TWI343657B - - Google Patents

Download PDF

Info

Publication number
TWI343657B
TWI343657B TW096125363A TW96125363A TWI343657B TW I343657 B TWI343657 B TW I343657B TW 096125363 A TW096125363 A TW 096125363A TW 96125363 A TW96125363 A TW 96125363A TW I343657 B TWI343657 B TW I343657B
Authority
TW
Taiwan
Prior art keywords
film
layer
type polycrystalline
titanium
polycrystalline germanium
Prior art date
Application number
TW096125363A
Other languages
Chinese (zh)
Other versions
TW200903827A (en
Inventor
Tsun Neng Yang
Shan Ming Lan
Wei Yang Ma
Original Assignee
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Council filed Critical Atomic Energy Council
Priority to TW096125363A priority Critical patent/TW200903827A/en
Publication of TW200903827A publication Critical patent/TW200903827A/en
Application granted granted Critical
Publication of TWI343657B publication Critical patent/TWI343657B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

1343657 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種n+-型多晶矽薄膜發射層之 製備方法’尤指一種以高溫製程與常壓式化學氣相沉 積 〇又備方法(Atmospheric Pressure Chemical Vapor Deposition,APCVD ) ’搭配一含有鈦基金屬化合物薄 膜並遙晶有多層多晶石夕薄膜之三氧化二銘陶竞基板, 研製之n+-型擴散製程。 【先前技術*】 市場上之矽基薄膜太陽電池,主要係採用 程與電聚增強式化學氣相沉積設備方法 (Plasma-Enhanced Chemical Vap〇r Deposition, PECVD )。將-非晶⑪(八耐咖㈣⑴⑽)或微晶石夕 (Microcrysta⑴neSUic〇n)薄膜,被覆在玻璃板紹 金屬板、矽金屬板、不鏽鋼薄片或塑膠等基板材料上, 其令背電極材料係包括有銘、金、銀或諸如氧化鋼锡1343657 IX. Description of the invention: [Technical field of the invention] The present invention relates to a method for preparing an n+-type polycrystalline germanium film emission layer, particularly a method for preparing a high-temperature process and an atmospheric pressure chemical vapor deposition (Atmospheric) Pressure Chemical Vapor Deposition (APCVD) 'The n+-type diffusion process was developed with a titanium oxide-containing metal compound film and a telecrystalline crystal with a multi-layered polycrystalline stone film. [Prior Art*] The commercially available bismuth-based thin film solar cells are mainly based on Plasma-Enhanced Chemical Vap〇r Deposition (PECVD). A film of amorphous 11 (Alcoa (4) (1) (10)) or Microcrysta (1) neSUic〇n is coated on a substrate such as a glass plate, a metal plate, a stainless steel sheet or a plastic material, and the back electrode material is used. Including gold, silver or tin oxide such as iron oxide

Indium Tin 〇xlde,ιΤ0)及氧化鋅(zinc〇x丨和,Μ) 之透明導電氧化物等材料。 該低溫製程之優點係在該基板材料之選擇上,有 多、ίΐ:二彈:。然而其缺點為石夕薄膜材料缺陷 差、光f轉換效率低及照光穩定性 浆增強式化學氣相沉積設備方法中,被 曰夕相製程裡’需要高稀釋比之石夕原物料於氫Indium Tin 〇xlde, ιΤ0) and zinc oxide (zinc〇x丨 and Μ) transparent conductive oxide and other materials. The advantage of this low temperature process is that there are many choices for the substrate material: two bombs: However, the disadvantage is that the defects of the stone film material are poor, the light f conversion efficiency is low, and the light stability is improved. In the slurry-enhanced chemical vapor deposition device method, the high-dilution ratio of the stone material is required in the process.

(S 1343657 # 氣環境中,如下式: [H2]/[SiH4]> 15, 其中’該[Η2]濃度或流量與該[SiH4]濃度或流量之 比例,必須約大於15倍以上。因此其最大之缺點係薄 膜之成長率低、製程時間長及反應之製造成本高。 目前在薄膜多晶矽太陽電池之研究方面,有多種 技術被開發’其主要分別為固態相結晶法(s〇lid Phase Crystallization,SPC )及鋁金屬誘發結晶法 (Aluminum-Induced Crystallization,AIC )。該固態相 結晶法係利用該電漿增強式化學氣相沉積設備方法, 先沉積一層非晶矽薄膜,再經快速升溫與高溫退火製 程,進而獲得典型之1微米至2微米(μπι)晶粒大小 之多晶矽薄膜。而另一種被目前廣泛研究之鋁金屬誘 發結晶法(如第5圖〜第9圖所示),係首先於一基板 4 1上被覆一層鋁金屬薄膜4 2,再利用該電漿增強 式化學氣相沉積設備方法於該銘金屬薄膜4 2上被覆 一層非晶石夕薄膜4 3 ’在操作溫度約為575°C以下, 進行長時間之退火處理,以形成一種子層4 4,再進 行該電漿增強式化學氣相沉積設備方法或一電子迴旋 共振微波等離子體化學氣相沉積設備方法(Electr〇n Cyclotron Resonance Chemical Vap〇r Deposition, ECR-CVD )之磊晶製程,進而獲得一多晶矽薄膜4 5。然而’该結金屬誘發結晶法之製裎步驟複雜且製 程時間長,其典型之晶粒大小為〇.〗微米至1〇微米。 7 !343657 •nm 裎及電焚增強式化學氣相 >儿積攻備方法之傳統石夕基薄膜太陽電池,由於石夕薄膜 材料缺陷多、薄骐材料品質 ' 、(S 1343657 # In an air environment, the following formula: [H2]/[SiH4]> 15, wherein 'the ratio of [Η2] concentration or flow rate to the [SiH4] concentration or flow rate must be greater than about 15 times. The biggest disadvantages are low growth rate of the film, long process time and high manufacturing cost of the reaction. At present, in the research of thin-film polycrystalline silicon solar cells, various technologies have been developed, which are mainly solid phase crystallization (s〇lid Phase Crystallization (SPC) and Aluminum-Induced Crystallization (AIC). The solid phase crystallization method utilizes the plasma enhanced chemical vapor deposition apparatus method to deposit an amorphous germanium film and then rapidly heat up. And a high temperature annealing process to obtain a typical polycrystalline germanium film of 1 micron to 2 micron (μm) grain size, and another widely studied aluminum metal induced crystallization method (as shown in Figures 5 to 9), Firstly, a layer of aluminum metal film 42 is coated on a substrate 41, and then the plasma-enhanced chemical vapor deposition device is used to coat the metal film 42 with an amorphous layer. The film 4 3 ' is annealed for a long time at an operating temperature of about 575 ° C or less to form a sub-layer 4 4 , and then the plasma enhanced chemical vapor deposition apparatus method or an electron cyclotron resonance microwave plasma is performed. An epitaxial process of a chemical vapor deposition apparatus method (Electr〇n Cyclotron Resonance Chemical Vap〇r Deposition, ECR-CVD), thereby obtaining a polycrystalline germanium film 45. However, the process of the metallization induced crystallization process is complicated and the process is complicated. Long time, its typical grain size is 〇.〗 Micron to 1 〇 micron. 7 ! 343 657 • nm 裎 and electric combustion enhanced chemical gas phase _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Shi Xi film material defects, thin material quality ',

差,且薄膜成長率低、製程時間長及反應製 =成本^因此並不適合目前講求品質與成本並重之 =場需求、採心金屬誘發結晶法之薄❹晶石夕太 %電池’則係必需花費長時間之複雜製程,因此亦益 f作低成本批量製造。再者,該非⑽或微晶石夕薄膜 ;術仍為發展中之技術,其尚有未知之變數隱藏於其 中’故’一般習用者係無法符合使用者於實際使用時 之所需。 【發明内容】 本發明之主要目的係在於,利用高溫製程與常壓 式=學氣相沉積設備方法,搭配一含有鈦基金屬化合 物薄膜並磊晶有多層多晶矽薄膜之三氧化二鋁陶瓷基 板,以研製η'型擴散製程。 本發明之次要目的係在於,該鈦基金屬化合物薄 膜係可以具相同製程、目的及功能之二矽化鈦 (TiSi2 )、亂化欽(τίΉ )、碳化欽(TiC )、二蝴化鈇 (TiB2)、及碳氮化鈦(TiCxNy)等金屬化合物為薄膜 材料。 為達以上之目的,本發明係一種n+_型多晶矽薄膜 發射層之製備方法1先選擇一三氧化二鋁陶瓷基板作 8 1343657 ♦ 為多晶矽薄膜太陽電池元件之基板,且該三氧化二銘 陶瓷基板上係彼覆一層鈦基金屬化合物薄膜,並於該 鈦基金屬化合物薄膜上依序磊晶一 口+_型多晶石夕薄膜 背面電場層(Back Surface Field,BSF)及—口-_型多晶 石夕薄膜光吸收層所成之磊晶結構,在一高溫條件下, 利用一 ¥壓式化學氣相沉積設備方法,將一反應氣體 磷化氫(Phosphine,PH3)擴散沉積在該p-_型多晶矽 薄膜光吸收層上,使該磷化氫内含之磷原子於該口__Poor, and the film growth rate is low, the process time is long, and the reaction system = cost ^ is therefore not suitable for the current quality and cost. = Field demand, thin metal crystallization of the metal-induced crystallization method. It takes a long time for complicated processes, so it is also beneficial for low-cost mass production. Furthermore, the non-(10) or microcrystalline film is still a developing technology, and there are unknown variables hidden in it. The general practitioners cannot meet the needs of the user in actual use. SUMMARY OF THE INVENTION The main object of the present invention is to use a high-temperature process and an atmospheric pressure type vapor deposition apparatus method, and a titanium oxide-containing ceramic film containing a titanium-based metal compound film and epitaxially having a polycrystalline germanium film. To develop the η' type diffusion process. A secondary object of the present invention is that the titanium-based metal compound film can be made of titanium dioxide (TiSi2), chaotic (τίΉ), carbonized (TiC), or bismuth bismuth (TiC2) having the same process, purpose, and function. A metal compound such as TiB2) and titanium carbonitride (TiCxNy) is a film material. For the purpose of the above, the present invention is a method for preparing an n+_ type polycrystalline germanium film emissive layer. First, a first aluminum oxide ceramic substrate is selected as a substrate for a polycrystalline germanium thin film solar cell element, and the third oxide is used. The ceramic substrate is covered with a titanium-based metal compound film, and the titanium-based metal compound film is sequentially epitaxially epitaxially formed with a +_-type polycrystalline stone film back surface field (BSF) and - mouth-_ The epitaxial structure formed by the polycrystalline stone thin film light absorbing layer is diffused and deposited by a reactive gas phosphine (Phosphine, PH3) under a high temperature condition by a pressure-type chemical vapor deposition apparatus method. On the p-_ type polycrystalline germanium film light absorbing layer, the phosphorus atom contained in the phosphine is in the mouth __

型多晶矽4膜光吸收層表面上進行n+_型擴散沉積進 而形成一層披覆在P—·型多晶矽薄膜光吸收層上且小 於1〇〇〇埃厚度之n+_型多晶㈣膜發射層(n+_pcsi:p emitter)。 【實施方式】 請參閱『第1圖〜第4圖』所示,係分別為本發 明:製作流程示意圖、本發明之多晶矽薄膜磊晶結構On the surface of the polycrystalline germanium 4 film light absorbing layer, n+_ type diffusion deposition is performed to form a layer of n+_ type polycrystalline (tetra) film emission which is coated on the P-type polycrystalline germanium film light absorbing layer and less than 1 〇〇〇 thick. Layer (n+_pcsi:p emitter). [Embodiment] Please refer to "Fig. 1 to Fig. 4" for the purpose of the present invention: a schematic diagram of the fabrication process, and the polycrystalline germanium film epitaxial structure of the present invention.

I::旅本發明之常壓式化學氣相沉積設備方法示意 一 .士 X明之n_型多晶矽薄膜發射層示意圖。如圖所 不•本^發^明位一絲 + ’、 n -型多晶矽薄膜發射層之製備方 法,其至少包括下列步驟·· 展多曰(二三氧化二紹陶究基板並依序蟲晶有多 為〇Γ毫乎/ 1:如第2圖所示,先選擇一厚度約 两 U.1 笔米(mm) $ ! Λ 古 k 一 p 2 1作為多晶㈣膜广米之三氧化二銘陶究基板 夕潯犋太陽電池元件之基板,且該三氧 9 1343657 化二叙陶瓷基板2 1上係披覆一層約looo埃(A)至 5〇〇〇埃厚度之鈦基金屬化合物薄膜2 2,由具有多晶 石夕薄膜種子層功能之鈦基金屬化合物薄膜2 2作為背 電極(Back Contact),並於該鈦矽金屬化合物薄膜2 2上依序蟲晶一小於或等於1微米()厚度之p+_ 型多晶石夕薄膜背面電場層(Back Surface Field, BSF ) 2 3、及一約達15微米厚度之p'型多晶矽薄膜光吸 收層2 4 ’其中’位於該p_-型多晶矽薄膜光吸收層2 4外表面晶界2 4 2處之矽晶粒2 4 1,其尺寸大小 係大於1 〇微米;該鈦基金屬化合物薄膜2 2係可以二 石夕化鈦(TiSi2 )、II化鈦(TiN )、碳化鈦(Tic )、二 侧化鈦(TiB2)或碳氮化鈦(TiCxNy)等金屬化合物 為薄膜材料; (B )常壓式化學氣相沉積設備方法(Mm〇sphericI:: The method of the atmospheric pressure chemical vapor deposition apparatus of the present invention is shown in Fig. 1. Schematic diagram of the n-type polycrystalline germanium film emission layer of X. As shown in the figure, the method for preparing a +-, n-type polycrystalline germanium film emission layer comprises at least the following steps: · exhibiting a plurality of bismuth oxides How much is / / / 1: As shown in Figure 2, first select a thickness of about two U.1 pen meters (mm) $ ! Λ ancient k a p 2 1 as polycrystalline (four) film wide rice trioxide The second crystal is a substrate of a solar cell component, and the trioxane 9 1343657 is coated with a titanium-based metal compound having a thickness of about looo angstroms (A) to 5 angstroms. The film 2 2 is made of a titanium-based metal compound film 2 2 having a polycrystalline thin film seed layer function as a back contact, and the solute crystal is less than or equal to 1 on the titanium-bismuth metal compound film 2 2 . a p+-type polycrystalline silicon film light absorbing layer of a p+-type polycrystalline smectic film (BSF) 2 3 and a thickness of about 15 μm. P_-type polycrystalline germanium film light absorbing layer 2 4 outer surface grain boundary 2 4 2 矽 grain 2 4 1, its size is greater than 1 〇 The titanium-based metal compound film 22 can be made of TiSi2, TiN, TiC, TiB2 or TiCxNy. Metal compound is a film material; (B) atmospheric pressure chemical vapor deposition equipment method (Mm〇spheric

Pressure Chemical Vapor Deposition, APCVD) 1 2 : 如第3圖所示,利用一常壓式化學氣相沉積設備方法 3 ’將一反應氣體磷化氫(phosphine, PH3)擴散沉積 在該P-型多晶碎薄膜光吸收層2 4上,其擴散溫度約 800°C至1000oC,使該填化氫内含之碟原子於該p__ 型夕aa石夕溥膜光吸收層2 4表面上進行n+_型擴散沉 積;以及 (c) n+-型多晶矽薄膜發射層i 3 :如第4圖所 示,進而形成一層彼覆在p-_型多晶矽薄膜光吸收層2 4上且小⑤画埃厚度之η+·❹晶㈣膜發二層 1^43^57Pressure Chemical Vapor Deposition, APCVD) 1 2 : As shown in Fig. 3, a reactive gas phosphine (PH3) is diffused and deposited on the P-type by an atmospheric pressure chemical vapor deposition apparatus method 3 ' The crystalline film light absorbing layer 24 has a diffusion temperature of about 800 ° C to 1000 ° C, so that the dish atoms contained in the filled hydrogen gas are n+ on the surface of the p__ type ah aa 石 溥 溥 film light absorbing layer 24 _ type diffusion deposition; and (c) n+-type polycrystalline germanium film emission layer i 3 : as shown in FIG. 4, further forming a layer on the p-_ type polycrystalline germanium film light absorbing layer 24 and having a thickness of 5 Å η+·❹晶(四)膜发发层1^43^57

Upc Si:P emiUer) 2 5,其中,該n+-型多晶矽薄 膜發射層2 5係摻雜有ίο!8至i〇19磷原子/立方釐米 之濃度。Upc Si:P emiUer) 2 5, wherein the n+-type polysilicon thin film emissive layer 25 is doped with a concentration of ίο! 8 to i 〇 19 phosphorus atoms/cm 3 .

如是,利用高溫製程與該常壓式化學氣相沉積設 備方法,搭配以三氧化二鋁陶瓷材料為基板,及以鈦 基金屬化合物薄膜為多晶矽薄膜太陽電池元件之背電 極材料,在兼具多晶矽薄膜種子層功能之鈦基金屬化 合物薄膜上,直接磊晶該p+_型多晶矽薄膜背面電場層 及P _型多晶矽薄膜光吸收層所成之結構,研製n+_型 擴散製程,藉此可直接獲得一小於1〇〇〇埃厚度之n+_ 型多晶矽薄膜發射層;並且,由於多晶矽材料有較高 之電子電洞移動率(Mobimy)、較遠之電子電洞擴散 距離(Diffusion Length )、及較長久之電子電洞重合時 間(Recombination),進而可使本發明之多晶矽薄膜 太陽電池元件不僅具有高遙晶成長率、高結晶品質、 高光電轉換效率、及良好之照光穩定性之外,亦能有 效降低設備建立之成本及簡化製程。 綜上所述,本發明係1η+·型多❹薄膜發射層 之製備方法,可有效改善習用之種種缺點將含有鈦 基金屬化合物薄膜並蟲晶有多層多晶石夕薄膜之三氧化 二銘陶究基板,利用高溫製程與常壓仏學氣相沉積 設備方法,可直接獲得—η、型多晶”膜發射層藉 此可使多晶矽薄臈太陽電池元件在具有高蟲晶成‘ 率、尚結晶品質 '高光電轉換效率、及良好之昭光移 1343^57 = 亦能有效降低設備建立之成本及 運而使本發明之產生能更進步、更實用、 使用者之所須’確已符合發明專^ 法提出專射請。 "之要件For example, the high-temperature process and the atmospheric pressure chemical vapor deposition device method are combined with the aluminum oxide ceramic material as the substrate, and the titanium-based metal compound film is the back electrode material of the polycrystalline silicon thin film solar cell element, and the polycrystalline silicon is combined On the titanium-based metal compound film of the film seed layer function, the structure of the p+_-type polycrystalline germanium film back surface electric field layer and the P_-type polycrystalline germanium film light absorbing layer is directly epitaxially formed, and an n+_ type diffusion process is developed. Directly obtaining an n+_ type polycrystalline germanium film emitting layer having a thickness of less than 1 Å; and, because of the higher electron hole mobility (Mobimy) and the farther electron diffusion distance (Diffusion Length) of the polycrystalline germanium material And a longer electron tunnel recombination time, which in turn can not only have the high crystal growth rate, high crystal quality, high photoelectric conversion efficiency, and good illumination stability of the polycrystalline silicon thin film solar cell element of the present invention. It can effectively reduce the cost of equipment establishment and simplify the process. In summary, the present invention is a method for preparing a 1 η+· type multi-ruthenium film emissive layer, which can effectively improve various disadvantages of the conventional use, and contains a titanium-based metal compound film and has a multi-layered polycrystalline stone film. The ceramic substrate can be directly obtained by the high-temperature process and the atmospheric pressure vapor deposition equipment method, and the polycrystalline silicon solar cell component can be made to have a high insect crystal rate. The crystallization quality 'high photoelectric conversion efficiency, and good Zhaoguang shift 1343^57 = can also effectively reduce the cost of equipment establishment and make the invention more progressive and practical, and the user must have met Invented the special law to propose a special shot.

簡化製 更符合 ’爰依 *惟以上所述者,僅為本發明之較佳實施例而已, :不能以此限定本發明實施之範圍;&,凡依本發明 申請專利範圍及發明說明書内容所作之簡單的等效變 化與修飾,皆應仍屬本發明專利涵蓋之範圍内。The simplified system is more in accordance with the above description, and is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto; & The simple equivalent changes and modifications made are still within the scope of the invention.

1343657 【圖式簡單說明】 第1圖,係本發明之製作流程示意圖。 第2圖,係本發明之多晶矽薄膜磊晶結構示意圖。 第3圖’係本發明之常壓式化學氣相沉積設備方法 示意圖。 第4圖,係本發明之n+_型多晶矽薄膜發射層示意 圖0 ® 第5圖’係習用之基板示意圖。 第6圖’係習用之鋁金屬薄膜被覆示意圖。 第7圖,係習用之沉積非晶矽薄膜示意圖。 第8圖’係習用之種子層示意圖。 第9圖’係習用之多晶矽薄膜示意圖。 【主要元件符號說明】 _ (本發明部分) 步驟1 1〜1 3 三氧化二紹陶瓷基板21 欽基金屬化合物薄膜2 2 ρ+·型多晶矽薄膜背面電場層2 3 Ρ--型多晶矽薄膜光吸收層2 4 石夕晶粒2 4 1 晶界2 4 2 13 1343657 n+-型多晶矽薄膜發射層2 5 常壓式化學氣相沉積設備方法3 (習用部分) 基板4 1 在呂金屬薄膜4 2 非晶矽薄膜4 3 種子層4 4 多晶矽薄膜4 51343657 [Simple description of the drawings] Fig. 1 is a schematic view showing the production process of the present invention. Fig. 2 is a schematic view showing the epitaxial structure of the polycrystalline germanium film of the present invention. Fig. 3 is a schematic view showing the method of the atmospheric pressure chemical vapor deposition apparatus of the present invention. Fig. 4 is a schematic view showing the substrate of the n+_ type polycrystalline germanium film of the present invention. Fig. 0 ® Fig. 5 is a schematic view of a substrate. Fig. 6 is a schematic view showing the coating of a conventional aluminum metal film. Figure 7 is a schematic view of a conventional deposited amorphous germanium film. Figure 8 is a schematic view of a conventional seed layer. Figure 9 is a schematic view of a conventional polycrystalline germanium film. [Main component symbol description] _ (part of the present invention) Step 1 1 to 1 3 Oxide oxide ceramic substrate 21 Chinky metal compound film 2 2 ρ+· type polycrystalline germanium film back surface electric field layer 2 3 Ρ--type polycrystalline germanium film light Absorbing layer 2 4 Shixi grain 2 4 1 grain boundary 2 4 2 13 1343657 n+-type polycrystalline germanium film emitting layer 2 5 atmospheric pressure chemical vapor deposition equipment method 3 (conventional part) substrate 4 1 in Lu metal film 4 2 Amorphous germanium film 4 3 seed layer 4 4 polycrystalline germanium film 4 5

1414

Claims (1)

13436571343657 申請專利範圍:Patent application scope: 一種n+-型多晶矽薄膜發射層之製備方法,其至少 包括下列步驟: (A)選擇一三氧化二鋁陶瓷基板,且該三氧 化二铭陶瓷基板上係彼覆一層鈦基金屬化合物薄 膜 P+-型多晶石夕薄膜背面電場層(BackSurface Field, BSF)及一 p—型多晶矽薄膜光吸收層; (B )利用一常壓式化學氣相沉積設備方法 (Atmospheric Pressure Chemical Vapor Deposition, APCVD),將一磷化氫(ph〇sphine,pH3)氣體於該 P—型多晶矽薄膜光吸收層表面進行n+-型擴散沉 積;以及 (C)形成一披覆在p一型多晶矽薄膜光吸收 層上之n+-型多晶矽薄膜發射層(n+_pc Si:p emitter)。 2 ·依申請專利範圍第1項所述之n+_型多晶石夕薄膜發 射層之製備方法,其中,該鈦基金屬化合物薄膜係 可以二矽化鈦(TiSh )、氮化鈦(TiN )、碳化鈦 (TiC)、二硼化鈦(TiB2)或碳氮化鈦(TiCxNy) 等金屬化合物為薄膜材料。 3 .依申請專利範圍第i項所述之n+_型多晶矽薄膜發 射層之製備方法,其中,該鈦基金屬化合物薄膜之 15 S 4 厚度係為_埃(人)至_埃。 =請專利範圍第以所述之 射層之製備方法, 曰日夕/#膜fx 你A北 /、尹’該鈦基金屬化合物每膜# 作為背電極(Back cont :物輕係 子層功能。 並八有夕晶矽薄膜種 範圍第1項所述…多晶㈣膜發 射層之製備方法,其二 寻胲、 # ^ Α Λ 1 ^ —乳化一鋁陶瓷基板之 子度係為0.1毫米(mnO^.o毫米。 ,依申請專利項所述之n 射層之製備方法,盆中e m曰石夕屬膜發 7 ,、中,该p+-型多晶矽薄膜背面 厚度係小於或等於1微米Um)。 ^請專· _工項所述之η+· :::=’其中―多晶伽2 :之厗度係!微米至15微米,且其晶粒尺寸大 小係大於1 〇微米。 8 2申明專利範圍第1項所述之η+_型多晶矽薄膜發 層之製備方法,其中,該擴散溫度係為 800oC 至 1000oC。 依申叫專利1έ圍第1項所述之η+·型多㈣薄膜發 射層之製備方法,其中,該η+·型多晶㈣膜發射 層之厚度係小於1 〇〇〇埃。 1343657 1 Ο .依申請專利範圍第1項所述之n+-型多晶矽薄膜 發射層之製備方法,其中,該n+-型多晶矽薄膜發 射層係摻雜有1018至1019磷原子/立方釐米之濃度。A method for preparing an n+-type polycrystalline germanium thin film emissive layer comprises at least the following steps: (A) selecting a triammonia ceramic substrate, and the trioxide ceramic substrate is coated with a titanium-based metal compound film P+- a BackSurface Field (BSF) and a p-type polycrystalline silicon film light absorbing layer; (B) using an atmospheric pressure chemical vapor deposition apparatus (APCVD), a phosphine (pH 3 ) gas is subjected to n + -type diffusion deposition on the surface of the P-type polycrystalline germanium film light absorbing layer; and (C) is formed on the p - type polycrystalline germanium film light absorbing layer. n+-type polycrystalline germanium film emission layer (n+_pc Si:p emitter). 2) The method for preparing an n+_ type polycrystalline lithi film emission layer according to claim 1, wherein the titanium-based metal compound film is titanium dihydride (TiSh) or titanium nitride (TiN) Metal compounds such as titanium carbide (TiC), titanium diboride (TiB2) or titanium carbonitride (TiCxNy) are thin film materials. 3. The method for preparing an n+_ type polycrystalline germanium film emitting layer according to the invention patent scope, wherein the titanium-based metal compound film has a thickness of 15 S 4 of from Å Å to Å Å. = Please refer to the preparation method of the shot layer mentioned in the patent scope, 曰日夕/#膜fx You A North /, Yin 'The titanium-based metal compound per film # as the back electrode (Back cont: light-weight sub-layer function. And the method for preparing the polycrystalline (tetra) film emissive layer, the second method, the #^ Α Λ 1 ^ - the emulsified aluminum ceramic substrate has a sub-degree of 0.1 mm (mnO). ^.omm., according to the preparation method of the n-ray layer described in the patent application, in the pot, the thickness of the back surface of the p+-type polycrystalline germanium film is less than or equal to 1 micrometer Um) ^Please special · _ η+· :::='In the project, the polycrystalline gamma 2: the twist system! Micron to 15 microns, and its grain size is greater than 1 〇 micron. 8 2 The preparation method of the η+_ type polycrystalline germanium film hair layer described in the first paragraph of the patent scope, wherein the diffusion temperature is 800oC to 1000oC. The η+ type is described in the first item of the patent 1 The method for preparing a thin film emissive layer, wherein the thickness of the η+· type polycrystalline (tetra) film emissive layer is less than 1 〇〇〇. 3657 1 . The method for producing an n+-type polycrystalline germanium film emissive layer according to claim 1, wherein the n+-type polycrystalline germanium film emitting layer is doped with a concentration of 1018 to 1019 phosphorus atoms/cm 3 . 1717
TW096125363A 2007-07-12 2007-07-12 Manufacturing method of n<+> type polysilicon emitter TW200903827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096125363A TW200903827A (en) 2007-07-12 2007-07-12 Manufacturing method of n<+> type polysilicon emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096125363A TW200903827A (en) 2007-07-12 2007-07-12 Manufacturing method of n<+> type polysilicon emitter

Publications (2)

Publication Number Publication Date
TW200903827A TW200903827A (en) 2009-01-16
TWI343657B true TWI343657B (en) 2011-06-11

Family

ID=44722201

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096125363A TW200903827A (en) 2007-07-12 2007-07-12 Manufacturing method of n<+> type polysilicon emitter

Country Status (1)

Country Link
TW (1) TW200903827A (en)

Also Published As

Publication number Publication date
TW200903827A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
TW200947729A (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
TW201203591A (en) Hazy zinc oxide film for shaped CIGS/CIS solar cells
CN103050553B (en) Crystalline silicon solar cell with double-side passivation and preparing method thereof
CN103000742A (en) Solar battery with band gap gradual changing silicon quantum dot multilayer film and production method thereof
TW201003939A (en) Method and apparatus for manufacturing solar battery, and solar battery
CN112542521A (en) P-type back localized doped cell and preparation method thereof
JP5487449B2 (en) Solar cell
US8207013B2 (en) Method of fabricating silicon nanowire solar cell device having upgraded metallurgical grade silicon substrate
US20120018733A1 (en) Thin Film Solar Cells And Other Devices, Systems And Methods Of Fabricating Same, And Products Produced By Processes Thereof
CN100416863C (en) Cheap polysilicon thin film solar cell
US20090183772A1 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
CN102064239B (en) Method for producing polycrystalline silicon thick-film solar battery
CN103594550A (en) Preparation method of patterned doped crystalline silicone thin film for solar cell
CN102969367A (en) P-type silicon back passive film of crystalline silicon solar cell and preparation method thereof
TWI343657B (en)
CN101894871A (en) High-conversion rate silicon crystal and thin film compound type unijunction PIN (Positive Intrinsic-Negative) solar battery and manufacturing method thereof
CN102738248A (en) Optoelectronic device and method for manufacturing thereof
CN102881776B (en) A kind of preparation method and solar cell carrying on the back passivation crystal silicon solar energy battery
CN209675296U (en) Back contacts solar cell
CN103594541A (en) Polycrystalline silicon/monocrystalline silicon heterojunction structure applied to solar cell and preparation method thereof
CN209526095U (en) Back contacts solar cell
JP2011519158A (en) Method for producing silicon thin film solar cell
US7863080B1 (en) Process for making multi-crystalline silicon thin-film solar cells
TW200905896A (en) Fabricating method of polysilicon thin-film solar cell
TW200903818A (en) Polysilicon thin-film epitaxy manufacturing method for polysilicon thin-film solar cell device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees