TW200933687A - Thermionic emission device and method for making the same - Google Patents

Thermionic emission device and method for making the same Download PDF

Info

Publication number
TW200933687A
TW200933687A TW97102852A TW97102852A TW200933687A TW 200933687 A TW200933687 A TW 200933687A TW 97102852 A TW97102852 A TW 97102852A TW 97102852 A TW97102852 A TW 97102852A TW 200933687 A TW200933687 A TW 200933687A
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
nanotube film
electronic device
insulating substrate
Prior art date
Application number
TW97102852A
Other languages
Chinese (zh)
Other versions
TWI352369B (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97102852A priority Critical patent/TWI352369B/en
Publication of TW200933687A publication Critical patent/TW200933687A/en
Application granted granted Critical
Publication of TWI352369B publication Critical patent/TWI352369B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention relates to a thermionic emission device. The thermionic emission device includes an insulated substrate; a number of row electrodes and a number of column electrodes disposed on the insulated substrate, and a plurality of thermionic emission units disposed on the insulated substrate. Every two adjacent row electrodes and every two adjacent column electrodes form a grid. Each of the thermionic emission units is disposed in a grid, and each of the thermionic emission units includes a first electrode, a second electrode and a thermionic emitter. The first electrode and second electrode are electrically connected to the thermionic emitter. The thermionic emitter is a carbon nanotube film structure.

Description

200933687 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種電子發射器件及其製備方法,尤其涉 及一種基於奈米碳管的熱發射電子器件及其製備方法。 【先前技術】 從1991年曰本科學家Iijima首次發現奈米碳管以來 (請參見 Helical microtubules of graphitic carbon, Nature, ❹Sumio Iijima,vol 354, p56(1991)),以奈米碳管為代表的奈 米材料以其獨特的結構和性質引起了人們極大的關注。近 幾年來,大量有關其在電子發射器件、感測器、新型光學 材料、軟鐵磁材料等領域的應用研究不斷被報導。 先如的電子發射器件依據電子發射原理的不同,可以 分為熱發射電子器件和熱發射電子器件。先前技術中的熱 發射電子器件,包括一絕緣基底,複數個電子發射單元設 :該、、’邑緣基底上,及複數個行電極引線與複數個列電極 ❿引線设置於該絕緣基底上。其中,所述的複數個行電極引 線與複數個列電極引線分別平行且等間隔設置於絕緣基底 上。所述複數個行電極引線與複數個列電極引線相互交又 Z且在行電極引線與列電極引線交又處由-介質絕緣 曰以防止短路。每兩個相鄰的行電極引線與每兩個 、、列電極引線形成一網格,且每個網格定位一個電子 電子發射單元包括一行電極與-列電極及 電極對應且間隔設置。肩極上。該-電極與列 200933687 先前技術中的熱發射電子器件通常包括複數個 ,電子發射單元組裝而成。熱電子發射單元一般包括一妖電 子發射體和兩個電極。所述熱電子發射體設置於兩個電極 之間並與所述兩個電極電接觸。通常採用金屬、蝴化物材 料或者氧化物材料作為熱電子發射體材料。將金屬加工成 帶狀或者極細的絲,通過焊接等技術將金屬固定到所述兩 個電極之間。或者將以领化物材料或者氧化物材料製成的 ❹衆料直接塗覆或者㈣子錢在—加熱子上;通過焊接等 技術將加熱子固定到所述兩個電極之間。然而,由於製備 工藝和熱電子發射體材料所限制,很難將複數個單個熱電 子發射單元集成為熱發射電子器件,而不能實現發射性能 均勻一致且具有複數個熱電子發射單元的大面積陣列形式 的平面顯示裝置。而且,以金屬、硼化物材料或者鹼土金 屬石反酸鹽材料製作的熱電子發射體難以做到較小的尺寸, 從而限制了其在微型器件方面的應用。由於含金屬、硼化 ©物材料或者鹼土金屬碳酸鹽材料的塗層具有相當高的電阻 率’所製備熱電子發射單元在加熱而發射時產生的功耗比 較大’限制了其對於快速開關的响應,因此不適合於高清 晰度和高亮度的應用。 有馨於此’提供一種具有優良的熱發射性能,可用于 问清晰度和高亮度的平板顯示和邏輯電路等複數個領域的 熱發射電子器件及其製備方法實為必要。 【發明内容】 一種熱發射電子器件’其包括:一絕緣基底;複數個 200933687 :電極引線與列電極引線分別平行且等間 數個行電極引線與複數個列電極引線相互= L 的行電極引線與每兩個相鄰的列電極引 緣·㈣個敲士 卩電極引線與列電極引線之間電絕 m 子發射單元’每個熱電子發射單元對應一 個=格叹置,母個熱電子發射單元包括一第一電極' 一電極和一熱電子發射體,該第一 弟 ❹ 置於每個網格令, /、弟一電極間隔設 t^ 並刀別與所述行電極引線和列電極引線 =連接’所述熱電子發射體與所述第-電極和第二電:; 接二所述熱電子發射體為一奈米碳管薄膜結構。- 提二==電Γ件的製備方法,其包括以下步驟·· 捉供、名緣基底,在該絕緣基底t制供A 隔設置的行電極引绩盘Μ 備複數個平行且等間 =製備複數個第一電極與複數個第二電每::: ❹中包括間隔設置的一第一電極 母個、,周格 碳管薄膜結構覆蓋上述含有",形成一奈米 作為熱電子發射體電極引線的絕緣基底上 構,伴留每個網格中声亚去除多餘的奈米碳管薄膜結 網格中覆蓋所述第一電 反官㈣結構,從而得到—熱發射電子% 不未 方法所述的熱發射電子器件及其製備 佈的熱電子發膜製備複數個均勾分 故具有優異的熱電子發射.:二::=膜. 200933687 結構電阻率低,在較低的熱功率下即可實現熱電子的發 射,降低了所述熱發射電子器件在加熱時發射電子而產生 的功耗,可用于高清晰度和高亮度的平板顯示和邏輯電路 等複數個領域。 【實施方式】 以下將結合附圖詳細說明本技術方案熱發射電子器件 及其製備方法。 ^ 請參閱圖1,本技術方案實施例提供一種熱發射電子 Ο 器件200,包括一絕緣基底202,複數個熱電子發射單元 220設置於該絕緣基底202上,及複數個行電極引線204 與複數個列電極引線206設置於該絕緣基底202上。所述 複數個行電極引線204與列電極引線206分別平行且等間 隔設置於絕緣基底202上。所述複數個行電極引線204與 複數個列電極引線206相互交叉設置,而且,在行電極引 線204與列電極引線206交叉處設置有一介質絕緣層 ❹216,該介質絕緣層216將行電極引線204與列電極引線 206電隔離,以防止短路。每兩個相鄰的行電極引線204 與每兩個相鄰的列電極引線206形成一網格214,且每個 網格214定位一個熱電子發射單元220。 所述複數個熱電子發射單元220對應設置於上述網格 214中,且每個網格214中設置一個熱電子發射單元220。 每個熱電子發射單元220包括一第一電極210,一第二電 極212,及一奈米碳管薄膜結構208。每一行的網格214 中的第一電極210與同一行電極引線204電連接,每一列 10 200933687 的網格中214的第二電極212與同一列電極引線206電連 接。所述第一電極21〇與第二電極212間隔設置於每個網 格214中’並與所述奈米碳管薄膜結構208電連接。所述 奈米碳管薄膜結構208至少部分通過所述第一電極21〇與 第二電極212與絕緣基底202間隔設置。本實施例中,同 行的熱電子發射單元220中的第一電極210與同一行電 極引線204電連接,同一列的熱電子發射單元22〇中的第 ❹二電極212與同一列電極引線2〇6電連接。 所述的絕緣基底202為一絕緣基底,如陶瓷基底、玻 璃基底、樹脂基底、石英基底等。絕緣基底2〇2大小與厚 度不限,本領域技術人員可以根據實際需要選擇。本實施 例中,絕緣基底202優選為一玻璃絕緣 1 於工毫米,邊長大於,厘米。進一步,所述絕緣=0大2 的表面具有複數個對應於所述網格214設置的凹槽。該凹 槽且等間隔地分佈於所述絕緣基底202表面。所述奈 ©米碳管薄膜結構2〇8通過所述絕緣基底2〇2表面的凹槽與 絕緣基底2G2間隔設置,從而不會將加熱所述奈米碳 官薄膜結構208而產生的熱量傳導進大氣中,使所述敎發 射電子器件2〇〇具有優異的熱電子發射性能。 、x 所述複數個行電極引線204與複數個列電極引線 =導電體’如金屬層等。本實施例中,該複數個行電極 引線204與複數個列電極引線裏優選為採用導電 :时面導電體,且該複數個行電極引線綱與複數個列 電極引線206的行距和列距為3〇〇微米〜5〇〇微米。該行電 11 200933687 極引線204與列電極引線2〇6的寬 厚度為微米,微米。本實施〜嶋, 與列電極引線2〇6的交叉角度為1〇度到^丁極引線204 度。本實施例中,通過絲網印刷法將 優選為90 ❹ 基底202上製備行電極引線2〇4與;線印:於;: 電聚料的成分包括金屬粉、低溶點破璃粉和 :金屬粉優選為銀粉,_劑優選為松油唯 I素。該導電聚料中,金屬粉的重量比為50〜 玻璃量二為2〜服,枯結劑的重量比為1〇〜:广 屬層等二實於212為—導電體’如金 一平面導電體^二該第一電極210與第二電極212為 導電體,其尺寸依據網格214的尺寸決定 ==第=212直接與上述電心接I 5。微米〜9。微米,寬产】:2二與弟二電極212的長度為 ❹米,米。所述第二二 21〇與第1極212 例中,所述第-電極 微米寬度優選為- 印祕^ 材料為導電聚料,通過絲網印刷法 …邑緣基底202上。該導電漿料 線所用的導電衆料的成分相同。 成刀,、上边電極引 至少碳管薄膜結構遞包括—奈米碳管薄膜或者 乂兩個重疊設置的奈米碳管薄膜。該奈米碳管薄膜中的 12 200933687 奈米碳管沿同-方向擇優取向排列。所述單層奈米碳管薄 膜中的奈米碳官沿從所述第一電極21〇向所述第二電極 2^2延伸的方向排列。所述重疊設置的奈米碳管薄膜中相 ㈣兩個奈米碳管薄臈中的奈米碳管的排列方向具有一交 ^角度α 0如90。所述奈米石炭管薄膜包括複數個首尾 相連且擇優取向排列的奈米碳管束,相鄰的奈米碳管束之 間通過凡德瓦爾力連接。該奈米碳管束包括複數個長度相 ❹等且相互平订排列的奈米碳管,相鄰奈米碳管之間通過凡 德瓦爾力連接。 本技術方案實施例中,由於採用CVD法在4英寸的 基底上生長超順排奈米碳管陣列,並進行進一步地處理得 到-奈米石炭管薄膜’故該奈米碳管薄膜的寬度為〇 〇1厘米 〜10厘米,厚度為10奈米〜1〇〇微米。所述奈米碳管薄膜 可根據實際需要切割成具有預定尺寸和形狀的奈米碳管薄 膜。可以理解,當採用較大的基底生長超順排奈米碳管陣 ©列時,可以得到更寬的奈米碳管薄膜。上述奈米碳管薄膜 中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈 米碳管。當奈米碳管薄膜中的奈米碳管為單壁奈米碳管 時,該單壁奈米碳管的直徑為05奈米〜5()奈米。當奈米 碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈^碳 官的直徑為i.O奈米〜50奈米。當奈米碳管薄膜中的奈米 碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為]_.5奈 米〜50奈米。所述奈米碳管薄膜結構2〇8與第一電極21〇 和第二電極212的電連接方式可以為通過一導電膠電連 13 200933687 • 接,也可以通過分子間力或者其他方式實現。 ·> 另外,所述熱發射電子器件200的每個熱電子發射單 元220可以進一步包括至少一固定電極設置於所述第一電 極210和第二電極212,將所述奈米碳管薄膜結構208固 定於所述第一電極210和第二電極212。 請參閱圖2,本技術方案實施例提供一種上述熱發射 電子器件200的製備方法,具體包括以下步驟: ^ 步驟一:提供一絕緣基底202。 ❹ 所述的絕緣基底202為一玻璃絕緣基底。進一步,通 過刻蝕在所述絕緣基底202表面形成複數個等大且等間隔 設置的凹槽。 步驟二:在該絕緣基底202上製備複數個平行且等間 隔設置的行電極引線204與列電極引線206,該行電極引 線204與列電極引線206交叉設置,且每兩個相鄰的行電 極引線204與每兩個相鄰的列電極引線206相互交叉形成 〇—網格214。 可以理解,也可以在所述絕緣基底202上形成複數個 網格214後再通過刻蝕在所述絕緣基底202表面形成複數 個等大且等間隔設置的凹槽。該複數個凹槽分別與複數個 網格214對應並設置於所述絕緣基底202上。 可以通過絲網印刷法、蒸鍍法或濺射法等方法製備複 數個行電極引線204與複數個列電極引線206。本實施例 中,採用絲網印刷法製備複數個行電極引線204與複數個 列電極引線206,其具體包括以下步驟: 14 200933687 : 首先,採用絲網印刷法在絕緣基底202上印刷複數個 平行且等間隔設置的行電極引線2 〇 4。 其次,採用絲網印刷法在行電極引線2〇4與待形成的 列電極引線206交叉處印刷複數個介質絕緣層216。 最後,採用絲網印刷法在絕緣基底2〇2上印刷複數個 平行且等間隔設置的列電極引線206,且複數個行電極引 線204與複數個列電極引線2〇6才目互交叉形成複數個網格 ❹ 214。 可理解本實把例中,也可以先印刷複數個平行且 等間隔,置的列電極引、線贏,再印刷複數個介質絕緣層 216,最後印刷複數個平行且等間隔設置的行電極引線 2〇4,且複數個行電極引線2〇4與複數個列電極引線 相互交叉形成複數個網格214。 步驟三:在所述絕緣基底202上製備複數個第一電極 210與複數個第二電極212,在每個網格214中間隔設置一 ❹第一電極210與一第二電極212。 製備複數個第一電極21〇與第二電極212可以通過絲 網印刷法、瘵鍍法或濺射法等方法實現。本實施例中,採 用絲網印刷法製備在每一行的網格214中行電極引線2〇4 ‘備第電極210,該第一電極21〇與同一行電極引 線204形成電連接;通過絲網印刷法、蒸鍍法或濺射法在 每-列的網格214中列電㈣線綱上製備—第二電極 212,該第二電極212與同一列電極引線2〇6形成電連接。 所述第一電極210與第二電極212之間保持一間距,用於 15 200933687 設置奈米碳管薄膜結構應。所述第-電極210與第二電 極212的厚度大於行電極引線2〇4肖列電極引線施的厚 度,以利於後續步驟中設置奈米碳管薄膜結構2〇8。可以 理解’本實施例中,也可以將所印刷的第-電極210與對 應的列電極引線2〇6直接接觸,從而實現電連接,第二電 極212與對應的行電極引線2〇4直接接觸,從而實現 接。 、 〇 步驟四:形成一奈米碳管薄膜結構208覆蓋上述含有 電極和電極引線的絕緣基底202上作為熱電子發射體。 所述形成一奈米碳管薄膜結構2〇8覆蓋上述含有電極 和電極引線的絕緣基底2〇2上作為熱電子發射體的方法且 體包括以下步驟: 〃 (1)製備至少一奈米碳管薄膜。 百先,提供一奈米碳管陣列,優選地,該陣列為超順 排奈米碳管陣列。 ❹本實施例中,奈米碳管陣列的製備方法採用化學氣相 ^積法,其具體步驟包括:(a)提供-平整基底,該基底 可k用P型或N型矽基底,或選用形成有氧化層的矽基 底,本實施例優選為採用4英寸的矽基底;(b)在基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、 钻(Co )、錄()或其任意組合的合金之—;(。)將上 述形成有催化劑層的基底在7〇(TC〜90(TC的空氣中退火約 30分鐘〜9〇分鐘;(d )將處理過的基底置於反應爐中,在 保護氣體環境下加熱到50(TC〜741TC,然後通入碳源氣體 16 200933687 :反應約5分鐘〜3〇分鐘,生長得到奈米碳管陣列,其高度 .大於ι〇0微米。該奈米碳管陣列為複數個彼此平行且垂2 於基底生長的奈米碳管形成的純奈米碳管陣列。該奈米碳 管陣列的面積與上述基底面積基本相同。通過上述控制生 長條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留的催化劑金屬顆粒等。 、 上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活 ❹潑的碳氫化合物,本實施例優選的碳源氣為乙块;保護氣 體為亂氣或惰性氣體,本實施例優選的保護氣體為氯氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法’也可為石墨電極恒流電弧放電沈積法、雷射基 發沈積法等。 :尺採用拉伸工具從奈米碳管陣列1f7拉取獲得一 奈米碳管薄膜。 該奈米碳管薄膜的製備具體包括以下步驟:(a)從上 ❹述奈米碳管卩翔中選定—定寬度的複數個奈米碳管片斷, 本實施例優選為採用具有一定寬度的膠帶接觸奈来碳管陣 列以選定一定寬度的複數個奈米碳管束;(b)以一定速声 =基本垂直于奈米碳管陣列生長方向拉伸複數個該奈米ς 官束’以形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該複數個奈米碳管束在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的複數個奈米碳管束片斷分別與其他奈米碳管 束片斷首尾相連地連續地被拉出,⑽而形成一奈米碳管薄 17 200933687 膜。該奈米碳管薄膜包括複數個首尾相連且定向排列的奈 米碳官束,且複數個首尾相連且定向排列的奈米碳管束形 成一奈米碳官線。該奈米碳管束包括複數個平行排列的奈 米碳管,且奈米碳管的排列方向基本平行于奈米碳管薄膜 的拉伸方向。 (2)將上述至少一奈米碳管薄膜鋪設於上述含有電極 ❹ 和電極引線的絕緣基底2〇2上形成一奈米碳管薄膜結構 208 ° 所述將至少一奈米碳管薄膜鋪設於所述含有電極和電 極引線的絕緣基底202的方法包括以下步驟:將一奈米碳 ^薄膜或者至少兩個奈米碳管薄膜平行且無間隙沿從所述 第電極210向所述第一電才至212延伸的方向直接铺設於 所述含有電極和電極引線的絕緣基底2〇2的表面。進一步 還可將至少兩個奈米碳管薄膜依據奈米碳管的排列方向以 -交叉角度α重疊鋪設於所述含有電極和電極引線的絕緣 ©基底202的表面,〇。$〇^9〇。。 可以理解,所述將至少一奈米碳管薄膜鋪設於所述含 有電極和電極引線的絕緣基& 2〇2的方法還可以包括以下 步驟.提供-支稽體;將至少兩個奈米碳管薄膜平行且無 間隙沿從所述第-電極210向所述第二電極212延伸的 向直接鋪設於所述支撐體表面’得到一奈米碳管薄膜姓 期;去除支撑體外多餘的奈米碳管薄膜;採用有機溶誠 理該奈米碳管薄膜結構208 ;將使用有機溶劑處理後的奈 米碳管薄膜結構208從所述支撐體上取下,形 二 7战 自支 18 200933687 :的奈米碳管薄臈結構208;將該奈米碳管薄膜結構2〇8鋪 •設於二述含有電極和電極引線的絕緣基底2〇2的表面。進 -步還可^至少兩個奈米碳管薄膜依據奈米碳管的排列方 向以父又角度α重疊鋪設於所述支撐體表面, 0°£C90。由於本實施例提供的超順排奈米碳管陣列中 奈米碳管非常純淨’且由於奈米碳管本身的比表面積非常 二所以該奈米碳管薄膜本身具有較強的粘性,該奈米碳 ❹管薄膜可利用其本身的粘性直接粘附於支撐體。 本實知例中,上述支撐體的大小可依據實際需求確 定。當支樓體的寬度大於上述奈米礙管薄膜的寬度時,可 以將至少兩個奈米碳管薄膜平行且無間隙或/和重疊鋪設 於所述支撐體,形成一自支撐的奈米碳管薄膜結構208。 本實施例中,由於本實施例步驟四中提供的超順排太 米碳管陣列中的奈米碳管非常純淨,且由於奈米碳管本^ 的比表面積非常大,所以該奈米碳管薄膜結 ❹議性。該奈米碳管薄膜可利用其本身的枯性:接= 於所述含有電極和電極引線的絕緣基底2〇2的表面。或者 在所述所述含有電極和電極引線的絕緣基底逝的表面塗 敷-層導電膠,·將至少一奈米碳管薄膜於整個含有電極和 電極引線的絕緣基底202上,使所述至少一奈米碳管薄膜 與所述含有電極和電極引線的絕緣基底2〇2的表面電連 接,將大於絕緣基底202面積的奈米碳管薄膜剪去。 本實施例令,進-步包括採用絲網印刷法製備至少一 固定電極(圖中未顯示)設置於所述第一電極21〇與第二電 19 200933687 ,極212,將奈米碳管薄膜結構208牢固地固定於所述第一 電極210第二電極212上。 另外,本實施例還可進一步在將奈米碳管薄膜直接鋪 設於所述含有電極和電極引線的絕緣基底形成一奈米碳管 薄膜結構208的步驟之後採用有機溶劑處理該奈米碳管薄 膜結構208。具體的,可通過試管將有機溶劑滴落在所述 奈米碳管薄膜結構通表面浸潤整個奈米碳管薄膜結構 ❹208。或者,也可將奈米碳管薄膜結構2〇8整個浸入盛有有 機溶劑的容器中浸潤。該有機溶劑為揮發性有機溶劑,如 乙每、曱醇、丙酮、二氣乙燒或氯仿,本實施例中優選採 用乙醇。該奈米碳管薄膜經有機溶劑浸潤處理後,在揮發 $有機溶劑的表面張力的作用下,奈米碳管薄膜結構2〇8 的平仃的奈米碳管片斷會部分聚集成奈米碳管束,因 L ’該奈米碳管薄膜表面體積比小,枯性降低,且具有良 ©膜性能更加優異。應用有機洛劑處理後的奈米碳管薄 伴/驟五切割並去除多餘的奈米碳管薄膜結構208, 中覆蓋所述第一電極210與第二電極 2〇〇。、“灰官溥膜結構20δ’從而得到-熱發射電子器件 為雷::薄膜結構2°8的方法 =㈣割所述奈,二 200933687 , ''先採用疋覓度的雷射光束沿著每個行電極引 、綱進行掃描。該步驟的目的係去除不同行的電極 m210與第二電極212)<間的奈米碳管薄膜結構 鄰μ②所述雷射光束的寬度等於位於不同行的兩個相 ㈣弟=電極m之間的行間距離,為⑽微米〜5〇〇微米。 206 ::搞,用—定寬度的雷射光束沿著每個列電極引線 势進的描’去除不同列的電極(包括第-電極210與 ❹第-電極212)之間的奈米碳管薄膜結構繼 個網格214中覆f所什笙+ , 叫保W母 一 ^平覆盍所述弟一電極210與第二電極212的奈 米碳官薄膜結構208。其中,所述雷射光束的寬度等於位 =列的兩個相鄰的第一電極21〇之間的行間距 100微米〜500微米。 ⑵本實把例中_L述方法可以在大氣環境或其他含氧的 %境下進彳了。採用雷射燒錄去除多餘的奈米<管,所用 的雷射功率為10瓦〜50瓦’掃描速度為1〇毫米/分鐘〜麵 〇笔米/分鐘。本實施例中,優選地,雷射功率為30瓦,掃 描速度為100毫米/分鐘。 與先前技術相比較,所述的熱發射電子器件且有以下 優點:其一,採用奈米碳管薄膜作為熱電子發射體,該奈 f碳官缚膜令的奈米碳管均句分佈,所製備的熱發射電子 器件可以發射均勻而穩定的熱電子流;其二,奈米碳管薄 膜與絕緣基底間隔設置’絕緣基底不會將加熱所述奈米碳 管薄膜而產生的熱量傳導進大氣令,故所製備的熱發射電 子器件的熱電子發射性能優異;其三,所述奈米碳管薄膜 21 200933687 ,構的尺寸小可直接鋪设覆蓋所述電極,實現教發射電子 .器❹熱電子發射單元的微型化,從而可用于高清晰度和 南売度的平板顯示和邏輯電路等複數個領域。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之巾請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 ◎蓋於以下申請專利範圍内。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device and a method of fabricating the same, and more particularly to a carbon nanotube-based thermal emission electron device and a method of fabricating the same. [Prior Art] Since the discovery of carbon nanotubes by Ijima, the first scientist in 1991 (see Helical microtubules of graphitic carbon, Nature, ❹Sumio Iijima, vol 354, p56 (1991)), Nai represented by carbon nanotubes Rice materials have attracted great attention due to their unique structure and properties. In recent years, a large number of applications in the fields of electron-emitting devices, sensors, new optical materials, and soft ferromagnetic materials have been reported. The prior art electron-emitting devices can be classified into thermal-emitting electronic devices and thermal-emitting electronic devices depending on the principle of electron emission. The prior art thermal electron-emitting device includes an insulating substrate, and a plurality of electron-emitting units are disposed on the substrate, and a plurality of row electrode leads and a plurality of column electrodes are disposed on the insulating substrate. Wherein, the plurality of row electrode leads and the plurality of column electrode leads are respectively disposed in parallel and equally spaced on the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are mutually intersected and Z is insulated from the column electrode leads by a dielectric to prevent short circuit. Each two adjacent row electrode leads form a grid with each of the two, column electrode leads, and each grid is positioned with one electron electron emission unit including a row of electrodes corresponding to the column electrodes and electrodes and spaced apart. On the shoulders. The -electrode and column 200933687 The prior art thermal emission electronic device usually comprises a plurality of electronic emission units assembled. The thermal electron emission unit generally includes a demon electron emitter and two electrodes. The hot electron emitter is disposed between and in electrical contact with the two electrodes. Metal, butterfly or oxide materials are commonly used as thermionic emitter materials. The metal is processed into a strip or a very fine wire, and the metal is fixed between the two electrodes by a technique such as welding. Alternatively, the ruthenium material made of a collar material or an oxide material may be directly coated or (4) on a heater; the heater may be fixed between the two electrodes by welding or the like. However, due to the limitations of the fabrication process and the thermal electron emitter material, it is difficult to integrate a plurality of individual thermal electron emission units into thermal emission electrons, and it is not possible to realize a large-area array having uniform emission performance and having a plurality of thermal electron emission units. Form of a flat display device. Moreover, thermal electron emitters made of metal, boride materials or alkaline earth metal phosphite materials are difficult to achieve in small size, thereby limiting their use in micro devices. Since the coating containing metal, boride or alkaline earth metal carbonate material has a relatively high electrical resistivity, the heat generated by the prepared thermoelectron emitting unit when heated and emitted is relatively large, which limits its fast switching. Responsive, therefore not suitable for high definition and high brightness applications. It is necessary to provide a heat-emitting electronic device and a method for preparing the same in a plurality of fields, such as a flat panel display and a logic circuit, which have excellent heat-emitting properties and can be used for clarity and high brightness. SUMMARY OF THE INVENTION A thermal emission electronic device includes: an insulating substrate; a plurality of 200933687: electrode leads and column electrode leads are respectively parallel and a plurality of row electrode leads and a plurality of column electrode leads mutually = L row electrode leads With each two adjacent column electrode leads, (four) knocker electrode lead and column electrode lead between the electric sub-emission unit 'each thermoelectron emission unit corresponds to one = sigh, mother thermal electron emission The unit includes a first electrode 'an electrode and a thermal electron emitter, and the first dice is placed in each grid, and the second electrode is spaced apart from the gate electrode and the row electrode and the column electrode Lead = connection 'thermionic electron emitter and the first electrode and the second electrode: 2) The thermal electron emitter is a carbon nanotube film structure. - The method for preparing the electric component is included in the following steps: · Capturing, the name of the substrate, and the row electrode of the insulating substrate is provided with a plurality of parallel rows and equal spaces = Preparing a plurality of first electrodes and a plurality of second electrodes::: ❹ includes a first electrode mother disposed at intervals, and the surrounding carbon nanotube film structure covers the above-mentioned content, forming a nanometer as a thermal electron emission The upper surface of the insulating substrate of the body electrode lead is accompanied by the acoustic sub-depletion in each grid to remove the excess carbon nanotube film junction grid covering the first electrical anti-official (four) structure, thereby obtaining - thermionic emission % The thermal electron-emitting device and the hot-electron hair-emitting film prepared by the method have a plurality of hot-rolling films, and thus have excellent thermal electron emission. 2::=film. 200933687 low structural resistivity, low thermal power The emission of hot electrons can be realized, and the power consumption of the electron-emitting electrons emitted by the heat-emitting electronic device can be reduced, and can be used in a plurality of fields such as high-definition and high-brightness flat panel display and logic circuits. [Embodiment] Hereinafter, a thermal emission electronic device of the present technical solution and a preparation method thereof will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, an embodiment of the present technical solution provides a thermal emission electron germanium device 200 including an insulating substrate 202, a plurality of thermal electron emission units 220 disposed on the insulating substrate 202, and a plurality of row electrode leads 204 and a plurality of A column electrode lead 206 is disposed on the insulating substrate 202. The plurality of row electrode leads 204 and the column electrode leads 206 are respectively parallel and equally spaced on the insulating substrate 202. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed to cross each other, and a dielectric insulating layer 216 is disposed at a intersection of the row electrode leads 204 and the column electrode leads 206, and the dielectric insulating layer 216 sets the row electrode leads 204. Electrically isolated from column electrode leads 206 to prevent short circuits. Each two adjacent row electrode leads 204 and each two adjacent column electrode leads 206 form a grid 214, and each grid 214 positions a thermal electron emission unit 220. The plurality of thermal electron emission units 220 are correspondingly disposed in the mesh 214, and one thermal electron emission unit 220 is disposed in each of the grids 214. Each of the thermal electron emission units 220 includes a first electrode 210, a second electrode 212, and a carbon nanotube film structure 208. The first electrode 210 in the grid 214 of each row is electrically coupled to the same row of electrode leads 204, and the second electrode 212 of the grid 214 of each column 10 200933687 is electrically coupled to the same column of electrode leads 206. The first electrode 21'' is spaced apart from the second electrode 212 in each of the cells 214' and is electrically connected to the carbon nanotube film structure 208. The carbon nanotube film structure 208 is spaced apart from the insulating substrate 202 at least in part by the first electrode 21 and the second electrode 212. In this embodiment, the first electrode 210 in the same pair of hot electron emission units 220 is electrically connected to the same row electrode lead 204, and the second electrode 212 and the same column electrode lead 2 in the same column of the thermal electron emission unit 22A. 6 electrical connection. The insulating substrate 202 is an insulating substrate such as a ceramic substrate, a glass substrate, a resin substrate, a quartz substrate or the like. The size and thickness of the insulating substrate 2〇2 are not limited, and those skilled in the art can select according to actual needs. In this embodiment, the insulating substrate 202 is preferably a glass insulation 1 in millimeters and a side length greater than a centimeter. Further, the surface of the insulation = 0 large has a plurality of grooves corresponding to the grid 214. The grooves are distributed at equal intervals on the surface of the insulating substrate 202. The carbon nanotube film structure 2〇8 is spaced apart from the insulating substrate 2G2 by a groove on the surface of the insulating substrate 2〇2, so that heat generated by heating the nano carbon film structure 208 is not conducted. Into the atmosphere, the germanium electron-emitting device 2 has excellent thermal electron emission performance. And x the plurality of row electrode leads 204 and the plurality of column electrode leads = conductors such as a metal layer or the like. In this embodiment, the plurality of row electrode leads 204 and the plurality of column electrode leads preferably use a conductive: time surface conductor, and the row spacing and the column pitch of the plurality of row electrode leads and the plurality of column electrode leads 206 are 3 〇〇 micron ~ 5 〇〇 micron. The power line 11 200933687 has a wide thickness of the electrode lead 204 and the column electrode lead 2〇6 in the order of micrometers and micrometers. In this embodiment, the angle of intersection with the column electrode lead 2〇6 is 1 degree to 2 degrees. In this embodiment, the row electrode lead 2〇4 is prepared by screen printing method, preferably 90 ❹ substrate 202; the line is printed on: the composition of the electropolymer comprises metal powder, low melting point broken glass powder and: metal The powder is preferably silver powder, and the agent is preferably pine oil. In the conductive polymer, the weight ratio of the metal powder is 50~ the amount of the glass is 2 to 2, and the weight ratio of the deadting agent is 1 〇~: the broad layer is equal to 212, and the conductor is the same as the conductor. The first electrode 210 and the second electrode 212 are electrically conductive bodies, and the size thereof is determined according to the size of the grid 214 == the second = 212 is directly connected to the above-mentioned core. Micron ~ 9. Micron, wide production]: The length of the 2nd and 2nd electrodes 212 is glutinous rice, meters. In the second second 21 〇 and the first pole 212, the first electrode has a micron width of - the material is a conductive material, and is printed on the base substrate 202 by screen printing. The conductive paste used in the conductive paste line has the same composition. The forming knife and the upper electrode lead at least the carbon tube film structure includes a carbon nanotube film or two overlapping carbon nanotube films. The 12 200933687 carbon nanotubes in the carbon nanotube film are aligned along the same direction. The carbon nanotubes in the single-layered carbon nanotube film are arranged in a direction extending from the first electrode 21 to the second electrode 2^2. The arrangement of the nanotubes in the overlapped carbon nanotube film (4) of the two carbon nanotubes has an angle α 0 such as 90. The nano-carboniferous film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and the adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle includes a plurality of carbon nanotubes of a length and the like, and are arranged in a mutually aligned manner, and the adjacent carbon nanotubes are connected by a van der Waals force. In the embodiment of the technical solution, since the ultra-sequential carbon nanotube array is grown on a 4-inch substrate by a CVD method and further processed to obtain a nano-carboniferous film, the width of the carbon nanotube film is 〇〇 1 cm ~ 10 cm, thickness 10 nm ~ 1 〇〇 micron. The carbon nanotube film can be cut into a carbon nanotube film having a predetermined size and shape according to actual needs. It can be understood that when a super-sequence nano-carbon nanotube array © column is grown with a larger substrate, a wider carbon nanotube film can be obtained. The carbon nanotubes in the above carbon nanotube film are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotube in the carbon nanotube film is a single-walled carbon nanotube, the diameter of the single-walled carbon nanotube is 05 nm to 5 () nm. When the carbon nanotubes in the carbon nanotube film are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is i.O nanometers to 50 nanometers. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from _.5 nm to 50 nm. The electrical connection between the carbon nanotube film structure 2〇8 and the first electrode 21〇 and the second electrode 212 may be through a conductive adhesive, or may be achieved by intermolecular force or other means. In addition, each of the thermionic emission units 220 of the heat-emitting electronic device 200 may further include at least one fixed electrode disposed on the first electrode 210 and the second electrode 212, and the carbon nanotube film structure 208 is fixed to the first electrode 210 and the second electrode 212. Referring to FIG. 2, an embodiment of the present technical solution provides a method for fabricating the above-described thermal emission electronic device 200, which specifically includes the following steps: ^ Step 1: An insulating substrate 202 is provided. The insulating substrate 202 is a glass insulating substrate. Further, a plurality of equally large and equally spaced grooves are formed on the surface of the insulating substrate 202 by etching. Step 2: preparing a plurality of parallel and equally spaced row electrode leads 204 and column electrode leads 206 on the insulating substrate 202, the row electrode leads 204 and the column electrode leads 206 intersecting each other, and each two adjacent row electrodes The lead 204 and each two adjacent column electrode leads 206 cross each other to form a 〇-grid 214. It can be understood that a plurality of equal-sized grids 214 may be formed on the insulating substrate 202, and then a plurality of equally large and equally spaced grooves may be formed on the surface of the insulating substrate 202 by etching. The plurality of grooves respectively correspond to the plurality of grids 214 and are disposed on the insulating substrate 202. A plurality of row electrode leads 204 and a plurality of column electrode leads 206 may be prepared by a screen printing method, an evaporation method, or a sputtering method. In this embodiment, a plurality of row electrode leads 204 and a plurality of column electrode leads 206 are prepared by screen printing, which specifically includes the following steps: 14 200933687: First, a plurality of parallel printings are printed on the insulating substrate 202 by screen printing. And row electrode leads 2 〇4 are arranged at equal intervals. Next, a plurality of dielectric insulating layers 216 are printed by screen printing at the intersection of the row electrode leads 2〇4 and the column electrode leads 206 to be formed. Finally, a plurality of parallel and equally spaced column electrode leads 206 are printed on the insulating substrate 2〇2 by screen printing, and the plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 intersect each other to form a plurality Grid ❹ 214. It can be understood that in the actual example, a plurality of parallel and equally spaced column electrodes can be printed first, the line is won, and then a plurality of dielectric insulating layers 216 are printed, and finally a plurality of parallel and equally spaced row electrode leads are printed. 2〇4, and a plurality of row electrode leads 2〇4 and a plurality of column electrode leads cross each other to form a plurality of grids 214. Step 3: A plurality of first electrodes 210 and a plurality of second electrodes 212 are prepared on the insulating substrate 202, and a first electrode 210 and a second electrode 212 are disposed in each of the grids 214. The preparation of the plurality of first electrodes 21A and the second electrodes 212 can be carried out by a method such as a screen printing method, a ruthenium plating method or a sputtering method. In this embodiment, the electrode lead 2'4' is prepared by screen printing in the row 214 of each row, and the first electrode 21'' is electrically connected to the same row of electrode leads 204; A second electrode 212 is formed by a method, an evaporation method, or a sputtering method in a grid (214) of the grid 214 of each column, and the second electrode 212 is electrically connected to the same column electrode lead 2〇6. A spacing is maintained between the first electrode 210 and the second electrode 212 for 15 200933687 to set the carbon nanotube film structure. The thickness of the first electrode 210 and the second electrode 212 is greater than the thickness of the row electrode lead 2〇4 array electrode lead to facilitate the setting of the carbon nanotube film structure 2〇8 in the subsequent step. It can be understood that, in this embodiment, the printed first electrode 210 can also be in direct contact with the corresponding column electrode lead 2〇6 to achieve electrical connection, and the second electrode 212 is in direct contact with the corresponding row electrode lead 2〇4. To achieve the connection. 〇 Step 4: Forming a carbon nanotube film structure 208 over the insulating substrate 202 containing the electrode and the electrode lead as a thermal electron emitter. The method of forming a carbon nanotube film structure 2〇8 covers the above-mentioned insulating substrate 2〇2 containing electrodes and electrode leads as a thermal electron emitter, and the body comprises the following steps: (1) preparing at least one nanocarbon Tube film. A first carbon nanotube array is provided. Preferably, the array is a super-sequential carbon nanotube array. In the present embodiment, the method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be a P-type or N-type germanium substrate, or The tantalum substrate is formed with an oxide layer. In this embodiment, a 4-inch tantalum substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), drill (Co), and recorded ( Or an alloy of any combination thereof; (.) The substrate on which the catalyst layer is formed is annealed at 7 Torr (TC~90 (TC in air for about 30 minutes to 9 minutes; (d) the treated substrate Placed in a reaction furnace, heated to 50 (TC ~ 741TC in a protective gas atmosphere, and then passed into the carbon source gas 16 200933687: reaction for about 5 minutes ~ 3 〇 minutes, growth to obtain a carbon nanotube array, its height. Greater than ι 〇 0 μm The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes which are parallel to each other and which are grown on the substrate. The area of the carbon nanotube array is substantially the same as the area of the substrate. The super-shun nai by controlling the growth conditions described above The carbon tube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. The carbon source gas may be selected from acetylene, ethylene, methane and other hydrocarbons which are more chemically active, which is preferred in this embodiment. The carbon source gas is a block; the shielding gas is a gas or an inert gas, and the preferred shielding gas in this embodiment is chlorine gas. It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method 'may also be a graphite electrode Constant current arc discharge deposition method, laser base deposition method, etc.: The ruler adopts a stretching tool to extract a carbon nanotube film from the carbon nanotube array 1f7. The preparation of the carbon nanotube film specifically includes the following steps : (a) Selecting a plurality of carbon nanotube segments of a predetermined width from the above description of the carbon nanotube soaring, in this embodiment, it is preferable to contact the carbon nanotube array with a tape having a certain width to select a certain width. a plurality of carbon nanotube bundles; (b) stretching a plurality of the nanotubes at a certain speed = substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. During the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively combined with other nanocarbons due to the van der Waals force. The tube bundle segments are continuously pulled out end to end, (10) forming a carbon nanotube thin film 17 200933687 membrane. The carbon nanotube film comprises a plurality of end-to-end aligned carbon nanobeams, and a plurality of end-to-end connections And the aligned carbon nanotube bundles form a nano carbon official line. The carbon nanotube bundle comprises a plurality of parallel arranged carbon nanotubes, and the arrangement direction of the carbon nanotubes is substantially parallel to the pulling of the carbon nanotube film. (2) laying the at least one carbon nanotube film on the insulating substrate 2〇2 containing the electrode ❹ and the electrode lead to form a carbon nanotube film structure 208 °, the at least one carbon nanotube The method of laying a film on the insulating substrate 202 including the electrode and the electrode lead comprises the steps of: placing a nano carbon film or at least two carbon nanotube films in parallel and without gaps from the first The first electrode 210 is electrically to the direction 212 extends only to the surface of the insulating substrate is directly laid on the electrode and the electrode lead comprises a 2〇2. Further, at least two carbon nanotube films may be overlapped and laid on the surface of the insulating/substrate 202 containing the electrode and the electrode lead at a cross angle α according to the arrangement direction of the carbon nanotubes. $〇^9〇. . It can be understood that the method of laying at least one carbon nanotube film on the insulating base & 2 2 containing the electrode and the electrode lead may further comprise the following steps: providing a branch; at least two nanometers; The carbon nanotube film is parallel and has no gap along the surface extending from the first electrode 210 to the second electrode 212 to directly lay on the surface of the support body to obtain a carbon nanotube film surname; The carbon nanotube film is formed by using an organic solvent to form the carbon nanotube film structure 208; the carbon nanotube film structure 208 treated with the organic solvent is removed from the support body, and the shape is determined by the self-supporting 18 200933687 The carbon nanotube thin crucible structure 208; the carbon nanotube film structure 2〇8 is provided on the surface of the insulating substrate 2〇2 including the electrode and the electrode lead. Further, at least two carbon nanotube films may be laid on the surface of the support body at a parent angle α according to the arrangement direction of the carbon nanotubes, 0°£C90. Since the carbon nanotube in the super-sequential carbon nanotube array provided by the embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very small, the carbon nanotube film itself has strong viscosity, and the nanotube film itself has strong viscosity. The carbon nanotube film can be directly adhered to the support by its own viscosity. In the present embodiment, the size of the support body can be determined according to actual needs. When the width of the support body is larger than the width of the nano tube film, at least two carbon nanotube films may be laid in parallel and without gaps or/and overlapping on the support to form a self-supporting nano carbon. Tube film structure 208. In this embodiment, since the carbon nanotubes in the super-sequential carbon nanotube array provided in the fourth step of the embodiment are very pure, and because the specific surface area of the carbon nanotubes is very large, the nanocarbon The tube film is cruel. The carbon nanotube film can utilize its own dryness: the surface of the insulating substrate 2〇2 containing the electrode and the electrode lead. Or coating a surface-coated conductive paste on the surface of the insulating substrate containing the electrode and the electrode lead, and depositing at least one carbon nanotube film on the entire insulating substrate 202 including the electrode and the electrode lead, so that the at least A carbon nanotube film is electrically connected to the surface of the insulating substrate 2〇2 containing the electrode and the electrode lead, and the carbon nanotube film larger than the area of the insulating substrate 202 is cut. In this embodiment, the step further comprises: preparing at least one fixed electrode (not shown) by screen printing on the first electrode 21 and the second electrode 19 200933687, the pole 212, and the carbon nanotube film The structure 208 is fixedly secured to the second electrode 212 of the first electrode 210. In addition, in this embodiment, the carbon nanotube film can be further treated with an organic solvent after the step of directly laying the carbon nanotube film on the insulating substrate containing the electrode and the electrode lead to form a carbon nanotube film structure 208. Structure 208. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube film through the test tube to infiltrate the entire carbon nanotube film structure ❹208. Alternatively, the carbon nanotube film structure 2〇8 may be immersed in a container containing an organic solvent to infiltrate. The organic solvent is a volatile organic solvent such as ethyl, decyl alcohol, acetone, ethylene bromide or chloroform, and ethanol is preferably used in this embodiment. After the nanocarbon tube film is infiltrated with an organic solvent, the surface of the carbon nanotube film is 2〇8, and the flat carbon nanotube fragments of the carbon nanotube film structure are partially aggregated into nano carbon. The tube bundle, because L' the carbon nanotube film has a small surface volume ratio, has reduced dryness, and has excellent film properties. The nanocarbon tube treated with the organic agent is thinned/five cut and the excess carbon nanotube film structure 208 is removed, covering the first electrode 210 and the second electrode 2〇〇. "Gray official enamel structure 20δ' thus obtained - thermal emission electronic device is Ray:: film structure 2 ° 8 method = (4) cutting the nai, two 200933687, ''first use the laser beam of the twist along Each row electrode is guided and scanned. The purpose of this step is to remove the different rows of electrodes m210 and the second electrode 212) <the carbon nanotube film structure adjacent to μ2 the width of the laser beam is equal to the different rows The distance between the two phases (four) brother = electrode m is (10) micrometers ~ 5 〇〇 micrometers. 206 :: Engage, with a fixed width of the laser beam along the trend of each column electrode lead The structure of the carbon nanotube film between the electrodes of different columns (including the first electrode 210 and the first electrode 212) is followed by the addition of f in the grid 214, which is called a nano carbon official film structure 208 of the electrode 210 and the second electrode 212. wherein the width of the laser beam is equal to the line spacing between the two adjacent first electrodes 21 of the bit = column 100 μm~ 500 micron. (2) In this example, the method described in _L can be used in the atmosphere or other oxygen-containing%. The laser is used to remove the excess nano tube. The laser power used is 10 watts to 50 watts. The scanning speed is 1 〇 mm/min~ 〇米米/min. In this embodiment, preferably, The laser power is 30 watts and the scanning speed is 100 mm/min. Compared with the prior art, the heat-emitting electronic device has the following advantages: First, using a carbon nanotube film as a thermal electron emitter, the The carbon nanotubes are arranged to distribute the carbon nanotubes uniformly, and the prepared heat-emitting electronic device can emit a uniform and stable flow of hot electrons; secondly, the carbon nanotube film is spaced apart from the insulating substrate to provide an 'insulating substrate'. The heat generated by heating the carbon nanotube film is conducted into the atmosphere, so that the prepared heat-emitting electronic device has excellent thermal electron emission performance; thirdly, the carbon nanotube film 21 200933687 has a small size. The electrode can be directly laid to cover the miniaturization of the electron-emitting unit of the electron-emitting device, so that it can be used in a plurality of fields such as high-definition and south-inch flat panel display and logic circuits. this It is clear that it has met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only the preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of this case. Equivalent modifications or variations in accordance with the spirit of the invention are intended to be included within the scope of the following claims.

22 200933687 ;【圖式簡單說明】 ' 圖1係本技術方案實施例的熱發射電子器件的結構示 意圖。 圖2係本技術方案實施例的熱發射電子器件的製備方 法的流程不意圖。 【主要元件符號說明】 熱發射電子器件 200 _絕緣基底 202 行電極引線 204 列電極引線 206 奈米碳管薄膜結構 208 第一電極 210 第二電極 212 網格 214 介質絕緣層 216 〇熱電子發射單元 220 2322 200933687; [Simplified description of the drawings] Fig. 1 is a schematic view showing the structure of a heat-emitting electronic device of an embodiment of the present technical solution. Fig. 2 is a schematic flow chart showing a method of preparing a heat-emitting electronic device according to an embodiment of the present technical solution. [Main component symbol description] Thermal emission electronic device 200_Insulation substrate 202 Row electrode lead 204 Column electrode lead 206 Carbon nanotube film structure 208 First electrode 210 Second electrode 212 Grid 214 Dielectric insulating layer 216 Thermal electron emission unit 220 23

Claims (1)

200933687 十、申請專利範圍 1. 一種熱發射電子器件,其包括: 一絕緣基底;200933687 X. Patent Application Scope 1. A thermal emission electronic device comprising: an insulating substrate; 複數個行電極引線與列電極引線分別平行且等間隔 設置於絕緣基底上’該複數個行電極引線與複數個列 電極引線相互交叉設置,每兩個相鄰的行電極引線盥 每兩個相鄰的列電極引線形成一個網格,且行電極^ 線與列電極引線之間電絕緣; 複數個熱電子發射單元,每個熱電子發射單元對應一 個網格設置,每個熱電子發射單it包括-第—電S、 一第二電極和一熱電子發射體,該第一電極盥 極間隔設置於每個網格中,並分別與所述行電極^ 和列電極引線電連接’所述熱電子發射體與所一 電極和第二電極電連接; 〇 其改良在於,所述熱電子發射 構。 體為一奈米碳管薄臈 結 .中第1項所述的熱發射電子器件1 潯膜結構至少部分通過所述箆_ 及第二電極與所述絕緣基底間隔設置。 3. Γ請專利範圍第1項所述的熱發射電子哭件,1 中,所述熱發射電子器件進一 +勺 于°°件其 該複數個凹槽分別對庫# v ^禝個凹槽, 基底表面。對應母個網格並設置於所述絕緣 4.如_請專利範圍第3項所述的熱發射電子器件,其 24 200933687 : 二:述複數個凹槽等大且等間距設置於所述絕緣 ^ ^ ^ 反s溥膜結構至少部分通過所 述、、、巴緣基底的凹槽與所述絕緣基底間隔設置。 I :申範圍第1項所述的熱發射電子器件,其 '、’、發射電子器件中的網格按陣列排列 一行的網袼中的第一雷托 母 ^ — 極與同一行電極引線電連 ❹電連接。 第—电極與同一列電極引線 6. 如申請專利範圍第1 中,所述熱發射1子11件,其 微乎St: 電極的厚度為10微米· 微未,所述第一電極和第_ τ 15〇微米〜450微米。 電極之間的間隔距離為 7. 7請專利範圍第1項所述的熱發射電子 Α膜,該奈米碳管薄膜中的;;奈米碳管薄 ❹ 取向排列。 、妷s沿同一方向擇優 8. 如申請專利範圍第7項 中,所述奈米碳管薄膜結構^^射電子器件,其 該奈米碳管薄財的奈米石山=、、二奈米碳管薄膜, 所述第二電極延伸的方向^,從所述第一電極向 9. 如申請專利範圍第7項所述的埶 中,所述奈米碳管薄膜結構包=射電子器件,其 的奈米碳管薄膜,該重疊設 〈兩個重疊設置 鄰兩個奈米碳管薄膜中 的不米衩官薄犋中相 、中的奈米碳管的排列方向具有 25 200933687 一交叉角度α ’且〇。$〇^9〇。。 10.如申請專利範圍第7項所冰μ &々 t 9所返的熱發射電子器件,1 中’所述奈米碳管薄膜的寬声 '、 沒為0.01厘米〜10厘米, 厚度為10奈米〜1〇〇微米。 η.如申請專利範圍第7項所述的熱發射電子器件,盆 中,所述奈米碳管薄膜包括複數個首尾相連且擇優 取向排列的奈崎束’相鄰的奈米碳管束之間通 0 過凡德瓦爾力連接。 12·如中請專利範圍第11項所述的熱發射電子器件,1 中’所述奈米破管束包括複數個長度相等且相互; 行排列的奈米碳管,相鄰的奈米碳管之間通過凡德 瓦爾力連接。 13· 一種如中請專利範圍第1項所述的熱發射電子器件 的製備方法,其包括以下步驟: 提供一絕緣基底; © 在該絕緣基底上製備複數個平行且等間隔設置的行 電極引線與列電極引線,且每兩個相鄰的行電極引線 與列電極引線相互交叉形成一網格; 在所述絕緣基底上製備複數個第一電極與複數個第 二電極’且每個網格中間隔設置所述—第一電極與一 弟二電極; 形成一奈米碳管薄膜結構覆蓋於上述含有電極和電 極引線的絕緣基底上作為熱電子發射體; 切割並去除多餘的奈米碳管薄膜結構,㈣每個網格 26 200933687 _覆蓋所述第—雷搞由 構’從而得到—熱發射電子二器電:。的奈来碳管薄膜結 ::二:利::,v::所述的熱發射電子器件的 上述含有電極和電極引::f碳管薄臈結構覆蓋於 發射體的步驟且體&、’、、絕緣基底上作為熱電子 石…“ 包括以下步驟:製備至4、太* 〇 …膜;將上述至少:備至广奈未 薄膜結構。料的絕緣基底切成-奈米碳管 15.=專=圍=所述的熱發射電子器件的製 =法包括絲網印刷:備^^電極引線 M·如申請專利範圊 又次及濺射法。 備方法,Μ,所 所述的熱發射電子器件的製 ❹ 電極與複數個第二==:應製傷複數個第-絲網印刷法、墓铲> $、、匕括以下步驟·.通過 電極引線上製傷第機射法在每—行的網格中行 電極弓查電極’該第—電極與同一行 濺射法在每一列的:袼:過絲網印刷法、蒸鍍法或 電極,該第二電極。列電極引線上製備—第二 17·如申請專":望-、同—列電極引線形成電連接。 τ明寻利乾圍第14瑁 備方法,其中m斤述的熱發射電子器件的製 , 斤逃裏備奈米碳·管薄膜的牛驟目<8* 包括以下步驟:提供一夺米碳膜的步驟具體 上;採用一如他 不水石反S陣列形成於一基底 申工具從奈米碳管陣列中拉取獲得一 27 200933687 奈米碳管薄膜,該奈米碳管薄膜中的奈米碳管沿拉 伸方向定向排列。 18. 如申請專利範圍第14項所述的熱發射電子器件的製 備方法,其中,所述將至少一奈米碳管薄膜鋪設於 上述含有電極和電極引線的絕緣基底上的步驟包括 以下步驟:將一奈米碳管薄膜或者至少兩個奈米碳 官薄膜平行且無間隙沿從所述第一電極向所述第二 〇 電極延伸的方向直接鋪設於所述含有電極和電極引 線的絕緣基底,形成一奈米碳管薄膜結構。 19. ^申請專利範圍第14項所述的熱發射電子器件的 製備方法,其中,所述將至少一奈米碳管薄膜鋪設 於上述含有電極和電極引線的絕緣基底上的步驟具 ;體包括以下步驟:將至少兩個奈米碳管薄膜重疊鋪 叹於所述含有電極和電極引線的絕緣基底,形 奈米碳管薄膜結構。 掣::專利靶圍第14項所述的熱發射電子器件的 ^ ^ ’其中’所述將至少—奈米碳管薄膜鋪設 有電極和電極引線的絕緣基底上的步驟具 體包括以下步驟: 提供一支撐體; 奈米碳管薄獏平行且無間隙沿從所述 面,得二j電極延伸的方向鋪設於所述支撐體 面,仔到一奈米碳管薄膜钟 去除所述支撐體外多餘μ㈣管薄膜; 28 200933687 使用有機溶劑處理所述奈米碳管薄臈結構; ,使用有機溶劑處理後的奈米碳管薄膜結構從所述 支撐體上取下,形成__白 烙成自支撐的奈米碳管薄膜結 構;及 將以自支撐的奈米碳官;4膜結構鋪設於所述含有電 極和電極引線的絕緣基底。 21. ❹ 22. 23. Ο 24. ,申請專利範圍帛20 g戶斤述的熱發射電子器件的 製備方法’其中’進一步包括將至少兩個奈米碳管 薄膜重疊鋪設於所述支撐體表面,形成一奈米碳管 薄膜結構的步驟。 ^申請專利範圍帛顧述的熱發射電子器件的 製備方法’其中,進-步包括使用有機溶劑處理所 述奈米碳管薄膜結構的步驟。 如申請專利範圍第20項或第22項所述的熱發射電 子器件的製備方法,其令,所述採用有機溶劑處理 該奈米碳管薄膜結構的步驟為通過試管將有機溶劑 滴落在所述奈米碳管薄膜結構表面浸潤整個奈米^ 官薄膜結構或將奈米碳管薄膜結構整個浸入盛有有 機溶劑的容器中浸潤。 如申請專利範圍第23項所述的熱發射電子器件的 製備方法,其中,所述有機溶劑為揮發性有機溶劑, 如乙醇、曱醇、丙酮、二氣乙烷或氣仿。 如申請專利範圍第13項所述的熱發射電子器件的 製備方法,其中’所述切割並去除多餘奈米後管薄 29 25. 200933687 膜結構的方法包括雷射燒蝕法或電子束掃描法。 26.如申叫專利範圍第25項所述的熱發射電子器件的 製備方法,其中,所述利用雷射燒蝕法切割並去除 多餘奈米碳管薄膜結構的方法包括以下步驟:採用 功率為10瓦〜50瓦的雷射光束以1〇毫米/分鐘〜1〇〇 毫米/分鐘的速度沿著每個行電極引線進行掃描,去 除不同行的電極之間的奈米碳管薄膜;採用上述雷 ❹ 射光束沿著每個列電極引線進行掃描,去除不同列 的電極之間的奈米碳管薄膜。 27 ^凊專利範圍帛13項所述的熱發射電子器件的 製備方法’其中’所述的熱發射電子器件的製備方 法進一步包括通過刻蝕在所述絕緣基底的表面形成 複數個凹槽的步驟,該複數個凹槽分別對應每個網 格並設置於所述絕緣基底表面。a plurality of row electrode leads and column electrode leads are respectively disposed in parallel and equally spaced on the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are disposed to cross each other, and each two adjacent row electrode leads are each two phases The adjacent column electrode leads form a grid, and the row electrode line and the column electrode lead are electrically insulated; a plurality of thermionic emission units, each of the thermionic emission units corresponding to one grid, each of the thermoelectron emission units includes a first electric S, a second electrode and a thermal electron emitter, the first electrode being spaced apart from each other in the grid and electrically connected to the row electrode and the column electrode lead respectively The electron emitter is electrically connected to the one electrode and the second electrode; and the improvement is in the thermal electron emission configuration. The body of the heat-emitting electronic device 1 according to the first item is at least partially spaced apart from the insulating substrate by the 箆_ and the second electrode. 3. In the case of the heat-emitting electronic crying device described in the first item of the patent scope, in the first embodiment, the heat-emitting electronic device enters a spoon + a piece of the groove, and the plurality of grooves respectively belong to the library # v ^ , the surface of the substrate. Corresponding to the parent grid and disposed on the insulation 4. The heat-emitting electronic device as described in item 3 of the patent scope, 24 200933687 : 2: a plurality of grooves are equally large and equally spaced at the insulation ^ ^ ^ The anti-s溥 film structure is spaced apart from the insulating substrate at least in part by the grooves of the padding substrate. I: The heat-emitting electronic device according to Item 1, wherein the ',' and the grid in the electron-emitting device are arranged in a row in a row of the first Leito mother and the same row of electrode leads Connected to the electrical connection. The first electrode and the same column electrode lead 6. As in the first scope of the patent application, the thermal emission 1 is 11 pieces, and the St: electrode has a thickness of 10 μm·micro, the first electrode and the first electrode _ τ 15 〇 micron ~ 450 microns. The distance between the electrodes is 7. 7 The thermal emission electron enthalpy film described in the first item of the patent range, in the carbon nanotube film; the carbon nanotubes are thinly oriented. , 妷 s select the same direction in the same direction. 8. In the seventh paragraph of the patent application scope, the carbon nanotube film structure ^ ^ electronic device, the carbon nanotubes of the thin carbon nanotubes of nanometer stone =, two nanometer a carbon nanotube film, the direction in which the second electrode extends, from the first electrode to 9. In the crucible according to claim 7, the carbon nanotube film structure package = electron-emitting device, The carbon nanotube film has the overlap direction of two overlapping carbon nanotube films in the adjacent two carbon nanotube films, and the arrangement of the carbon nanotubes in the middle phase has a cross angle of 25 200933687 α 'and 〇. $〇^9〇. . 10. For the thermal emission electronic device returned by the ice μ & 々t 9 in the scope of the patent application, the 'wide sound of the carbon nanotube film' is not 0.01 cm to 10 cm, and the thickness is 10 nm ~ 1 〇〇 micron. The heat-emitting electronic device according to claim 7, wherein the carbon nanotube film comprises a plurality of Neisez bundles adjacent to each other and arranged in a preferred orientation between adjacent carbon nanotube bundles Pass 0 through Van der Valli connection. 12. The thermal emission electronic device of claim 11, wherein the nano tube bundle comprises a plurality of carbon nanotubes of equal length and mutually arranged; rows of adjacent carbon nanotubes, adjacent carbon nanotubes Connected by Van der Valli. 13. A method of fabricating a thermally-emission electronic device according to claim 1, comprising the steps of: providing an insulating substrate; and preparing a plurality of parallel and equally spaced row electrode leads on the insulating substrate And a column electrode lead, and each two adjacent row electrode leads and column electrode leads cross each other to form a grid; preparing a plurality of first electrodes and a plurality of second electrodes on the insulating substrate and each grid The first electrode and the second electrode are disposed at intervals; forming a carbon nanotube film structure covering the above insulating substrate containing the electrode and the electrode lead as a thermal electron emitter; cutting and removing excess carbon nanotubes Thin film structure, (4) each grid 26 200933687 _ covering the first - Lei made by the structure - thus obtained - thermal emission electronic two electric: Neil carbon nanotube film junction:: 2: Lee::, v:: The above-mentioned electrode and electrode of the thermal electron-emitting device described above: the step of the f-carbon tube thin crucible structure covering the emitter and the body & , ',, on the insulating substrate as a hot electron stone..." includes the following steps: preparation to 4, too * 〇 ... film; at least: prepared to the Guang Nai film structure. The insulating substrate of the material is cut into - carbon nanotubes 15. =Special = 围 = The method of manufacturing the heat-emitting electronic device includes screen printing: preparing the electrode lead M · as in the patent application and sputtering method. Preparation method, Μ, the heat described The ❹ electrode of the electron-emitting device and the plurality of second ==: should be wounded by a plurality of first-screen printing method, tomb shovel > $, including the following steps · by the electrode lead on the first machine shot In each grid of rows, the electrode is inspected by the electrode electrode. The first electrode and the same row of sputtering are in each column: 袼: screen printing, evaporation or electrode, the second electrode. On-line preparation—Second 17·If you apply for a special ":--, same-column electrode lead to form an electrical connection. The 14th preparation method of the Lekanwei, in which the system of the thermal emission electronic device described in the m kg, the bovine resuscitation of the nanometer carbon tube film <8* comprises the following steps: providing a carbon film The step is specifically; using a non-hydrated anti-S array formed in a substrate application tool to obtain a 27 200933687 carbon nanotube film from the carbon nanotube array, the carbon nanotube film in the carbon nanotube film The method for producing a thermal-emitting electronic device according to claim 14, wherein the at least one carbon nanotube film is laid on the insulating substrate including the electrode and the electrode lead. The above step includes the steps of: laying a carbon nanotube film or at least two nano carbon official films directly and in parallel in a direction extending from the first electrode to the second electrode The insulating substrate of the electrode and the electrode lead forms a carbon nanotube film structure. 19. The method for preparing a heat-emitting electronic device according to claim 14, wherein the at least one carbon nanotube is used a step of laying a film on the insulating substrate comprising the electrode and the electrode lead; the body comprising the steps of: overlaying at least two carbon nanotube films on the insulating substrate containing the electrode and the electrode lead, forming a nanocarbon The film structure of the tube: 掣:: The step of the heat-emitting electronic device described in claim 14 of the patent target, wherein the step of laying at least the carbon nanotube film on the insulating substrate on which the electrode and the electrode lead are laid includes The following steps: providing a support; the carbon nanotubes are parallel and have no gaps along the surface, and the direction of the two electrodes is extended on the support surface, and the carbon nanotube film is removed. Supporting the extra μ (four) tube film in vitro; 28 200933687 treating the carbon nanotube thin crucible structure with an organic solvent; removing the carbon nanotube film structure treated with the organic solvent from the support body to form a white powder The supported carbon nanotube film structure; and a self-supporting nano carbon material; 4 film structure is laid on the insulating substrate containing the electrode and the electrode lead. 21. ❹ 22. 23. Ο 24. The patent application scope 帛 20 g household thermal emission electronic device preparation method 'where' further includes overlapping at least two carbon nanotube films on the surface of the support The step of forming a carbon nanotube film structure. ^Patent Application Scope of Preparation of Thermal Emission Electronic Devices' wherein the further step comprises the step of treating the carbon nanotube film structure with an organic solvent. The method for preparing a thermal emission electronic device according to claim 20 or claim 22, wherein the step of treating the carbon nanotube film structure with an organic solvent is to drip an organic solvent through a test tube. The surface of the carbon nanotube film structure is infiltrated into the entire nano-membrane structure or the entire carbon nanotube film structure is immersed in a container containing an organic solvent. The method for producing a thermally-emitting electronic device according to claim 23, wherein the organic solvent is a volatile organic solvent such as ethanol, decyl alcohol, acetone, di-ethane or gas. The method for preparing a thermal-emitting electronic device according to claim 13, wherein the method of cutting and removing excess nano-tube thin film 29 25. 200933687 The method for film structure includes laser ablation or electron beam scanning . 26. The method of preparing a thermal emission electronic device according to claim 25, wherein the method of cutting and removing excess carbon nanotube film structure by laser ablation comprises the following steps: using power 10 watts to 50 watts of laser beam are scanned along each row of electrode leads at a speed of 1 〇 mm / min to 1 〇〇 mm / min to remove the carbon nanotube film between the electrodes of different rows; The Thunder beam is scanned along each column electrode lead to remove the carbon nanotube film between the different columns of electrodes. The method for producing a thermal-emitting electronic device according to the above-mentioned claim, wherein the method for preparing the thermal-emitting electronic device further includes the step of forming a plurality of grooves on the surface of the insulating substrate by etching The plurality of grooves respectively correspond to each of the meshes and are disposed on the surface of the insulating substrate. 3030
TW97102852A 2008-01-25 2008-01-25 Thermionic emission device and method for making t TWI352369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97102852A TWI352369B (en) 2008-01-25 2008-01-25 Thermionic emission device and method for making t

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97102852A TWI352369B (en) 2008-01-25 2008-01-25 Thermionic emission device and method for making t

Publications (2)

Publication Number Publication Date
TW200933687A true TW200933687A (en) 2009-08-01
TWI352369B TWI352369B (en) 2011-11-11

Family

ID=44866043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97102852A TWI352369B (en) 2008-01-25 2008-01-25 Thermionic emission device and method for making t

Country Status (1)

Country Link
TW (1) TWI352369B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464772B (en) * 2012-06-20 2014-12-11 Hon Hai Prec Ind Co Ltd Thermal emission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464772B (en) * 2012-06-20 2014-12-11 Hon Hai Prec Ind Co Ltd Thermal emission device

Also Published As

Publication number Publication date
TWI352369B (en) 2011-11-11

Similar Documents

Publication Publication Date Title
US7772755B2 (en) Thermionic emission device
US8072127B2 (en) Thermionic electron emission device
US8371892B2 (en) Method for making electron emission apparatus
CN101471212B (en) Thermal emission electronic component
CN104795292B (en) Electron emission device, manufacturing method thereof and display
CN104795300B (en) Electron emission source and manufacturing method thereof
US7967655B2 (en) Electron emission apparatus and method for making the same
CN104795291B (en) Electron emission device, manufacturing method thereof and display
US8450920B2 (en) Field emission electronic device
CN103730302B (en) Field emitting electronic source and field emission apparatus
CN103730305B (en) The preparation method of field emitting electronic source
TWI330858B (en) Thermionic emission device
TW200933687A (en) Thermionic emission device and method for making the same
TWI352371B (en) Method for making field emission electron device
TW201123250A (en) Field emission cathode structure and display using the same
TWI360830B (en) Method for making thermionic electron source
CN103730304B (en) The preparation method of field emission electron source array
TW200932665A (en) Thermionic emission device
TWI417924B (en) Field emission electronic device
TW201230139A (en) Method for making carbon nantoube wire tip and method for making field emission structure
TW200933686A (en) Thermionic source
TW200937484A (en) Electron emission device and method for making the same
TW200937485A (en) Electron emission device