TW200937484A - Electron emission device and method for making the same - Google Patents

Electron emission device and method for making the same Download PDF

Info

Publication number
TW200937484A
TW200937484A TW97107090A TW97107090A TW200937484A TW 200937484 A TW200937484 A TW 200937484A TW 97107090 A TW97107090 A TW 97107090A TW 97107090 A TW97107090 A TW 97107090A TW 200937484 A TW200937484 A TW 200937484A
Authority
TW
Taiwan
Prior art keywords
electron
electrode
carbon nanotube
emitting device
electrodes
Prior art date
Application number
TW97107090A
Other languages
Chinese (zh)
Other versions
TWI366210B (en
Inventor
Yang Wei
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097107090A priority Critical patent/TWI366210B/en
Publication of TW200937484A publication Critical patent/TW200937484A/en
Application granted granted Critical
Publication of TWI366210B publication Critical patent/TWI366210B/en

Links

Abstract

The present invention relates to an electron emission device. The electron emission device includes an insulated substrate, a number of first electrodes and a number of second electrodes disposed on the insulated substrate, and a number of electron emission units. Every two adjacent first electrodes and every two adjacent second electrodes form a grid. Each electron emission unit is disposed in and corresponding to one grid. Each electron emission unit includes an electron emitter. The first electrodes and second electrodes are electrically connected to the electron emitters. The electron emitter includes two tips separated therefrom. The tip includes a number of electron emission tips.

Description

200937484 九、發明說明: 【發明所屬之技術領域】 - 本發明涉及一種電子發射器件及其製備方法,尤其涉 及一種基於奈米碳管的電子發射器件及其製備方法。 【先前技術】 : 常見的電子發射器件一般為場發射電子器件和表面傳 $電子發射器件。場發射電子器件和表面傳導電子發射器 ❾件在低溫或者室溫下工作,與電真空器件中的電子發射器 件相比具有能耗低、响應速度快及低放氣等優點,因此用 %發射電子器件或者表面傳導電子發射器件有望替代電真 二二件中的電子發射器件。大面積電子發射器件於平板顯 示器等裝置中有著廣闊的應用前景,因此,製備大面積電 子發射益件成為目前研究的一個熱點。 "月參閱圖1,先刖技術中的場發射電子器件,包括 一絕緣基底30,複數個電子發射單元36設置於該絕緣基 ❹底上,及複數個陰極電極34與複數個柵極電極32設置於 該絕緣基底30上。其中,所述陰極電極34與栅極電極% 之間由;丨質、·’邑緣層33隔離,以防止短路。每個電子發射單 元36包括至少一陰極發射體38,該陰極發射體% ^所述 陰極電極34電連接並與所述柵極電極32間隔設置。所述 陰極發射體38於所述栅極電極32順向偏壓的作用下發射 電子。該類電子發射器件3〇〇的電子發射效率較高。然, 所述%發射電子器件3〇〇中柵極電極32的位置通常高於陰 極電極34的位置’陰極發射體38於栅極電極%的作用下 6 200937484 •發射電子’因此需要陰極電極34與栅極電極32的距離很 近。然而陰極電極34和栅極電極32的間距不能精確於制, -且所需的驅動電墨較高,提高了驅動電路的成本。- 請參閱圖2及圖3,先前技術中的表面傳導電子發射 器件400,包括一絕緣基底4〇,複數個電子發射單元\ 二 =?緣基底4〇上,及複數個栅極電極42與複數個 陰極電極44設置於該絕緣基底4〇上。其中,所述的複數 ❹個柵極電極42與複數個陰極電極44分別平行且等間隔設 置於、,、邑緣基底40上’而且,柵極電極42與陰極電極料 垂直設置並於交叉處由介質絕緣層43隔離,以防止短路。 每個柵,電極42複數個等間隔設置的延伸部421。每個電 子發射早46包括-電子發射體48分別與所述陰極電極 44和柵極電極42的延伸部電連接,該電子發射體48包括 一電子發射區(請參見,A 36_inch Surface_c〇nducti〇n200937484 IX. Description of the Invention: [Technical Field] The present invention relates to an electron-emitting device and a method of fabricating the same, and more particularly to an electron-emitting device based on a carbon nanotube and a method of fabricating the same. [Prior Art]: Common electron-emitting devices are generally field-emitting electronic devices and surface-emitting electron-emitting devices. Field emission electronics and surface conduction electron emitter components operate at low temperatures or room temperature, and have the advantages of low power consumption, fast response, and low bleed compared to electron-emitting devices in electric vacuum devices. The electron-emitting device or the surface-conduction electron-emitting device is expected to replace the electron-emitting device in the electro-optical device. Large-area electron-emitting devices have broad application prospects in devices such as flat panel displays. Therefore, the preparation of large-area electron-emitting devices has become a hot topic in current research. Referring to FIG. 1, the field emission electronic device of the prior art includes an insulating substrate 30, a plurality of electron emitting units 36 disposed on the insulating substrate, and a plurality of cathode electrodes 34 and a plurality of gate electrodes. 32 is disposed on the insulating substrate 30. Wherein, the cathode electrode 34 and the gate electrode % are separated from each other by the enamel and the edge layer 33 to prevent short circuit. Each electron-emitting unit 36 includes at least one cathode emitter 38, which is electrically connected to and spaced from the gate electrode 32. The cathode emitter 38 emits electrons under the forward bias of the gate electrode 32. The electron emission device of this type of electron-emitting device has a high electron emission efficiency. However, the position of the gate electrode 32 in the % electron-emitting device 3 通常 is generally higher than the position of the cathode electrode 34. The cathode emitter 38 is under the action of the gate electrode %. 6 200937484 • E-electrons are required. Therefore, the cathode electrode 34 is required. The distance from the gate electrode 32 is very close. However, the pitch of the cathode electrode 34 and the gate electrode 32 cannot be precisely determined, and the required driving ink is higher, which increases the cost of the driving circuit. Referring to FIG. 2 and FIG. 3, the surface conduction electron-emitting device 400 of the prior art includes an insulating substrate 4, a plurality of electron-emitting units, a second substrate, and a plurality of gate electrodes 42 and A plurality of cathode electrodes 44 are disposed on the insulating substrate 4A. Wherein, the plurality of gate electrodes 42 and the plurality of cathode electrodes 44 are respectively disposed in parallel and equally spaced on the edge substrate 40. Moreover, the gate electrode 42 and the cathode electrode material are disposed perpendicularly at the intersection. It is isolated by the dielectric insulating layer 43 to prevent short circuits. Each gate, electrode 42 is provided with a plurality of equally spaced extensions 421. Each electron emission early 46 includes an electron emitter 48 electrically coupled to an extension of the cathode electrode 44 and the gate electrode 42, respectively, the electron emitter 48 including an electron emission region (see, A 36_inch Surface_c〇nducti〇) n

Electron-emitter Display(SED), T.Oguchi et al., SIDO5 ❹Digest,V36, P1929_1931 ( 2〇〇5 ))。該電子發射區係由極小 顆粒構成的薄膜。通過在所述電子發射區兩端施加電壓, 並且該電子發射區通常需要一些表面處理工藝使其啟動, 電子才能形成表面傳導電流,並在陽極電場的作用下發射 電子。所述表面傳導電子發射器件4〇〇的結構簡單。然, 由於電子發射區薄膜内的顆粒間距極小,使陽極電場不易 滲透至所述電子發射區内部,導致所述表面傳導電子發射 器件400的電子發射效率低。 有鑒於此,提供一種結構簡單,且電子發射效率高的 7 200937484 大面積電子發射器件及其製備方法實為必要。 * 【發明内容】 ':種電子發射器件,其包括:—絕緣基底;複數個平 :且:間隔排列的第一電極與複數個平行且等間隔排列的 -極设置於絕緣基底上,每兩個湘鄰的第一 第二電極形成一個網格;複數個電子發射單: ?對應設置於每個網格内’每個電子發射單元中設有至 〇 電子發㈣’該電子發㈣的兩端分別與所述第一 電極和第二電極電連接,所述電子發射體具有一間隙 2間隙處形成兩個尖端’每個尖端具有複數個電子發射 供一發射器件的製備方法’其包括以下步驟:提 :、.、巴緣基底;於該絕緣基底上製備複數個平行且 設ΐ的!:二與:二電極’該第-電極與第二電極交叉 二且母兩個相鄰的第一電極與每兩個相鄰的第二電極 個電子發射體鋪設於上述設底:該複數 數個電子發射體沿從第二電極向第=二上方= 斷開所述電子發射體,使每個電子發射體形成宋排 並於該間隙處形成兩個尖端,從而得到一電子發射牛、。 相較于先前技術,所述電子發射器件中的第 第二電極和電子發射體共面設置, 怎 射體具有-間隙,在所述第—電極和第二極^電子發 電壓時’可以於所述第—電極和第二電極之間形二二 200937484 電場電子4易攸所述電子發射體的尖端射出,提高了所 =電子發射器件的電子發射效率,所發射電子的整體均句 後複數個電子發射體 操作。汗 電子發射體而形成一間隙,方法簡單,易於 【實施方式】 Ο 步的‘::明°:附圖對本技術方案的電子發射器件作進- 請參閲圖4及圖5’本技術方案實施例提供一種電子 上的;m’包括—絕緣基底ig及設置於該絕緣基底10 個第二電極14 1 灵數個第一電極12與複數 電極;4平行且等第-電極u與複數個第二 鄰的望念抗又置於該絕緣基底ι〇上。每兩個相 =的弟-電極12與兩個相鄰的第二電 又设置形成一網格16,且每個網 =又 ❹:電=,22。在第一電極12與第二 第 1介質絕緣層2。,該介質絕緣層 = 第二電極14電隔離,以防止短路。 ^12與 所述的絕緣基底1〇為 ^石英基板等。絕緣基底Γ大:板與厚 電趙所二數:第—電極12舆複數個第二電極心-導 如金屬層等。該複數個第-電極舆複數個第二ΐ. 9 200937484 極14的行距和列距均為3〇〇微米〜5〇〇微米。該第一電極 * 12與第二電極14的寬度均為30微米〜100微米,厚度均 為10微米〜5〇微米。所述每個第一電極12進一步包括複 數個平行且間隔排列的延伸部121。該複數個延伸部121 均没置於所述第一電極12的同一側,並至少部分與相應網 格内的第一電極14正對。所述每個延伸部121對應設置於 相應網格16内的電子發射單元22中。所述延伸部121之 ❾間的間距為3〇〇微米〜5〇〇微米。所述延伸部121的形狀不 限。本實施例中’該複數個第—電極12與複數個第二電極 14優為彳木用導電漿料印製的平面導電體,所述第一電極 12的延伸部均為等大的立方體結構,長度為60微米,寬 度為20微米,厚度為20微米。 母個電子發射單元22中却·右5 /1、 λπ ^ 肀3又有至)一個電子發射體 電子發射體18的兩端181分別與所述第一電極12 ❹電連接。所述電子發射體18與絕緣基底 體二有,置於所述絕緣基底1〇上。所述電子發射 隙搬、1微米〜20微米的間隙182,並於該間 隙182處形成有兩個尖端183 奴 電子發鼾,丨、挫^ 母似太鳊183具有複數個 端⑻為類_ 電子發射尖端為類圓錐形。所述尖 % 183為類圓錐形,可以 發射體18具有—間降、⑻,产發射知°由於所述電子 極14之門施力 ,、 在所述第一電極12和第二電 電極:,可以於所述第-電極12和第二 電極14之間形成較大的電場, 則尖㈣3射出,提 ==斤述電子發射體 j所逑電子發射器件100的電子 200937484 發射效率。所述電子發射體18為金屬絲、碳纖維或者奈米 ‘碳管長線。可以理解,所述電子發射體18的兩端可通過一 .導電膠分別與所述第一電極12和第二電極14電連接,也 可以通過分子間力或者其他方式來實現電連接。 所述電子發射器件1〇〇中每個電子發射單元22可進一 步包括複數個電子發射體18,為了使該電子發射器件1〇〇 所發射電子的整體均勻性好,每個電子發射單元22中具有 ❹相同數量且等間隔排列的複數個電子發射體18。所述每個 電子發射體18分別沿從所述第二電極14向所述第一電極 12的延伸部121延伸的方向排列。 本技術方案實施例的電子發射體18優選為奈米碳管 長線。該奈米碳管長線係由複數個首尾相連的奈米碳管束 組成的束狀結構或者絞線結構。所述相鄰的奈米碳管束之 間通過凡德瓦爾力連接。該奈米碳管束中包括複數個定向 排列的奈米碳管。所述奈米碳管長線中的奈米礙管為單 ©壁、雙壁或多壁奈米碳管。該奈米碳管長線的直徑均為忉 微米〜100微米,長度為50微米〜4〇〇微米。請參閱圖6及 圖7,所述奈米碳管長線的尖端均包括複數個電子發射尖 端,該電子發射尖端包括複數個基本平行的夺米碳管,該 複數個奈米碳管之間通過凡德瓦爾力緊密結合。所述電子 發射尖端的頂端突出有一根奈米碳管。 所述電子發射ϋ件10㈣每個電子發射單元22可以進 —步包括複數個固定元件24,分別設置於所述第一電極12 和/或第二電極所述固定元们4的材料不限’用於 11 200937484 將所述電子發射體18更好地固定於所述第一電) 或第一電極14上。可以理解,所述複數個固定元件2 通過-導電膠分別設置於所述第一電極12和 可 W上,也可以通過分子間力或者其他方式設置―。”極 所述電子發射器件⑽可以應用於場 所述第一雪;Ί i W ”肩不’於 弟Μ 12和第二電極14之間施加一 ❹ 壓,所述第二電極14在第-電極12的牽引作用:二偏 子,並在陽極電壓的作用 發射電 螢光㈣子轟擊陽極處的 :先私層從而實現場發射顯示器的顯示功能 述第-電極定的負電壓時,所 子。 在第一電極14的牽引作用下發射電 ^參關8,本技術方案實施顧供 射器件100的製備方法,具體包括以下步驟:电子發 步驟一:提供—絕緣基底10 +驟二€緣基底1G優選為—玻璃絕緣基板。 極12與第二電極14 3稷數個第-電 與每兩個相鄰的第一電=,母兩個相鄰的第-電極12 所述製備二 交又形成-網格16。 以通過絲網印刷法U:2與複數個第二電極14可 解,在製備過程中,==法等方法實現。可以理 複數個第㈣’使所述 乐—虿極14交叉設置。同時, 12 200937484 需確保第一電極12與第-φ ,L ^ 、弟一電極14之間電絕緣,形忐亦— ,弟—電極12與第二電極u ^ _ 中,知用絲網印刷法製備禎赵彻 第一電極12與複數個第雷 數個 、,+ „ 電極14,其具體包括以下步驟. .i先,採用絲網印刷法於絕緣基底1〇上印 行且等間隔排列的第一電極12。 、锼數個平 Ο 本實施射,通過絲網印刷法將導電漿 基底10上製備第一電極12。 衣於、、、邑緣 該導電漿料的成分包括金屬 泰、低熔點玻璃粉和粘結劑。其中, 、屬 .L ,, ^ τ茨^屬杨優選為銀格, 〜;…V丨優選為松油醇或乙基纖維素。 屬粉的重詈比Λ W QiW , 寸·电水#中’金 物的室里比為50〜90% ’低熔點玻璃粉 2〜10%,粘結劑的重量比為ι〇〜4〇%。 里比為 其次,採用絲網印刷法於第一電極12與待形成的 電極14父叉處印製複數個介質絕緣層2〇。 最後’採用絲網印刷法於絕緣基底1〇上印製複數 ©行且等間隔排狀置的第二電極14,且複數個第_電極二 與複數個第二電極14相互交叉形成網路,每兩個相鄰的 —電極12與每兩個相鄰的第二電極14相 乐 網格16。 又又形成一個 可以理解,本實施例中,也可以先印製複數個平行且 等間隔排列設置的第二電極再印製複數個介質絕緣芦 2 〇,最後印製複數個平行且等間隔排列設置的第—電^ 12,且複數個第一電極12與複數個第二電極u相互:: 形成複數個網格16。 人又 13 200937484 步驟三:製備複數個電子發射體18。 ‘ 本技術方案實施例優選的電子發射體18為奈米碳管 長線,該奈米碳管長線的製備方法具體包括以下步驟: (1)提供一奈米碳管陣列,優選地,該陣列為超順排 奈米碳管陣列。 本實施例中,奈米碳管陣列的製備方法採用化學氣相 沈積法,其具體步驟包括:(a)提供一平整基底,該基底 ❹可選用P型或N型矽基底,或選用形成有氧化層的矽基 底,本實施例優選為採用4英寸的矽基底;(b)於基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、 結(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上 述形成有催化劑層的基底於7〇〇。(:〜900°C的空氣中退火約 30为鐘〜90分鐘;(d)將處理過的基底置於反應爐中,在 保護氣體環境下加熱到5〇(rc〜74〇°c,然後通入碳源氣體 反應約5分鐘〜3〇分鐘,生長得到奈米碳管陣列,其高度 ❹大於100微米。該奈米碳管陣列為複數個彼此平行且垂直 於基底生長的奈米碳管形成的純奈米碳管陣列。該奈米碳 管陣列的面積與上述基底面積基本相同。通過上述控制生 長條件,該超順排奈米碳管陣列中基本不含有雜質,如石 墨或殘留的催化劑金屬顆粒等。 上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活 潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 可以理解’本實施例提供的奈米碳管陣列不限於上述 14 200937484 製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸 、發沈積法等。 . (2)採用一拉伸工具從該奈米碳管陣列中拉取獲得一 奈米碳管結構。 該奈米碳管結構的製備具體包括以下步驟:(a)從上 述奈米碳管陣列中選定複數個奈米碳管片斷;(b)以一定 速度沿基本垂直于奈米碳管陣列生長方向拉伸所述複數個 ❹奈米奴官,以形成一奈米碳管結構,該奈米碳管結構為一 連續的奈米碳管長線或者奈米碳管薄膜。 本只施例優選為採用具有一定寬度的膠帶接觸奈米碳 官陣列以選定-定寬度的複數個奈米碳管束,在上述拉伸 過程中’該複數個奈求碳管束在拉力作用下沿拉伸方向逐 漸脫離基底的同時,由於凡德瓦爾力作用,該選定的複數 個奈米碳管束分別與其他奈米碳管束首尾相連地連續地被 拉出’從而形成-奈米碳管結構。所述奈米碳管結構包括 ❿複,,首尾相連且擇優取向排列的奈米碳管束,相鄰的奈 米碳管束之間通過凡德瓦爾力連接。該奈米碳管束包括複 數個長度相等且相互平行排列的奈米碳管,相鄰奈米碳管 ^間通過凡德瓦爾力連接,且奈米碳管的排列方向基本平 行于奈米碳管結構的拉伸方向。 = 實施例中’該奈米碳管結構的寬度與奈 ^官 基底的尺寸有關,該奈米碳管結構的 長度不限’可根據實際需求制得。本實施例中採用4英寸 的基底生長超順排奈米碳管陣列,所製備的奈求碳管姓構 200937484 的寬度為0.01厘米〜10厘米,厚度為10奈米〜1〇〇微米。 .可以理解,當採用車交大的基底纟長超順排奈米碳管陣列 '時’可以得到更寬的奈米碳管結構。 由於本實施例製備的超順排奈米碳管陣列中的奈米碳 管非常純淨,且由於奈米碳管本身的比表面積料^,、= 該奈米碳管結構本身具有較強的枯性。 (3)通過使用有機溶劑或者施加機械外力處理所述奈 ❾米碳管結構得到奈米碳管長線。 ’丁、 上述步驟(2)製備的奈米碳管結構可使用有機溶劑處 理得到奈米碳管長線。其具體處理過程包括:通過試管將 有機溶劑滴落於奈米碳管結構表面浸潤整個奈米碳管結 構。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙/ =氣乙燒或氣仿,本實施财優選採用乙醇。所述奈米碳 官結構經有機溶劑浸潤處理後,在揮發性有機溶劑的表面 張力的作用下,奈米碳管結構中的平行的奈米碳管片斷合 ❹:分::成奈米碳管束’因此,該奈米碳管薄膜收縮成; 線。該奈米碳管長線表面體積比小,無枯性,且具有良好 的機械強度及勒性,應用有機溶劑處理後的奈米士 能方便地應用於宏觀領域。 5、,,°構 上述步驟⑺製備的奈米碳管結構也可通過施加機械 米碳管長線。該奈米碳管長線係由複數個 :尾相連的奈米碳管束組成的絞線結構。其具體處理過程 提供—個尾部可以純奈米碳管結構㈣紗轴。將 該、朴軸的尾部與奈米碳管結構結合後,使該紡紗轴以旋 16 200937484 轉的方式旋轉該奈米碳管結構,形成奈米碳管長線。可以 •理解’上述紡紗軸的旋轉方式不限,可以正轉’也可以反 .轉,或者正轉和反轉相結合。 上述步驟(1)製備的奈米碳管陣列也可通過施加機械 外力處理得到奈米碳管長線。該奈米碳管長線係由複數個 首尾相連的奈米碳管束組成的絞線結構。其具體處理過程 包括:提供一個尾部可以粘住奈米碳管陣列的紡紗轴。將 ❹該紡紗軸的尾部與奈米碳管陣列結合後’奈米碳管開始纏 繞於軸的周圍。將該紡紗軸以旋轉的方式旋出並向遠離奈 米石厌官陣列的方向運動。這時奈米碳管陣列相對於該紡紗 軸移動時,奈米碳管長線開始紡成,其他的奈米碳管可以 纏繞於不米碳官長線的周圍,增加奈米碳管長線的長度。 可以理解’上述紡紗軸的旋轉方式不限,可以正轉, 也可以反轉,或者正轉和反轉相結合。 可以理解,也可以採用一拉伸工具從步驟(1)的奈米碳 ©管陣列中直接拉取獲得奈米碳管長線。 可以理解,若所述電子發射體18為金屬絲或者碳纖 維,可直接施加機械外力冑理該金屬絲、或者碳纖維得到電 子發射體18。 步驟四·將上述的複數個電子發射體18鋪設於上述設 置有電極的絕緣基底1〇上,該電子發射體Μ沿從第二電 極14向第一電極12延伸的方向排列。 …所述母個網格16内的至少一個電子發射體Μ位於所 述第電極12和第二電極14之間。可以理解,為了將該 17 200937484 電子發射體18更牢固的^ 之…φ【牛口的固疋於第-電極12和第二電極14 ,並更有效的與第一電極12和 於形成電子發射體 一 电運接, 雷炻以於第一電極12和第二 。上預先塗敷-層導電膠。進—步,還可以採用絲網 定 所述第一電極12和第二電極14上製備複數個固 體Μ更好地固定於所述第-電極 ❹ 可以理解’在製備大面積電子發射器件1〇〇時,备所 述奈米碳管結構為奈米碳管長線時,將該奈米碳管長、:平 仃且間隔鋪設於整個設置有電極的絕緣基底10上。 步驟五.斷開所述電子發射體18,使每個電子發射體 18形成一間隱:182’並於該間隙182處形成兩個尖端⑻, 從而得到一電子發射器件100。 ^實施例中,上述斷開所述電子發射體18的方法可以 在大氣環境或其他含氧的環境下進行,採用錯射燒钱法、 ©電子2掃描法或真㈣斷絲斷騎述電子發射體18。 田採用釦射燒蝕法或者電子束掃描法來斷開所述電子 發射體^8時’可以實現對所述電子發射體18的定點溶斷, 即所述每個電子發射體18的間隙182的位置可以控制在該 電子發射體18的任意位置處。 本實施例中,優選採用真空熔斷法熔斷所述電子發射 體18。在真空的環境下,分別於一個所述第一電極^和 與該第冑極14相鄰的第二電極12施加電麼,通入電流 加熱,使每個電子發射單元22中位於第一電極12和第二 18 200937484 電極14之間的電子發射體18炫斷。也可於惰性氣體的環 •境下進行熔斷如氦氣或氬氣等。本技術領域人員應當明 .白,所述電子發射體18兩端所施加的電壓與所選的電子發 射體18的直徑和長度有關。將所述電子發射體18設置於 一真空度低於lxlO-1帕的真空室内或充滿惰性氣體的反 應室,在直流條件下通過焦耳熱加熱電子發射體18。加執 溫度優選為2000K至2800K,加熱時間為2〇分鐘〜6〇分鐘。 ❹ 在料的瞬間,每個電子發射體18會形成-間隙,並 於該間隙處形成兩個尖端182。該間隙182的大小為工微 米:20微米’同時於熔斷點位置附近,由於電子發射體18 的療發’真空度較差,這些因素會使溶斷的 附近產生氣體電離。電離德的舱工盘# 珞斷點 18 ^ 後的離子轟擊熔斷的電子發射體 18的糕邛,並於該端部形成一尖端Μ]。 本實施例採用的直空、皮餘 得的奈米碳管長線的;端^ 管長線,獲 ❹加熱過程中奈米碳管的表面清潔度’而且’ 機械強度會有一定提:線=缺陷會大大減少,使得它們的 參閱圖9,為奈米碳;優良的場發射性能。請 光譜分析表明經過教端的拉曼光譜圖。用拉曼 有明顯的降低、的不未碳管長線的尖端的缺陷峰 長線的尖端的夺^ =缺陷峰更低。也就說,奈米碳管 提高。這一方 二於炫斷的過程中質量得到了極大的 另一方面係因為富含缺:米石反官經過熱處理後缺陷減少, 下-些質量較高的石墨:的石墨層容易於高溫下崩潰,剩 19 200937484 綜上所述,本發明確已符合發明專利之要件,遂依法 .提出專利申請。惟,以上所述者僅為本發明之較佳實施例, ,自不此以此限制本案之申請專利範圍。舉凡熟悉本案技蓺 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係先前技術中場發射電子器件的侧視結構示意 圖2係先前技術中表面傳導電子發射器件的側視結構 圖3係先前技術中表面傳導電子發射器件的俯視結構 圖。 圖4係本技術方案實施例的電子發射器件的側視結 圖。 圖5係本技術方案實施例的電子發射ϋ件的俯視結構 圖6係本技術方案實施例的奈米碳管長線的 端的掃描電鏡照片。 電子發射 圖7係本技術方案實施例的奈米碳管長線的 端的透射電鏡照片。 電子發射 圖8係本技術方案實施例的電子發射器Electron-emitter Display (SED), T. Oguchi et al., SIDO5 ❹ Digest, V36, P1929_1931 (2〇〇5)). The electron-emitting region is a film composed of extremely small particles. By applying a voltage across the electron-emitting region, and the electron-emitting region usually requires some surface treatment to activate it, the electrons can form a surface conduction current and emit electrons under the action of the anode electric field. The structure of the surface conduction electron-emitting device 4 is simple. However, since the particle pitch in the electron-emitting region film is extremely small, the anode electric field is hard to penetrate into the inside of the electron-emitting region, resulting in low electron emission efficiency of the surface conduction electron-emitting device 400. In view of this, it is necessary to provide a large-area electron-emitting device with a simple structure and high electron emission efficiency and a preparation method thereof. * [Summary] A: an electron-emitting device comprising: an insulating substrate; a plurality of flat: and: a first electrode arranged at intervals and a plurality of parallel and equally spaced - poles disposed on the insulating substrate, each two The first and second electrodes of the neighboring neighbors form a grid; a plurality of electron-emitting singles: ? correspondingly disposed in each of the grids - each of the electron-emitting units is provided with an electron-emitting electron (four) 'the two electrons (four) The terminals are electrically connected to the first electrode and the second electrode, respectively, the electron emitter has a gap 2 at the gap to form two tips, each of which has a plurality of electron emission for a transmitting device, which includes the following Step: mentioning:,., the bain base; preparing a plurality of parallel and ΐ on the insulating substrate!: two and two electrodes 'the first electrode and the second electrode intersect two and the two adjacent An electrode and each two adjacent second electrode electron emitters are laid on the bottom plate: the plurality of electron emitters are disconnected from the second electrode to the second electrode = the electron emitter is turned off Electron emitters form Song dynasty Form two tips at the gap, thereby obtaining an electron-emitting cow. Compared with the prior art, the second electrode and the electron emitter in the electron-emitting device are disposed coplanarly, and the emitter has a gap, and when the first electrode and the second electrode emit voltage, Forming a second electrode between the first electrode and the second electrode 200937484, the electric field electrons 4 are easy to emit the tip of the electron emitter, and the electron emission efficiency of the electron-emitting device is improved, and the total number of electrons emitted is equal to the post-sentence complex number Electron emitter operation. Sweat electron emitter to form a gap, the method is simple and easy [Embodiment] Ο Step ':: 明°: The drawing is made for the electron-emitting device of the present technical solution - Please refer to FIG. 4 and FIG. 5 'the technical solution The embodiment provides an electron; m' includes an insulating substrate ig and 10 second electrodes 14 1 disposed on the insulating substrate, and a plurality of first electrodes 12 and a plurality of electrodes; 4 parallel and equal-electrodes u and a plurality of The second neighbor's lookout resistance is placed on the insulating substrate ι. Each of the two phases = the electrode 12 and the two adjacent second electrodes are arranged to form a grid 16, and each grid = ❹: electric =, 22. The first electrode 12 and the second first dielectric insulating layer 2 are provided. The dielectric insulation layer = the second electrode 14 is electrically isolated to prevent short circuits. ^12 and the insulating substrate 1〇 are a quartz substrate or the like. The insulating substrate is large: the plate and the thick electrode are two: the first electrode 12 is a plurality of second electrode cores - such as a metal layer. The plurality of first electrodes are plural second 9. 9 200937484 The pitch and column pitch of the pole 14 are both 3 〇〇 micrometers to 5 〇〇 micrometers. The first electrode * 12 and the second electrode 14 have a width of 30 μm to 100 μm and a thickness of 10 μm to 5 μm. Each of the first electrodes 12 further includes a plurality of parallel and spaced-apart extensions 121. The plurality of extensions 121 are not disposed on the same side of the first electrode 12 and are at least partially opposite the first electrode 14 in the corresponding grid. Each of the extensions 121 is correspondingly disposed in the electron-emitting unit 22 in the corresponding grid 16. The spacing between the turns of the extension portion 121 is 3 〇〇 micrometers to 5 〇〇 micrometers. The shape of the extension portion 121 is not limited. In the embodiment, the plurality of first electrodes 12 and the plurality of second electrodes 14 are preferably planar conductors printed by conductive paste for eucalyptus, and the extensions of the first electrodes 12 are all equal cubic structures. The length is 60 microns, the width is 20 microns, and the thickness is 20 microns. In the mother electron-emitting unit 22, the right side 5/1, λπ^ 肀3 has an electron emitter, and both ends 181 of the electron emitter 18 are electrically connected to the first electrode 12, respectively. The electron emitter 18 and the insulating substrate are disposed on the insulating substrate 1''. The electron emission gap is carried, a gap 182 of 1 micrometer to 20 micrometers, and two tips 183 are formed at the gap 182, and the electrons are 奴, 挫, ^ ^ 鳊 鳊 鳊 183 has a plurality of ends (8) as a class _ The electron emission tip is conical. The tip % 183 is of a conical shape, and the emitter 18 can have a drop, (8), and the emission is known. Due to the force applied by the gate of the electronic pole 14, at the first electrode 12 and the second electrode: A large electric field can be formed between the first electrode 12 and the second electrode 14, and the tip (4) 3 is emitted, and the emission efficiency of the electron 200937484 of the electron-emitting device 100 of the electron emitter j is increased. The electron emitter 18 is a wire, a carbon fiber or a nanometer carbon tube long wire. It can be understood that the two ends of the electron emitter 18 can be electrically connected to the first electrode 12 and the second electrode 14 respectively through a conductive adhesive, or can be electrically connected by intermolecular force or other means. Each of the electron-emitting devices 1 of the electron-emitting device 1 可 may further include a plurality of electron emitters 18, each of which is in order to make the electrons of the electron-emitting device 1 均匀 have good uniformity of electrons. A plurality of electron emitters 18 having the same number and arranged at equal intervals. Each of the electron emitters 18 is arranged in a direction extending from the second electrode 14 toward the extending portion 121 of the first electrode 12. The electron emitter 18 of the embodiment of the present technical solution is preferably a carbon nanotube long line. The long carbon nanotube line is a bundle structure or a stranded structure composed of a plurality of end-to-end carbon nanotube bundles. The adjacent carbon nanotube bundles are connected by a van der Waals force. The carbon nanotube bundle includes a plurality of aligned carbon nanotubes. The nano tube in the long line of the carbon nanotube is a single-walled, double-walled or multi-walled carbon nanotube. The long diameter of the carbon nanotubes is 忉 micrometers to 100 micrometers and the length is 50 micrometers to 4 micrometers. Referring to FIG. 6 and FIG. 7 , the tips of the long wires of the carbon nanotubes each include a plurality of electron emission tips, and the electron emission tips include a plurality of substantially parallel carbon nanotubes, and the plurality of carbon nanotubes pass between Van der Valli is closely integrated. A carbon nanotube is protruded from the top end of the electron emission tip. The electron-emitting element 10 (4) each of the electron-emitting units 22 may further include a plurality of fixing elements 24, and the materials of the fixed elements 4 respectively disposed on the first electrode 12 and/or the second electrode are not limited to ' For 11 200937484, the electron emitter 18 is better fixed to the first electrode or the first electrode 14. It can be understood that the plurality of fixing elements 2 are respectively disposed on the first electrodes 12 and W through the conductive paste, and may also be disposed by intermolecular force or other means. The electrode electron-emitting device (10) can be applied to the first snow of the field; the Ί i W ” shoulder does not apply a pressure between the sister 12 and the second electrode 14, and the second electrode 14 is at the first electrode. The traction effect of 12: the two-bias, and the role of the anode voltage to emit electric fluorescent (four) sub-bombardment at the anode: the first private layer to achieve the display function of the field emission display - the negative electrode when the negative voltage is set. The method for preparing the radiation supply device 100 is carried out by the traction of the first electrode 14 , and the method includes the following steps: the electron sending step 1: providing the insulating substrate 10 + the substrate 1G is preferably a glass insulating substrate. The pole 12 and the second electrode 14 3 are numbered first and the second and the second adjacent first electric = two, the two adjacent first electrode 12 are prepared to form a quadrilateral to form a grid 16. It is solvable by the screen printing method U: 2 and the plurality of second electrodes 14, and is realized by a method such as == method in the preparation process. A plurality of (fourth)'s can be arranged to cause the music-dip poles 14 to be cross-arranged. At the same time, 12 200937484 need to ensure that the first electrode 12 is electrically insulated from the first -φ, L ^, and the first electrode 14, and the shape is also -, the electrode 12 and the second electrode u ^ _ are known to be screen printed. The method comprises: preparing a first electrode 12 and a plurality of thunder electrodes, + „electrode 14, which specifically comprises the following steps: i. First, printing on the insulating substrate 1 by screen printing and equally spaced The first electrode 12, a plurality of flat electrodes, the first electrode 12 is prepared on the conductive paste substrate 10 by screen printing. The composition of the conductive paste includes metal, low, and low. Melting point glass powder and binder. Among them, genus .L , , ^ τ ^ 属 杨 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 优选 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨W QiW, inch · electric water # in the 'golden room ratio is 50~90%' low-melting glass powder 2~10%, the weight ratio of the binder is ι〇~4〇%. The screen printing method prints a plurality of dielectric insulating layers 2 at the first electrode 12 and the parent fork of the electrode 14 to be formed. Finally, the screen printing method is used. The second substrate 14 is printed on the edge substrate 1 at a plurality of rows and equally spaced, and the plurality of _ electrode 2 and the plurality of second electrodes 14 intersect each other to form a network, and each two adjacent electrodes 12 and each two adjacent second electrodes 14 are arranged in a grid 16. Further, it can be understood that, in this embodiment, a plurality of parallel and equally spaced second electrodes can be printed first and then printed. A plurality of dielectric insulating reeds 2, and finally printed a plurality of parallel and equally spaced first-electrode 12, and the plurality of first electrodes 12 and the plurality of second electrodes u are mutually:: a plurality of grids 16 are formed. 13 13 200937484 Step 3: Prepare a plurality of electron emitters 18. 'The preferred embodiment of the present invention is an electron emitter 18 which is a long carbon nanotube line. The preparation method of the nano carbon tube long line specifically includes the following steps: (1) Providing a carbon nanotube array, preferably, the array is a super-sequential carbon nanotube array. In this embodiment, the method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: a) providing a flat substrate, The substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer. In this embodiment, a 4-inch germanium substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material is formed. One of alloys of iron (Fe), knot (Co), nickel (Ni) or any combination thereof may be selected; (c) the substrate on which the catalyst layer is formed is at 7 〇〇 (: 900 ° C in air) Annealing for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace, heating to 5 Torr in a protective gas atmosphere (rc~74〇°c, and then introducing a carbon source gas for about 5 minutes) After ~3 minutes, growth is obtained from a carbon nanotube array with a height ❹ greater than 100 microns. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The area of the carbon nanotube array is substantially the same as the area of the above substrate. The super-sequential carbon nanotube array contains substantially no impurities such as graphite or residual catalyst metal particles, etc., by controlling the growth conditions described above. The above carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. . It can be understood that the carbon nanotube array provided in the present embodiment is not limited to the above-mentioned 14 200937484 preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation method, a hair deposition method, or the like. (2) A carbon nanotube structure is obtained by pulling from the carbon nanotube array using a stretching tool. The preparation of the carbon nanotube structure specifically comprises the steps of: (a) selecting a plurality of carbon nanotube segments from the array of carbon nanotubes; (b) growing at a certain speed along a direction substantially perpendicular to the growth of the carbon nanotube array. The plurality of nano-Nano slaves are stretched to form a carbon nanotube structure which is a continuous nano carbon tube long line or a carbon nanotube film. The present embodiment preferably uses a tape having a certain width to contact the nanocarbon array to select a plurality of carbon nanotube bundles of a predetermined width, and in the above stretching process, the plurality of carbon nanotube bundles are subjected to a pulling force. While the stretching direction is gradually separated from the substrate, the selected plurality of carbon nanotube bundles are continuously pulled out end-to-end with the other carbon nanotube bundles due to the van der Waals force, thereby forming a carbon nanotube structure. The carbon nanotube structure comprises a ruthenium complex, a bundle of carbon nanotubes arranged end to end and preferentially oriented, and adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and the adjacent carbon nanotubes are connected by van der Waals force, and the arrangement direction of the carbon nanotubes is substantially parallel to the carbon nanotubes. The direction of stretching of the structure. = In the embodiment, the width of the carbon nanotube structure is related to the size of the substrate, and the length of the carbon nanotube structure is not limited to be made according to actual needs. In this embodiment, a 4-inch substrate-grown super-sequential carbon nanotube array is used, and the prepared carbon nanotube prologue 200937484 has a width of 0.01 cm to 10 cm and a thickness of 10 nm to 1 μm. It can be understood that a wider carbon nanotube structure can be obtained when a super-aligned carbon nanotube array of the substrate length is used. Since the carbon nanotubes in the super-sequential carbon nanotube array prepared in this embodiment are very pure, and because the specific surface area of the carbon nanotubes itself is ^, = the carbon nanotube structure itself has a strong dryness Sex. (3) A long carbon nanotube line is obtained by treating the naphthene carbon nanotube structure with an organic solvent or applying a mechanical external force. The carbon nanotube structure prepared by the above step (2) can be treated with an organic solvent to obtain a long carbon nanotube line. The specific treatment process includes: injecting an organic solvent into the surface of the carbon nanotube structure through a test tube to infiltrate the entire carbon nanotube structure. The organic solvent is a volatile organic solvent, such as ethanol, methanol, propylene / ethane, or gas, and ethanol is preferably used in the present embodiment. After the nanocarbon official structure is infiltrated by an organic solvent, the parallel carbon nanotube segments in the carbon nanotube structure are combined under the action of the surface tension of the volatile organic solvent: minute:: nanocarbon Tube bundle 'Thus, the carbon nanotube film shrinks into a line; The surface of the carbon nanotube has a small surface volume ratio, no dryness, and good mechanical strength and characterization. The nanosensed by the organic solvent can be conveniently applied to the macroscopic field. 5,,, ° The structure of the carbon nanotube prepared in the above step (7) can also be applied by applying a mechanical carbon nanotube long line. The long carbon nanotube line is composed of a plurality of stranded wires composed of tail-connected carbon nanotube bundles. The specific processing process provides a tail with a pure carbon nanotube structure (four) yarn axis. After combining the tail of the simple shaft with the carbon nanotube structure, the spinning shaft is rotated by the rotation of the honeycomb tube to form a long carbon nanotube line. It can be understood that the above-mentioned spinning shaft can be rotated in any way, and can be rotated forward or reversed, or combined with forward rotation and reverse rotation. The carbon nanotube array prepared in the above step (1) can also be obtained by applying a mechanical external force to obtain a long carbon nanotube line. The long carbon nanotube line is a stranded structure composed of a plurality of carbon nanotube bundles connected end to end. The specific processing includes providing a spinning shaft that can be attached to the array of carbon nanotubes. After the tail of the spinning shaft is combined with the carbon nanotube array, the carbon nanotubes begin to wrap around the shaft. The spinning shaft is spun out in a rotating manner and moved in a direction away from the nanocrystal array. At this time, when the carbon nanotube array moves relative to the spinning axis, the long carbon nanotubes begin to be spun, and the other carbon nanotubes can be wrapped around the long carbon line of the non-meter carbon to increase the length of the long carbon nanotubes. It can be understood that the rotation mode of the above-mentioned spinning shaft is not limited, and it is possible to rotate forward or reverse, or combine forward rotation and reverse rotation. It can be understood that a long distance of the carbon nanotubes can be obtained by directly pulling from the nano carbon tube array of the step (1) using a stretching tool. It is to be understood that if the electron emitter 18 is a wire or a carbon fiber, a mechanical external force can be directly applied to the wire or the carbon fiber to obtain the electron emitter 18. Step 4: The above plurality of electron emitters 18 are laid on the insulating substrate 1 on which the electrodes are disposed, and the electron emitters are arranged in a direction extending from the second electrode 14 toward the first electrodes 12. At least one electron emitter 内 in the parent grid 16 is located between the first electrode 12 and the second electrode 14. It can be understood that in order to make the 17 200937484 electron emitter 18 more robust ... φ [the cattle mouth is fixed to the first electrode 12 and the second electrode 14, and more effectively with the first electrode 12 and the formation of electron emission The body is electrically connected to the first electrode 12 and the second. Pre-coated - layer of conductive paste. Further, it is also possible to prepare a plurality of solid Μ on the first electrode 12 and the second electrode 14 by wire mesh to better fix the first electrode ❹. It can be understood that 'in preparing a large-area electron-emitting device 〇 When the carbon nanotube structure is a long carbon nanotube line, the carbon nanotubes are long, flat, and spaced over the entire insulating substrate 10 provided with the electrodes. Step 5. Disconnect the electron emitters 18 such that each electron emitter 18 forms a recess: 182' and forms two tips (8) at the gap 182, thereby obtaining an electron-emitting device 100. In the embodiment, the method for disconnecting the electron emitter 18 can be performed in an atmospheric environment or other oxygen-containing environment, using a mis-burning method, an electronic two-scan method, or a true (four) broken wire. Emitter 18. When the field is broken by the flash ablation method or the electron beam scanning method, the fixed point of the electron emitter 18 can be realized, that is, the gap 182 of each of the electron emitters 18 The position can be controlled at any position of the electron emitter 18. In the present embodiment, the electron emitter 18 is preferably blown by a vacuum fusing method. In a vacuum environment, an electric current is applied to one of the first electrode and the second electrode 12 adjacent to the first drain 14 respectively, and current is applied to heat so that each electron-emitting unit 22 is located at the first electrode. 12 and the second 18 200937484 The electron emitter 18 between the electrodes 14 is stunned. It can also be blown under the atmosphere of an inert gas such as helium or argon. It will be apparent to those skilled in the art that the voltage applied across the electron emitter 18 is related to the diameter and length of the selected electron emitter 18. The electron emitter 18 is placed in a vacuum chamber having a degree of vacuum lower than lxlO-1 Pa or a reaction chamber filled with an inert gas, and the electron emitter 18 is heated by Joule heat under a direct current condition. The addition temperature is preferably from 2000 K to 2800 K, and the heating time is from 2 Torr to 6 〇 minutes. At the instant of the material, each electron emitter 18 forms a gap and two tips 182 are formed at the gap. The gap 182 is of the order of the working micrometer: 20 micrometers. Also near the position of the melting point, these factors cause gas ionization in the vicinity of the dissolution due to the poor vacuum of the electron emitter 18 . Ionization of the cabin disk # 珞 breakpoint 18 ^ after the ion bombardment of the fuse of the electron emitter 18, and a tip Μ at the end]. In this embodiment, the long-line and the outer diameter of the carbon nanotubes are used; the end of the tube is long, and the surface cleanliness of the carbon nanotubes during the heating process is obtained, and the mechanical strength is certain: line = defect Will be greatly reduced, making them refer to Figure 9, for nanocarbon; excellent field emission performance. Please analyze the spectrum of the Raman spectrum after the analysis. With Raman, there is a significant reduction in the defect peak of the tip of the long line of the carbon tube. The tip of the long line has a lower defect peak. In other words, the carbon nanotubes are raised. The quality of this side is greatly reduced in the process of swaying. Because of the lack of impurities: the defects of the millite anti-official after heat treatment are reduced, and the lower-higher quality graphite: the graphite layer is easy to collapse at high temperatures. , left 19 200937484 In summary, the present invention has indeed met the requirements of the invention patent, and filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a prior art field emission electronic device. FIG. 2 is a side view of a surface conduction electron-emitting device of the prior art. FIG. 3 is a top view of a surface conduction electron-emitting device of the prior art. . Fig. 4 is a side elevational view of an electron-emitting device of an embodiment of the present technical solution. Fig. 5 is a plan view showing the structure of the electron-emitting element of the embodiment of the present invention. Fig. 6 is a scanning electron micrograph of the end of the long line of the carbon nanotube of the embodiment of the present invention. Electron emission Fig. 7 is a transmission electron micrograph of the end of the long carbon nanotube tube of the embodiment of the present technical solution. Electron emission FIG. 8 is an electron emitter of an embodiment of the present technical solution.

電子發射 器件的製備方法 20 200937484 【主要元件符號說明】 • 絕緣基底 10, 30, 40 . 電子發射器件 100 第一電極 12 延伸部 121,421 第二電極 14 網格 16 電子發射體 ®電子發射體的兩端 18, 48 181 電子發射體的間隙 182 電子發射體的尖端 183 介質絕緣層 20, 33, 43 電子發射單元 22, 36, 46 固定元件 24 場發射電子器件 300 ❾拇極電極 32, 42 陰極電極 34, 44 陰極發射體 38 表面傳導電子發射器件 400 21Method for preparing electron-emitting device 20 200937484 [Description of main component symbols] • Insulating substrate 10, 30, 40. Electron-emitting device 100 First electrode 12 Extension 121, 421 Second electrode 14 Grid 16 Electron emitter® electron emitter Both ends 18, 48 181 electron emitter gap 182 electron emitter tip 183 dielectric insulation layer 20, 33, 43 electron emission unit 22, 36, 46 fixing element 24 field emission electronics 300 ❾ thumb electrode 32, 42 Cathode electrode 34, 44 Cathode emitter 38 Surface conduction electron-emitting device 400 21

Claims (1)

200937484 十、申請專利範圍 1. 一種電子發射器件,其包括: 一絕緣基底; 複數個平行且等間隔排列的第―電極與複數個平行 且等㈣㈣㈣二電極設置於絕緣基底上,該複數 個第一電極與複數個第二電極相互垂直地交叉設 置’且第-電極與第二電極之間電絕緣,每兩個相鄰 的第一電極與每兩個相鄰的第二電極形成-個網格; 複數個電子發射單元分別對應設置於每個網格内,每 個電子發射單元中設有至少一個電子發射體,該電子 發射體的Μ分㈣料第—電極和第二電極電連 接; 其改良在於,所述電子發射體具有一間隙,並於所述 間隙處形成有兩個尖端,每個尖端具有複數個 射尖端。 χ ❹2.如申請專利範圍第1項所述的電子發射器件,其中, 所述間隙的大小為1微米〜20微米。 3. 如申請專利範圍第1項所述的電子發射器件,其中, 所述每個電子發射單元設置有複數個平行且間隔排 列的電子發射體。 4. 如申請專利範圍第1項所述的電子發射器件,其中, 所述電子發射器件中的每個第一電極進一步包、括複 數個間隔排列的延伸部,該複數個延伸部分別 設置於每個電子發射單元内。 〜 22 200937484 5. 6· Ί· ❹ 8. 9. 11. 如申請專利範圍第4項所述的電子發射器件,其中, 所述複數個延伸部均設置於所述第一電極的同— 側,並至少部分與相應網格内的第二電極正對。 如申請專利範圍第4項所述的電子發射器件,其中, 所述電子發射器件中的每個電子發射體沿從所述第 二電極向第一電極的延伸部延伸的方向排列,並與 所述第二電極和第一電極的延伸部電連接。 如申請專利範圍第1項所述的電子發射器件,其中, 所述電子發射體為金屬絲、碳纖維或者奈米碳管長 線。 如申請專利範圍第7項所述的電子發射器件,其中, 所述奈米碳管長線的尖端為類圓錐形,其直徑小於 該奈米碳管長線的直徑。 如申請專利範圍第7項所述的電子發射器件,其中, 所述奈米碳管長線的電子發射尖端的頂端突出有一 根奈米碳管。 如申請專利範圍第7項所述的電子發射器件,其中, 所述奈米碳管長線的電子發射尖端包括複數個平行 的奈米碳管’該複數個奈米碳管之間通過凡德瓦爾力 緊密結合。 如申請專利範圍第7項所述的電子發射器件,其中, 所述奈米碳管長線係由複數個首尾相連的奈米碳管 束組成的束狀結構或者絞線結構。 如申請專利範圍第11項所述的電子發射器件,其 23 12. 200937484 中,所述奈米碳管束之間通過凡德瓦爾力緊密結合, • 該奈米破管束中包括複數個定向排列的奈米碳管。 13. 如申請專利範圍第7項所述的電子發射器件,其中, 所述奈求複管長線的直徑為1〇微米〜1〇〇微米。 14. 如申請專利範圍第1項所述的電子發射器件,其中, 該電子發射器件進一步包括複數個固定元件,該複數 個固定兀件分別設置於所述第一電極和/或第二電極 0 l5. 一種如申請專利範圍第i項所述的電子發射器件的 製備方法,其包括以下步驟: 提供一絕緣基底; 極相互交叉形成一網格; 於該絕緣基底上製備複數個平行且等間隔排列的第 一電極與第二電極,該第一電極與第二電極交叉設 置,且每兩個相鄰的第一電極與每兩個相鄰的第二2 製備複數個電子發射體;& vv_ _ . 將該複數個電子發射體鋪設於上述設@丄& ·— 緣基底上, 緣基底上,該複數個電子發射體沿從第200937484 X. Patent application scope 1. An electron-emitting device comprising: an insulating substrate; a plurality of parallel and equally spaced first electrodes and a plurality of parallel and equal (four) (four) (four) two electrodes disposed on the insulating substrate, the plurality of An electrode and a plurality of second electrodes are disposed perpendicularly to each other and the first electrode and the second electrode are electrically insulated, and each two adjacent first electrodes and each two adjacent second electrodes form a network a plurality of electron-emitting units are respectively disposed in each of the grids, and each of the electron-emitting units is provided with at least one electron emitter, and the electron-emitting body is electrically connected to the first electrode and the second electrode; The improvement is that the electron emitter has a gap and two tips are formed at the gap, each tip having a plurality of shot tips. The electron-emitting device according to claim 1, wherein the gap has a size of 1 μm to 20 μm. 3. The electron-emitting device according to claim 1, wherein each of the electron-emitting units is provided with a plurality of parallel and spaced-arranged electron emitters. 4. The electron-emitting device according to claim 1, wherein each of the first electrodes of the electron-emitting device further includes a plurality of spaced-apart extensions, and the plurality of extensions are respectively disposed on Within each electron-emitting unit. The electron-emitting device of claim 4, wherein the plurality of extensions are disposed on the same side of the first electrode. And at least partially opposite the second electrode in the corresponding grid. The electron-emitting device of claim 4, wherein each of the electron-emitting devices is arranged in a direction extending from the second electrode toward an extension of the first electrode, and The second electrode and the extension of the first electrode are electrically connected. The electron-emitting device according to claim 1, wherein the electron emitter is a wire, a carbon fiber or a carbon nanotube long line. The electron-emitting device according to claim 7, wherein the tip end of the long carbon nanotube has a conical shape and a diameter smaller than a diameter of the long carbon nanotube. The electron-emitting device according to claim 7, wherein a carbon nanotube is protruded from a tip end of the electron-emitting tip of the long carbon nanotube. The electron-emitting device according to claim 7, wherein the electron-emitting tip of the long carbon nanotube line comprises a plurality of parallel carbon nanotubes, and the plurality of carbon nanotubes pass between Van der Waals The force is closely combined. The electron-emitting device according to claim 7, wherein the carbon nanotube long-line is a bundle structure or a stranded structure composed of a plurality of end-to-end connected carbon nanotube bundles. The electron-emitting device according to claim 11, wherein in 23, 2009, 37,484, the carbon nanotube bundles are tightly coupled by van der Waals force, and the nanotube bundle includes a plurality of directional arrays. Carbon nanotubes. 13. The electron-emitting device according to claim 7, wherein the diameter of the long tube is 1 μm to 1 μm. 14. The electron-emitting device of claim 1, wherein the electron-emitting device further comprises a plurality of fixing elements, the plurality of fixing elements being respectively disposed on the first electrode and/or the second electrode A method for fabricating an electron-emitting device according to claim 1, comprising the steps of: providing an insulating substrate; forming a grid with the poles crossing each other; preparing a plurality of parallel and equal intervals on the insulating substrate Aligning the first electrode and the second electrode, the first electrode and the second electrode are disposed at intersection, and each of the two adjacent first electrodes and each two adjacent second 2 are prepared with a plurality of electron emitters; & Vv_ _ . laying the plurality of electron emitters on the substrate of the above-mentioned @丄&--, on the edge substrate, the plurality of electron emitters along the 電極延伸的方向排列;Arranging the directions in which the electrodes extend; 一電極的方法 ’所述製備第一電極與第二 24 200937484 包括絲網印刷法、蒸鍍法或濺射法。 .17.如申請專利_ 15項所述的電子發射器件的製 • 備方法,其中,所述電子發射體為奈米碳管長線,該 不米碳管長線的製備過程包括以下步驟: 提供一奈米碳管陣列形成於一基底; 採用一拉伸工具從該奈米碳管陣列中拉取獲得一奈 米碳管結構;及 不 ❹ ,過使用有機溶劑或者施加機械外力處理該奈米碳 官結構得到奈米碳管長線。 .如申呀專利範圍第17項所述的電子發射器件的製 =方法,其中,所述使用有機溶劑處理奈米碳管結構 侍到奈米碳管長線的過程包括以下步驟:通過試管將 有機溶劑滴落於奈米碳管結構表面浸潤整個夺 管結構。 丄、如申請專利範圍第17項所述的電子發射器件的製 備方法,其中,所述施加機械外力處理奈米碳管結構 仵到奈米碳管長線的過程包括以下步驟:提供一個尾 邛可以粘住奈米碳管結構的紡紗軸;使該紡紗軸的尾 部與奈米碳管結構結合後,將該紡紗軸以旋轉的方式 旋轉該奈米碳管結構,形成奈米碳管長線。 20.如申請專利範圍第15項所述的電子發射器件的製 備方法,其中,所述電子發射體為奈米碳管長線,該 奈米碳管長線的製備過程包括以下步驟:採用一拉伸 工具從奈米碳管陣列中直接拉取獲得一奈米碳管長 25 200937484 線。 21.如申請專利範圍第15項 供古t甘士 、所攻的電子發射器件的製 備方法,其中,所述斷開第一電極與第二電極之間的 電子發射體的方法包括鐳射燒餘法、電子束掃描法或 真空熔斷法。 < 22.如申請專利範圍第21項所述的電子發射器件的製 備方法,其中’所述採用真空熔斷法熔斷該電子發射 體的步驟具體包括以下步驟: 將電子發射體設置於一真空度低於lxlO·1帕的直介 室内或充滿惰性氣體的反應室;及 於該電子發射體兩端施加一電壓,通入電流,於 2000K〜2800K下加熱20分鐘〜60分鐘,熔斷所述電 子發射體。 ❹ 26Method of One Electrode The preparation of the first electrode and the second 24 200937484 includes a screen printing method, an evaporation method, or a sputtering method. The method for preparing an electron-emitting device according to the invention, wherein the electron emitter is a long carbon nanotube line, and the preparation process of the long carbon nanotube comprises the following steps: The carbon nanotube array is formed on a substrate; a carbon nanotube structure is drawn from the carbon nanotube array by using a stretching tool; and the nanocarbon is treated by using an organic solvent or applying a mechanical external force. The official structure is obtained from the long line of carbon nanotubes. The method for producing an electron-emitting device according to claim 17, wherein the process of treating the carbon nanotube structure with an organic solvent to the long line of the carbon nanotube comprises the following steps: The solvent dripped on the surface of the carbon nanotube structure to infiltrate the entire tube structure. The method for preparing an electron-emitting device according to claim 17, wherein the process of applying a mechanical external force to treat the carbon nanotube structure to the long line of the carbon nanotube comprises the following steps: providing a tail 邛Adhering to the spinning shaft of the carbon nanotube structure; after the tail of the spinning shaft is combined with the carbon nanotube structure, the spinning shaft rotates the carbon nanotube structure in a rotating manner to form a carbon nanotube line. The method for producing an electron-emitting device according to claim 15, wherein the electron emitter is a long carbon nanotube line, and the preparation process of the nano carbon tube long line comprises the following steps: using a stretching The tool pulls directly from the carbon nanotube array to obtain a nanometer carbon tube length 25 200937484 line. 21. The method for preparing an electron-emitting device according to claim 15 of the invention, wherein the method for breaking the electron emitter between the first electrode and the second electrode comprises laser burning Method, electron beam scanning or vacuum melting. The method for producing an electron-emitting device according to claim 21, wherein the step of fusing the electron emitter by vacuum fusing specifically comprises the steps of: setting the electron emitter to a degree of vacuum a reaction chamber of less than lxlO·1 Pa or a reaction chamber filled with an inert gas; and applying a voltage across the electron emitter, applying a current, heating at 2000 K to 2800 K for 20 minutes to 60 minutes, and fusing the electron emission body. ❹ 26
TW097107090A 2008-02-29 2008-02-29 Electron emission device and method for making the same TWI366210B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097107090A TWI366210B (en) 2008-02-29 2008-02-29 Electron emission device and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097107090A TWI366210B (en) 2008-02-29 2008-02-29 Electron emission device and method for making the same

Publications (2)

Publication Number Publication Date
TW200937484A true TW200937484A (en) 2009-09-01
TWI366210B TWI366210B (en) 2012-06-11

Family

ID=44867074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097107090A TWI366210B (en) 2008-02-29 2008-02-29 Electron emission device and method for making the same

Country Status (1)

Country Link
TW (1) TWI366210B (en)

Also Published As

Publication number Publication date
TWI366210B (en) 2012-06-11

Similar Documents

Publication Publication Date Title
US8371892B2 (en) Method for making electron emission apparatus
CN101471211B (en) Thermal emission electronic component
CN101499390B (en) Electronic emitter and method for producing the same
CN101471212B (en) Thermal emission electronic component
US8299698B2 (en) Field emission display
JP4933576B2 (en) Manufacturing method of field emission electron source
JP5209659B2 (en) Incandescent light source display device
US20090170394A1 (en) Method for making thermionic electron source
CN101471213A (en) Thermal emission electronic component and method for producing the same
JP5336544B2 (en) Field emission display
US20090167138A1 (en) Thermionic electron source
TWI330858B (en) Thermionic emission device
TW200937484A (en) Electron emission device and method for making the same
TW200921753A (en) Method of making field emission electron source
TWI362677B (en) Method for making field emission electron source
TWI352369B (en) Thermionic emission device and method for making t
TWI360830B (en) Method for making thermionic electron source
TWI360831B (en) Field emission electron device
TW200937485A (en) Electron emission device
TWI417924B (en) Field emission electronic device
TW200932665A (en) Thermionic emission device
TWI383425B (en) Hot emission electron source and method of making the same
TW201230139A (en) Method for making carbon nantoube wire tip and method for making field emission structure
TW200933692A (en) Method for making field emission electron device
TW200933686A (en) Thermionic source