TWI344152B - Memory circuits and malfunction protection methods thereof - Google Patents
Memory circuits and malfunction protection methods thereof Download PDFInfo
- Publication number
- TWI344152B TWI344152B TW96135125A TW96135125A TWI344152B TW I344152 B TWI344152 B TW I344152B TW 96135125 A TW96135125 A TW 96135125A TW 96135125 A TW96135125 A TW 96135125A TW I344152 B TWI344152 B TW I344152B
- Authority
- TW
- Taiwan
- Prior art keywords
- power supply
- voltage
- power
- level
- circuit
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Electronic Switches (AREA)
Description
1344152 _ 第96135125號之專利說明書修正本 100年4月19日修正替換頁’ 九、發明說明: 【發明所屬之技術領域】 本發明有關於一種記憶體電路,特別有關一種記憶 體電路能夠避免由於電源啟動順序(power-up sequence) 導致的錯誤燒錄(false programming)。 【先前技術】 熔絲元件係廣泛地使用於半導體裝置中,用以記錄 晶片編號或序號。一般而言,為了將熔絲元件與半導體 φ 裝置中其它元件斷開,每個熔絲元件都會包含一個能夠 - 被燒斷(即斷路)的熔絲。舉例而言,熔絲可以藉由雷射來 照射直到它被斷路,或者藉由一個能夠散發足夠熱度的 過電流來將其熔斷。藉由過電流將熔絲斷路與使用雷射 不同,其甚至可以在半導體裴置被封裝後才執行,通常 被稱作電燒錄(或電程式化;electrically programming)熔 絲。此外,容許這種燒錄方式的熔絲係稱為電可燒錄熔 絲或電可程式化熔絲,或簡稱為e-fuse,並且大部分的熔 # 絲只能被燒錄一次,用以提供對應於高低阻抗狀態的狀 態0與狀態1,反者亦然。 【發明内容】 本發明係提供一種記憶體電路,包括一可燒錄單 元、一開關元件以及位準調整器。可燒錄單元包括複數 可燒錄元件;以及一電源匯流排,耦接於一外部燒錄電 壓與可燒錄元件之間;一開關元件,連接於外部燒錄電 0758-A32551TWFl(20110221) 6 1344152 】〇〇年4月]9曰修正替換頁 第96135125號之專利說明書修正本 愿與電源匯流排之間,·以及一位準調整 能信號的電壓位準由一第二電源電壓調整至一第一電源 電壓,其中第二電源電壓低於外部燒錄錢,並且當電 源啟動過程t第二電源尚未備妥時,位準調整: 將開關元件之控制端設置於一既定邏輯位準,使得開關 兀件被截止,並且電源匯流排會與外部燒錄電壓斷開, 以便避免錯誤燒錄(fa】se programming)。 本發明亦提供—種記憶體電路,包括-電源供雇單 兀’用以提供一外部燒錄電壓;以及-可燒錄單元,耦 接至電源供應單元,包括複數可燒錄元件,純至—電 源匯机排’且電源匯流排搞接至外部燒錄電堡;以及— 燒錄,心_可燒錄元件,並且燒錄電路包括複 數驅動“接至可燒錄元件’以及—第—位準調整哭由 至少-第-電源電壓所供電。第一電源電壓係低於;部 ,錄,壓’當電源啟動過程中第一電源電墨尚未備妥 時’弟-位準調整器係將其輸出端設置於一第_既 輯位準’使得燒錄電路中之驅動器會被禁能(disabled), 以便避免錯誤燒錄。 本發明亦提供—種記憶體電路之誤動作保護方法, 其中記憶體電路係包括複數可燒錄it件一燒錄電路以 及感測電路’誤動作保護方法包括設置一開關元件於 ='元件與一外部燒錄電壓之間;設置一第—位準調 :二ί耦接至開關元件之-控制端;以及當電源啟動 過私中弟二電源電壓尚未備妥時,將開關元件之控制端1344152 _ Patent Specification No. 96135125 Revision of the revised page of April 19, 1995. IX. Description of the Invention: [Technical Field] The present invention relates to a memory circuit, and more particularly to a memory circuit capable of avoiding The false programming caused by the power-up sequence. [Prior Art] Fuse elements are widely used in semiconductor devices for recording wafer numbers or serial numbers. In general, in order to disconnect a fuse element from other elements in a semiconductor φ device, each fuse element will contain a fuse that can be blown (i.e., broken). For example, the fuse can be illuminated by a laser until it is broken, or it is blown by an overcurrent that is capable of dissipating sufficient heat. Breaking the fuse by overcurrent is different from using a laser, which can even be performed after the semiconductor device is packaged, commonly referred to as an electrically programmed fuse. In addition, the fuses that allow this type of programming are called electrically burnable fuses or electrically programmable fuses, or simply e-fuse, and most of the fuses can only be burned once, with In order to provide state 0 and state 1 corresponding to the high and low impedance states, the reverse is also true. SUMMARY OF THE INVENTION The present invention provides a memory circuit including a burn-in unit, a switching element, and a level adjuster. The programmable unit includes a plurality of combinable components; and a power bus bar coupled between an external programming voltage and the recordable component; and a switching component connected to the external programming power 0758-A32551TWFl (20110221) 6 1344152 】April of the following year]9曰Revision and replacement page No. 96135125 Patent Specification Amendment between the power supply bus and the power supply bus, and the voltage level of a quasi-adjustable energy signal is adjusted by a second power supply voltage to a first a power supply voltage, wherein the second power supply voltage is lower than the external programming money, and when the power supply starting process t the second power supply is not ready, the level adjustment: setting the control end of the switching element to a predetermined logic level, so that the switch The device is turned off and the power bus is disconnected from the external programming voltage to avoid false programming (fa). The present invention also provides a memory circuit comprising: a power supply unit for providing an external programming voltage; and a programmable unit coupled to the power supply unit, including a plurality of programmable elements, - the power sink row 'and the power bus bar to connect to the external burning electric castle; and - burning, heart _ can burn components, and the programming circuit includes the complex drive "connected to the burnable component" and - the first The level adjustment cry is powered by at least the -th power supply voltage. The first power supply voltage is lower than; the part, the recording, the pressure 'when the first power supply ink is not ready during the power-on process, the younger-level regulator system Setting the output terminal to a certain level enables the driver in the programming circuit to be disabled, so as to avoid erroneous burning. The present invention also provides a method for protecting a memory circuit from malfunction. The memory circuit includes a plurality of burnable components, a programming circuit, and a sensing circuit. The malfunction protection method includes setting a switching element between the component and an external programming voltage; setting a first bit: Ίcoupled to The closing element - a control terminal; and when the power supply is activated through two private brother in the power supply voltage is not ready, the control terminal of the switching element
0758-Α32551TWF1 (2011 〇221) 7 S 1344152 第96135125號之專利說明書修正本 100年4月19曰修正替換頁 設置於一第一邏輯位準,使得開關元件被截止,並且電 源匯流排會與外部燒錄電壓斷開。 為了讓本發明之上述和其他目的、特徵、和優點能 更明顯易懂,下文特舉一較佳實施例,並配合所附圖示, 作詳細說明如下: · 【實施方式】 第1圖係為一記憶體電路之一實施例。如圖所示, 記憶體電路100包括一電可燒錄單元110(例如e-fuse % bank)、一感測電路112以及一燒錄電路114。電可燒錄 單元110包括複數熔絲元件,並且每一個熔絲元件具有 用以被燒斷的熔絲(即Rf〇、Rfl〜Rfn)以及用以作為電流 源的NMOS電晶體(即TO、T1〜Τη)。熔絲RfO〜Rfn係可 為自對準石夕化物之覆晶電阻(salicide polysilicon resistor),而MOS電晶體TO〜Τη係可為薄閘極裝置(thin gate device)或厚閘極裝置(thick gate device)。參考溶絲 Rref亦耦接至感測電路112,用以區別未燒斷的熔絲與燒 _ 斷的熔絲。感測電路112係藉由欲感測的位址ADD<0:n> 以及一讀取致能信號RE,啟動讀取的動作並輸出比較後 的資料 DATA<0:n>。 燒錄電路114係藉由欲燒錄的位±_1卜ADD<0:n>以及 一燒錄致能信號PE,燒錄電可燒錄單元110中對應之熔 絲。熔絲RfO〜Rfn皆藉由一電源匯流排111以及一電阻 RP,耗接至一外部燒錄電壓EPS,例如一溶絲電源(fuse 0758-A32551TWFl(20110221) 8 1344152 _— • 第96135125號之專利說明書修正本 100年4月19日修正替換頁 ‘ source)或一電源電壓。由於在燒錄過程中需要穩定且穩 J 態的電流,因此由外部燒錄電壓EPS到電源匯流排111 之電流路徑的電阻值要保持在儘可能的低。若電流源(即 • NMOS電晶體TO〜Τη)皆由電壓輸入/輸出裝置(即厚閘極 . 裝置)所實現,感測電路112與燒錄電路114則可能需要 使用多個電源電壓以及能夠將核心電源位準信號轉換成 輸入/輸入電源位準信號的複數位準調整器。 第2圖係為一感測電路之一實施例。如圖所示,感 • 測電路112包括複數個位準調整器(統稱LS12)、複數及 閘AG00〜AGOn以及複數感測器SA0〜SAn。位準調整器 LS12係耦接至一核心電源電壓VDD—CORE以及一輸入/ 輸出(I/O)電源電壓VDD_IO,用以將欲感測的位址 ADD<0:n>以及讀取致能信號RE,由核心電源電壓位準 的信號調整至I/O電源電壓位準的信號。感測器 SA0〜SAn各耦接至一對應之熔絲以及參考熔絲Rref,而 及閘AG00〜AGOn係用以根據位址ADD<0:n>,驅動感測 • 器SA0〜San,藉以輸出比較後的資料。 第3圖係為一燒錄電路之一實施例。如圖所示,燒 錄電路114包括複數個位準調整器(統稱LS14)以及複數 及閘AGIO〜AGln。位準調整器LS14係耦接至一核心電 源電壓VDD_CORE以及一輸入/輸出(I/O)電源電壓 VDD—IO,用以將欲燒錄的位址ADD<0:n>以及燒錄致能 信號PE,由核心電源電壓位準的信號調整成I/O電源電 壓位準的信號。每個及閘AGIO〜AGln係作為一驅動器,0758-Α32551TWF1 (2011 〇221) 7 S 1344152 Patent Specification No. 96135125 Revised this April 19th, 19th, the correction replacement page is set to a first logic level, so that the switching element is turned off, and the power bus will be external The programming voltage is disconnected. The above and other objects, features, and advantages of the present invention will become more apparent and understood. An embodiment of a memory circuit. As shown, the memory circuit 100 includes an electrical burnable unit 110 (e.g., e-fuse % bank), a sensing circuit 112, and a programming circuit 114. The electrically recordable unit 110 includes a plurality of fuse elements, and each of the fuse elements has a fuse to be blown (ie, Rf 〇, Rfl 〜 Rfn) and an NMOS transistor (ie, TO, used as a current source). T1 ~ Τη). The fuses RfO~Rfn may be salicide polysilicon resistors, and the MOS transistors TO~Τn may be thin gate devices or thick gate devices (thick gate devices) Gate device). The reference wire Rref is also coupled to the sensing circuit 112 for distinguishing the unblowed fuse from the burnt fuse. The sensing circuit 112 starts the reading operation and outputs the compared data DATA<0:n> by the address ADD<0:n> to be sensed and a read enable signal RE. The programming circuit 114 burns the corresponding fuse in the electric burnable unit 110 by the bit ±_1b ADD<0:n> to be burned and a burn-in enable signal PE. The fuses RfO~Rfn are respectively connected to an external programming voltage EPS by a power bus bar 111 and a resistor RP, for example, a wire power supply (fuse 0758-A32551TWFl (20110221) 8 1344152 _- • No. 96135125 The patent specification amends the revised replacement page 'source' or a power supply voltage on April 19, 100. Since a stable and stable J state current is required during the programming process, the resistance value of the current path from the external programming voltage EPS to the power bus bar 111 is kept as low as possible. If the current source (ie, NMOS transistors TO~Τη) is implemented by a voltage input/output device (ie, a thick gate device), the sensing circuit 112 and the programming circuit 114 may need to use multiple power supply voltages and A complex level regulator that converts the core power level signal into an input/input power level signal. Figure 2 is an embodiment of a sensing circuit. As shown, sensing circuit 112 includes a plurality of level adjusters (collectively LS12), complex and gates AG00~AGOn, and complex sensors SA0~SAn. The level adjuster LS12 is coupled to a core power supply voltage VDD_CORE and an input/output (I/O) power supply voltage VDD_IO for using the address to be sensed ADD<0:n> and reading enable Signal RE, a signal that is adjusted to the I/O supply voltage level by a signal at the core supply voltage level. The sensors SA0~SAn are each coupled to a corresponding fuse and a reference fuse Rref, and the gates AG00~AGOn are used to drive the sensors SA0~San according to the address ADD<0:n> Output the compared data. Figure 3 is an embodiment of a programming circuit. As shown, the programming circuit 114 includes a plurality of level adjusters (collectively referred to as LS14) and a complex AND gate AGIO~AGln. The level adjuster LS14 is coupled to a core power supply voltage VDD_CORE and an input/output (I/O) power supply voltage VDD_IO for enabling the address to be burned ADD<0:n> and programming enable The signal PE is a signal that is adjusted to a level of the I/O power supply voltage by a signal of the core power supply voltage level. Each gate AGIO~AGln is used as a drive.
S 0758-A32551TWFK20110221) 9 1344152 第96135125號之專利說明書修正本 丨〇〇年4月19日修正替換頁 ---- 並且連接一對應之熔絲以及參考熔絲Rref。當接收到來 自位準調整器LS14之燒錄致能信號PE時,及閘 AGIO〜AGln係根據位址ADD<Om>將熔絲燒斷。 然而,若使用串接的電源調整器(regulator) ’將很有 可能產生如第4圖中所示之電源啟動順序。舉例而言,I/O 電源電壓VDD_IO(例如3.3 V)係超前於外部燒錄電壓 EPS(例如2.5V)以及核心電源電壓VDD_CORE(例如 1.0V)。因此,當I/O電源電壓VOD—IO備妥(ready)時, 核心電源電壓VDD_CORE還是無效的(尚未備妥),此時 | 外部燒錄電壓EPS可為任何值,使得在週期T1中電可燒 錄單元110係處於一個未知的狀態。此情況將可能導致 未預期或錯誤的燒錄動作。 於某些實施例中,可燒錄單元110中之NMOS電晶 體(即T0〜Τη)係由薄閘極裝置所實現,所以感測電路112 與燒錄電路114只需要核心電源電壓VDD_CORE,故其 位準調整器皆可以略除。然而,此等實施例仍然需要維 持外部燒錄電壓EPS與核心電源電壓VDD_CORE的電源 _ 啟始順序,使得核心電源電壓VDD—CORE必須比外部燒 錄電壓EPS更早備妥(ready),以避免未預期或錯誤燒錄 的動作。 為了避免這些情況,本發明更提供一些能夠避免未 預期或錯誤燒錄的動作之記憶體電路的實施例。 第5圖係為一記憶體電路之另一實施例。如圖所 示’記憶體電路100”包括一電可燒錄單元110”、一感測 0758-A3255ITWFK20I1022I) 10 1344152 第96135125號之專利說明書修正本 ; 1〇0年4月19日修正替換頁 電路112”、一燒錄電路]M,,、一開關元件116、一位準 調整态LS16、一靜電放電(ESD)保護電路118、—電源供 應單元120以及一電阻Rp,,。舉例而言,記憶體電路1〇〇,, • 係可為非易失性記憶體、電可燒錄記憶體(eiectrical , Pr〇grammable memory)、一次燒錄唯讀記憶體(〇nce time programmable read only memory ; 0Tp R0M),但不限定 於此。電源供應單元120用以提供外部燒錄電壓Eps(例 如一熔絲電源或一電源電壓)至電可燒錄單元丨〗〇”。 _ 電可燒錄單元11〇”係包括複數熔絲元件,每個熔絲 元件包括一個用以被燒斷之熔絲(例如Rf〇、Rfl〜 Rfn)以 及一個作為電流源之NM0S電晶體(例如TO、T1〜Τη)。 舉例而言,炼絲Rf〇〜Rfn係可為自對準石夕化物之覆晶電 阻(salicide polysilicon resistor),而 MOS 電晶體 T0〜Τη 係可為薄閘極裝置(thin gate device)或厚閘極裝置(thick gate device)。參考熔絲Rref亦耦接至感測電路in”,用 以區別未燒斷的熔絲與燒斷的熔絲,並且熔絲Rf0〜Rfn ^ 和Rref是透過一電源匯流排111”和電阻RP”連接到一外 部燒錄電壓EPS。電可燒錄單元110”係可為一非易失性 且電可燒錄的單元,例如e-fuse bank、快閃記憶體、一 次燒錄型記憶單元,但不限定於此。 感測電路112”與燒錄電路114”係與第2圖、第3圖 中所示之感測電路112與燒錄電路114相似,差別在於 當電源啟動過程中核心電源電壓VDD_CORE尚未備妥 時,位準調整器LSI7與LS] 8能夠將其輸出端設置於一 0758-A32551TWFK2OI1O221) 1344152 _ 第96135125號之專利說明書修正本 100年4月19日修正替換頁 ’ 既定邏輯位準,使得感測電路112”中之感測器SAO〜SAn 與燒錄電路114”中之驅動器皆會被禁能(disabled)。 舉例而言,位準調整器LS17係耦接於讀取致能信 號RE與感測電路112”之及閘AG00〜AGOn之間,用以當 電源啟動過程中核心電源電壓VDD_CORE尚未備妥 , 時,將及閘AG00〜AGOn之輸入端皆設置到一既定邏輯位 準,使得感測電路112”之感測器SA0〜SAn都會被禁能, 以便避免電源啟始順序導致錯誤的讀取動作。類似地, 位準調整器LS18係耦接於燒錄致能信號PE與燒錄電路 鲁 114”之及閘AGIO〜AGln之間,用以當電源啟動過程中核 心電源電壓VDD_CORE尚未備妥時,將及閘AG 10〜AG 1 η 之輸入端皆設置到一既定邏輯位準,使得燒錄電路114” 會被禁能,以便避免電源啟始順序導致錯誤的燒錄動作。 反言之,當I/O電源電壓VDD_IO與核心電源電壓 VDD_CORE皆備妥時,位準調整器LS16〜LS18係用以將 外部燒錄電壓致能信號EPS_EN、讀取致能信號RE以及 燒錄致能信號PE由核心電源電壓位準的信號調整至輸籲 入輸出電源電壓位準的信號,以便分別控制開關元件 116、感測電路112”中之感測器SA0〜SAn以及燒錄電路 114”中之及閘AGIO〜AGln(即驅動器)。 要注意的是,當電可燒錄葶元1 10”中之NMOS電晶 體T0〜Τη係由厚閘極裝置(I/O裝置)所實現時,則需要一 組位準調整器LS17,用以調整感測電路112”中位址(信 號)八00<0:11>與讀取致能信號RE。同樣地,需要一組位 0758-A32551TWFl(20110221) 1344152 _ 第96135125號之專利說明書修正本 100年4月19日修正替換頁 準調整器LS1 8,用以調整燒錄電路114”中位址(信 ' 號)ADD<0:n>與燒錄致能信號PE。 開關元件116係耦接於外部燒錄電壓EPS與電阻 • RP”之間,用以根據位準調整器LS16之輸出,選擇性地 • 將外部燒錄電壓EPS與電源匯流排111”斷開。舉例而 言,開關元件Π 6係可為主動元件,例如MOS電晶體、 雙載子電晶體(BJT)、接面場效型電晶體(JFET),但不限 定於此。 • 位準調整器LS16係耦接於外部燒錄電壓致能信號 EPS_EN與開關元件116之控制端之間,用以選擇性地將 外部電源電壓EPS與電可燒錄單元110”斷開。舉例而 言,當I/O電源電壓VDD_IO與核心電源電壓VDD_CORE 皆備妥(ready)時,位準調整器LS16係用以將外部燒錄電 壓致能信號EPS_EN由核心電源電壓位準的信號調整至 輸入輸出電源電壓位準的信號,以便控制開關元件116 連接外部燒錄電壓EPS至電可燒錄單元110”,俾以對電 ® 可燒錄單元110”進行燒錄或感測(讀取)。反言之,當電 源啟動過程中核心電源電壓VDD_CORE尚未備妥時,位 準調整器LSI 6會將開關元件116之控制端設置至一既定 邏輯位準,使得開關元件116會截止,所以電可燒錄單 元110”中之電源匯流排111”會與外部燒錄電壓EPS斷 開,藉以避免錯誤的燒錄動作。 舉例而言,位準調整器LS16〜LSI 8係可藉由交流耦 合(AC coupling)、來自一外部電路之一控制信號、藉由 0758-A3255ITWFl(20110221) 13 1344152 第96135125號之專利說明書修正本 100年4月19日修正替換頁 一電阻性元件放電或其組合的方式來其輸出端設置於一 既定邏輯位準。靜電放電保護電路11 8係連接開關元件 11 6與電阻RP”,用以避免靜電放電事件的損害。 第6圖係為一位準調整器之一實施例。如圖所示, 位準調整器21A係根據一輸入信號IN_CORE,產生輸出 , 信號0UT_I0與OUTB_IO,並且位準調整器21A包括一 第一邏輯單元〗6、一第二邏輯單元18、兩個驅動器23 與25,以及一反相器INV1。第一邏輯單元16係由I/O 電源電壓VDD_IO所供電,而第二邏輯單元1 8係由核心 _ 電源電壓VDD—CORE所供電。舉例而言,第一邏輯單元 16係包括一栓鎖單元12以及一差動對14,而第二邏輯 單元18包括一反相器INVO,其中栓鎖單元12包括交叉 耦接之PMOS電晶體MPO與MP1,而差動對14包括兩 個NMOS電晶體MNO與MN1。於某些實施例中,栓鎖 單元12亦可包括兩個交叉麵接之反相器。由核心電源電 壓VDD_CORE供電之反相器INVO係用以將輸入信號 IN_CORE轉換成一反相信號INB_CORE。在某些實施例· 中,栓鎖單元12中的電晶體是由薄閘極裝置所實施,而 位準調整器21A中的其他電晶體則是由厚閘極裝置所實 施。 若輸入信號TN_CORE為高位準時,反相信號 INB—CORE會為低位準,所以NMOS電晶體MNO與MN1 會分別為導通與截止。當NMOS電晶體MN0導通時, PMOS電晶體MP1之閘極會被拉低至接地電壓GND,於 0758-A32551TWF1 (20110221) 14 1344152 -- ' 第96135125號之專利說明書修正本 100年4月19日修正替換頁 1 是PMOS電晶體MP1會接著導通。因此,輸入信號 OUT—IO與QUTB—IO會分別為高位準與低位準。此時, 節點N1與N2係可視為用以輸出輸出信號OUT_IO與 OUTB_IO之輸出端。 . 第一驅動器23係耦接於I/O電源電壓VDD_IO與節 點N1之間,用以當核心電源電壓VDD—CORE尚未備妥 時,使得節點N1上的電壓會與I/O電源電壓VDD_IO匹 配,而第二驅動器25係耦接於節點N2與接地電壓GND • 之間,用以當核心電源電壓VDD_CORE尚未備妥時,拉 低節點N2上的電壓(或將節點N2上的電壓維持在低位 準)。第一驅動器23係藉由PMOS電晶體MP2與NMOS 電晶體MN2與MN3來實現,而第二驅動器25係藉由 NMOS電晶體MN4與MN5來實現。 PMOS電晶體MP2係包括汲極與源極耦接至I/O電 源電壓VDD_IO以及一閘極耦接至節點N1,意即PMOS 膛晶體MP2係連接成一電容器。NMOS電晶體MN2包 鲁 括一汲極耦接至節點N1、一閘極耦接至I/O電源電壓 VDD—IO,以及一源極端。在某些實施例中,位準調整器 21A可以只包含第一驅動器23而不包含第二驅動器25。S 0758-A32551TWFK20110221) 9 1344152 Revision of the patent specification No. 96135125 Revision of the replacement page on April 19 of the following year ---- and connection of a corresponding fuse and reference fuse Rref. When receiving the burn-in enable signal PE from the level adjuster LS14, the gates AGIO~AGln blow the fuse according to the address ADD<Om>. However, if a serial power regulator is used, it will most likely produce a power-up sequence as shown in Figure 4. For example, the I/O supply voltage VDD_IO (eg, 3.3 V) is ahead of the external programming voltage EPS (eg, 2.5V) and the core supply voltage VDD_CORE (eg, 1.0V). Therefore, when the I/O power supply voltage VOD_IO is ready, the core power supply voltage VDD_CORE is still invalid (not yet ready), at this time | the external programming voltage EPS can be any value, so that the power is in the period T1 The burnable unit 110 is in an unknown state. This condition may result in an unexpected or erroneous burning action. In some embodiments, the NMOS transistors (ie, T0~Τη) in the programmable cell 110 are implemented by a thin gate device, so the sensing circuit 112 and the programming circuit 114 only need the core power supply voltage VDD_CORE, so Its level adjuster can be omitted. However, these embodiments still need to maintain the power_start sequence of the external programming voltage EPS and the core power supply voltage VDD_CORE so that the core power supply voltage VDD_CORE must be ready earlier than the external programming voltage EPS to avoid Unexpected or incorrectly burned action. In order to avoid these situations, the present invention further provides some embodiments of memory circuits that are capable of avoiding unexpected or erroneous programming. Figure 5 is another embodiment of a memory circuit. As shown in the figure, the 'memory circuit 100' includes an electric burn-in unit 110", a sensing 0758-A3255ITWFK20I1022I) 10 1344152 Patent Specification No. 96135125, and a revised replacement circuit on April 19, 2010. 112", a programming circuit] M,, a switching element 116, a quasi-adjusted state LS16, an electrostatic discharge (ESD) protection circuit 118, a power supply unit 120, and a resistor Rp, for example, The memory circuit 1〇〇,, • can be a non-volatile memory, an electrically programmable memory (eiectrical, Pr〇grammable memory), a single-time read-only memory (〇nce time programmable read only memory; 0Tp R0M), but is not limited thereto. The power supply unit 120 is configured to provide an external programming voltage Eps (for example, a fuse power supply or a power supply voltage) to the electrically recordable unit. _Electrically recordable unit 11"" includes a plurality of fuse elements, each fuse element including a fuse for being blown (for example, Rf 〇, Rfl 〜 Rfn) and an NMOS transistor as a current source ( For example, TO, T1~Τη). For example, the Rf〇~Rfn system of the wire can be a salicide polysilicon resistor, and the MOS transistor T0~Τη can be a thin gate. A (thin gate device) or a thick gate device. The reference fuse Rref is also coupled to the sensing circuit in" for distinguishing between an unblowed fuse and a blown fuse, and a fuse Rf0~Rfn^ and Rref are connected to an external programming voltage EPS through a power busbar 111" and a resistor RP". The electrically recordable unit 110" can be a non-volatile and electrically recordable unit, such as an e-fuse bank, a flash memory, a once-burning type memory unit, but is not limited thereto. The 112" and the programming circuit 114" are similar to the sensing circuit 112 shown in FIGS. 2 and 3, and the programming circuit 112 is similar in that the core power supply voltage VDD_CORE is not ready when the power is turned on. The regulators LSI7 and LS] 8 can set their output terminals to a 0758-A32551TWFK2OI1O221) 1344152 _ Patent No. 96135125 Patent Revision Amendment April 19, 1995 Correction Replacement Page 'A given logic level, so that the sensing circuit 112" The driver in the sensor SAO~SAn and the programming circuit 114" is disabled. For example, the level adjuster LS17 is coupled to the read enable signal RE and the sensing circuit 112. Between the gates AG00 and AGOn, when the core power supply voltage VDD_CORE is not ready during power-on, the input terminals of the AND gates AG00~AGOn are all set to a predetermined logic level, so that the sensing circuit 112 "The sensors SA0~SAn will be banned." In order to avoid the erroneous read operation caused by the power supply start sequence. Similarly, the level adjuster LS18 is coupled between the burn enable signal PE and the burn circuit 114" and the gate AGIO~AGln for When the core power supply voltage VDD_CORE is not ready during power-on, the input terminals of the AND gates AG 10~AG 1 η are all set to a predetermined logic level, so that the programming circuit 114" is disabled, so as to avoid power supply. The initial sequence causes an incorrect programming operation. Conversely, when both the I/O power supply voltage VDD_IO and the core power supply voltage VDD_CORE are ready, the level adjusters LS16 to LS18 are used to externally program the voltage enable signal EPS_EN, The read enable signal RE and the burn enable signal PE are adjusted by a signal of the core power supply voltage level to a signal for inputting the output power supply voltage level to respectively control the sensing in the switching element 116 and the sensing circuit 112" The gates AG0~SAn and the gates AGIO~AGln (ie, drivers) in the programming circuit 114". It should be noted that the NMOS transistors T0~Τn in the electrically burnable memory cell 10" are thick gates. Device (I/O device) A set of level adjusters LS17 is needed to adjust the address (signal) 00 <0:11> in the sensing circuit 112" and the read enable signal RE. Similarly, a set of bits 0758-A32551TWFl is required. (20110221) 1344152 _ Patent Specification No. 96135125 Revision of the revised page alignment adjuster LS1 8 of April 19, 100 for adjusting the address (letter 'number) ADD<0:n> in the programming circuit 114" And burn the enable signal PE. The switching element 116 is coupled between the external programming voltage EPS and the resistor RP" to selectively disconnect the external programming voltage EPS from the power bus 111" according to the output of the level adjuster LS16. For example, the switching element Π 6 may be an active device such as a MOS transistor, a bipolar transistor (BJT), or a junction field effect transistor (JFET), but is not limited thereto. The level regulator LS16 is coupled between the external programming voltage enable signal EPS_EN and the control terminal of the switching element 116 for selectively disconnecting the external power supply voltage EPS from the electrically recordable unit 110". In this case, when the I/O power supply voltage VDD_IO and the core power supply voltage VDD_CORE are ready, the level adjuster LS16 is used to adjust the external programming voltage enable signal EPS_EN from the core power supply voltage level to Input and output power supply voltage level signals, in order to control the switching element 116 to connect the external programming voltage EPS to the electrically combable unit 110", to burn or sense (read) the electric burner unit 110" Conversely, when the core power supply voltage VDD_CORE is not ready during power-on, the level regulator LSI 6 sets the control terminal of the switching element 116 to a predetermined logic level, so that the switching element 116 is turned off, so The power bus bar 111" in the programmable unit 110" is disconnected from the external programming voltage EPS to avoid erroneous programming. For example, the level adjusters LS16 to LSI 8 can be coupled by AC. AC coupling, a control signal from an external circuit, by way of a patent specification of 0758-A3255ITWFl (20110221) 13 1344152 No. 96135125, the method of correcting the replacement page-resistive element discharge or a combination thereof on April 19, 100 The output is set to a predetermined logic level. The ESD protection circuit 117 is connected to the switching element 117 and the resistor RP" to avoid damage from the electrostatic discharge event. Figure 6 is an embodiment of a quasi-regulator. As shown, the level adjuster 21A generates an output according to an input signal IN_CORE, signals OUT_I0 and OUTB_IO, and the level adjuster 21A includes a first logic unit -6, a second logic unit 18, and two drivers. 23 and 25, and an inverter INV1. The first logic unit 16 is powered by the I/O supply voltage VDD_IO, while the second logic unit 18 is powered by the core_power supply voltage VDD_CORE. For example, the first logic unit 16 includes a latch unit 12 and a differential pair 14, and the second logic unit 18 includes an inverter INVO, wherein the latch unit 12 includes a cross-coupled PMOS transistor MPO. And MP1, and the differential pair 14 includes two NMOS transistors MNO and MN1. In some embodiments, the latch unit 12 can also include two cross-faced inverters. The inverter INVO powered by the core supply voltage VDD_CORE is used to convert the input signal IN_CORE into an inverted signal INB_CORE. In some embodiments, the transistors in the latch unit 12 are implemented by a thin gate device, while the other transistors in the level adjuster 21A are implemented by a thick gate device. If the input signal TN_CORE is high, the inverted signal INB_CORE will be low, so the NMOS transistors MNO and MN1 will be turned on and off, respectively. When the NMOS transistor MN0 is turned on, the gate of the PMOS transistor MP1 is pulled down to the ground voltage GND, at 0758-A32551TWF1 (20110221) 14 1344152 -- 'Patent Specification No. 96135125 Revised on April 19, 100 Correction Replacement Page 1 is that PMOS transistor MP1 will then turn on. Therefore, the input signals OUT_IO and QUTB_IO will be high and low, respectively. At this time, the nodes N1 and N2 can be regarded as outputs for outputting the output signals OUT_IO and OUTB_IO. The first driver 23 is coupled between the I/O power supply voltage VDD_IO and the node N1 for matching the voltage on the node N1 with the I/O power supply voltage VDD_IO when the core power supply voltage VDD_CORE is not ready. The second driver 25 is coupled between the node N2 and the ground voltage GND • to lower the voltage on the node N2 when the core power supply voltage VDD_CORE is not ready (or maintain the voltage on the node N2 at a low level). quasi). The first driver 23 is realized by the PMOS transistor MP2 and the NMOS transistors MN2 and MN3, and the second driver 25 is realized by the NMOS transistors MN4 and MN5. The PMOS transistor MP2 includes a drain and a source coupled to the I/O power supply voltage VDD_IO and a gate coupled to the node N1, that is, the PMOS transistor MP2 is connected as a capacitor. The NMOS transistor MN2 includes a drain coupled to the node N1, a gate coupled to the I/O supply voltage VDD-IO, and a source terminal. In some embodiments, the level adjuster 21A may include only the first driver 23 and not the second driver 25.
NMOS電晶體MN3係包括一汲極端耦接至NMOS 電晶體Μ N 2之源極端以及一閘極端與一源極端一起耦接 至接地電壓GND。NMOS電晶體ΜΝ4係包括一閘極耦接 至節點N2以及一汲極端與一源極端一起耦接至接地電 壓GND,即NMOS電晶體MN4係連接成一電容器。NMOS 0758-A32551TWF1 (20110221) 15 1344152 _ 第96135125號之專利說明書修正本 100年4月19日修正替換頁 ‘ 電晶體MN5係包括一汲極端耦接至節點N2以及一閘極 端與一源極端一起耦接至接地電壓GND。換言之,NMOS 電晶體MN4與MN5係可示為去耦合電容器(decoupling capacitors) ° 由於寄生電容Cgd及或Cgb,節點N1上的電壓位 準會追隨著I/O電源電壓VDD_I0,同時由於去耦合電容 (即NM0S電晶體MN4與MN5)節點N2上的電壓位準會 維持在低位準。因此,當電源啟動過程中核心電源電墨 VDD_C0RE未備妥時,輸出信號OUT_IO與0UTB_I0 φ 會分別被設置於高位準與低位準。換言之,電源啟動過 程中核心電源電壓VDD_C0RE未備妥時,由於位準調整 器21A之輸出端可被設置於既定邏輯位準,因此位準調 整器21A可用以實現第5圖中之位準調整器LS16、LS17 與 LS18 。 舉例而言,當電源啟動過程中核心電源電壓 VDD_CORE未備妥時,位準調整器LS16會輸出具有高 位準之輸出信號〇UTB_IO及/或一具有低位準之輸出信 · 號0UT_I0至開關元件116,使得電可燒錄單元110”與 外部燒錄電壓EPS斷開,藉以避免未預期的或錯誤的燒 錄動作。同樣地,當電源啟動過程中核心電源電壓 VDD_CORE来備妥時,位準調整器LS17會輸出具有低 位準之輸出信號0UT_I0至感測電路112”中之及閘 AG00〜AGOn,使得感測電路112”中之感測器SA0〜SAn 會被禁能。再者,當電源啟動過程中核心電源電壓 0758-A32551TWFl(20110221) 16 1344152 100年4月19日修正替換頁 第96135125號之專利說明書修正本 VDD—CORE未備妥時,位準調整器LS18會輸出具有低 位準之輸出信號〇U丁_1〇至感測電路丨12,,中之及閘 AGIO〜AGln,使得燒錄電路114”會被禁能。 於某些實施例中,第一驅動器23亦可包括 電晶體MN2與MN3,但不包括PM〇s電晶體Mp2。於 某些貫施例中,第一驅動器23亦可包括pm〇S電晶體 MP2,但不包括NMOS電晶體MN2與MN3。於某些實 把例中,第二驅動器25亦可包括NMOS電晶體MK14, 但不包括NMOS電晶體ΜΝ5。於某些實施例中,第二驅 動器25亦可包括NMOS電晶體ΜΝ5,但不包括Nm〇s 電晶體MN4。 第7A圖係為開關元件之一實施例。如圖所示,開 關元件116包括一 PM〇s電晶體ρι耦接於外部燒錄電壓 EPS與電阻RP”之間,以及一 NM〇s電晶體m耦接於耦 接於電阻RP”與接地電壓GND之間,其中M〇s電晶體 P1與N1之控制端係—起耦接至位準調整器LS16之輪出 端。當電源啟動過裎中核心電源電壓Vdd—CORE未備妥 且輸出信號OUTB〜1〇為高邏輯位準時,pM〇S電晶體會 被戴止,而NMOS電晶體N1會導通。因此,外部燒錄 電壓EPS會與電可燒錄單元11〇,,中電源匯流排m,,斷 開,並且會被放電至接地端。換言之,當電源啟動過程 中’無論外部燒錄電壓EpS為何,位準調整器LS16都會 輸出輸出信號OUTB—1〇將開關元件1〗6關閉(截止)。當 電源啟動過程中核心電源電壓VDD_CORE未備妥時,外 0758-A32551TWF) (20110221) 1344152 100年4月19日修正替換頁 第96135125號之專利說明書修正本 斷開,因此可避 部燒錄電壓EPS會與電可燒錄單元110” 免未預期的或錯誤的燒錄動作。 當核心電源電壓VDD—CORE與I/O電源電壓皆備妥 時,LS16會根據外部燒錄電壓致能信號EPS_EN,輸出 -輸出信號0UTB_I0與OUT_IO來控制開關元件1 16。換 . 言之,於電源啟動完成後,開關元件116係根據外部燒 錄電壓致能信號EPS_EN,選擇性地將外部燒錄電壓EPS 連接至電可燒錄單元110”之電源匯流排111”。舉例而 言,當輸出信號〇UTB_IO為低位準時,PMOS電晶體Ρ1 φ 會導通,NMOS電晶體N1會截止。因此,外部燒錄電壓 EPS會被連接至電可燒錄單元110”之電源匯流排111”, 以便進行電可燒錄單元Π 0”的燒錄或感測動作。 如果當PMOS電晶體P1在截止狀態時,感測電路 112”不需要開關元件116的輸出電位接地,則NMOS電 晶體N1並非必要元件。也就是說,在某些實施例中,並 不需要實施NMOS電晶體N1,而僅需要實施PMOS電晶 體P1即可滿足。 鲁 第7B圖係為開關元件之另一實施例。如圖所示, 開關元件116”係與第7A圖中所示之開關元件116相似, 其差別在於NMOS電晶體N2係耦接於外部燒錄電壓EPS 與電阻RP”之間。當電源啟動過釋中核心電源電壓 VDD—CORE未備妥時,如果輸出信號OUTB_IO與 OUT—10在係分別設置於高位準與低位準,PMOS電晶體 P1與NMOS電晶體N2會被载止,而NMOS電晶體N1 0758-A32551 TWF1(20110221) 18 1344152 __ 第96135125號之專利說明書修正本 100年4月19日修正替換頁 會導通。因此,外部燒錄電壓EPS會與電可燒錄單元ΠΟ” ' 之電源匯流排111 ’’斷開,並被放電至接地端。當電源啟 動過程中核心電源電壓VDD_CORE未備妥時,外部燒錄 電壓EPS會與電可燒錄單元1〗0”斷開,因此可避免未預 • 期的或錯誤的燒錄動作。如果當PMOS電晶體P1和 NMOS電晶體N2在截止狀態時,感測電路112”不需要 開關元件Π6的輸出電位接地,則NMOS電晶體N1並 非必要元件。也就是說,在某些實施例中,並不需要實 • 施NMOS電晶體N1,而僅需要實施PMOS電晶體P1和 NMOS電晶體N2即可滿足。 第8圖係為第5圖中記憶體電路之模擬結果。如圖 所示,由於在電源啟動過程中核心電源電壓VDD_CORE 未備妥時,輸出信號〇UTB_IO會追隨著I/O電源電壓 VDD—IO用以將外部燒錄電壓EPS與電源匯流排111”斷 開,所以在核心電源電壓VDD_CORE備妥之前,電可燒 錄單元110”中電源匯流排111”上的電壓位準VBUS係保 ® 持在低位準,故可避免未預期的或錯誤的燒錄動作。 第9圖係為位準調整器之另一實施例。如圖所示, 位準調整器21B係與第6圖中所示之位準調整器21A相 似,其差別在於除去第一驅動器23並且第二驅動器25 係由一開關元件60來實現。在某些實施例中,反相器 INV0中的電晶體是由薄閘極裝置所實施,而位準調整器 21B中的其他電晶體則是由厚閘極裝置所實施。開關元 件60係耦接於節點N2與接地電壓GND之間,並且受一The NMOS transistor MN3 includes a source terminal connected to the NMOS transistor Μ N 2 and a gate terminal coupled to a source terminal GND to the ground voltage GND. The NMOS transistor ΜΝ4 includes a gate coupled to the node N2 and a 汲 terminal coupled to a ground terminal GND, i.e., the NMOS transistor MN4 is coupled to form a capacitor. NMOS 0758-A32551TWF1 (20110221) 15 1344152 _ Patent Specification No. 96135125 Revised on April 19, 2014 Revision Replacement Page 'Transistor MN5 includes one pole connected to node N2 and one gate terminal together with one source terminal It is coupled to the ground voltage GND. In other words, the NMOS transistors MN4 and MN5 can be shown as decoupling capacitors. Due to the parasitic capacitance Cgd and or Cgb, the voltage level on the node N1 will follow the I/O supply voltage VDD_I0, and due to the decoupling capacitor. (ie, NM0S transistors MN4 and MN5) The voltage level at node N2 will remain at a low level. Therefore, when the core power supply VDD_C0RE is not ready during power-on, the output signals OUT_IO and OUTB_I0 φ are set to the high and low levels, respectively. In other words, when the core power supply voltage VDD_C0RE is not ready during power-on, since the output of the level adjuster 21A can be set to a predetermined logic level, the level adjuster 21A can be used to achieve the level adjustment in FIG. LS16, LS17 and LS18. For example, when the core power supply voltage VDD_CORE is not ready during power-on, the level adjuster LS16 outputs an output signal 〇UTB_IO having a high level and/or an output signal having a low level, 0UT_I0 to the switching element 116. So that the electrically burnable recording unit 110" is disconnected from the external programming voltage EPS to avoid an unexpected or erroneous programming operation. Similarly, when the core power supply voltage VDD_CORE is ready during power-on, the level adjustment is performed. The LS17 outputs a low level output signal OUT_I0 to the AND gates AG00~AGOn in the sensing circuit 112", so that the sensors SA0~SAn in the sensing circuit 112" are disabled. During the process, the core power supply voltage is 0758-A32551TWFl (20110221). 16 1344152 Correction of the replacement page, page 96135125, revised on April 19, 2014. When the VDD-CORE is not ready, the level adjuster LS18 will output a low level output. The signal 丁U丁_1〇 to the sensing circuit 丨12, and the gate AGIO~AGln, so that the programming circuit 114” is disabled. In some embodiments, the first driver 23 can also include transistors MN2 and MN3, but does not include the PM〇s transistor Mp2. In some embodiments, the first driver 23 may also include a pm〇S transistor MP2, but does not include NMOS transistors MN2 and MN3. In some implementations, the second driver 25 can also include an NMOS transistor MK14, but does not include an NMOS transistor ΜΝ5. In some embodiments, the second driver 25 can also include an NMOS transistor ΜΝ5, but does not include an Nm 〇s transistor MN4. Figure 7A is an embodiment of a switching element. As shown, the switching element 116 includes a PM〇s transistor ρι coupled between the external programming voltage EPS and the resistor RP", and an NM 〇s transistor m coupled to the resistor RP" and the ground. Between the voltages GND, wherein the control terminals of the M?s transistors P1 and N1 are coupled to the wheel terminal of the level adjuster LS16. When the core power supply voltage Vdd_CORE is not ready and the output signal OUTB~1〇 is high logic level, the pM〇S transistor will be blocked and the NMOS transistor N1 will be turned on. Therefore, the external programming voltage EPS will be disconnected from the electrically combustible unit 11, the middle power supply bus m, will be disconnected, and will be discharged to the ground. In other words, during the power-on process, regardless of the external programming voltage EpS, the level adjuster LS16 outputs an output signal OUTB-1 to turn off the switching element 1-6. When the core power supply voltage VDD_CORE is not ready during power-on, the external 0758-A32551TWF) (20110221) 1344152 The revised specification of the replacement page No. 96135125 of April 19, 100, is disconnected, so the voltage can be avoided. The EPS and the electrical burnable unit 110" are free from unexpected or erroneous programming. When the core power supply voltage VDD_CORE and the I/O power supply voltage are ready, the LS16 will activate the signal according to the external programming voltage EPS_EN. The output-output signals OUTB_I0 and OUT_IO control the switching element 1 16. In other words, after the power supply is completed, the switching element 116 selectively connects the external programming voltage EPS according to the external programming voltage enable signal EPS_EN. For example, when the output signal 〇UTB_IO is low, the PMOS transistor Ρ1 φ will be turned on, and the NMOS transistor N1 will be turned off. Therefore, the external programming voltage EPS It will be connected to the power bus bar 111" of the electric burner unit 110" for the burning or sensing action of the electric burner unit Π 0". If the sensing circuit 112" does not require the output potential of the switching element 116 to be grounded when the PMOS transistor P1 is in the off state, the NMOS transistor N1 is not an essential component. That is, in some embodiments, implementation is not required. The NMOS transistor N1 can be satisfied only by implementing the PMOS transistor P1. Lu 7B is another embodiment of the switching element. As shown, the switching element 116" is connected to the switch shown in Fig. 7A. The component 116 is similar, the difference is that the NMOS transistor N2 is coupled between the external programming voltage EPS and the resistor RP". When the core power supply voltage VDD_CORE is not ready when the power is turned on, if the output signals OUTB_IO and OUT The PMOS transistor P1 and the NMOS transistor N2 are loaded, and the NMOS transistor N1 0758-A32551 TWF1 (20110221) 18 1344152 __ Patent Specification No. 96135125 The correction replacement page will be turned on on April 19, 100. Therefore, the external programming voltage EPS will be disconnected from the power busbar 111'' of the electrically recordable unit ΠΟ"' and discharged to the ground. When the core power supply voltage VDD_CORE is not ready during power-on, the external programming voltage EPS will be disconnected from the electrical burn-in unit 1 0", thus avoiding unpredicted or erroneous burning operations. When the PMOS transistor P1 and the NMOS transistor N2 are in the off state, the sensing circuit 112" does not require the output potential of the switching element Π6 to be grounded, and the NMOS transistor N1 is not an essential element. That is, in some embodiments, it is not necessary to implement the NMOS transistor N1, but only the PMOS transistor P1 and the NMOS transistor N2 need to be implemented. Figure 8 is a simulation result of the memory circuit in Figure 5. As shown in the figure, since the core power supply voltage VDD_CORE is not ready during power-on, the output signal 〇UTB_IO will follow the I/O power supply voltage VDD-IO to disconnect the external programming voltage EPS from the power busbar 111. On, so before the core power supply voltage VDD_CORE is ready, the voltage level on the power bus bar 111" in the electrical burn-in unit 110" is maintained at a low level, so that unexpected or erroneous programming can be avoided. Fig. 9 is another embodiment of the level adjuster. As shown, the level adjuster 21B is similar to the level adjuster 21A shown in Fig. 6, with the difference that the first driver is removed. 23 and the second driver 25 is implemented by a switching element 60. In some embodiments, the transistor in the inverter INV0 is implemented by a thin gate device, while the other transistors in the level adjuster 21B The method is implemented by a thick gate device. The switching element 60 is coupled between the node N2 and the ground voltage GND, and is subjected to a
S 0758-A32551TWF1 (20110221) 19 1344152 _ 第96135125號之專利說明書修正本 100年4月19日修正替換頁. 個外部的電源啟始重置電路70之控制。當電源啟動過程 中核心電源電壓VDD—CORE未備妥時,外部的電源啟始 重置電路70會產生一控制信號SR來控制開關元件60, 使得節點N2上的電壓位準會被拉低。當節點N2上的位 · 準被開關元件60拉低時,PMOS電晶體ΜΡ0會導通,並 . 且節點N1亦會被拉高至I/O電源電壓VDD_IO。換言之, 在核心電源電壓VDD_CORE未備妥時,輸出信號 ◦UTB—IO與OUT—IO會分別設置於高位準與低位準。 當核心電源電壓VDD_CORE備妥時,電源啟始重 籲 置電路70會藉由控制信號SR將開關元件60載止,使得 使用核心電源電壓VDD—CORE之反相器INV0會產生反 相信號並取回對位準調整器21B的控制權。於某些實施 例中,開關元件60係可由一主動元件來實現,例如MOS 電晶體、雙載子電晶體、接面場效型電晶體或其組合。 第10圖係為位準調整器之另一實施例。如圖所示, 位準調整器21C係與第6圖所示之位準調整器21A相 似,其差別在於第二驅動器25由開關元件60來實現。籲 在某些實施例中,反相器INV0中的電晶體是由薄閘極裝 置所實施,而位準調整器21C中的其他電晶體則是由厚 閘極裝置所實施。當電源啟動過程中核心電源電壓 VDD—CORE未備妥時,由於MOS電晶體MP2、MN2或 MN3的寄生電容Cgd或Cbg所導致的交流耦合(AC coupling),節點N1上的電壓位準會追隨著I/O電源電壓 VDDJO,並且節點N2上的電壓位準會被開關元件60 亡 0758-A32551TWF1(20110221) 20 1344152 - 第96135125號之專利說明書修正本 100年4月19日修正替換頁S 0758-A32551TWF1 (20110221) 19 1344152 _ Patent Specification No. 96135125 Revision of the revised page of April 19, 100. Control of an external power supply start reset circuit 70. When the core power supply voltage VDD_CORE is not ready during power-on, the external power supply start reset circuit 70 generates a control signal SR to control the switching element 60 such that the voltage level at the node N2 is pulled low. When the bit on node N2 is pulled low by switching element 60, PMOS transistor ΜΡ0 turns on, and node N1 is also pulled high to I/O supply voltage VDD_IO. In other words, when the core power supply voltage VDD_CORE is not ready, the output signals ◦UTB_IO and OUT_IO are set to the high level and the low level, respectively. When the core power supply voltage VDD_CORE is ready, the power supply restarting circuit 70 will load the switching element 60 by the control signal SR, so that the inverter INV0 using the core power supply voltage VDD_CORE will generate an inverted signal and take The control right of the level adjuster 21B is returned. In some embodiments, switching element 60 can be implemented by an active element, such as a MOS transistor, a bipolar transistor, a junction field effect transistor, or a combination thereof. Figure 10 is another embodiment of a level adjuster. As shown, the level adjuster 21C is similar to the level adjuster 21A shown in Fig. 6, with the difference that the second driver 25 is realized by the switching element 60. In some embodiments, the transistors in inverter INV0 are implemented by thin gate devices, while the other transistors in level adjuster 21C are implemented by thick gate devices. When the core power supply voltage VDD_CORE is not ready during power-on, the voltage level on node N1 will follow due to the AC coupling caused by the parasitic capacitance Cgd or Cbg of MOS transistor MP2, MN2 or MN3. The I/O power supply voltage VDDJO, and the voltage level on the node N2 will be destroyed by the switching element 60 0758-A32551TWF1 (20110221) 20 1344152 - Patent specification No. 96135125 revised this April 19th revised replacement page
拉低至接地端。換言之,當電源啟動過程中核心電源電 壓VDD—CORE未備妥時,輸出信號OUTB_IO與OUT_IO 會分別被設置於高位準與低位準。當核心電源電壓 VDD—CORE備妥時,外部的電源啟始重置電路70會藉 ' 由控制信號SR將開關元件60截止,使得使用核心電源 電壓VDD—CORE之反相器INV0會產生反相信號並取回 對位準調整器21C的控制權。 第Π圖係為位準調整器之另一實施例。如圖所示, 參 位準調整器21D係與第6圖中所示之位準調整器21A相 似,其差別在於第二驅動器25係由一電阻性元件62所 實現,用以慢慢地拉低節點N 2上的電壓位準。當電源啟 動過程中核心電源電壓VDD__CORE未備妥時,由於MOS 電晶體MP2、MN2或MN3的寄生電容Cgd或Cbg所導 致的交流柄合(AC coupling),節點N1上的電壓位準會追 隨著I/O電源電壓VDD_IO,並且節點N2上的電壓位準 會藉由電阻性元件62慢慢地被拉低。換言之,當電源啟 ® 動過程中核心電源電壓VDD__CORE未備妥時,輸出信號 OUTB_IO與OUT_IO會分別被設置於高位準與低位準。 舉例而言,若電阻性元件62具有足夠的阻值,於核心電 源電壓VDD—CORE備妥時,它將可視為一個高阻抗。因 此,當核心電源電壓VDD—CORE備妥時,使用核心電源 電壓VDD_CORE之反相器INV0會產生反相信號,並取 回對位準調整器21D的控制權。 第12 A圖係為電阻性元件之一實施例。如圖所示, 0758-A3255]TWFl(20110221) 1344152 _ 第%135125號之專利說明書修正本 inn # e R m ^ 100年4月19日修正替換頁 電阻性元件62A係輕接於節點N2與接地電壓GND之 間,並且包括N個串聯連接之pm〇s電晶體 MPA1〜MPAN,以及一個NM0S電晶體MNB耦接於 PMOS電晶體MPAN之接地電壓之間。每—個pm〇s電 晶體MPA1〜MPAN皆連接成二極體形式,即閘極耦接其 源極。當電源啟動過程中核心電源電壓VDD—CORE未傷 妥時,NMOS電晶體MNB會導通,使得節點N2上的電 壓位準會被慢慢地拉低。因此,當I/O電源電壓VDD_I〇 比核心電源電壓VDD—CORE早備妥時,輸出信號 OUTB—10會被第一驅動器23拉高,而輸出信號0UTJ0 會被電阻性元件62A慢慢地拉低。 第12B圖係為電阻性元件之另一實施例。如圖所 示,電阻性元件62B係與第12A圖中所示之電阻性元件 62A相似’其差別在PMOS電晶體MPA1〜MPAN係由雙 載子電晶體(BJTs)BTAl〜BTAN所取代,電阻性元件62丘 之動作係與第12A圖中所示之電阻性元件62A相似,於 此不再累述。 弟12 C圖係為電阻性元件之另一實施例。如圖卢斤 示,電阻性元件62C係與第12A圖中所示之電阻性元件 62A相似,其差別在PMOS電晶體MPA1〜MPAN係由 NMOS電晶體MNA1〜MNAN所取代,每一個NMOS電 晶體MNA1〜MNAN皆連接成二極體形式,即閘極耦接其 汲極。電阻性元件62C之動作係與第12A圖中所示之電 阻性元件62A相似,於此不再累述。 0758-A32551TWFl(20110221) 22 1344152 第96135125號之專利說明書修正本 第圖係為電阻性元件之另—實施例。如圖所 =,電阻性元件62C係與第以圖中所示之電阻性元件 ^相似’其差別在NM〇s電晶體m师係耗接於p腫 電曰曰體MPAO與MPA1〜MpAN之間,f 動作係與第以圖中所示之電阻性元件似相1= 不再累述。 似此 於某此實施财,位準調整器山6 地移除。舉例而言,當電可燒錄單元I: 體係由薄_置所實現時,感測電路 ;“丨14只需要核心電源電壓VDD CORE, 整器LS17她可被移除。或者是說,當 實現日f = nG”中之随05電晶體係由厚閘極裝置所 S皆由第電路】12”與燒錄電路114,,中之位準調整器 21B …10與11圖中所示之位準調整器21A、Pull down to ground. In other words, when the core power supply voltage VDD_CORE is not ready during power-on, the output signals OUTB_IO and OUT_IO are set to the high and low levels, respectively. When the core power supply voltage VDD_CORE is ready, the external power supply start reset circuit 70 will turn off the switching element 60 by the control signal SR, so that the inverter INV0 using the core power supply voltage VDD_CORE will be inverted. The signal is retrieved and the control of the level adjuster 21C is retrieved. The second diagram is another embodiment of a level adjuster. As shown, the reference level adjuster 21D is similar to the level adjuster 21A shown in FIG. 6, with the difference that the second driver 25 is implemented by a resistive element 62 for slowly pulling The voltage level on the low node N 2 . When the core power supply voltage VDD__CORE is not ready during power-on, the voltage level on node N1 will follow due to the AC coupling caused by the parasitic capacitance Cgd or Cbg of MOS transistor MP2, MN2 or MN3. The I/O supply voltage VDD_IO, and the voltage level on node N2 is slowly pulled low by the resistive element 62. In other words, when the core power supply voltage VDD__CORE is not ready during power-on, the output signals OUTB_IO and OUT_IO are set to the high and low levels, respectively. For example, if the resistive element 62 has sufficient resistance, it will be considered a high impedance when the core supply voltage VDD-CORE is ready. Therefore, when the core power supply voltage VDD_CORE is ready, the inverter INV0 using the core power supply voltage VDD_CORE generates an inverted signal and retrieves control of the level adjuster 21D. Figure 12A is an embodiment of a resistive element. As shown in the figure, 0758-A3255]TWFl(20110221) 1344152 _ No. 135125 patent specification amendment inn # e R m ^ April 19, 100 revised replacement page resistive element 62A is lightly connected to node N2 and The ground voltage GND is between the ground and includes N series connected pm 〇 transistors MPA1 〜 MPAN, and one NMOS transistor MNB is coupled between the ground voltages of the PMOS transistors MPAN. Each of the pm〇s transistors MPA1~MPAN is connected in the form of a diode, that is, the gate is coupled to its source. When the core power supply voltage VDD_CORE is not damaged during power-on, the NMOS transistor MNB turns on, causing the voltage level at node N2 to be slowly pulled low. Therefore, when the I/O power supply voltage VDD_I〇 is earlier than the core power supply voltage VDD_CORE, the output signal OUTB-10 is pulled high by the first driver 23, and the output signal OUTJ0 is slowly pulled by the resistive element 62A. low. Figure 12B is another embodiment of a resistive element. As shown, the resistive element 62B is similar to the resistive element 62A shown in FIG. 12A. The difference is that the PMOS transistors MPA1 to MPAN are replaced by bi-carrier transistors (BJTs) BTAl to BTAN. The action of the element 62 is similar to the resistive element 62A shown in Fig. 12A and will not be described again. The Brother 12 C diagram is another embodiment of a resistive element. As shown in Fig., the resistive element 62C is similar to the resistive element 62A shown in Fig. 12A, and the difference is that the PMOS transistors MPA1 to MPAN are replaced by NMOS transistors MNA1 to MNAN, each NMOS transistor. MNA1~MNAN are all connected in the form of a diode, that is, the gate is coupled to the drain. The operation of the resistive element 62C is similar to that of the resistive element 62A shown in Fig. 12A and will not be described again. 0758-A32551TWFl (20110221) 22 1344152 Patent Specification Revision No. 96135125 This is a further embodiment of a resistive element. As shown in the figure, the resistive element 62C is similar to the resistive element shown in the figure. The difference is that the NM〇s transistor m-system is depleted in the p-electrode MPAO and MPA1~MpAN. The f-action is similar to the resistive element shown in the figure. 1 = No longer described. It seems that this is implemented in a certain place, and the level adjuster is removed. For example, when the electrically programmable unit I: system is implemented by thin-film, the sensing circuit; "丨14 only needs the core power supply voltage VDD CORE, the whole device LS17 can be removed. Or, say, when In the realization of the day f = nG", the 05-electrode system is composed of the thick gate device S and the circuit 12] and the programming circuit 114, and the level adjusters 21B ... 10 and 11 are shown in the figure. Level adjuster 21A,
燒錄雷致/?1D來’現。亦或是說,感測電路〗12,,與 圖:_ 14中之位準調整器可皆由第6、9、1〇盥U 不之位準調整器21Α、21β、2ic或來實現, “夕除開關元件116與位準調整器㈣。 電源明之⑽體f路可於1源啟動過程中核心 ’、电未備*時,將外部燒錄電壓與電可燒錄單元斷 二避免由於動順序所造成未預期的或 錯块的燒錄動作。 人 雖然本發明已以較佳實施 以限定本發明’任何熟知技藝者,在不腕離本發= 0758-A3255fTWFl(2〇H〇22I) 23 第96335125號之專利說明書修正本 神和範圍内,當 —_ -_________ 護範圍當視後附之動與潤飾,因此本發明之保 7之甲清專利範圍所It土4 >Burning the thunder /? 1D to 'now. In other words, the leveling regulators in the sensing circuit 12, and the map: _ 14 can be implemented by the level adjusters 21Α, 21β, 2ic of the sixth, ninth, and ninth, "Excluding the switching element 116 and the level adjuster (4). The power supply (10) body f path can be used to avoid the external programming voltage and the electrically combustable unit when the core is in the process of 1 source startup. Unexpected or erroneous burning operation caused by the sequence of operations. Although the invention has been described in its preferred embodiment to limit the invention to any of the well-known skilled artisan, the invention is not deviated from the present invention = 0758-A3255fTWFl (2〇H〇22I 23 Patent Specification No. 96335125 amends the scope of this God and the scope, when the scope of the -___________ protection is attached to the movement and retouching, therefore the scope of the patent of the invention is 7
範圍所界定者為準。 【圖式簡單說明】 以:系為—記憶體電路之-實施例。 :2圖係為-感測電路之—實施例。 :3圖係為一燒錄電路之—實施例。 第4圖係為第!圖中記憶體 第5圖係A 一々卜立触而 岭 < 棋擬、.,口果 :係4 .體電路之另-實施例。 弟6圖係為—位準調整器之-實施例。 第7Α圖係為開關元件之一實施例。 第7Β圖係為開關元件之另一實施例。 f8圖係為第5圖中記憶體電路之模擬結果 :9圖係為位準調整器之另—實施例。 第10圖係為位準調整器之另一實施例。 第11圖係為位準調整器之另—實施例。 第12A圖係為電阻性元件之一實施例。 第ΠΒ圖係為電阻性元件之另—實施例。 第12C圖係為電阻性元件之另—實施例。 第12D圖係為電阻性元件之另_實施例。 【主要元件符號說明】 12 :栓鎖單元; I差動對; 16、18 :邏輯單元;23、25:驅動器; 62、62A〜62D :電阻性元件;The scope is defined. [Simple description of the diagram] The following is an example of a memory circuit. The :2 diagram is an embodiment of the sensing circuit. : 3 is a recording circuit - an embodiment. Figure 4 is the first! The memory in the figure is shown in Fig. 5. A 々 立 触 而 岭 岭 岭 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕. The figure 6 is an embodiment of a level adjuster. Figure 7 is an embodiment of a switching element. The seventh diagram is another embodiment of the switching element. The f8 diagram is the simulation result of the memory circuit in Fig. 5: Fig. 9 is another embodiment of the level adjuster. Figure 10 is another embodiment of a level adjuster. Figure 11 is an alternative embodiment of a level adjuster. Figure 12A is an embodiment of a resistive element. The second diagram is an alternative embodiment of a resistive element. Figure 12C is an alternative embodiment of a resistive element. Figure 12D is an alternative embodiment of a resistive element. [Main component symbol description] 12: latch unit; I differential pair; 16, 18: logic unit; 23, 25: driver; 62, 62A to 62D: resistive element;
24 07 58-Λ325 51T W1 (20110221) S 1344152 - ' 第96135125號之專利說明書修正本 100年4月19曰修正替換頁 70 :電源啟始重置電路; 100、100” :記憶體電路; 110、110” :電可燒錄單元; • Π 1、111 ’’ :電源匯流排; 112、1 12” :感測電路;114、114” :燒錄電路; 116、60·開關元件, 118.靜電放電保護電路, 120 :電源供應單元; RP、RP” :電阻;24 07 58-Λ325 51T W1 (20110221) S 1344152 - 'Patent Specification No. 96135125 Revised 100 April 19曰 Correction Replacement Page 70: Power Start Reset Circuit; 100, 100": Memory Circuit; 110 , 110": electric burnable unit; • Π 1, 111 '': power bus; 112, 1 12": sensing circuit; 114, 114": programming circuit; 116, 60 · switching element, 118. Electrostatic discharge protection circuit, 120: power supply unit; RP, RP": resistance;
RfO、Rfl〜Rfn :熔絲;INV0〜INV1 :反相器; • SA0〜SAn :感測器; AG00〜AGOn、AGIO〜AGln :及閘;RfO, Rfl~Rfn: fuse; INV0~INV1: inverter; • SA0~SAn: sensor; AG00~AGOn, AGIO~AGln: and gate;
Cgd、Cgb :寄生電容;PE :燒錄致能信號; RE :讀取致能信號; EPS_EN :外部燒錄電壓致能信號; VDD_CORE :核心電源電壓; VDD—10 :輸入/輸出(I/O)電源電壓; IN_CORE :輸入信號; • OUT_IO、OUTB_IO :輸出信號; INB_CORE :反相信號;GND :接地電壓;Cgd, Cgb: parasitic capacitance; PE: programming enable signal; RE: read enable signal; EPS_EN: external programming voltage enable signal; VDD_CORE: core supply voltage; VDD-10: input/output (I/O Power supply voltage; IN_CORE: input signal; • OUT_IO, OUTB_IO: output signal; INB_CORE: inverted signal; GND: ground voltage;
Nl、N2 :節點; SR :控制信號; VBUS :電壓位準; LS12、LS14、LS16、LS17、LS18、21A〜21D :位準 調整器; TO、T1 〜Tn 、Ph Ν1 〜Ν2、ΜΡ0〜ΜΡ2、ΜΝ0〜ΜΝ5、 MPA1 〜MPAN 、 MNB 、 MTA1 〜MTAN 、 BTB 、Nl, N2: node; SR: control signal; VBUS: voltage level; LS12, LS14, LS16, LS17, LS18, 21A~21D: level adjuster; TO, T1~Tn, Ph Ν1~Ν2, ΜΡ0~ΜΡ2 , ΜΝ0~ΜΝ5, MPA1~MPAN, MNB, MTA1~MTAN, BTB,
S 0758-A32551TWFl(20110221) 1344152 第96135125號之專利說明書修正本 100年4月19日修正替換頁 MNA1〜MNAN :電晶體。S 0758-A32551TWFl (20110221) 1344152 Patent Specification Revision No. 96135125 Revision No. M191 to MNAN: Transistor.
0758-A32551TWFl(20J10221) 260758-A32551TWFl(20J10221) 26
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/869,196 US7551497B2 (en) | 2007-09-20 | 2007-10-09 | Memory circuits preventing false programming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82638506P | 2006-09-21 | 2006-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200816207A TW200816207A (en) | 2008-04-01 |
TWI344152B true TWI344152B (en) | 2011-06-21 |
Family
ID=39250436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96135125A TWI344152B (en) | 2006-09-21 | 2007-09-20 | Memory circuits and malfunction protection methods thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101149975B (en) |
TW (1) | TWI344152B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI640990B (en) * | 2016-01-19 | 2018-11-11 | 力旺電子股份有限公司 | Power-up sequence protection circuit |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102158589B (en) * | 2011-01-19 | 2014-02-19 | 宁波舜宇光电信息有限公司 | High-pixel photographic module and burning method for chip |
TWI484313B (en) * | 2013-08-05 | 2015-05-11 | Nuvoton Technology Corp | Reference voltage generating circuit and voltage adjusting device having negative charge protection mechanism of the same |
CN104616696A (en) * | 2015-02-06 | 2015-05-13 | 浪潮电子信息产业股份有限公司 | EFUSE control method |
CN108572315B (en) * | 2018-05-30 | 2024-09-06 | 广东赛微微电子股份有限公司 | Fuse state detection device |
CN113763898A (en) * | 2021-08-31 | 2021-12-07 | 惠科股份有限公司 | Control circuit, driving method thereof and display device |
-
2007
- 2007-09-20 TW TW96135125A patent/TWI344152B/en active
- 2007-09-21 CN CN2007101535460A patent/CN101149975B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI640990B (en) * | 2016-01-19 | 2018-11-11 | 力旺電子股份有限公司 | Power-up sequence protection circuit |
Also Published As
Publication number | Publication date |
---|---|
TW200816207A (en) | 2008-04-01 |
CN101149975A (en) | 2008-03-26 |
CN101149975B (en) | 2011-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7551497B2 (en) | Memory circuits preventing false programming | |
TWI344152B (en) | Memory circuits and malfunction protection methods thereof | |
TWI430276B (en) | Electrically programmable fuse apparatus | |
US7224633B1 (en) | eFuse sense circuit | |
US7869251B2 (en) | SRAM based one-time-programmable memory | |
TW563129B (en) | Differential voltage sense circuit to detect the state of a CMOS process compatible fuses at low power supply voltages | |
TW434548B (en) | Fuse circuit and redundant decoder | |
TWI380584B (en) | Level shifters and the related input/output buffers | |
TW559827B (en) | Fuse circuit | |
US7501879B1 (en) | eFuse resistance sensing scheme with improved accuracy | |
JP2005302091A (en) | Semiconductor integrated circuit device and program method therefor | |
US7323925B2 (en) | Static, low-voltage fuse-based cell with high-voltage programming | |
US20080030260A1 (en) | Design structure for improving sensing margin of electrically programmable fuses | |
US7978549B2 (en) | Fuse circuit and semiconductor memory device including the same | |
JP2006196079A (en) | Nonvolatile semiconductor memory device | |
JP4886353B2 (en) | Variable resistance fuse circuit | |
JP4818024B2 (en) | Semiconductor memory device | |
JP2016511933A5 (en) | ||
JP2014143284A (en) | Memory element, semiconductor device and writing method | |
KR101210286B1 (en) | Read circuitry for OTP memory | |
TW200836323A (en) | Apparatus and method for trimming integrated circuit | |
JP2006012211A (en) | Semiconductor integrated circuit | |
US7345943B2 (en) | Unclocked eFUSE circuit | |
TWI793970B (en) | Anti-fuse device | |
US9558841B2 (en) | Generating stabilized output signals during fuse read operations |