200933686 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種熱電子源,尤其涉及一種基於奈米碳 管的熱電子源。 【先前技術】 從1991年曰本科學家njima首次發現奈米碳管以來 (請參見 Helical microtubules 〇f graphitic carb〇n,Nature, ❹Sumio Iijima,v〇l 354, P56(1991)),以奈米碳管為代表的奈 米材料以其獨特的結構和性質引起了人們極大的關注。近 幾年來,隨著奈米碳管及奈米材料研究的不斷深入,其廣 闊的應用前景不斷顯現出來。如,由於奈米碳管所具有的 獨特的電磁學、光學、力學、化學等性能,大量有關其在 電子發射裝置、感測斋、新型光學材料、軟鐵磁材料等領 域的應用研究不斷被報導。 通常,電子發射裝置採用熱電子發射體或者冷電子發 ❹射體作為電子發射源。利用熱電子發射體從電子發射裝置 發射電子的現象稱為熱電子發射現象。熱電子發射係利用 加熱的方法使發射體内部電子的動能增加,以致使一部分 電子的動能大到足以克服發射體表面勢壘而逸出體外。從200933686 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates to a source of hot electrons, and more particularly to a source of thermoelectrons based on carbon nanotubes. [Prior Art] Since the first discovery of carbon nanotubes by the Japanese scientist Njima in 1991 (see Helical microtubules 〇f graphitic carb〇n, Nature, ❹Sumio Iijima, v〇l 354, P56 (1991)), with nanocarbon The nano-material represented by the tube has attracted great attention due to its unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to their applications in electron-emitting devices, sensing, new optical materials, and soft ferromagnetic materials have been Report. Generally, an electron-emitting device employs a thermal electron emitter or a cold electron emitter as an electron emission source. The phenomenon of emitting electrons from an electron-emitting device using a thermal electron emitter is called a phenomenon of thermal electron emission. The thermal electron emission system uses heating to increase the kinetic energy of electrons in the emitter so that the kinetic energy of a part of the electrons is large enough to escape the surface of the emitter surface and escape the body. From
發射體表面發射的電子可以稱為熱電子,發射熱電子的發 射體可以稱為熱電子發射體。 X 先前技術中,熱電子源一般包括一熱電子發射體、一 第一電極和一第二電極。所述熱電子發射體設置於所述第 一電極和第二電極之間並與所述第一電極和第二電極電接 觸所述熱電子源進一步包括一基板,所述熱電子發射體 200933686 與所述基板接觸,在對熱電子發射體進行加熱的過程中, •基板會導熱從而將所述熱電子發射體的大部分熱量傳導進 大氣中,影響所製備的熱電子源的熱電子發射性能。通常 採用金屬、硼化物材料或者氧化物材料作為熱電子發射體 材料。熱電子源一般分為直熱式和間熱式兩冑。直孰式即 採用金屬作為熱電子發射體材料,將金屬做成帶狀或者極 細的絲’通過焊接等技術將金屬固定到所述第一電極和第 ❿=電極之間。在所述第—電極和第二電極之間施加一電 查,流過金屬的電流產生熱量而使金屬内部的電子逸出體 外。間熱式即採用鄉化物材料或者氧化物材料作為敎電子 :借助於真空沈積、濺射或其他適用的技術將 ^漿料直接塗覆或者電㈣塗在—加熱子上;通過焊接 =將加熱子固定到所述第一電極和第二電極之間。在 所述第一電極和第二電極之間施加一電壓, :流產生熱量加熱硼化物材料或者氧化物材:,:使硼化 ❹2材料或者氧化物材料内部的f子逸出體外4而, 屬、领化物材料或者驗土金屬碳酸的於 射體難以做到較小的尺寸,你而_7廿叶衣備的熱電子發 的應用。而且,由於入今屈在微型器件方面 酸鹽材料的塗層材料或者驗土金屬破 二熱:發射時產生的功耗比較大,限:二= =不:合於大電流密度和高亮度的應:The electrons emitted from the surface of the emitter may be referred to as hot electrons, and the emitter emitting the hot electrons may be referred to as a thermal electron emitter. In the prior art, the source of the hot electron generally comprises a thermal electron emitter, a first electrode and a second electrode. The thermal electron emitter is disposed between the first electrode and the second electrode and is in electrical contact with the first electrode and the second electrode. The thermoelectron source further includes a substrate, the thermal electron emitter 200933686 and The substrate is in contact with, during heating of the thermal electron emitter, the substrate is thermally conductive to conduct most of the heat of the thermal electron emitter into the atmosphere, affecting the thermal electron emission properties of the prepared thermoelectron source. . A metal, boride material or oxide material is usually used as the thermal electron emitter material. The source of the hot electrons is generally divided into a direct heating type and an interheating type. In the straight-through type, a metal is used as a hot electron emitter material, and a metal is formed into a strip or a fine wire. The metal is fixed between the first electrode and the first electrode by welding or the like. A current is applied between the first electrode and the second electrode, and a current flowing through the metal generates heat to cause electrons inside the metal to escape. The inter-thermal type uses a sinter material or an oxide material as the bismuth electron: the slurry is directly coated or electrically (four) coated on the heater by means of vacuum deposition, sputtering or other suitable technique; A sub is fixed between the first electrode and the second electrode. Applying a voltage between the first electrode and the second electrode, the flow generating heat to heat the boride material or the oxide material:: causing the lanthanum boride material or the f element inside the oxide material to escape from the outer body 4, The use of genus, collar materials or soil-measured metal carbonates is difficult to achieve in smaller sizes, and the application of hot electrons for your _7 廿 leaves clothing. Moreover, due to the coating material of the acid material in the micro device, or the soil of the soil tester: the power consumption generated during the emission is relatively large, and the limit is: two = = no: combined with high current density and high brightness should:
PW田 —種具有優良的熱發射性能且使用I Ρ同可用於大電流密度和高亮度的平板顧^ 的熱電子源實為必要。 板” ·'員不和邏輯電路 200933686 【發明内容】 種熱電子源,該熱電子源包括一基板、一熱電子發 .射體、一第一電極和一第二電極,所述基板具有二凹槽, ^ 所述熱電子發射體對應該凹槽並設置於所述基板表面,且 至少部分通過所述基板的凹槽與所述基板間隔設置,所述 第一電極和第二電極間隔設置,並與該熱電子發射體 觸。 ❹ 與先前技術相比較,所述的熱電子源為一面熱電子 源,所述熱電子發射體通過所述基板的凹槽與該基板間隔 設置,基板不會將加熱所述熱電子發射體而產生的熱量傳 導進大氣中,故所製備的熱電子源的熱電子發射性能優 異。而且,該奈米碳管薄膜電阻率低,所製備的熱電子源 在較低的熱功率下即可實現熱電子的發射,降低了熱發射 時加熱產生的功耗,可用於大電流密度和高亮度的平板顯 示和邏輯電路等多個領域。 Φ 【實施方式】 以下將結合附圖詳細說明本技術方案熱電子源及其製 備方法。 請參閱圖1,本技術方案實施例所製備的熱電子源1〇 包括一基板12、一熱電子發射體18、一第—電極14和一 第二電極16。所述基板12表面121具有一凹槽122。所述 熱電子發射體18對應該凹槽122並設置於所述基板12表 面121,且至少部分通過所述基板12表面121的凹槽ι22 與所述基板12間隔設置。所述第一電極和第二電極工6 間隔設置,並與該熱電子發射體18電接觸。 200933686 力述熱電子源ίο進-步包括一低逸出功層2〇,該低 •逸出功層20設置在所述熱電子發射體18的表面。該低逸 出功層的材料為氧化鋇或者钍等,可以使所述熱電子源1〇 在較低的溫度下實現熱電子的發射。 所述基板12採用絕緣材料,可為陶瓷、玻璃、樹脂、 石英等。其中,所述基板12的形狀大小不限,可依據實際 需要進行改變。本技術方案實施例中所述基板12優選為一 ❾玻璃基板。所述凹槽122的凹陷深度為1〇微米〜5〇微米。 所述凹槽122的形狀不限,只需使所述熱電子發射體18 j少部分通過所述基板12的凹槽122與所述基板12間隔 "又置即可。本技術方案實施例中所述凹槽為長方體形,長 度為200微米〜500微米,寬度為1〇〇微米~3〇〇微米高 度為10微米〜5 0微米。 所述熱電子發射體18為一薄膜結構或者至少一根長 線。所述熱電子發射體18的材料為硼化物、氧化物、金屬 ⑩或者奈米碳管。本技術方案實施例中所述熱電子發射體Μ =選為一奈米碳管薄膜結構。該奈米碳管薄膜結構包括一 奈米碳管薄膜或者至少兩個重疊設置的奈米碳管薄膜。該 奈米碳官薄膜中的奈米碳管沿同一方向擇優取向排列。所 述單層奈米碳管薄膜中的奈米碳管沿從所述第一電極14 向第二電極16延伸的方向排列。所述重疊設置的奈米碳管 薄臈中相鄰的兩個奈米碳管薄膜中的奈米碳管的排列方向 ,有一交叉角度〇:,且〇cSc^9〇。。所述奈米碳管薄膜包括 夕個首尾相連且擇優取向排列的奈米碳管束,相鄰的奈米 妷官束之間通過凡德瓦爾力連接。該奈米碳管束包括多個 200933686 =目:且相互間隔排列的奈米碳管,相鄰奈米碳 通過凡德瓦爾力連接。 本技術方案實施例中,由於採用CVD法在4英寸的 基底上生長超順排奈米碳管降列,並進行進一步地處理得 2 一奈米碳管薄膜。該奈米碳㈣财的奈米碳管為單壁 :米碳管、雙壁奈米碳管或者多壁奈米碳管。當奈米碳管 ,專膜中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的 ❹直徑為0.5奈米〜50奈米。當奈米碳管薄膜中的奈米碳管 為雙壁奈米碳管時,該雙壁奈米碳管的直徑為Μ奈米〜% 奈米。當奈米碳管薄膜中的奈米碳管為多壁奈米碳管時, 該多壁奈米碳管的直徑為15奈米〜5〇奈米。 可以理解’所述奈米碳管薄膜中的奈米碳管均沿同一 方向擇優取向排列。當採用較大的基底生長超順排奈米碳 管陣列時,可以得到更寬的奈米碳管薄膜。本技術方案實 施例中,由於採用CVD法在4英寸的基底上生長超順排 ⑩奈米碳管陣列,並進行進一步地處理得到一奈米碳管薄 膜,故該奈米碳管薄膜的寬度為〇.〇1厘米〜1〇厘米,厚度 為10奈米〜100微米。所述奈米碳管薄膜可根據實際需要 切割成具有預定尺寸和形狀的奈米碳管薄膜。由於本實施 例超順排奈米碳管陣列中的奈米碳管非常純淨,且由於奈 米奴官本身的比表面積非常大,故該奈米碳管薄膜本身具 有較強的粘性。該奈米碳管薄膜可利用其本身的粘性直接 固定於所述基板12的表面。所述熱電子發射體18還可以 通過一導電粘結劑固定於所述基板12的表面。本技術方案 實施例優選將所述熱電子發射體18通過一導電粘結劑固 200933686 定於所述基板12的表面。 所述第一電極14釦 _ 等導電金屬。所述第第;電㈣的材料為金、銀和銅 層或者-金屬箔片,通過14和第二電極16係-金屬鍍 電子發射體18表面。所 2劑(圖未示)固定於所述熱 料也可選擇為石墨、奈米碳;=二第二電極_ ❹ ❹ 固定於所述敎電子石墨層,通過一枯結劑(圖未示) 線或者-奈;還可以係-奈米❹長 電子發射體18表邮°身的粘性直接固定於所述熱 度為二二述第一電極14和第二電極16的厚 没与1U微未〜50微来。所+、 吁 門沾儆木所述苐一電極14和第二電極16之 所述^ -雷^5()微米〜45G微米。本技術方㈣—實施例中 一 it社制f U和第二電極16優選為銅鍍層,分別通過 ’ 固定於所述熱電子發射體18的表面。 睛參閱圖2,本技術方案實施例提供一 源10的製備方法,其具體包括以下步驟:(,、、電子 ^驟 供一基板12,在該基板12的表面121形 成一凹槽122。 本技術方案實施例的基板12優選為玻璃基板,在該玻 璃基板上刻蝕形成一凹槽122。 步驟二:提供一熱電子發射體18’將該熱電子發射體 18對應所述凹槽122並鋪設所述基板12表面121,該熱電 子發射體18通過所述基板12表面121的凹槽122與所述 基板12間隔設置。 本技術方案實施例的熱電子發射體18優選為一奈米 11 200933686 石反官j膜結構。將該奈米碳管薄膜結構對應所述凹槽m 並覆蓋所述基板12表面121,並通過所述基板12表面1 的凹槽122與所述基板12間隔設置的方法具 m u何Μ下步· (1)製備至少一奈米碳管薄膜。 該奈米碳管薄膜的製備方法包括以下步驟: 首先,提供一奈米碳管陣列形成於一基底,優選地, ❾該陣列為超順排奈米碳管陣列。 、 本實施例中,超順排奈米碳管陣列的製備方法採用化 學氣相沈積法,其具體步驟包括:(a)提供一平整基底, 該基底可選用P型或N型石夕基底,或選用形成有氧化層的 矽基底,本實施例優選為採用4英寸的矽基底;(b)在基 底表面均勻形成一催化劑層,該催化劑層材料可選用鐵 (Fe)、钻(c〇)、鎳(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在70CTC〜9001的空氣中退 ❹火約30分鐘〜9〇分鐘;(d)將處理過的基底置於反應爐中, 在保護氣體環境下加熱到5〇〇t〜74〇t:,然後通入碳源氣 體^應約5分鐘〜3〇分鐘,生長得到超順排奈米碳管陣列, 其尚度為200微米〜4〇〇微米。該超順排奈米碳管陣列為至 二兩個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米石反官陣列。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾 力緊密接觸形成陣列。該奈米碳管陣列的面積與上述基底 面積基本相同。 12 200933686 , 上述碳源氣可選用乙炔、乙烯、曱烷等化學性質較活 •潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 體為I氣或惰性氣H,本實施例優選的保護氣體為氮氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法,也可為石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 ''' 其次,採用一拉伸工具拉取上述奈米碳管陣列從而獲 得一奈米碳管薄膜。 本實施例中,採用一拉伸工具拉取上述奈米碳管陣列 從而獲得一奈米碳管薄膜的方法包括以下步驟:(a)從上 述奈米碳管陣列中選定一定寬度的多個奈米碳管束片斷; (b )以一定速度沿基本垂直于奈米碳管陣列生長方向拉伸 該夕個奈米碳官束片斷,獲得一連續的奈米碳管薄膜,該 奈米碳管薄膜中的奈米碳管沿拉伸方向排列。 在上述拉伸過程中,該多個奈米碳管束片斷在拉力作 Φ用下^拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片斷分別與其他奈米碳管束 片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈米碳管薄膜為擇優取向排列的多個奈米碳管束首 尾相連形成的具有一定寬度的奈米碳管薄膜。可以理解, 所述奈米碳管薄膜中的奈米碳管均沿同一方向擇優取向排 列。 (2)將至少一奈米碳管薄膜對應所述凹槽122鋪設於 所述基板12的表面121,形成一奈米碳管薄膜結構作為熱 電子發射體18,該奈米碳管薄膜結構通過所述基板12表 13 200933686 面121的凹槽122與所述基板12間隔設置。 進一步地,還可以通過濺射、真空蒸鍍等方法在所述 奈米奴官薄膜結構的表面上形成一逸出功層2〇,該逸出功 層20的材料可為氧化鋇或者钍,從而使所述熱電子源1〇 在較低的溫度下實現熱電子的發射。 所述將至少一奈米碳管薄膜對應所述凹槽1Μ鋪設所 述基板12表面121的方法包括以下步驟:將一奈米碳管薄 膜沿從所述第一電極14向第二電極16延伸的方向直接鋪 設於在所述基板12表面12ι,形成一奈米碳管薄膜結構 18。或者將至少兩個奈米碳管薄膜依據奈米碳管的排列方 向以父叉角度α重疊直接鋪設於所述基板12表面121, 且0 $α$90。’形成一奈米碳管薄膜結構18。所述奈米破管 薄膜結構18可利用本身的粘性直接固定於所述基板12表 面 121 〇 可以理解,所述將至少一奈米碳管薄膜對應所述凹槽 122鋪設所述基板12表面121的方法還可以包括以下步 ,:提供一支撐體;將至少兩個奈米碳管薄膜依據奈米碳 管的排列方向以一交叉角度α重疊直接鋪設於所述支撐體 表面,且0SM90。,得到一奈米碳管薄膜結構18;去除所 述支撐體外多餘的奈米碳管薄膜;採用有機溶劑處理所述 奈米奴官薄膜結構18 ;將使用有機溶劑處理後的奈米碳管 薄膜結構18從所述支撐體上取下,形成一自支撐的奈米碳 管薄膜結構18 ;將該自支撐的奈米碳管薄膜結構18對應 所述凹槽122鋪設於所述基板12表面121。所述奈米碳管 薄膜可利用其本身的粘性直接固定於支撐體。 14 200933686 …本實施例中,上述支撐體的大小可依據實際需求確 疋。可以理解,通過在所述基板12表面121塗覆一導電粘 結劑’可將上述奈米碳管薄膜結構1δ固定於所述 2 表面121。 I:,本實施例還可進一步在將至少-奈米碳管薄膜 f 槽122直接鋪設於所述基板12表面121形成奈 薄獏結構18的步驟之後採用有機溶劑處理該奈; ❹碳官溥膜結構18。所述使用有機溶劑處理所述奈米碳管薄 =結構18的過程包括:通過試管將有機溶劑滴落在奈米碳 巧膜結#18表面浸潤整個奈米碳管薄膜,或者將整個奈 米奴管薄膜結構18浸入盛有有機溶劑的容器中浸潤。該有 機溶劑為揮發性有機溶劑,如乙醇、曱醇、㈣、二氣乙 ,或氣仿,本技術方案實施例中採用乙醇。所述的奈米碳 管薄膜結構18經有機溶劑浸潤處理後,在揮發性有機溶劑 面張力的作用下,奈米碳管薄膜結構18中平行的奈米 馨片斷會部分聚集成奈米碳管束。因此,處理後該;米 碳管薄膜結構18機械強度及勒性增強,純減弱,方便應 步驟二:在所述熱電子發射體18的表面間隔形成一第 一電極14和—第二電極16,並與該熱電子發射體18的表 面形成電接觸,從而得到一熱電子源10。 所述的第一電極14和第二電極16間隔設置在所述熱 電子發射體18表面,以使所述熱電子發射體18應用於熱 電子源10時接入一定的阻值避免短路現象的產生。所述第 電極14和第二電極可以通過絲網列印法、膠印列印法、 15 200933686PW field is a kind of hot electron source that has excellent thermal emission performance and uses I. It can be used for high current density and high brightness. The present invention relates to a thermal electron source comprising a substrate, a thermal electron emitter, a first electrode and a second electrode, the substrate having two a groove, ^ the thermal electron emitter corresponding to the groove and disposed on the surface of the substrate, and at least partially spaced apart from the substrate by a groove of the substrate, the first electrode and the second electrode are spaced apart And contacting the hot electron emitter. ❹ Compared with the prior art, the hot electron source is a side of a hot electron source, and the hot electron emitter is spaced apart from the substrate through a groove of the substrate, and the substrate is not The heat generated by heating the hot electron emitter is conducted into the atmosphere, so that the prepared hot electron source has excellent thermal electron emission performance. Moreover, the carbon nanotube film has low resistivity and the prepared hot electron source The emission of hot electrons can be realized at a lower thermal power, which reduces the power consumption caused by heating during heat emission, and can be used in various fields such as flat current display and logic circuits with high current density and high brightness. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. A hot electron source 1〇 prepared by an embodiment of the present technical solution includes a substrate 12 and a thermal electron emitter. 18. A first electrode 14 and a second electrode 16. The surface 121 of the substrate 12 has a recess 122. The hot electron emitter 18 corresponds to the recess 122 and is disposed on the surface 121 of the substrate 12, and at least A portion of the first electrode and the second electrode 6 are spaced apart from each other and are electrically connected to the substrate 12 by a groove ι 22 of the surface 121 of the substrate 12. The first electrode and the second electrode 6 are electrically spaced apart from each other. The source step includes a low work function layer 2, and the low work layer 20 is disposed on a surface of the thermionic emitter 18. The material of the low work layer is yttrium oxide or tantalum. The hot electron source 1 can be used to achieve the emission of hot electrons at a lower temperature. The substrate 12 is made of an insulating material, which can be ceramic, glass, resin, quartz, etc. wherein the shape and size of the substrate 12 are not Limit, according to actual needs The substrate 12 is preferably a glass substrate. The recess 122 has a recess depth of 1 μm to 5 μm. The shape of the recess 122 is not limited, and only A small portion of the hot electron emitter 18 j is spaced apart from the substrate 12 by the recess 122 of the substrate 12. The recess in the embodiment of the present invention has a rectangular parallelepiped shape and a length of 200 micrometers. 〜500 microns, having a width of from 1 μm to 3 μm and a height of from 10 μm to 50 μm. The thermal electron emitter 18 is a thin film structure or at least one long line. The material of the thermal electron emitter 18 It is a boride, an oxide, a metal 10 or a carbon nanotube. The thermal electron emitter Μ in the embodiment of the present technical solution is selected as a carbon nanotube film structure. The carbon nanotube film structure comprises a carbon nanotube film or at least two carbon nanotube films arranged in an overlapping manner. The carbon nanotubes in the nano carbon film are arranged in a preferred orientation in the same direction. The carbon nanotubes in the single-layered carbon nanotube film are arranged in a direction extending from the first electrode 14 to the second electrode 16. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films in the stacked carbon nanotubes has an intersection angle 〇: and 〇cSc^9〇. . The carbon nanotube film comprises a bundle of carbon nanotubes arranged in an end-to-end orientation and preferentially oriented, and adjacent nano-beams are connected by van der Waals force. The carbon nanotube bundle comprises a plurality of carbon nanotubes of 200933686 = mesh: and spaced apart from each other, and adjacent nanocarbons are connected by van der Waals force. In the embodiment of the technical solution, a super-sequential carbon nanotube is grown on a 4-inch substrate by a CVD method, and further processed to obtain a 2-carbon carbon nanotube film. The carbon nanotubes of the nano carbon (four) are single-walled: rice carbon tubes, double-walled carbon tubes or multi-walled carbon tubes. When the carbon nanotube in the membrane is a single-walled carbon nanotube, the diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled carbon nanotube is Μ nanometer ~% nanometer. When the carbon nanotube in the carbon nanotube film is a multi-walled carbon nanotube, the diameter of the multi-walled carbon nanotube is 15 nm to 5 Å. It can be understood that the carbon nanotubes in the carbon nanotube film are all aligned in the same direction. When a super-sequential nanotube array is grown with a larger substrate, a wider carbon nanotube film can be obtained. In the embodiment of the technical solution, since the super-aligned 10 nm carbon nanotube array is grown on a 4-inch substrate by a CVD method and further processed to obtain a carbon nanotube film, the width of the carbon nanotube film is It is 〇.〇1cm~1〇cm, and the thickness is 10nm~100μm. The carbon nanotube film can be cut into a carbon nanotube film having a predetermined size and shape according to actual needs. Since the carbon nanotubes in the super-sequential carbon nanotube array of this embodiment are very pure, and since the specific surface area of the nanosaurus itself is very large, the carbon nanotube film itself has a strong viscosity. The carbon nanotube film can be directly fixed to the surface of the substrate 12 by its own viscosity. The thermal electron emitter 18 can also be attached to the surface of the substrate 12 by a conductive adhesive. In the embodiment of the present invention, the hot electron emitter 18 is preferably fixed to the surface of the substrate 12 by a conductive adhesive. The first electrode 14 is conjugated to a conductive metal. The material of the first; electric (four) is a gold, silver and copper layer or a metal foil, and the surface of the electron emitter 18 is plated through 14 and the second electrode 16 . 2 agents (not shown) fixed to the hot material may also be selected as graphite, nano carbon; = two second electrode _ ❹ 固定 fixed to the bismuth electron graphite layer, through a dead agent (not shown ) wire or - nai; can also be - nanometer long electron emitter 18 surface mail body viscosity is directly fixed to the heat of the second electrode of the first electrode 14 and the second electrode 16 thickness and 1U micro ~50 micro. +, 吁 儆 儆 儆 苐 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极In the present invention, the f U and the second electrode 16 are preferably copper plating layers, which are fixed to the surface of the thermal electron emitter 18 by '. Referring to FIG. 2, the embodiment of the present invention provides a method for preparing a source 10, which specifically includes the following steps: (,, an electron is supplied to a substrate 12, and a recess 122 is formed on the surface 121 of the substrate 12. The substrate 12 of the embodiment of the technical solution is preferably a glass substrate, and a groove 122 is etched on the glass substrate. Step 2: providing a thermal electron emitter 18' corresponding to the groove 122 and The surface 121 of the substrate 12 is laid, and the thermal electron emitter 18 is spaced apart from the substrate 12 by a recess 122 of the surface 121 of the substrate 12. The thermal electron emitter 18 of the embodiment of the present invention is preferably a nanometer 11 200933686 stone reverse structure j film structure. The carbon nanotube film structure corresponds to the groove m and covers the surface 121 of the substrate 12, and is spaced apart from the substrate 12 by the groove 122 of the surface 1 of the substrate 12. The method has the following steps: (1) preparing at least one carbon nanotube film. The method for preparing the carbon nanotube film comprises the following steps: First, providing a carbon nanotube array formed on a substrate, preferably , ❾ the array is In the present embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate being selectable with P The type or the N-type base substrate, or the tantalum substrate formed with the oxide layer, the embodiment preferably uses a 4-inch tantalum substrate; (b) uniformly forms a catalyst layer on the surface of the substrate, and the catalyst layer material may be iron ( One of the alloys of Fe), drill (c), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is quenched in air at 70 CTC to 9001 for about 30 minutes to 9 minutes; (d) placing the treated substrate in a reaction furnace, heating it to 5 〇〇t~74〇t: under a protective gas atmosphere, and then introducing a carbon source gas; it should take about 5 minutes to 3 minutes to grow. The array of aligned carbon nanotubes has a latitude of 200 micrometers to 4 micrometers. The super-sequential carbon nanotube array is a pure naphthalene formed by two carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. Meishi anti-official array. Through the above controlled growth conditions, the super-shun The carbon tube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. The carbon nanotubes in the carbon nanotube array are in close contact with each other by van der Waals force to form an array. The area of the substrate is substantially the same as the above-mentioned substrate area. 12 200933686 , the above carbon source gas may be selected from acetylene, ethylene, decane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; I. The preferred shielding gas for the present embodiment is nitrogen. It is understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method or laser. Evaporation deposition method, and the like. ''' Next, the above-mentioned carbon nanotube array was pulled by a stretching tool to obtain a carbon nanotube film. In this embodiment, the method for drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film comprises the steps of: (a) selecting a plurality of nades of a certain width from the array of carbon nanotubes; a carbon nanotube bundle segment; (b) stretching the evening nano carbon official beam segment at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth direction to obtain a continuous carbon nanotube film, the carbon nanotube film The carbon nanotubes in the middle are arranged in the direction of stretching. In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate by the tensile force in the direction of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively caused by the van der Waals force. The other carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. It will be understood that the carbon nanotubes in the carbon nanotube film are all arranged in a preferred orientation in the same direction. (2) laying at least one carbon nanotube film on the surface 121 of the substrate 12 corresponding to the groove 122 to form a carbon nanotube film structure as a thermal electron emitter 18, and the carbon nanotube film structure passes The groove 122 of the surface 12 of the substrate 12 of the table 13 200933686 is spaced apart from the substrate 12. Further, a work function layer 2 〇 may be formed on the surface of the nano slave film structure by sputtering, vacuum evaporation, or the like, and the material of the work function layer 20 may be ruthenium oxide or ruthenium. Thereby, the hot electron source 1 实现 emits hot electrons at a lower temperature. The method of laying at least one carbon nanotube film corresponding to the groove 1 to the surface 121 of the substrate 12 includes the following steps: extending a carbon nanotube film from the first electrode 14 to the second electrode 16 The direction is directly laid on the surface 12 of the substrate 12 to form a carbon nanotube film structure 18. Alternatively, at least two carbon nanotube films are directly laid on the surface 121 of the substrate 12 at a parental angle α in accordance with the arrangement direction of the carbon nanotubes, and 0 $α$90. Forming a carbon nanotube film structure 18. The nano tube-breaking film structure 18 can be directly fixed to the surface 121 of the substrate 12 by its own viscosity. It can be understood that the at least one carbon nanotube film is disposed on the surface 121 of the substrate 12 corresponding to the groove 122. The method may further comprise the steps of: providing a support; laying at least two carbon nanotube films directly on the surface of the support at an angle of intersection α according to the arrangement direction of the carbon nanotubes, and 0SM90. Obtaining a carbon nanotube film structure 18; removing excess carbon nanotube film outside the support; treating the nanosonic film structure 18 with an organic solvent; and using a carbon nanotube film treated with an organic solvent The structure 18 is removed from the support to form a self-supporting carbon nanotube film structure 18; the self-supporting carbon nanotube film structure 18 is laid on the surface 121 of the substrate 12 corresponding to the groove 122. . The carbon nanotube film can be directly fixed to the support by its own viscosity. 14 200933686 ... In this embodiment, the size of the support body can be determined according to actual needs. It is understood that the above-described carbon nanotube film structure 1δ can be fixed to the 2 surface 121 by coating a surface of the substrate 12 with a conductive adhesive. I: In this embodiment, the step of forming the at least-nanocarbon tube film f-slot 122 directly on the surface 121 of the substrate 12 to form the naphthalene structure 18 may be further treated with an organic solvent; Membrane structure 18. The process of treating the carbon nanotube thin=structure 18 using an organic solvent comprises: dropping an organic solvent through a test tube onto the surface of the nano carbon film junction #18 to infiltrate the entire carbon nanotube film, or the entire nanometer The slave film structure 18 is immersed in a container containing an organic solvent to infiltrate. The organic solvent is a volatile organic solvent, such as ethanol, decyl alcohol, (IV), diethylene glycol, or gas imitation, and ethanol is used in the embodiment of the present technical solution. After the nanocarbon tube film structure 18 is treated by the organic solvent infiltration, the parallel nano-ingon segments in the carbon nanotube film structure 18 are partially aggregated into the carbon nanotube bundle under the action of the surface tension of the volatile organic solvent. . Therefore, after the treatment, the carbon nanotube film structure 18 is mechanically and tensilely enhanced, and is purely weakened. Conveniently, step 2: forming a first electrode 14 and a second electrode 16 on the surface of the thermal electron emitter 18 are spaced apart. And making electrical contact with the surface of the thermal electron emitter 18 to obtain a source of thermal electrons 10. The first electrode 14 and the second electrode 16 are spaced apart from each other on the surface of the thermionic emitter 18, so that when the thermionic emitter 18 is applied to the hot electron source 10, a certain resistance is prevented from being short-circuited. produce. The first electrode 14 and the second electrode can be printed by screen printing, offset printing, 15 200933686
If電喷塗法、電泳法、光刻鍍膜法或者紫外光固化法等方 法形成於所述熱電子發射體18的表面,還可以通過一枯社 劑(圖未示)固定於所述熱電子發射體18表面。 本技術方案實施例優選通過絲網列印法在所述熱電子 發射體18表面形成一第一電極14和一第二電極ι6,其具 體包括以下步驟: ' (1)提供一導電漿料。 所述導電漿料包括導電材料、粘結劑、有機溶劑和有 機助劑。其中所述導電材料為金、銀、銅等導電金屬。所 述钻結劑為選自無機枯結劑、有機枯結劑和低溶點金屬中 的一種或者多種。無機粘結劑可以包括玻璃粉、矽烷和水 玻璃。有機粘結劑可以包括纖維樹脂如乙基纖維素和甲基 纖維素;丙稀酸樹脂如聚g旨丙烯酸醋、環氧丙稀酸和氨二 甲酸乙酯丙烯酸酯;和乙烯基樹脂。所述粘結劑呈有 的粘度,能使導電材料的顆粒枯結在一S,並使導 2 參 熱電子發射體18表面。所述導電材料與枯結劑 =重里比為〜1():1。如果所述導電材料與㈣劑的重 :比小於0.1:10,由於應力作用容易產生裂縫脫 象。如果所述導電材料與枯結劑的重量比大於ι〇 ι,則合 影響所述熱電子源1〇的發射性能。 、J曰 進一步地,導電漿料令可以添加多種 助劑,包括捭钍南丨八與七 有機心别和有機 :調”述導電漿料的點度、流動性、乾燥速度等=性 除了-般的有機溶劑如乙醇、乙二二寺別的限制, 坪乙丙醇、碳氫化合_ 16 200933686 ,物、水及其混合溶劑,還可以適當選擇其他經常添加的成 分,如草酸二乙酯、低玻粉、乙醚丁酯等增塑劑,它們係 .揮發性較慢的溶劑,加入後能增強所述導電漿料的塑性。 所述有機溶劑和助劑的添加量主要根據列印工藝而確定。 將上述導電漿料配好後,放入一攪拌裝置中將所述導 電漿料混合均勻。本技術方案實施例優選的導電漿料中含 重里百分比為75%的銀、重量百分比為2〇%的粘結劑、重 罝百分比為3%的低玻粉和重量百分比為2%的乙醇。其中 粘結劑係乙基纖維素在松油醇裏所形成的溶液。將按一定 比例配好的導電漿料放入三輥碾軋機中研磨, 料中的各個成分混合均自。 (2) 將上述導電漿料按照預定圖案塗覆於所述熱電子 發射體18表面。 將上述導電漿料按照預定圖案通過絲網列印法塗覆於 所述熱電子發射體18表面。採用該方法可以製備出較精細 的熱電子發射體圖案,從而可應用於較高解析度的平面顯 示器件。 (3) 對上述塗覆有導電漿料的熱電子發射體18進行熱 處理’從而在該熱電子發射體i 8表面相互間隔地形成一第 一電極14和一第二電極16。 熱處理的方式通常採用在大氣或者含氧化性氣體的環 境中對所述塗覆有導電漿料的熱電子發射體18進行加 熱。所述熱處理的加熱溫度根據所述導體漿料的成分來確 定。所述熱處理的目的係去除導電漿料中的有機成分,使 所述導電漿料中不含有不揮發或不能分解的成分,並使所 17 200933686 述第一電極14和第二電極16和所述熱電子發射體i8之間 形成f好的機械連接和電接觸。通常,熱處理的加熱溫度 不要同於600 C。因為當熱處理的加熱溫度高於6⑽。◦時, 奈米碳管可能被破壞。 本技術方案實施例優選對所述導電漿料進行熱處理的 過程包括以下步驟:首先從2(rc開始將所 分鐘後達到_,在處下保溫10分=::; 電漿料中的松油醇和乙醇;其次,將所述導電漿料繼續升 溫30分鐘直至35(rc,在35(rc下保溫3〇分鐘,以去除導 電漿料中的乙基纖維素;再次,將所述導電漿料繼續升溫 30分鐘直至515°C,在515°C下保溫30分鐘,以使所述導 電漿料與所述熱電子發射體18緊密結合,最後自然冷卻所 述導電漿料,從而在該熱電子發射體18表面形成一第一電 極14和一第二電極16,並使所述第一電極14和第二電極 16和所述熱電子發射體18之間形成良好的機械連接和電 接觸。 與先前技術相比較,所述的熱電子源為一面熱電子 源’所述熱電子發射體通過所述基板的凹槽與該基板間隔 設置,基板不會將加熱所述熱電子發射體而產生的熱量傳 導進大氣中,故所製備的熱電子源的熱電子發射性能優 異。而且,該奈米碳管薄膜電阻率低,所製備的熱電子源 在較低的熱功率下即可實現熱電子的發射,降低了熱發射 時加熱產生的功耗,可用於大電流密度和高亮度的平板顯 示和邏輯電路等多個領域。 綜上所述,本發明確已符合發明專利之要件,遂依法 18A method such as an electrospray method, an electrophoresis method, a photolithography method, or an ultraviolet curing method is formed on the surface of the thermionic emitter 18, and may be fixed to the hot electron by a sterilizing agent (not shown). The surface of the emitter 18. In the embodiment of the present technical solution, a first electrode 14 and a second electrode ι6 are preferably formed on the surface of the thermionic emitter 18 by screen printing, and the method comprises the following steps: '(1) Providing a conductive paste. The conductive paste includes a conductive material, a binder, an organic solvent, and an organic auxiliary. The conductive material is a conductive metal such as gold, silver or copper. The cementing agent is one or more selected from the group consisting of inorganic binders, organic binders, and low-melting point metals. The inorganic binder may include glass frit, decane, and water glass. The organic binder may include a fiber resin such as ethyl cellulose and methyl cellulose; an acrylic resin such as polyacrylic acid vinegar, acryl acrylic acid, and ethyl urethane acrylate; and a vinyl resin. The binder has a viscosity such that particles of the electrically conductive material smear at a point S and cause the surface of the electron-emitting electron 18 to be oxidized. The conductive material and the dry agent have a weight ratio of ~1 ():1. If the ratio of the weight of the conductive material to the (iv) agent is less than 0.1:10, crack dislocation is liable to occur due to stress. If the weight ratio of the conductive material to the binder is greater than ι ι, the emission properties of the hot electron source 1 合 are affected. Further, the conductive paste allows a variety of auxiliaries to be added, including the 捭钍 丨 eight and seven organic hearts and organic: 调" the conductivity of the conductive paste, flow, drying speed, etc. = in addition to - General organic solvents such as ethanol, Ethylene diphene, ethanedipropanol, hydrocarbon _ 16 200933686, substances, water and their mixed solvents, you can also choose other frequently added ingredients, such as diethyl oxalate Plasticizers such as low glass powder and butyl ether, which are slow-dissolving solvents, can enhance the plasticity of the conductive paste after being added. The addition amount of the organic solvent and the auxiliary agent is mainly according to the printing process. After the conductive paste is prepared, the conductive paste is uniformly mixed in a stirring device. The preferred conductive paste of the embodiment of the present invention contains 75% by weight of silver, and the weight percentage is 2% by weight of binder, 3% by weight of low glass powder and 2% by weight of ethanol. The binder is a solution of ethyl cellulose in terpineol. Put the conductive paste into three Grinding in a rolling mill, each component in the material is mixed. (2) The above conductive paste is applied to the surface of the thermionic emitter 18 in a predetermined pattern. The conductive paste is printed through a screen in a predetermined pattern. The method is applied to the surface of the thermal electron emitter 18. With this method, a finer thermal electron emitter pattern can be prepared, which can be applied to a higher resolution flat display device. (3) Conductive coating on the above coating The hot electron emitters 18 of the slurry are subjected to heat treatment 'to form a first electrode 14 and a second electrode 16 spaced apart from each other on the surface of the hot electron emitter i 8. The heat treatment is usually carried out in the atmosphere or in an oxidizing gas. The thermal electron emitter 18 coated with the conductive paste is heated in an environment. The heating temperature of the heat treatment is determined according to the composition of the conductor paste. The purpose of the heat treatment is to remove organic substances in the conductive paste. a component such that the conductive paste does not contain a non-volatile or non-decomposable component, and the first electrode 14 and the second electrode 16 and the thermal electron emission are described. A good mechanical connection and electrical contact are formed between i8. Generally, the heating temperature of the heat treatment is not the same as 600 C. Because when the heating temperature of the heat treatment is higher than 6 (10), the carbon nanotubes may be destroyed. Preferably, the process of heat-treating the conductive paste comprises the following steps: first, starting from 2 (rc, reaching _ after minute, immersing 10 minutes in the ==:; terpineol and ethanol in the electric slurry; secondly; The conductive paste was further heated for 30 minutes until 35 (rc, held at 35 (rc for 3 minutes to remove ethyl cellulose in the conductive paste; again, the conductive paste was further heated for 30 minutes) Up to 515 ° C, incubated at 515 ° C for 30 minutes to tightly bond the conductive paste with the thermal electron emitter 18, and finally naturally cool the conductive paste, thereby surface of the thermal electron emitter 18 A first electrode 14 and a second electrode 16 are formed, and a good mechanical and electrical contact is formed between the first electrode 14 and the second electrode 16 and the thermionic emitter 18. Compared with the prior art, the hot electron source is a side of a hot electron emitter. The hot electron emitter is spaced apart from the substrate through a groove of the substrate, and the substrate does not heat the hot electron emitter. The heat is conducted into the atmosphere, so the prepared hot electron source has excellent thermal electron emission performance. Moreover, the carbon nanotube film has low resistivity, and the prepared hot electron source can realize the emission of hot electrons at a low thermal power, thereby reducing the power consumption caused by heating during heat emission, and can be used for high current density and High-brightness flat panel display and logic circuits and other fields. In summary, the present invention has indeed met the requirements of the invention patent, 遂 law 18
200933686 提出專利申請。惟’以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例的熱電子源的結構示意圖。 一圖2係本技術方案實施例的熱電子源的製備方法的流 程示意圖。 ' 【主要元件符號說明】 熱電子源 基板 第一電極 第二電極 熱電子發射體 低逸出功層 基板表面 凹槽 10 12 14 16 18 20 121 122 19200933686 filed a patent application. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a hot electron source according to an embodiment of the present technical solution. FIG. 2 is a schematic flow chart of a method for preparing a hot electron source according to an embodiment of the present technical solution. ' [Main component symbol description] Hot electron source substrate First electrode Second electrode Thermal electron emitter Low work function layer Substrate surface Groove 10 12 14 16 18 20 121 122 19