fuse was blown The long line of the tube is disposed on the conductive substrate to obtain a field emission electron source. Compared with the prior art, the method for preparing the field emission electron source has the following advantages: First, the electron beam emitted by the electron emission source is concentrated, and the local bombardment effect of the electron beam can accelerate the length of the carbon nanotube The fuse of the line; secondly, the preparation of the electron source of the field realizes the fixed-point melting of the long line of the carbon nanotube, can precisely control the melting position of the long line of the carbon nanotube and the preparation method is simple, and the field can be improved The preparation efficiency of the electron-emitting source; thirdly, the method can obtain a field emission electron source based on a long line of carbon nanotubes, the field emission electron source having a large field emission current; and fourth, the method can make the carbon nanotubes long The wire is blown and forms a plurality of field emission tips, which can effectively reduce the electromagnetic shielding effect between the carbon nanotubes. [Embodiment] [0009] A field emission electron source of the present technical solution and a method of fabricating the same will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the present technical solution provides a field emission electron source 10 including a conductive substrate 14 and a carbon nanotube long line 12 . The carbon nanotube long wire 12 has a first end 122 and a second end 124 opposite to the first end 122. The first end 122 of the carbon nanotube long wire 12 is electrically connected to the conductive substrate 14, the nanocarbon The second end 124 of the tube length 12 extends outwardly from the conductive substrate 14 as an electron-emitting end. [0011] Further, the carbon nanotube long line 12 is a bundle structure composed of a plurality of parallel end-to-end connected carbon nanotube bundles or a strand structure composed of a plurality of end-to-end connected carbon nanotube bundles. The adjacent carbon nanotube bundle between 096142410 Form No. A0101 Page 5 / Total 25 Page 1003412032-0 1362677 100 November 2010 Nuclear = positive replacement lean through the van der Waals force tightly combined, the carbon nanotube bundle It includes a plurality of carbon nanotubes connected end to end and oriented. The carbon nanotube long-line 1 2 has a diameter of 1 μm to 100 μm. The second end 124 of the carbon nanotube long wire 12 is conical-shaped, and the diameter of the second end of the long carbon nanotube 12 is gradually decreased in a direction away from the conductive substrate 14. Referring to Figure 2, the second end 124 of the carbon nanotube long line 12 includes a plurality of protruding field emission tips 16. The field emission tip 16 includes a plurality of substantially parallel carbon nanotubes that are tightly coupled by Van der Waals forces. The field emission tip 16 is of a conical shape. A carbon nanotube 162 protrudes from the top end of the field emission tip 16. The carbon nanotubes in the long carbon nanotube 12 of the carbon nanotubes are single-walled, double-walled or multi-walled carbon nanotubes. The carbon nanotubes in the long carbon 12 of the carbon nanotubes have a diameter of less than 5 nm and a length ranging from 10 μm to 100 μm. [0012] Referring to FIG. 3 and FIG. 4, we can see that a carbon nanotube is protruded from the top end of the field emission tip in the long line of the carbon nanotube. This is because the long carbon nanotubes are fixedly blown by the electron beam bombardment, and the capillary force generated by the carbon melting at the moment of melting binds the carbon nanotubes tightly together. The carbon nanotube long-line has good mechanical properties and electrical properties, and can effectively improve the ability of the nano-carbon nanotubes to emit electrons in the field. The carbon nanotubes in the long carbon nanotubes have a smaller number of walls and a finer diameter, and the number of walls is less than 5, generally 2 or 3, and the diameter is usually less than 5 nm. The directly grown super-sequential carbon nanotube array has more than 5 layers of carbon nanotubes and a diameter of about 15 nm. The reason for the decrease in the number of carbon nanotube walls is that due to the electron beam bombardment, the rising temperature causes some graphite layers rich in defects to collapse and the carbon element to evaporate. The decrease in diameter is caused by a certain tensile force of the carbon nanotubes heated to a high temperature, 096142410 Form No. A0101 Page 6 of 25 1003412032-0 1362677 • t 100 years.11·月0> The core replacement page becomes longer and thinner. The carbon nanotube at the top of the field emission tip in the long line of the carbon nanotube is tightly coupled with other carbon nanotubes distal to the tip of the field emission tip, so that the carbon nanotube at the top of the field emission tip is emitted in the field. The heat generated in the process can be conducted very efficiently and can withstand strong electric field forces. [0013] The conductive substrate 14 is made of a conductive material such as copper, ferrous, tungsten, gold, molybdenum, platinum, or the like. The conductive substrate 14 can be designed into other shapes according to actual needs, such as a cone shape, a small column shape or a truncated cone shape. The conductive substrate 14 can also be a conductive film formed on an insulating substrate. [0014] It can be understood that the first end 122 of the carbon nanotube long wire 12 can be electrically connected to the conductive substrate 14 through a conductive paste. The manner of electrical connection can also be achieved by intermolecular forces or other means. The positional relationship between the carbon nanotube long wire 12 and the conductive substrate 14 is not limited, and it is only necessary to ensure that the first end 122 of the carbon nanotube long wire 12 is electrically connected to the conductive substrate 14. For example, the angle between the long line 12 of the carbon nanotube and the axial direction of the conductive substrate 14 is an acute angle, and the angle between the long line 12 of the carbon nanotube and the axial direction of the conductive substrate 14 is a right angle or a carbon nanotube • the length of the long line 12 and the axis of the conductive substrate 14 Parallel to each other. 5 and FIG. 6, the embodiment of the present invention provides a method for preparing the field emission electron source 10, which specifically includes the following steps: [0016] Step 1: providing a carbon nanotube array formed on a substrate Preferably, the array is a super-sequential carbon nanotube array. [0017] The carbon nanotube array provided by the embodiment of the present technical solution is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The preparation method of the carbon nanotube array adopts chemical vapor deposition method, its 096142410 form number A0101 page 7 / total 25 pages 1003412032-0 136.2677 _, 100 years 11. 07 07 shuttle is replacing the specific steps including: ( a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, in this embodiment preferably using a 4-inch germanium substrate; (b) uniformly forming a surface on the substrate surface Catalyst layer, the catalyst layer material can be selected from iron (Fe), cobalt (
Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在701TC〜900°C的空氣中退火約 30分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,One of the alloys of Co), nickel (Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 701 TC to 900 ° C for about 30 minutes to 90 minutes; (d) The substrate is placed in the reaction furnace,
在保護氣體環境下加熱到500°C〜74{TC,然後通入碳源氣 體反應約5分鐘~30分鐘,生長得到奈米碳管陣列,其高 度為100微米左右。該奈米碳管陣列為多個彼此平行且垂 I 直於基底生長的奈米碳管形成的純奈米碳管陣列。該奈 米碳管陣列與上述基底面積基本相同。通過上述控制生 長條件,該超順排奈米碳管陣列中基本不含有雜質,如 無定型碳或殘留的催化劑金屬顆粒等。 [0018] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體 4 為氬氣。 [0019] 可以理解,本技術方案實施例提供的奈米碳管陣列不限 於上述製備方法,也可為石墨電極恒流電弧放電沈積法 、鐳射蒸發沈積法等等。 [0020] 步驟二:採用一拉伸工具從奈米碳管陣列中拉取奈米碳 管獲得一奈米碳管薄膜或一奈米碳管絲。 [0021] 該奈米碳管薄膜或者奈米碳管絲的製備具體包括以下步 096142410 表單编號A0101 第8頁/共25頁 1003412032-0 1362677 • > 100年.11月07日慘正替换頁 驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈 米碳管片斷,本實施例優選為採用具有一定寬度的膠帶 接觸奈米碳管陣列以選定一定寬度的多個奈米碳管束; (b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉 伸多個該奈米碳管束,以形成一連續的奈米碳管薄膜或 者奈米瑞管絲。 [0022] 在上述拉伸過程中,該多個奈米碳管束在拉力作用下沿 拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用, 該選定的多個奈米碳管束分別與其他奈米碳管束首尾相 連地連續地被拉出,從而形成一奈米碳管薄膜或者一奈 米碳管絲。該奈米碳管薄膜或者奈米碳管絲包括多個首 尾相連且定向排列的奈米碳管束。該奈米碳管薄膜或者 奈米碳管絲中奈米碳管的排列方向基本平行於奈米碳管 薄膜或者奈米破管絲的拉伸方向。 [0023] 步驟三,通過使用有機溶劑或者施加機械外力處理該奈 米碳管薄膜或者奈米碳管絲得到一奈米碳管長線12。 [0024] 所述步驟二中製備的> 米碳管薄膜或者奈米碳管絲可使 用有機溶劑處理得到一奈米碳管長線12。其具體處理過 程包括:通過試管將有機溶劑滴落在奈米碳管薄膜或者 奈米碳管絲表面浸潤整個奈米碳管薄膜或者奈米碳管絲 。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮 、二氣乙烷或氣仿,本實施例中優選採用乙醇。該奈米 碳管薄膜或者奈米碳管絲經有機溶劑浸潤處理後,在揮 發性有機溶劑的表面張力的作用下,奈米碳管薄膜或者 奈米碳管絲中的平行的奈米碳管片斷會部分聚集成奈米 096142410 表單編號A0101 第9頁/共25頁 1003412032-0 1362677 100年11月07日核正替换亩 碳管束,因此,該奈米碳管薄膜收縮成絲。該奈米碳管 絲表面體積比小,無黏性,且具有良好的機械強度及韌 性,應用有機溶劑處理後的奈米碳管薄膜或者奈米碳管 絲能方便地應用於宏觀領域。The mixture is heated to 500 ° C to 74 {TC in a protective gas atmosphere, and then introduced into a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array having a height of about 100 μm. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes that are parallel to each other and are grown perpendicular to the substrate. The carbon nanotube array is substantially the same area as the above substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. [0018] In this embodiment, the carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas 4 is argon. [0019] It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. [0020] Step 2: using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a carbon nanotube film or a nano carbon tube wire. [0021] The preparation of the carbon nanotube film or the carbon nanotube wire specifically includes the following steps 096142410 Form No. A0101 Page 8 / Total 25 Page 1003412032-0 1362677 • > 100 years. November 07 miserable replacement Pages: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array. In this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a plurality of widths. a carbon nanotube bundle; (b) stretching a plurality of the carbon nanotube bundles at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film or a nanoribule. [0022] During the stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube bundles are respectively combined with the other due to the van der Waals force. The carbon nanotube bundles are continuously pulled out end to end to form a carbon nanotube film or a nano carbon tube filament. The carbon nanotube film or carbon nanotube wire comprises a plurality of carbon nanotube bundles connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube film or the carbon nanotube wire is substantially parallel to the stretching direction of the carbon nanotube film or the nanotube wire. [0023] Step three, obtaining a nano carbon tube long line 12 by treating the carbon nanotube film or the carbon nanotube wire with an organic solvent or applying a mechanical external force. [0024] The carbon nanotube film or the carbon nanotube wire prepared in the second step can be treated with an organic solvent to obtain a long carbon nanotube 12 of a carbon nanotube. The specific treatment process includes: dropping an organic solvent on a surface of a carbon nanotube film or a surface of a carbon nanotube by infiltrating the entire carbon nanotube film or a carbon nanotube wire through a test tube. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas, and ethanol is preferably used in this embodiment. After the carbon nanotube film or the carbon nanotube wire is infiltrated by an organic solvent, the carbon nanotube film or the parallel carbon nanotube in the carbon nanotube wire is under the action of the surface tension of the volatile organic solvent. The fragment will be partially integrated into the nano 096142410 Form No. A0101 Page 9 / Total 25 Page 1003412032-0 1362677 On November 7, 100, the nuclear replacement of the carbon tube bundle is correct, so the carbon nanotube film shrinks into a wire. The nano-carbon tube has a small surface volume ratio, no stickiness, and good mechanical strength and toughness. The carbon nanotube film or the carbon nanotube wire treated by the organic solvent can be conveniently applied to the macroscopic field.
[0025] 所述步驟二中製備的奈米碳管薄膜或者奈米碳管絲也可 通過施加機械外力處理得到一奈米碳管長線12。提供一 個尾部可以黏住奈米碳管陣列的紡紗軸。將該紡紗軸的 尾部與奈米碳管陣列結合後,奈米碳管開始纏繞在軸的 周圍。將該紡紗軸以旋轉的方式旋出並向遠離奈米碳管 陣列的方向運動。這時奈米碳管陣列相對於該紡紗軸移 動時,纖維開始紡成,其他的奈米碳管可以纏繞在纖維 的周圍,增加纖維的長度。可以理解,上述紡紗軸的旋 轉方式不限,可以正轉,也可以反轉,或者正轉和反轉 相結合。 [0026] 可以理解,也可以採用一拉伸工具從步驟一的奈米碳管 陣列中直接拉取奈米碳管獲得一奈米碳管長線12。 [0027] 步驟四:加熱該奈米碳管長線12。 [0028] 將該奈米碳管長線12放置於一真空系統》該真空系統的 真空皮維持lxl(T4帕〜1χ10_5帕。在該奈米碳管長線12 中通入電流,加熱該奈米碳管長線12至1800K〜2500K。 [0029] 步驟五:提供一電子發射源20,使用該電子發射源20轟 擊該奈米碳管長線12,使該奈米碳管長線12在被轟擊處 121熔斷》 [0030] 提供一電子發射源20,該電子發射源20包括一奈米碳管 096142410 表單编號A0101 第10頁/共25頁 1003412032-0 1362677 • .[0025] The carbon nanotube film or the carbon nanotube wire prepared in the second step can also be treated by applying a mechanical external force to obtain a long carbon nanotube 12 of a carbon nanotube. A spinning shaft is provided that can be attached to the array of carbon nanotubes. After the tail of the spinning shaft is combined with the carbon nanotube array, the carbon nanotubes begin to wrap around the shaft. The spinning shaft is spun out in a rotating manner and moved in a direction away from the array of carbon nanotubes. At this time, when the carbon nanotube array is moved relative to the spinning axis, the fibers are spun, and other carbon nanotubes can be wound around the fibers to increase the length of the fibers. It can be understood that the spinning mode of the above spinning shaft is not limited, and it can be rotated forward or reversed, or combined with forward rotation and reverse rotation. It can be understood that a nanometer carbon tube long line 12 can also be obtained by directly pulling a carbon nanotube from the carbon nanotube array of the first step using a stretching tool. [0027] Step 4: heating the carbon nanotube long line 12. [0028] The carbon nanotube long line 12 is placed in a vacuum system. The vacuum skin of the vacuum system is maintained at lxl (T4 Pa~1χ10_5 Pa. The current is passed through the long carbon tube 12 of the carbon nanotube to heat the nanocarbon. The length of the tube is 12 to 1800 K to 2500 K. [0029] Step 5: An electron emission source 20 is provided, and the carbon nanotube long line 12 is bombarded with the electron emission source 20, so that the carbon nanotube long line 12 is blown at the bombardment 121 [0030] An electron emission source 20 is provided, the electron emission source 20 comprising a carbon nanotube 096142410 Form No. A0101 Page 10 / Total 25 Page 1003412032-0 1362677 • .
[0031][0031]
[0032] 100年.11月07日梭正替換頁 長線。將該電子發射源20接入一低電位,該奈米碳管長 線12接入一高電位。將該電子發射源20與該奈米碳管長 線12垂直且間隔設置,並使該電子發射源20指向該奈米 碳管長線12被轟擊處121。該電子發射源20發射的電子束 201轟擊該奈米碳管長線12的側壁,使該奈米碳管長線12 被轟擊處121的溫度升高。這樣一來,該奈米碳管長線12 被轟擊處121具有最高的溫度。該奈米碳管長線12會在該 轟擊處121熔斷。本技術方案實施例優選的奈米碳管長線 12具有多個場發射尖端。 進一步地,上述電子發射源20相對於該奈米碳管長線12 的具體定位,可以通過一操作臺來實現。其中,該電子 發射源20與該奈米碳管長線12之間的距離為50微米〜2毫 米。本技術方案實施例優選將該奈米碳管長線12固定到 一個可以實現三維移動的操作臺上。通過調節該奈米碳 管長線12在三維空間的移動,使該電子發射源20與該奈 米碳管長線12在同一平面内並且互相垂直。該電子發射 源2 0與該奈米碳管長線1 2之間的距離為5 0微米。 可以理解,為了提供更大的場發射電流以提高該奈米碳 管長線12局域的溫度,可以使用多個電子發射源20同時 提供場發射電流。進一步地,還可以使用其他形式的電 子束來實現該奈米碳管長線12的定點熔斷,比如傳統的 熱陰極電子源發射的電子束或者其他常見場發射電子源 發射的電子束。 [0033] 步驟六:將熔斷後的奈米碳管長線12設置於導電基體14 上即得到場發射電子源10。 096142410 表單编號A0101 第11頁/共25頁 1003412032-0 1362677 100年.11月幻日梭正替&苜 [0034] [0035] [0036] [0037] 將燒斷後的奈米碳f長線12㈣導電_附於該導電基 體14之上,即可得到該場發射電子原1〇 可以理解,也可預先將該奈米雙營長㈣設置在兩個冑 . 電基體14之間,祕斷該奈^管長線㈣備該場發射 電子㈣1時’也可將多個具有電子發射端的奈米碳 管長線12設置於—導電基體1k上,得到具有多個電子 發射端的場發射電子源10。 請參閱圖7,為奈米碳管長線12的場發射尖端16的拉曼光 譜圖。餘曼緩練表明經過熱處㈣奈米碳管長線 · 12的場發射尖端16的缺崎有明顯的降低,而尖端的缺 陷峰更低。也就說,奈米碳管長線12的場發射尖端16的 奈米碳管在熔斷的過程中品質得到了極大的提高。這一 方面係由於奈米碳管經過熱處理後缺陷減少,另一方面 係因為富含缺陷的石墨層容易在高溫下崩潰,剩下一些 品質較高的石墨層。 4參閱圖8,為上述場發射電子源的場發射性能測試結果 圖。該奈米碳管長線12經過定點炫斷處理後形成兩個電 子發射端。該場發射電子源的場發射性能測試係用一個 鎢針尖作為陽極進行測量的,其中該鎢針尖分別與該兩 個電子發射端相對。該鎢針尖與該電子發射端之間的距 離為100微米。鐳射熔斷形成的兩個電子發射端均可以在 較低的工作電壓下提供150微安以上的場發射電流。由於 3亥奈米碳管長線12的直徑大約為5微米,因此該場發射電 流的密度大於7〇〇安/平方厘米。 096142410 表單蝙號A0101 第12頁/共25頁 1003412032-0 1362677 • , [0038] [0039] 100年.11月07日梭正_頁 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例的場發射電子源的結構示意圖。 [0040] 圖2係圖1中奈米碳管長線的電子發射端的放大示意圖。 [0041] 圖3為本技術方案實施例獲得的奈米碳管長線的電子發射 端的掃描電鏡照片。 ° [0042] 圖4係本技術方案實施例獲得的奈米碳管長線的場發射尖 端的透射電鏡照片。 [0043] 圖5係本技術方案實施例的場發射電子源的製備方法的流 程示意圖。 [0044] 圖6係本技術方案實施例的場發射電子源的製備裝置示意 圖。 [0045] 圖7係本技術方案實施例獲得的奈米碳管長線的場發射尖 端的拉曼光譜圖。 [0046] 圖8係本技術方案實施例的場發射電子源的電流-電壓曲 線不意圖。 【主要元件符號說明】 [0047] 場發射電子源:10 1003412032-0 [0048] 奈米碳管長線:12 096142410 表單編號A0101 第13頁/共25頁 1362677 [0049] 導電基體:14 [0050] 場發射尖端:16 [0051] 電子發射源:20 [0052] 轟擊處:121 [0053] 奈米碳管長線第一端: 122 [0054] 奈米碳管長線第二端: 124 [0055] 奈米碳管:162 [0056] 電子束:201 096142410 表單编號A0101 第14頁/共25頁 100年ll·月07日修正替換w 1003412032-0[0032] 100 years. November 07 shuttle is replacing the page long line. The electron emission source 20 is connected to a low potential, and the carbon nanotube long line 12 is connected to a high potential. The electron emission source 20 is disposed perpendicular to and spaced from the carbon nanotube long line 12, and the electron emission source 20 is directed to the bombarded portion 121 of the carbon nanotube long line 12. The electron beam 201 emitted from the electron emission source 20 bombards the side wall of the long carbon nanotube 12, so that the temperature of the carbon nanotube long line 12 is increased by the bombardment 121. In this way, the carbon nanotube long line 12 is bombarded with the highest temperature. The carbon nanotube long line 12 will melt at the bombardment 121. Preferred nanocarbon tube long wires 12 of embodiments of the present embodiments have a plurality of field emission tips. Further, the specific positioning of the electron emission source 20 with respect to the long carbon line 12 of the carbon nanotube can be realized by a console. Wherein, the distance between the electron emission source 20 and the long carbon line 12 of the carbon nanotube is 50 micrometers to 2 millimeters. The embodiment of the present technical solution preferably fixes the carbon nanotube long wire 12 to a console that can realize three-dimensional movement. By adjusting the movement of the carbon nanotube long line 12 in three dimensions, the electron emission source 20 is in the same plane as the carbon nanotube long line 12 and perpendicular to each other. The distance between the electron emission source 20 and the long carbon nanotube 12 of the carbon nanotube is 50 μm. It will be appreciated that in order to provide a greater field emission current to increase the temperature of the local area of the carbon nanotube long line 12, a plurality of electron emission sources 20 can be used to simultaneously provide field emission current. Further, other forms of electron beams can be used to effect the spot melting of the long carbon nanotubes 12, such as electron beams emitted by conventional hot cathode electron sources or electron beams emitted by other common field emission electron sources. [0033] Step 6: The field emission electron source 10 is obtained by disposing the blown carbon nanotube long line 12 on the conductive substrate 14. 096142410 Form No. A0101 Page 11 / Total 25 Page 1003412032-0 1362677 100 years. November Fantasy Shuttle Positive & 苜 [0034] [0036] [0037] [0037] After burning the nano carbon f long line 12(4) Conductive_ is attached to the conductive substrate 14, and the field-emitting electrons can be obtained. It can be understood that the nano-battalion length (four) can be set in advance between the two substrates. The long line (4) of the tube is prepared for the field to emit electrons (4) 1 when a plurality of long carbon nanotubes 12 having electron-emitting ends are disposed on the conductive substrate 1k to obtain a field emission electron source 10 having a plurality of electron-emitting ends. Referring to Figure 7, the Raman spectrum of the field emission tip 16 of the long carbon nanotube 12 is shown. Yuman's tempering indicates that there is a significant decrease in the absence of the field emission tip 16 of the long line of the heat (4) carbon nanotubes, and the peak of the defect is lower. That is to say, the carbon nanotubes of the field emission tip 16 of the long carbon nanotube 12 have been greatly improved in quality during the fusing process. This is due to the reduced defects of the carbon nanotubes after heat treatment and the fact that the graphite layer rich in defects is liable to collapse at high temperatures, leaving some higher quality graphite layers. 4 Refer to Figure 8 for the field emission performance test results of the above field emission electron source. The long carbon nanotube 12 is subjected to a fixed-point slash treatment to form two electron-emitting ends. The field emission performance test of the field emission electron source is measured using a tungsten tip as the anode, wherein the tungsten tip is opposite the two electron emitting ends, respectively. The distance between the tungsten tip and the electron-emitting end was 100 μm. Both electron emitters formed by laser fusing can provide a field emission current of more than 150 microamps at a lower operating voltage. Since the long line 12 of the 3 Heiner carbon tube has a diameter of about 5 μm, the density of the field emission current is greater than 7 〇〇 / cm 2 . 096142410 Form bat number A0101 Page 12/Total 25 page 1003412032-0 1362677 • [0038] [0039] 100 years. November 07th, as described above, the present invention has indeed met the requirements of the invention patent.提出 Submit a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a field emission electron source according to an embodiment of the present technical solution. 2 is an enlarged schematic view showing an electron-emitting end of a long line of a carbon nanotube in FIG. 1. 3 is a scanning electron micrograph of an electron-emitting end of a long carbon nanotube line obtained in an embodiment of the present technology. [0042] FIG. 4 is a transmission electron micrograph of the field emission tip of the long carbon nanotube tube obtained in the embodiment of the present technical solution. 5 is a schematic flow chart of a method for preparing a field emission electron source according to an embodiment of the present technical solution. 6 is a schematic diagram of a device for preparing a field emission electron source according to an embodiment of the present technical solution. 7 is a Raman spectrum diagram of a field emission tip of a long carbon nanotube line obtained by an embodiment of the present technical solution. [0045] FIG. 8 is a schematic diagram of a current-voltage curve of a field emission electron source according to an embodiment of the present technical solution. [Main component symbol description] [0047] Field emission electron source: 10 1003412032-0 [0048] Nano carbon tube long line: 12 096142410 Form number A0101 Page 13 / Total 25 page 1362677 [0049] Conductive substrate: 14 [0050] Field emission tip: 16 [0051] Electron emission source: 20 [0052] Bombardment: 121 [0053] Nano carbon tube long line first end: 122 [0054] Nano carbon tube long line second end: 124 [0055] Nai Carbon tube: 162 [0056] Electron beam: 201 096142410 Form number A0101 Page 14 / Total 25 pages 100 years ll · month 07 correction replacement w 1003412032-0