TW200905896A - Fabricating method of polysilicon thin-film solar cell - Google Patents

Fabricating method of polysilicon thin-film solar cell Download PDF

Info

Publication number
TW200905896A
TW200905896A TW96126462A TW96126462A TW200905896A TW 200905896 A TW200905896 A TW 200905896A TW 96126462 A TW96126462 A TW 96126462A TW 96126462 A TW96126462 A TW 96126462A TW 200905896 A TW200905896 A TW 200905896A
Authority
TW
Taiwan
Prior art keywords
film
titanium
polycrystalline
layer
solar cell
Prior art date
Application number
TW96126462A
Other languages
Chinese (zh)
Other versions
TWI341034B (en
Inventor
Tsun-Neng Yang
Shan-Ming Lan
Jin-Zhen Jiang
Wei-Yang Ma
Jian-De Gu
yu-xiang Huang
Original Assignee
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Council filed Critical Atomic Energy Council
Priority to TW96126462A priority Critical patent/TW200905896A/en
Publication of TW200905896A publication Critical patent/TW200905896A/en
Application granted granted Critical
Publication of TWI341034B publication Critical patent/TWI341034B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention provides a fabricating method of a polysilicon thin-film solar cell, which uses an Al2O3 ceramic substrate and a titanium-based metal compound thin-film including a polysilicon thin-film seed function to be the substrate and the back electrode of the polysilicon thin-film solar cell, respectively. Under a high temperature and normal pressure CVD (chemical vapor deposition) process, perform coating sequentially to from a polysilicon thin-film layer structure. Then perform a SiCNO:Ar plasma inactivation process to the polysilicon thin-film layer structure to form an anti-reflection layer of SiCN/SiO2, fabricating a p-type ohmic contact on the titanium-based metal compound thin-film, and fabricating an n-type ohmic contact on an n+-type polysilicon thin-film emission layer of the polysilicon thin-film layer structure. Accordingly, the present invention not only has a high epitaxy growth rate, high crystallization quality, high photoelectric conversion efficiency and good irradiation stability, but also effectively decreases the cost of establishing equipments and simplifies the related fabricating process.

Description

200905896 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種多晶矽薄骐太陽電池之製備 .r 方法,尤指一種利用高溫製程及常壓式化學氣相沉積 設備方法(Atmospheric Pressure Chemical Vapor Deposition, APCVD )使用多晶矽材料,除了可具有高 磊晶成長率、高結晶品質、高光電轉換效率及良好之 照光穩定性外,亦能有效降低設備建立之成本及簡化 製程。 【先前技術】 市場上之矽基薄膜太陽電池,主要係採用低溫製 程與電衆增強式化學氣相沉積設備方法 (Plasma-Enhanced Chemical Vapor Deposition, PECVD )。將一非晶矽(Am〇rph〇us SUic〇n )或微晶矽 (MiCr〇crysta丨丨ine SUic〇n)薄膜,被覆在玻璃板、鋁 金屬板、矽金屬板、不鏽鋼薄片或塑膠等基板材料上, 其中背電極材料係包括有紹、金、銀或諸如氧化銦錫 (Indium Tin 0xide,IT〇)及氧化鋅(〇χ< Zn〇 ) 之透明導電氧化物等材料。 該低溫製程之優點係在該基板材料之選擇上,有 較大^空間與彈性,然而其缺點為矽薄膜材料缺陷 多、薄膜材料品質差、光電轉換效率低及照光穩定性 差。而在該電漿增強式化學氣相沉積設備方法中,被 200905896 覆微晶石夕薄膜製程裡,需要高稀釋比之石夕原物料於氫 氣環境中’如下式: [H2]/[SiH4]>15, 其中,該[Η2]濃度或流量與該[SiH4]濃度或流量之 比例’必須約大於15倍以上。因此其最大之缺點係薄 膜之成長率低、製程時間長及反應之製造成本高。 目釗在溥膜多晶石夕太陽電池之研究方面,有多種 技術被開發,其主要分別為固態相結晶法(s〇Hd Crystallization,spc )及鋁金屬誘發結晶法 (Ahiminum-Indi丨ced Crystallization,AIC )。該固態相 結晶法係利用該電漿增強式化學氣相沉積設備方法, 先〉儿積一層非晶矽薄膜,再經快速升溫與高溫退火製 程,進而獲得典型之1微米(μπ〇至2微米晶粒大小 之多晶矽薄膜。而另一種被目前廣泛研究之鋁金屬誘 發結晶法(如第9圖〜第1 3圖所示),係首先於一基 板7 1上被覆一層鋁金屬薄膜7 2,再利用該電漿辩 強式化學氣相沉積設備方法於該鋁金屬薄膜7 2上被 覆一層非晶矽薄膜7 3 ’在操作溫度約為575°C以 下’進行長時間之退火處理,以形成一種子層7 4, 再進行该電漿增強式化學氣相沉積設備方法或一電子 迴紅共振微波等離子體化學氣相沉積設備方法 (Electron Cyclotron Resonance Chemical Vapor DeposUion,ECR-CVD)之磊晶製程,進而獲得—多晶 石夕薄膜7 5。然而’該鋁金屬誘發結晶法之製程步驟 7 200905896 製程時間長’其典型之晶粒大小為。.1微米至 二:::::::;::!:=化學氣相 材料缺陷多、薄膜材心f %电池,由於石夕奪膜 差门且薄膜成長率低、製程時間長及反應製 &成本円,因此並不適人 市揚命ψ ^个週D目别溝求品質與成本並重之 陽電:’削:採用鋁金屬誘發結晶法之薄膜多晶矽太 =二1係:需花費長時間之複雜製程,因此亦無 技術仍為者’該非晶石夕或微晶石夕薄膜 [故习之技術’其尚有未知之變數隱藏於其 之所需。’又習用者係無法符合使用者於實際使用時 【發明内容】 式化ί!: 月之主要目的係在於,利用高溫製程及常壓 成長率、高結晶品質、高光電轉換效率及良 之,卜、_定性外,亦㈣效 簡化製程。 两逯立之成本及 為達以上之目的,本發明 電池之製備方法,係先選擇一,〜夕涛腰太陽 為多晶㈣膜太陽電池3之::化:,基板作 陶瞧上被覆-欽基金屬化合物薄膜。二: 200905896 與常壓式化學氣相沉積設備方法下,藉㈣子掺雜製 程,可在該鈦基金屬化合物薄膜上直接獲得一 p+_型多 ,曰曰石夕薄膜背面電場層及一 p'型多晶石夕薄膜光吸收 層’再於鱗原子掺雜製程中於該p—·型多晶梦薄膜光吸 收層上直接形成—n+型多晶碎薄膜發射層(n+_pc si:p emmer),藉此構成—多晶㈣膜層結構。並由該多晶 石夕薄膜層結構進行石夕碳氮氧氬(SiCN〇 處理以形成一碳氮化石夕/二氧化石夕(Si⑽1〇2)^匕 射曰後利用圖形光罩製程於該多晶石夕薄膜層結構 之表:上進行局部區域之蝕刻製程,其蝕刻深度自多 日日石夕薄膜層結構表面至背電極上表面,再進而於其上 =^ p-型歐姆接觸(〇hmic c_act ),接著以該圖形 先罩I程於該η'型多以薄膜發射層之上表面局部 £域被覆-鈦/!巴/銀(Ti/Pd/Ag)金屬薄膜,並進行退 火處理以製作一 n-型歐姆接觸。藉此,以完成—多晶 石夕薄膜太陽電池元件。 aa 【實施方式】 明::芩閱第1圖〜第8圖』所示,係分別為本發 干Πΐ示意圖、本發明之三氧化二紹陶兗基板 :忍圖、本發明之欽金屬薄膜被覆示意圖、本發明之 弟/儿積鈦矽金屬化合物薄膜示意圖、本發明之第二 :㈣碎金屬化合物薄膜示意圖、本發明之欽基金; 。物㈣不意圖、本發明之多晶哎薄膜層結構示意 200905896 2、本發明之⑪碳氮氧氬電㈣化處理示意圖、本發 立:P-型歐姆接觸示意圖及本發明之η,歐姆接觸示 二二圖所示:本發明係-種多晶石夕薄膜太陽電池 之I備方法,其至少包括下列步驟: (Α)取-三氧化二鋁陶瓷基板1 1 :如第2圖 1二選擇—三氧化二銘陶究基板2丄作為多晶石夕薄 ,太%電池it件之基板,且該三氧化二㈣ 1之厚度約為(M毫米(贿…。毫米; (B )電子鎗式薄膜被覆系統(E_gun㈣㈣此⑽ s::m) 12:如第3圖所示,利用-電子鎗式薄膜 被设糸統’在室溫至2,c溫度條件下,於該三氧化 一1呂陶竞基板2 1上被覆—層約500埃U)至5_ 埃厚度之鈦金屬薄膜2 2 ; 曰& ( C)在披覆—厚度為1000埃至5000埃且呈現結 =態之鈦基金屬化合物薄膜製程中,今以鈦矽金屬: 。物(TiSi2 )溥骐為例,對矽原子與鈦原子間進行相 互擴散,而該擴散之方法係可為: (a )常壓式化學氣相沉積設備方法 (Atmospheric Pressure Chemical Vapor Deposition, A_PCVD)擴散披覆1 3a:如第4A圖及第4d圖所 不产利用一常壓式化學氣相沉積設備方法4,將-反 應氣體二氣碎甲燒在該鈦金屬_ 2 2表面上進行擴 散製程,其擴散製程溫度約800。(:至1100。(:,使該二 亂石夕甲烧内含之妙原子與該鈦金屬薄膜2 2内含之鈦 200905896 鋁 原子’彼此間相互擴散,以形成被覆在該三氧化 陶瓷基板2 1上呈結晶態之鈦矽金屬化合物薄膜2 4,其中,該鈦矽金屬化合物薄膜2 4之晶粒係大於 微米(μΐΏ)尺寸’且該鈦矽金屬化合物薄膜2 4之片 電阻(Sheet Resistance)係小於〇.5歐姆/平方公分 (Ω/cm2);以及 (b )電漿增強式化學氣相沉積設備方法 (PLasma-Enhanced Chemical Vapor Deposition, pecvd ) 13b:如第4B圖及第4C圖所示,利用一 電漿增強式化學氣相沉積設備方法,於該鈦金屬薄膜 2 2上被覆一厚度約1000埃至10000埃之非晶矽 (Amorph〇US-SUicon)薄膜2 3、亦或係先在該三氧 化一㈣究基板2 1上被覆該非晶石夕薄膜2 3後,再 由該電子料薄職覆线,於該非晶㈣膜2 3上 被覆該鈦金屬薄膜2 2 ’進而使用一高溫爐退火裝置 5對該非晶矽薄膜2 3與鈦金屬薄膜2 2進行加埶, 至900。。範圍之高溫合成處理,使該非晶碎 肩子:内3之矽原子與該鈦金屬薄膜22内含之鈦 原子’彼此間相互擔勒& 穿其姑”成被覆在該三氧化二鋁陶 是基板21上呈結晶態之鈦矽金屬化合物 杈,再將溫度提昇至】' 2 4 程,其中,該晶^ 進行晶粒成長製 ^ "之大小約小於微米尺寸,而节奸 金屬化合物薄膜2 4 ^鈦矽 分.今非曰功“ 电阻如小於〇·5歐姆/平方公 ’ ^夕㈣23與該鈦金屬薄膜22之厚度比 200905896 例約為2:1 ; (c)常壓式化學氣相沉積設備方法直接合成工 4 :該鈦矽金屬化合物薄臈之製備除了上述二種方式 外’亦可直接在該二氧化二紹陶瓷基板上由該常塵1 化學氣相沉積設備方法,將該二氣碎甲^ (DiChl〇rosilane,SiH2Cl2)與—四氣化碳(丁 tetrachloride, TiCl4 )等原物料,直接合成。 -(D )磊晶成一多晶矽薄膜層結構丄5 :如第5 圖所示,在管C^OOCPC高溫條件下,利用該常壓 式化學氣相沉積設備方法,將反應氣體二氣硬甲产及 -乙贼(Dib_e,B2H6 )蟲晶於該鈦石夕金屬化:物 上,使該二氣以垸内含之碎原子與該乙哪 位内3之則子相互㈣反應,彳㈣成-小於或等於 1微米厚度之p+-型多晶碎g #北 ; 夕日日夕,寻膜背面電場層2 5後,將 高溫提昇至瞻。〇:以上,並以該广型二: 面電場層2 5為成核層,在其表面以^時間約=1 鐘,且磊晶速度約大於〇 刀 該二氣石夕甲烧内含之石夕=刀知.(—),使 < y原子與该乙硼烷内含 相互摻雜反應,以形成_ 又朋原子 〜战約1微米至丨5微米厚庶 聖夕晶矽溥膜光吸收層 ' 化氫π— PH 1 ^ 後再將一反應氣㈣ . ’ Η3)擴散沉積在該Ρ —-型多曰石々巧 犋光吸收層2 6上,π姐i ρ丄夕日日矽溽 ^擴政溫度約800oC至丨〇〇Πγ 使該磷化氫内含之碟眉工# 000 C 1 夕牛原子於該p-_型多晶矽,策 收層2 6表面上進行n+ 丨 夕日日y 4¾先吸 丁 η _型擴散沉積,以形成—坡覆在 200905896 型,薄膜光吸收層26上且厚度小於ι〇〇〇 矣之型夕晶石夕薄膜發射層(n'pcSi:pe 7,藉此以構成一容曰访祛π s,丨 . 再取夕日日石夕潯膜層結構1,苴中,兮n- 糸大於10微米,且摻雜蝴原子之濃度為1〇16〜1〇17娜 原子/立方髮米範圍;該η+·型多晶石夕 係摻雜有⑺^…鱗原子/立方爱米之濃度:曰27 -(E)矽碳氮氧氬(SiCN〇:Ar)電漿鈍化處理i •如苐6圖所示,利用13.56兆·(MHz)之電 聚增強式化學氣相沉積設備方法6,將—咬烧(川心 s,h4)與笑氣(Nitrous〇xide,N2〇),及一石夕烧與甲烷 j Meth_, CH4) j乍為一石夕碳氮氧氬電聚之原物料, 、、::氬氣(Arg〇n,Ar)為載運氣體,於室溫至4〇〇〇c 乾圍下對該多晶石夕薄膜層結構工進行純化處理,使該 多晶石夕薄膜層結構1中“多晶碎薄膜發射層2ί 之表面2 7 1,及該ρ'型多晶矽薄膜背面電場層2 5 與Ρ'型多晶矽薄膜光吸收層2 6之矽晶粒2 6丄晶 界2 6 2間,將其表面2 7 1及晶界2 6 2處之石夕原 ^懸掛鍵予以填滿,進而形成一披覆在η+_型多晶矽薄 膜發射層2 7上之碳氮切/二氧切(SiCN/Si〇〇 抗反射層2 8 ; ' 卜(F) P-型歐姆接觸1 7 :如第7圖所示,利用一 氫氧化鉀(Potassium Hydroxide,KOH )溶液及—圖形 光罩製程,於該多晶矽薄膜層結構2之表面上進行局 200905896 部區域之敍刻製程,其姓刻深度自該多晶石夕薄膜層結 構1表面至該鈦矽金屬化合物薄膜2 4上表面,再進 r而於其上製作-Ρ·歐姆接觸(〇hmk _iaci) 2 9 ; (G)以圖形光罩製程被覆一鈦/鈀/銀(丁i/pd/Ag) 金屬薄膜與n-型歐姆接觸1 8 :如第8圖所示,再利 用該圖形光罩對該碳氮切/二氧㈣抗反射層2 8 進行1虫刻,使經由钱刻後上表面局部區域裸露之广 ,多晶石夕薄膜發射層,可被覆上—鈦繞/銀金屬薄膜3 並在500 C且為氫氣環境之高溫爐退火裝置中進 =退火處理,以完成1—型歐姆接觸3 1。藉此,以 凡成一多晶矽薄膜太陽電池元件。 作A:本矣月於運用時’係以該三氧化二鋁陶瓷基板 =夕晶石夕薄膜太陽電池元件之基板,而該鈦基金屬 “物薄膜則作為多晶石夕薄膜太陽電池元件之背電 程盘ί ^ ^兼具f晶石夕薄膜種子層之功能。在高溫製 :ΊΐΐΓ氣相沉積設備方法下’藉石朋原子捧雜 型夕又㈣Ρ _型多晶⑪薄膜背面電場層及Ρ—-=:石夕賴光吸收層,再於碟原子掺雜製程中直接 膜:::型多:硬薄膜發射層’藉此成為該多晶梦薄 =二亚由該多晶碎薄膜層結構進行幾氧氬 形成該碳氮化石夕/二氧化石夕抗反射層 =以,形光罩製程於該敛基金屬化合物薄膜上製 = 姆接觸,再以該圖形光罩製程被覆該鈦/ 銀孟屬㈣,並於該〇+型多晶㈣膜發射層上製作 200905896 忒型歐姆接觸,纟中,t亥鈦基金屬〖合物薄膜係可 、夕化鈦(TiSi2)、氮化鈦(TiN)、碳化鈦(丁⑴)、 广侧化欽(TiB2)或碳氮化鈦(丁ic為)等金屬化合 物為薄膜材料。 風Λ 口此本發明不僅利用具有低成本、耐高溫及化 學穩定性之三氧化二鋁陶瓷基板,可與建築材料一體 化,亚且將具有低材料成本、環保及來源豐富之鈦基 金屬化合物薄膜作為多晶%薄膜太陽電池元件之背電 極材料,藉由該鈦基金屬化合物薄膜不僅含有金屬之 導電性’且其熱膨脹係數亦能同時與該三氧化二鋁陶 究基板及多晶㈣膜等材料匹配,進而達到極佳之附 著情形。接著㈣以本發明以高溫製程及化學氣相沉 積設備方法使用多晶⑦材料,可讓該多晶⑪材料原本 有較高之電子電洞移動率(Mobility)、較遠之電子電 洞=散距_( DiffusiQn Ungth)、&較長久之電子電洞 重士時間(ReCombinati〇n),在經過純化後更可:有 較面之光電轉換效率、&良好之照光穩定性,進而使 ::明之多晶矽薄膜太陽電池元件除了具有高磊晶成 長率及高結晶品質外,亦能有效降低設備建立 及簡化製程。 风不 刺綜上所述,本發明係一種多晶矽薄膜太陽電池之 製備方法,可有效改善習用之種種缺點,利用高溫製 程及化學氣相沉積設備方法使用多晶矽材料,除了 ^ 具有高磊晶成長率、高結晶品質、高光電轉換二率: 200905896 良好之照光穩定性外,亦能有效降低設備建立之成本 及簡化製程,進而使本發明之產生能更進步、更實用' 更符合使用者之所須,確已符合發明專利申請之要 件’爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已, :不能以此限定本發明實施之範圍;&,凡依本發明 =專利範圍及發明說明書内容所作之簡單的等效變 與修飾’皆應仍屬本發明專利涵蓋之範圍内。 16 200905896 【圖式簡單說明】 苐1圖,係本發明之製作流程示意圖。 _ 2 2圖,係本發明之三氧化二鋁陶瓷基板示意圖。 > 3圖係本發明之鈦金屬薄膜被覆示意圖。 第4A圖,係本發明之第一沉積鈦矽金屬化合物薄 膜示意圖。 苐圖’係、本發明之第二沉積鈦發金屬化合物薄 膜示意圖。 乐4C圖,係本發明之鈦矽金屬化合物薄膜示意 圖。 第5圖,係本發明之多晶矽薄膜層結構示意圖。 第6圖,係本發明之矽碳氮氧氬電漿鈍化處理示意 圖。 第7圖,係本發明之Ρ-型歐姆接觸示意圖。 苐8圖,係本發明之η-型歐姆接觸示意圖。 第9圖,係習用之基板示意圖。 第1 0圖,係習用之紹金屬薄膜被覆示意圖。 第1 1圖,係習用之沉積非晶石夕薄膜示意圖。 第1 2圖,係習用之種子層示意圖。 第1 3圖,係習用之多晶矽薄膜示意圖。 200905896 【主要元件符號說明】 (本發明部分) 步驟1 1〜1 8 多晶矽薄膜層結構1 三氧化二鋁陶瓷基板2 1 鈦金屬薄膜2 2 非晶妙薄膜2 3 鈦矽金屬化合物薄膜2 4 p+-型多晶石夕薄膜背面電場層2 5 P--型多晶矽薄膜光吸收層2 6 矽晶粒2 6 1 晶界2 6 2 n + -型多晶石夕薄膜發射層2 7 表面2 7 1 碳氮化碎/二氧化石夕抗反射層2 8 p-歐姆接觸2 9 鈦/鈀/銀金屬薄膜3 0 η -型歐姆接觸3 1 常壓式化學氣相沉積設備方法4 高溫爐退火裝置5 200905896 電漿增強式化學氣相沉積設備方法6 (習用部分) 基板7 1 鋁金屬薄膜7 2 非晶矽薄膜7 3 種子層7 4 多晶石夕薄膜7 5 19200905896 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a method for preparing a polycrystalline silicon germanium solar cell. The method, in particular, a method using a high temperature process and an atmospheric pressure chemical vapor deposition apparatus (Atmospheric Pressure Chemical) Vapor Deposition, APCVD) The use of polycrystalline germanium materials, in addition to high epitaxial growth rate, high crystal quality, high photoelectric conversion efficiency and good illumination stability, can also effectively reduce the cost of equipment establishment and simplify the process. [Prior Art] A commercially available bismuth-based thin film solar cell is mainly a low-temperature process and a Plasma-Enhanced Chemical Vapor Deposition (PECVD) method. A film of amorphous germanium (Am〇rph〇us SUic〇n) or microcrystalline germanium (MiCr〇crysta丨丨ine SUic〇n) is coated on a glass plate, an aluminum metal plate, a base metal plate, a stainless steel sheet or a plastic. On the substrate material, the back electrode material comprises a material such as gold, silver or a transparent conductive oxide such as indium tin oxide (ITO) and zinc oxide (yttrium < Zn). The advantage of the low temperature process is that there is a large space and elasticity in the selection of the substrate material, but the disadvantages are that the defects of the film material are poor, the film material quality is poor, the photoelectric conversion efficiency is low, and the illumination stability is poor. In the plasma enhanced chemical vapor deposition apparatus method, in the process of coating the microcrystalline stone film by the 200905896, a high dilution ratio of the stone material in the hydrogen environment is required as follows: [H2]/[SiH4] >15, wherein the [Η2] concentration or flow rate to the [SiH4] concentration or flow rate 'must must be greater than about 15 times. Therefore, its biggest drawback is the low growth rate of the film, the long process time and the high manufacturing cost of the reaction. In the research of enamel polycrystalline stone solar cells, various techniques have been developed, which are mainly solid phase crystallization (sdHd Crystallization, spc) and aluminum metal induced crystallization (Ahiminum-Indi丨ced Crystallization). , AIC). The solid phase crystallization method utilizes the plasma enhanced chemical vapor deposition apparatus method to firstly form a layer of amorphous germanium film, and then rapidly heat up and high temperature annealing process, thereby obtaining a typical 1 micron (μπ〇 to 2 micron). a polycrystalline germanium film having a grain size, and another aluminum metal induced crystallization method (shown in FIGS. 9 to 13) which is currently widely studied, is first coated with a layer of aluminum metal film 7 2 on a substrate 71. The aluminum alloy thin film 72 is coated with an amorphous germanium film 7 3 ' at an operating temperature of about 575 ° C or less for a long time to form an annealing treatment to form a thin film of a chemical vapor deposition apparatus. A sub-layer 7 4, and the epitaxial process of the plasma enhanced chemical vapor deposition apparatus method or an electron redox resonance chemical vapor deposition chemical vapor deposition apparatus (Electron Cyclotron Resonance Chemical Vapor Depos Uion, ECR-CVD) And obtaining - a polycrystalline film 7 5 . However, the process of the aluminum metal induced crystallization process 7 200905896 long process time 'the typical grain size is .1 micron to :::::::;::!:=The chemical vapor phase material has many defects, the film core f% battery, because of the thin film and the low growth rate of the film, the long process time and the reaction system & cost 円Therefore, it is not suitable for the city to make a fate. ^A week D is the source of the quality and cost of the Yangdian: 'Sharp: the use of aluminum metal induced crystallization method of the film polycrystalline 矽 too = two 1 series: it takes a long time complex process, Therefore, there is no technology to still be the 'Amorphous Shishi or Microcrystalline Shishi Film [the technology of the latter], there are still unknown variables hidden in its needs. 'And the user can not meet the user's actual use SUMMARY OF THE INVENTION The main purpose of the month is to use high-temperature process and normal pressure growth rate, high crystal quality, high photoelectric conversion efficiency and good, Bu, _ qualitative, and (four) effect to simplify the process. Cost and the purpose of the above, the preparation method of the battery of the invention is to select one, ~ Xi Tao waist sun is polycrystalline (four) film solar cell 3:::: the substrate is coated on the pottery - Qinji metal compound Thin film. Two: 200905896 and atmospheric chemistry Under the phase deposition equipment method, a p+_ type can be directly obtained on the titanium-based metal compound film by the (four) sub-doping process, the back surface electric field layer of the 曰曰石夕膜 and a p'-type polycrystalline thin film light The absorbing layer 'is further formed on the p-type polycrystalline dream film light absorbing layer by the n-type polycrystalline film emission layer (n+_pc si:p emmer), thereby forming - Polycrystalline (tetra) film structure. And the polycrystalline shi film layer structure is carried out by Shi Xi carbon oxynitride (SiCN 〇 treatment to form a carbonitride / / 二 夕 ( (Si (10) 1 〇 2) ^ 匕 匕 曰Using a pattern mask process on the surface of the polycrystalline thin film layer structure: a local region etching process is performed, the etching depth is from the surface of the multi-day day ray film layer structure to the upper surface of the back electrode, and then thereon ^ p-type ohmic contact (〇hmic c_act), and then the pattern is first covered in the η' type, and the surface of the thin film emitter layer is partially covered with a surface - titanium /! bar / silver (Ti / Pd / Ag A metal film is annealed to form an n-type ohmic contact. Thereby, to complete - polycrystalline silicon solar cell components. Aa [Embodiment] Ming:: see Figure 1 to Figure 8 respectively, which is a schematic diagram of the hair dryness of the present invention, the substrate of the bismuth oxide trioxide of the present invention: the image of the metal film of the present invention The schematic diagram of the coating, the schematic diagram of the thin film of the titanium/ruthenium metal compound of the present invention, the second of the present invention: (4) Schematic diagram of the thin metal compound film, and the Qin Fund of the present invention; (4) It is not intended that the polycrystalline germanium film layer structure of the present invention is illustrated by the structure of the invention. The schematic diagram of the 11 carbon oxynitride (four) treatment process of the present invention, the present invention: the P-type ohmic contact diagram and the η, ohmic contact of the present invention Shown in the second two figures: the present invention is a method for preparing a polycrystalline stone solar cell, which comprises at least the following steps: (Α) take-aluminum oxide ceramic substrate 1 1 : as shown in Fig. 2 The choice - the third oxidized two ceramics substrate 2 丄 as a polycrystalline thin, too% of the battery of the substrate, and the thickness of the three (4) 1 is about (M mm (bri... mm); (B) electron gun Film coating system (E_gun(4)(4)(10) s::m) 12: As shown in Fig. 3, using -electron gun film is set to be 'at room temperature to 2, c temperature, in the three oxidation one The ceramic substrate 2 1 is coated with a layer of about 500 angstroms U to 5 angstroms of titanium metal film 2 2 ; 曰 & (C) is coated with a thickness of 1000 angstroms to 5000 angstroms and exhibits a junction state of titanium In the process of metal compound thin film, the titanium germanium metal: TiSi2 is used as an example to interact with germanium atoms and titanium atoms. Dispersion, and the method of diffusion can be: (a) Atmospheric Pressure Chemical Vapor Deposition (A_PCVD) diffusion coating 13a: as shown in Figures 4A and 4d In a normal pressure chemical vapor deposition apparatus method 4, a reaction gas, a gas, is blown on the surface of the titanium metal _ 2 2 to carry out a diffusion process, and the diffusion process temperature is about 800. (: to 1100. The atomic atoms contained in the two chaotic stone and the titanium alloy 200905896 aluminum atoms contained in the titanium metal film 2 2 are mutually interdiffused to form a titanium crucible coated on the trioxide ceramic substrate 2 1 in a crystalline state. a metal compound film 24, wherein the titanium germanium metal compound film 24 has a grain size larger than a micron (μΐΏ) size and the sheet metal resistance of the titanium metal compound film 24 is less than 〇5 ohm/ Square centimeters (Ω/cm 2 ); and (b) Plasma Enhanced Chemical Vapor Deposition (PECMA) 13b: as shown in Figures 4B and 4C, enhanced with a plasma Chemical vapor deposition equipment method, The titanium metal film 2 2 is coated with an amorphous germanium (Amorph® US-SUicon) film 23 having a thickness of about 1000 angstroms to 10,000 angstroms, or is coated on the third oxide (4) substrate 2 1 . After the etched film 2 3, the electronic material is coated by the thin film, and the titanium (2) film 2 3 is coated on the titanium metal film 2 2 ′, and then the amorphous yttrium film 2 3 and titanium are used using a high temperature furnace annealing device 5 . The metal film 2 2 is twisted to 900. . The high-temperature synthesis treatment of the range is such that the amorphous broken shoulder: the germanium atom in the inner 3 and the titanium atom contained in the titanium metal thin film 22 are mutually entangled with each other and coated on the aluminum oxide ceramic It is a titanium-on-metal compound ruthenium which is in a crystalline state on the substrate 21, and then the temperature is raised to [4], wherein the crystal growth process is smaller than the micron size, and the metal compound is ruined. Thin film 2 4 ^ Titanium bismuth. This non-resistance "resistance is less than 〇 5 ohm / square gong" ^ 夕 (4) 23 and the thickness ratio of the titanium metal film 22 is 200,905,896 cases are about 2:1; (c) atmospheric type Chemical vapor deposition equipment method direct synthesis 4: The preparation of the titanium bismuth metal compound thin 除了 in addition to the above two methods can also be directly on the bismuth dioxide ceramic substrate by the conventional dust 1 chemical vapor deposition equipment method The raw materials such as DiChl〇rosilane (SiH2Cl2) and tetrahydrocarbon (TiCl4) are directly synthesized. -(D) epitaxially forming a polycrystalline germanium film layer structure 丄5: as shown in Fig. 5, under the high temperature condition of the tube C^OOCPC, the atmospheric gas chemical vapor deposition equipment method is used to prepare the reaction gas to be a hard gas And - Ethi thief (Dib_e, B2H6) insect crystals on the Titanium metallization: on the object, the two gases react with the broken atom contained in the sputum and the three of the scorpion (4), 彳 (4) into - P+-type polycrystalline crucibles less than or equal to 1 micron thickness; north; on the eve of the day, after the film is applied to the back surface electric field layer 25, the high temperature is raised to the front. 〇: Above, and the broad type 2: the surface electric field layer 25 is a nucleation layer, and the surface thereof is about time = 1 clock, and the epitaxial speed is about greater than that of the scorpion. Shi Xi = Knife. (-), the < y atom and the diborane doped with each other to form _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The light absorbing layer 'hydrogenated π-PH 1 ^ and then a reactive gas (4). ' Η 3) is diffused and deposited on the Ρ--type multi-fine 々 々 犋 犋 犋 吸收 吸收 2 2 , , , , , , π矽溽 ^ expansion temperature of about 800oC to 丨〇〇Π γ to make the phosphine contained in the dish eyebrow # 000 C 1 夕牛 atom in the p-_ type polycrystalline 矽, on the surface of the layer 2 6 n + 丨Day y 43⁄4 firstly absorbs η _ type diffusion deposition to form a type of olivine film emission layer (n'pcSi:pe) which is coated on the film type 205896896, thin film light absorbing layer 26 and less than ι〇〇〇矣7, to form a 曰 曰 祛 祛 丨 丨 再 再 再 再 再 再 再 再 再 再 再 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石~1〇17娜原子/ Fangfa rice range; the η+· type polycrystalline stone is doped with (7)^...scale atom/cubic amy concentration: 曰27 -(E)矽 carbon oxynitride (SiCN〇:Ar) plasma passivation Processing i • As shown in Figure 6, using the 13.56 mega-(MHz) electropolymerization enhanced chemical vapor deposition equipment method 6, will bite (Chuanxin s, h4) and laughter (Nitrous〇xide, N2 〇), and a stone shovel and methane j Meth_, CH4) j乍 is a raw material of a carbon-oxygen argon electricity, argon gas (Arg〇n, Ar) is a carrier gas, at room temperature 4多c drying the polycrystalline stone layer structure structure to be purified, so that the polycrystalline stone film layer structure 1 "polycrystalline film emission layer 2 ί surface 273, and the ρ The surface of the polycrystalline tantalum film on the back side of the electric field layer 2 5 and the Ρ' type polycrystalline tantalum film light absorbing layer 2 6 矽 grain 2 6 丄 grain boundary 2 6 2, the surface of the surface 2 7 1 and the grain boundary 2 6 2 The original ^ dangling button is filled to form a carbon nitride/diode cut on the η+_ type polycrystalline germanium film emissive layer 27 (SiCN/Si antireflective layer 2 8; 'b (F) P-type ohmic contact 1 7 : as shown in Figure 7, a Potassium Hydroxide (KOH) solution and a pattern mask process are performed on the surface of the polycrystalline germanium film layer structure 2 to perform a process of engraving 200905896 regions, the depth of which is from the polycrystalline stone layer The surface of the structure 1 is applied to the upper surface of the titanium-bismuth metal compound film 24, and then r is formed thereon to make -Ρ·ohmic contact (〇hmk_iaci) 2 9; (G) is coated with a titanium/palladium pattern by a pattern mask process. Silver (but i/pd/Ag) metal film and n-type ohmic contact 18: As shown in Fig. 8, the carbon nitride/diode (tetra) anti-reflective layer 2 8 is subjected to a patterned reticle Engraved, so that the local area of the upper surface exposed by the money is exposed, the polycrystalline stone film emission layer can be coated with titanium-silver/silver metal film 3 and in a high temperature furnace annealing device of 500 C and hydrogen atmosphere Annealing to complete the 1-type ohmic contact 3 1 . In this way, to form a polycrystalline silicon film solar cell component. A: This month's application is based on the substrate of the Al2O3 ceramic substrate = the solar crystal solar cell component, and the titanium-based metal film is used as the polycrystalline silicon solar cell component. The back-circuit disk ί ^ ^ has the function of the f-crystal film layer. In the high-temperature system: ΊΐΐΓ vapor deposition equipment method, 'Bei Shipeng atomic type 夕 又 (4) Ρ _ type polycrystalline 11 film back electric field layer And Ρ--=: Shi Xi Lai light absorption layer, and then direct film in the dish atom doping process::: type more: hard film emission layer 'to become the polycrystalline dream thin = second Asia from the polycrystalline The thin film layer structure is formed by argon argon to form the carbonitride nitride/earth dioxide anti-reflective layer=the reticle process is formed on the fused base metal compound film, and then the titanium is coated by the patterned reticle process. / Yinmeng (4), and made 200905896 忒-type ohmic contact on the 〇+-type polycrystalline (tetra) film emissive layer, 纟中, thai titanium-based metal film, can be titanium nitride (TiSi2), nitriding Titanium (TiN), titanium carbide (butyl (1)), bismuth (TiB2) or titanium carbonitride (Ding ic) The metal compound is a film material. The invention not only utilizes a low-temperature, high-temperature-resistant and chemically stable aluminum oxide ceramic substrate, but can be integrated with building materials, and has low material cost, environmental protection and source. The rich titanium-based metal compound film is used as the back electrode material of the polycrystalline% thin film solar cell element, and the titanium-based metal compound film not only contains the conductivity of the metal and its thermal expansion coefficient can also be combined with the aluminum oxide ceramics. The materials such as the substrate and the polycrystalline (tetra) film are matched to achieve an excellent adhesion. Then, (4) using the polycrystalline 7 material by the high temperature process and the chemical vapor deposition device method of the present invention, the polycrystalline 11 material can be made higher. The electronic hole mobility (Mobility), the far electron hole = the distance _ (DiffusiQn Ungth), & the longer electronic hole time (ReCombinati〇n), after purification, more: The photoelectric conversion efficiency of the surface, & good illumination stability, in turn:: the polycrystalline germanium thin film solar cell components have high epitaxial growth rate and high In addition to the crystal quality, it can effectively reduce the equipment establishment and simplify the process. The wind is not punctured, the present invention is a preparation method of a polycrystalline silicon thin film solar cell, which can effectively improve various disadvantages of the conventional use, and utilizes high temperature process and chemical vapor deposition. The device method uses a polycrystalline germanium material, in addition to having a high epitaxial growth rate, a high crystal quality, and a high photoelectric conversion rate: 200905896, in addition to good illumination stability, the cost of equipment establishment can be effectively reduced and the process can be simplified, thereby making the invention Produce a more progressive, more practical 'more in line with the needs of the user, and has indeed met the requirements of the invention patent application'. A patent application is filed according to law. However, the above is only a preferred embodiment of the present invention: The scope of the present invention is defined by the scope of the invention, and the equivalent equivalents and modifications of the invention and the scope of the invention are still within the scope of the invention. 16 200905896 [Simple description of the drawing] Fig. 1 is a schematic diagram of the production process of the present invention. _ 2 2 is a schematic view of the alumina substrate of the present invention. > 3 is a schematic view of the titanium metal film coating of the present invention. Fig. 4A is a schematic view showing the first deposited titanium ruthenium metal compound film of the present invention. A schematic view of a second deposited titanium metal compound film of the present invention. The Fig. 4C diagram is a schematic view of a titanium ruthenium metal compound film of the present invention. Fig. 5 is a schematic view showing the structure of a polycrystalline silicon thin film layer of the present invention. Fig. 6 is a schematic view showing the passivation treatment of the ruthenium carbon oxynitride plasma of the present invention. Figure 7 is a schematic view of the Ρ-type ohmic contact of the present invention. Figure 8 is a schematic view of the η-type ohmic contact of the present invention. Figure 9, is a schematic diagram of a conventional substrate. Figure 10 shows a schematic diagram of the coating of a metal film. Figure 11 is a schematic view of a conventional deposited amorphous austenitic film. Figure 12 is a schematic diagram of a conventional seed layer. Figure 13 is a schematic diagram of a conventional polycrystalline germanium film. 200905896 [Description of main component symbols] (Part of the invention) Step 1 1~1 8 Polycrystalline silicon film layer structure 1 Aluminum oxide ceramic substrate 2 1 Titanium metal film 2 2 Amorphous film 2 3 Titanium-niobium metal compound film 2 4 p+ - Type polycrystalline etched film back surface electric field layer 2 5 P--type polycrystalline germanium film light absorbing layer 2 6 矽 grain 2 6 1 grain boundary 2 6 2 n + - type polycrystalline slab film emission layer 2 7 surface 2 7 1 carbonitride/earth dioxide anti-reflection layer 2 8 p-ohmic contact 2 9 titanium/palladium/silver metal film 3 0 η-type ohmic contact 3 1 atmospheric pressure chemical vapor deposition equipment method 4 high temperature furnace annealing Device 5 200905896 Plasma enhanced chemical vapor deposition equipment method 6 (conventional part) substrate 7 1 aluminum metal film 7 2 amorphous germanium film 7 3 seed layer 7 4 polycrystalline film 7 5 19

Claims (1)

200905896 十、申請專利範圍: 一種多晶矽薄膜太陽電池之製備方法,其至小勺 下列步驟: “ v匕括 (A) 選擇一三氧化二鋁陶瓷基板; (B) 利用-電子鎗式薄膜被覆系統(e_咖 evaporation System),於該三氧化二鋁陶瓷基板上 被覆一層鈦金屬薄膜; -(C)在該三氧化二鋁陶瓷基板上披覆一鈦基 金屬化合物薄膜; (D)利用該常壓式化學氣相沉積設潴方法, 將一二氣矽甲烷(Dichl〇rosilane, SiH2Cl2 )及—乙 硼烷(DiboranHH6)於該鈦基金屬化合物薄膜 上,磊晶一層P+-型多晶矽薄膜背面電場層(ΜΑ 5111*^^化丨(1,85卩)後,將高溫提昇,並以該口+_ 型多晶矽薄膜背面電場層為成核層,在其表面進行 磊晶以形成一 p—-型多晶矽薄膜光吸收層,之後再 將W化氫(Phosphine, PH3 )於該p'型多晶石夕薄 膜光吸收層表面進行n+_型擴散沉積,以形成一披 覆在該P—-型多晶矽薄膜光吸收層上之n+_型多晶矽 薄膜發射層(n+-pc Si:P emitter),藉此以構成一多 晶矽薄膜層結構; (E )利用一電漿增強式化學氣相沉積設備方 法(Plasma-Enhanced Chemical Vapor Deposition, pecvd ),將該多晶石夕薄膜層結構以一石夕碳氮氧氮 20 200905896 ⑶+CN〇:Ar)電焚進行鈍化處王里,以形成-披覆在 該η -型多晶㈣膜發射層上之碳氮切/ (SiCN/Si〇2)抗反射層; 飞化矽 r· (F)和用氫氧化鉀(Potassium Hydroxide 二〇 Η )溶液及一圖形光罩製程,於該多晶矽薄臈層 結構之表面上進行局部區域之蝕刻製程,並完成二 P-歐姆接觸(Ohmic contact);以及 -(G)再以該圖形光罩製程對該碳氮化矽/二氧 化矽抗反射層進行蝕刻,使經由蝕刻後上表面局部 區域稞露之n+-型多晶矽薄膜發射層,可被覆上— 鈦/鈀/銀(丁i/Pd/Ag)金屬薄膜,並置於一為氫氣 %境之高溫爐退火裝置中進行退火處理,以完成一 η-型歐姆接觸。 2 .依申請專利範圍第1項所述之多晶矽薄膜太陽電池 之製備方法,其中,該三氧化二鋁陶瓷基板之厚度 係為0 1毫米(mm )至1 .〇毫米。 3 .依申請專利範圍第丄項所述之多晶矽薄膜太陽電池 之製備方法,其中,該鈦基金屬化合物薄瞑之坡覆 方法,係分為: (a )以一常壓式化學氣相沉積設備方法 (Atmospheric Pressure Chemical Vapor Deposition APCVD),將該二氣矽曱烷在該鈦金屬薄膜表面進 行擴散’形成一被覆在該三氧化二鋁陶瓷基板上之 鈦基金屬化合物薄膜;以及 21 200905896 ^ (b)以一電漿增強式化學氣相沉積設備方法, 於5玄鈦金屬薄膜上被覆一非晶矽 (Amorphous_Sinc〇n)薄膜、亦或係先在該三氧化 二鋁陶瓷基板上被覆該非晶矽薄膜後,再由該電子 鎗J薄膜被覆系統’於該非晶矽薄膜上被覆該鈦金 屬薄膜,進而使用—高溫爐退火裝置對該非晶矽薄 膜與鈦金屬薄膜進行高溫合成處理,以形成一被覆 ,X —氧化一鋁陶瓷基板上之鈦基金屬化合物薄 4 項’方 < 之多晶梦薄膜太陽電池 该非晶矽薄膜與該鈦金屬薄膜 依申請專利範圍第3 之製備方法,其中, 之厚度比例為2:1。 範圍第3項所述之多晶㈣膜太陽電池 之k備方法,其中,# #曰& _ ,,,〇 , 非日日矽潯膜之厚度係為1000 埃(A)至1〇〇〇〇埃。 依申請專利範圍第1項 曰 之# ^ 、斤11之夕日日矽溥膜太陽電池 •^衣備方法,其中,該鈦基 接在該三氧化二叫…二層:=_亦可直 定&板上由该常壓式仆墨气 相沉積設備方法,將該二氣w元與 尸taniumte—’叫)等原物料:直二 項所述之多晶石夕薄膜太陽電池 該鈦金屬薄膜之厚度係為500 7 .依申請專利範圍第1 之製備方法,其中, 埃至5000埃。 22 200905896 t明專利紅圍第1項所述之多晶矽薄膜太陽電池 ^衣備方法,其中,該鈦基金屬化合物薄膜係可以 ^ :石夕化鈥(TlSi2)、気化鈦(TiN)、碳化鈦(Tic)、 朋化欽(TlB2)或碳氮化鈦(TiCxNy)等金屬化 合物為薄獏材料。 9 .依I請專利範圍第8項所述之多晶㈣膜太陽電池 /備方法其中,戎鈦基金屬化合物薄膜之厚度 係為1000埃至5000埃。 又 1 0 .依中請專利範圍第8項所述之多晶石夕薄膜太陽電 法,其,,該鈒基金屬化合物薄膜像為 結晶恕,其晶粒大小係大於或小於微米(_)尺 寸。 1 1 .依申請專利範圍第i 〇項所述之多晶矽薄膜太陽 電池之製備方法,其中,該結晶態之鈦基金屬化合 物薄膜係作為背電極(Back Contact),並具有多曰=曰 石夕薄膜種子層功能。 1 2 .依申請專利範圍第8項所述之多晶矽薄膜太陽電 池之製備方法,其中,該鈦基金屬化合物薄獏之: 電阻(Sheet Resistance)係小於〇5歐姆/平方公分 (Ω/cm2)。 L 3 ·依申請專利範圍第1項所述之多晶矽薄膜太陽電 池之製備方法,其中,該P'型多晶矽薄膜背面電 場層之厚度係小於或等於1微米(μηι )。 200905896 4 ·依申請專利範圍第1 田禾丄項所述之多晶矽薄膜 池之製備方法,其中,哕 、陽電 & ^ m ^ r μ P _孓夕晶矽薄膜光吸收 層之厗度係為1微米至丨5 文 飞故丄 微未,且其晶粒尺寸大 小係大於1 〇微米。 j人 5 .依申請專利範圍第1項 曰 池之製備方、去,j:巾、 夕日日矽溥膜太陽電 夕戶疮及, 工'夕日日夕湾臈發射層 之;度係小於1 〇〇〇埃。 町尽 6 .依申請專利範圍第i 池之製備方土 ., 述及夕日日矽溽膜太陽電 之衣備方法’其11錢切/ 射層係將兮n+刑e s作— 孔化發抗反 j Μ η _型夕日日矽缚膜發射層 Ρ+-型多曰仏-时北 』嘴之表面’及該 P生夕日日矽涛膜背面電場層與 吸收層之矽曰抵a κη Μ β 夕日日矽潯膜光 滿。夕曰曰拉曰曰界間’將其石夕原子懸掛鍵予以填 24200905896 X. Patent application scope: A method for preparing a polycrystalline silicon thin film solar cell, the following steps to the small spoon: "V 匕 (A) select a aluminum oxide ceramic substrate; (B) use - electron gun film coating system ( The e-aluminum evaporation system is coated with a titanium metal film on the aluminum oxide ceramic substrate; - (C) a titanium-based metal compound film is coated on the aluminum oxide ceramic substrate; (D) utilizing the Pressing chemical vapor deposition method, a two-dimensional methane (Dichl〇rosilane, SiH2Cl2) and diborane (DiboranHH6) on the titanium-based metal compound film, epitaxial layer of a P+-type polycrystalline germanium film back surface electric field After the layer (ΜΑ 5111*^^丨(1,85卩), the high temperature is raised, and the electric field layer on the back surface of the +_ type polycrystalline germanium film is used as the nucleation layer, and the surface is epitaxially formed to form a p-- a polycrystalline germanium film light absorbing layer, and then hydrogenated (Phosphine, PH3) on the surface of the p' type polycrystalline thin film light absorbing layer for n+_ type diffusion deposition to form a coating on the P- Polycrystalline germanium film on light absorbing layer An n+-type polysilicon thin film emitting layer (n+-pc Si:P emitter), thereby constituting a polycrystalline germanium film layer structure; (E) utilizing a plasma enhanced chemical vapor deposition apparatus method (Plasma-Enhanced Chemical Vapor Deposition) , pecvd), the polycrystalline stone layer structure is littered in a passivation zone with a cerium carbon oxynitride 20 200905896 (3) + CN 〇: Ar) to form a coating over the η-type polycrystal (4) a carbon-nitrogen cut/(SiCN/Si〇2) anti-reflective layer on the film emissive layer; a fly 矽r·(F) and a potassium hydroxide (Potassium Hydroxide) solution and a patterned mask process, A partial region etching process is performed on the surface of the polycrystalline tantalum layer structure, and a two-P-ohmic contact is completed; and -(G) is further resistant to the carbonitride/cerium oxide by the patterned mask process. The reflective layer is etched so that the n+-type polycrystalline germanium film emitting layer exposed through a partial region of the upper surface after etching can be coated with a titanium-palladium/silver (but i/Pd/Ag) metal film and placed in a hydrogen gas% Annealed in a high temperature furnace annealing device to complete a η-type The method for preparing a polycrystalline silicon thin film solar cell according to the first aspect of the invention, wherein the thickness of the aluminum oxide ceramic substrate is from 0 mm (mm) to 1. mm. The method for preparing a polycrystalline germanium thin film solar cell according to the invention of claim 2, wherein the method for coating the titanium-based metal compound thin layer is divided into: (a) a normal pressure chemical vapor deposition device method (Atmospheric Pressure Chemical Vapor Deposition APCVD), diffusing the dioxane on the surface of the titanium metal film to form a titanium-based metal compound film coated on the alumina substrate; and 21 200905896 ^ (b Applying an amorphous germanium (Amorphous_Sinc〇n) film to the 5th titanium metal film by a plasma enhanced chemical vapor deposition apparatus method, or coating the amorphous germanium on the aluminum oxide ceramic substrate After the film is formed, the titanium film is coated on the amorphous film by the electron gun J film coating system, and the amorphous germanium film is further processed by using a high temperature furnace annealing device. The titanium metal film is subjected to high-temperature synthesis treatment to form a coated, titanium-based metal compound on the X-oxidized aluminum ceramic substrate, and the polycrystalline dream thin film solar cell, the amorphous germanium film and the titanium metal film are formed. According to the preparation method of the third aspect of the patent application, wherein the thickness ratio is 2:1. The method for preparing a polycrystalline (tetra) film solar cell according to the third aspect, wherein the thickness of the ##曰& _ ,,,〇, non-day 矽浔 film is 1000 angstroms (A) to 1 〇〇 〇〇埃. According to the first paragraph of the patent application scope, #^, 斤11日日日日矽溥膜太阳电池•^衣备,, the titanium base is connected to the third oxidized two... two layers: = _ can also be directly & on-board by the atmospheric pressure type of servant vapor deposition equipment method, the two gas w yuan and corpse taniumte - 'called) and other raw materials: the straight two of the polycrystalline lithene thin film solar cell the titanium metal film The thickness is 500 7 . According to the preparation method of the first application of the patent scope, wherein the thickness is 5,000 angstroms. 22 200905896 The method for preparing a polycrystalline germanium thin film solar cell according to the first item of the patent red square, wherein the titanium-based metal compound film can be: T.Si.2, TiN, Titanium Carbide A metal compound such as (Tic), Phinechin (TlB2) or titanium carbonitride (TiCxNy) is a thin tantalum material. 9. The polycrystalline (tetra) film solar cell according to claim 8, wherein the thickness of the bismuth titanium-based metal compound film is from 1000 angstroms to 5,000 angstroms. Further, according to the polycrystalline stone solar cell method described in claim 8 of the patent scope, the film of the bismuth-based metal compound is crystallized, and its grain size is larger or smaller than micrometer (_). size. 1 1. The method for preparing a polycrystalline silicon thin film solar cell according to the invention of claim 1, wherein the crystalline titanium-based metal compound film is used as a back electrode and has a plurality of 曰=曰石夕Thin film seed layer function. 1 2 . The method for preparing a polycrystalline silicon thin film solar cell according to claim 8 , wherein the titanium-based metal compound is thinner than: She 5 ohm/cm 2 (Ω/cm 2 ) . The method for preparing a polycrystalline silicon thin film solar cell according to claim 1, wherein the thickness of the back surface electric field layer of the P' type polycrystalline germanium film is less than or equal to 1 micrometer (μηι). 200905896 4 · According to the preparation method of the polycrystalline germanium film tank described in the patent application No. 1 Tianheyu, wherein the twist ratio of the light absorption layer of the yttrium, the yttrium & ^ m ^ r μ P _ 孓 矽 矽 film is 1 Micron to 丨5 Wenfei is not microscopic, and its grain size is greater than 1 〇 micron. j people 5. According to the scope of the patent application, the preparation of the Dianchi Lake, go, j: towel, the sunday sun, the sun, the sun, the sun, the sun, the sun, the sun, the sun, the sun, the 〇埃.町尽6. According to the application area of the i-pool of the application for the patent area, the method of preparation for the solar film of the sun-solar day, the 11-day cut / the layer system will be 兮n + punishment es - Konghua hair anti-reverse j Μ η _ type 夕 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日On the eve of the day, the enamel film is full. In the evening, the 石 曰曰 曰曰 ’ 将 将 石 石 石 石 石 石 石 石
TW96126462A 2007-07-19 2007-07-19 Fabricating method of polysilicon thin-film solar cell TW200905896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96126462A TW200905896A (en) 2007-07-19 2007-07-19 Fabricating method of polysilicon thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96126462A TW200905896A (en) 2007-07-19 2007-07-19 Fabricating method of polysilicon thin-film solar cell

Publications (2)

Publication Number Publication Date
TW200905896A true TW200905896A (en) 2009-02-01
TWI341034B TWI341034B (en) 2011-04-21

Family

ID=44722898

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96126462A TW200905896A (en) 2007-07-19 2007-07-19 Fabricating method of polysilicon thin-film solar cell

Country Status (1)

Country Link
TW (1) TW200905896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447926B (en) * 2010-09-17 2014-08-01 Univ Nat Chiao Tung A method for forming the transparent light-trapping structure inside the solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447926B (en) * 2010-09-17 2014-08-01 Univ Nat Chiao Tung A method for forming the transparent light-trapping structure inside the solar cell

Also Published As

Publication number Publication date
TWI341034B (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US3961997A (en) Fabrication of polycrystalline solar cells on low-cost substrates
US20060108688A1 (en) Large grained polycrystalline silicon and method of making same
CN105322043B (en) It is a kind of can two-sided entering light crystal silicon solar battery and preparation method thereof
US7202143B1 (en) Low temperature production of large-grain polycrystalline semiconductors
US20090178711A1 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
TW200947729A (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
US20100206367A1 (en) Method for fabricating silicon nano wire, solar cell including silicon nano wire and method for fabricating solar cell
JPS6191974A (en) Heat resisting multijunction type semiconductor element
CN107644925B (en) A kind of preparation method of P-type crystal silicon solar battery
JP5374798B2 (en) Manufacturing method of solar cell
JPH0982997A (en) Solar cell and manufacture thereof
CN102332495A (en) Fabrication method for crystalline silicon solar cell
CN106784074A (en) N-type double-side cell structure
TW201003939A (en) Method and apparatus for manufacturing solar battery, and solar battery
US8211738B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
US20120070938A1 (en) Method of Fabricating Silicon Nanowire Solar Cell Device Having Upgraded Metallurgical Grade Silicon Substrate
CN107644805A (en) Hole passivation tunnelling film, preparation method and its application in solar cell
TW200905896A (en) Fabricating method of polysilicon thin-film solar cell
CN107634122A (en) It is a kind of aoxidize Ti passivation preparation method and prepare solar cell using this method
CN103594541B (en) Polycrystalline silicon/monocrystalline silicon heterojunction structure for solaode and preparation method thereof
CN101789388B (en) Substrate used for producing display and production method thereof
Beaucarne et al. Thin film polycrystalline silicon solar cells
CN209675296U (en) Back contacts solar cell
US7863080B1 (en) Process for making multi-crystalline silicon thin-film solar cells
TWI343657B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees