TWI337002B - Inverting dynamic register with data-dependent hold time reduction mechanism - Google Patents

Inverting dynamic register with data-dependent hold time reduction mechanism Download PDF

Info

Publication number
TWI337002B
TWI337002B TW96101266A TW96101266A TWI337002B TW I337002 B TWI337002 B TW I337002B TW 96101266 A TW96101266 A TW 96101266A TW 96101266 A TW96101266 A TW 96101266A TW I337002 B TWI337002 B TW I337002B
Authority
TW
Taiwan
Prior art keywords
logic
state
node
signal
circuit
Prior art date
Application number
TW96101266A
Other languages
Chinese (zh)
Other versions
TW200731670A (en
Inventor
A Bertram Raymond
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/332,496 external-priority patent/US7358775B2/en
Application filed by Via Tech Inc filed Critical Via Tech Inc
Publication of TW200731670A publication Critical patent/TW200731670A/en
Application granted granted Critical
Publication of TWI337002B publication Critical patent/TWI337002B/en

Links

Landscapes

  • Logic Circuits (AREA)

Description

1337002 CNTR2202 21757t\vf.doc/e 社建輯汗估電路之刖與之後加入傳統暫存器電路,當 流水線系統引入延遲時,其累積效應使工作速度極大降 低。具體而言,-個值得注意的是,這些延遲源自邏輯評 估電路且必須滿足的設定時間需求,以保證穩定的暫存輸 出。期望降低這些延遲,以在每級提供附加時間,從而提 升流水線系統的整體速度。用於降低設定與時脈輸出延遲 赌構,—η。切e _flgUrati㈣的技術通常 =要增加働時間。尤其是,#龍按時脈輪人至這些暫 ^路日ί,輸入資料的狀態必須在—特定期間(亦即, 化持不變。若它在保持時間結束之前變 化則暫存益輸出可能就不正確。 *相二括傳統多米諾型電路’都需要保持時間 電路對保持時間的需求,許多 ^低傳統夕木諸 (亦即-種時脈信號),從持續時;,式時脈信號 比非時脈狀態極大縮短。現今 f = ’其“時脈’,狀態 信號,其相應時脈狀態只佔不到工二衝式時脈 因此,同樣欲提供一種暫存式币、〇 其對保持時間的要求極大降低,子置和方法, 依賴於要提供相應的脈衝式時脈信ί對保持時間的要求不 [發明内容j & 丨題 本發财其他ψ請之t,是麵 並致力於已有技術的其他問題、缺點和到的問: 1337002 CNTR2202 21757twf.d〇c/e 本發明提供—種較好的技術,用於暫存邏輯 時降低對保持時間的要求。在一個實施例中,提供—種^ 相動態邏輯暫存器。反相動態邏輯暫存器包括:—對互 評估,置、評估邏輯單元、延遲邏輯單元以及閃鎖邏輯單 補評估裝置響應於時脈信號。評估邏輯單元連 接,對互補評信裝置間的預充電節點處。評估邏輯 根據^少—個輸人資料信號評估(evaluate)邏輯函數,1 二ίίί數為第—狀態或第二狀態。延遲邏輯單元與時脈 =的時,,此時脈與截斷信號之間的延遲= 輯巧;輯函數值為第-狀態時,保持時間心 2在;以:該=、截斷信號以及預充電節點的狀 週期之間,ΐ邊緣與截斷信號下一邊緣間的評估 節點的^輯单70根據預充電節點的狀態控制輸出 即點的狀悲’否職輸出節點處於三態狀況。 器電種動態暫存11電路°此動態暫存 ίί雷路匕Bi/H'延遲邏輯電路 '問鎖電路以及保持 : «時脈信號為低電位時,動態電 預 脈信號變為高電_,= j =狀態’以及當時 路接收時脈信號,狀態。延遲邏輯電 時脈信號。其中時脈信號與二==遲的 短。_路與動態電路和:邏連== 1337002 CNTR2202 21757twf.doc/e 時脈信號變為高電倾止於截斷錢變為高電位的評估週 期期間’根據第-節點的狀態控制輸出節點的狀態,否則 使輸出節點處於三態狀況。保持器電路與輸出節點連接。 本發明另-方面包括動態暫存輸出信號的方法。此方 法包括當時脈信號處於第—邏輯狀態時,滅設置第一節 點’當時脈信號轉變成第二邏輯狀態時,動態評估邏輯函 數為第-狀祕第二狀態’以控制第—節點的邏輯狀離;1337002 CNTR2202 21757t\vf.doc/e After the introduction of the traditional register circuit, the cumulative effect of the pipeline system is greatly reduced when the pipeline system introduces a delay. Specifically, it is worth noting that these delays are derived from the logic evaluation circuit and must meet the set time requirements to ensure a stable scratch output. It is desirable to reduce these delays to provide additional time at each stage to increase the overall speed of the pipeline system. Used to reduce the setting and clock output delay gambling, - η. The technique of cutting e _flgUrati (4) usually = to increase the time. In particular, the #龙龙时时脉人到到暂路日ί, the state of the input data must be in a specific period (that is, the holding remains unchanged. If it changes before the end of the holding time, the temporary storage benefit may be It is not correct. *The second phase of the traditional domino-type circuit needs to maintain the time circuit's need for holding time. Many of the low-class traditional sapwoods (ie, the clock signal), from the duration; Compared with the non-clock state, the state is greatly shortened. Nowadays f = 'its "clock", the state signal, its corresponding clock state only accounts for less than the second clock, therefore, it is also necessary to provide a temporary currency, The requirement of holding time is greatly reduced, and the sub-set and method depend on the requirement of providing the corresponding pulse-type clock signal to maintain the time. [Inventive content j & 丨 本 发 发 ψ ψ ψ , , , , Dedicated to other problems, shortcomings and problems of the prior art: 1337002 CNTR2202 21757twf.d〇c/e The present invention provides a better technique for reducing the hold time requirement for temporary storage logic. In the example, provide - type ^ Dynamic logic register. The inverting dynamic logic register includes: - a mutual evaluation, set, evaluation logic unit, delay logic unit, and flash lock logic single complement evaluation device in response to the clock signal. Evaluation logic unit connection, complementary The pre-charging node between the evaluation devices. The evaluation logic evaluates the logic function according to the less-input data signal, and the two-dimensional state is the first state or the second state. The delay logic unit and the clock=time , the delay between the pulse and the truncation signal = coincidence; when the function value is the first state, the time heart 2 is maintained; to: the =, the truncation signal and the pre-charge node between the periods, the edge The evaluation unit of the evaluation node between the next edge of the truncation signal controls the output according to the state of the pre-charging node, that is, the point of the sorrow, the sorrow output node is in a three-state state. The device type dynamic temporary storage 11 circuit ί 雷 雷 匕 Bi / H 'delay logic circuit 'Qlock circuit and keep: « When the clock signal is low, the dynamic electric pre-pulse signal becomes high _, = j = state ' and the current receiving clock signal, Delayed logic electrical clock signal, in which the clock signal is short with two == late. _ way and dynamic circuit and: logic == 1337002 CNTR2202 21757twf.doc/e clock signal becomes high power to stop During the evaluation period during which the money becomes high, the state of the output node is controlled according to the state of the first node, otherwise the output node is in a tristate state. The keeper circuit is connected to the output node. The other aspect of the invention includes dynamic temporary storage output signal The method includes: when the current pulse signal is in the first logic state, setting the first node when the current pulse signal is converted into the second logic state, the dynamic evaluation logic function is the second state of the first shape to control the first The logical separation of the nodes;

=遲時脈信號,且提供截斷信號,其中截斷信號為延遲的 時脈信號;當邏輯函數評估為第—狀態時,加賴斷信號; 根據在始於時脈錢轉變成第三邏輯狀態與止於截斷信號 之下-相應轉變的評估週期,確定第—節點的邏輯狀離, ,鎖輸出節闕邏輯狀態;以及在評估週期 輸 卽點的邏輯狀態。 才彻広 【實施方式】 下面的描述以使本領域的技術人員能掌握並將本發明 =所提供之特殊應用環境及需求中。可是,很明顯丄領 2技術人員能對優選實_加以修改,且這裡定義的通 用原則仍翻於其他實施例。因此,本發明不受這裡所干 =述之特殊實施觸_,而應與這裡相的原則和新 稍导寻性~致。 本申請的發明人已認識到需要為邏輯電路提供暫存式 ,出,其中速度是一個關鍵因素,並且也需要優:整體; 叶。’如透過減少裝置的數量來增加速度並減少晶片區的^ 此外,已思識到需要更強健(r〇bust)的邏輯電路,其有 1337002 CNTR2202 21757twf.doc/e 暫存式輪ώ ’韻轉時_衫比在 輯電路有極大減少,且對伴持日⑴已獒供的邏 脈m f 持時求不直接與相應時 的作週期有關。因此’已研發了動態邏輯暫存裝 ,和方法’為賴評估函數提供_式以和暫存式輸 出,比以㈣結構明顯快得多,其使某些輪 對保持時間的要求最小化,且豆 入 :狀心下 間有明顯減少。 且其比現7裝置㈣脈輸出時= late clock signal, and provides a truncation signal, wherein the truncated signal is a delayed clock signal; when the logic function is evaluated as the first state, the signal is added; according to the time when the pulse is converted into the third logic state Ending under the truncation signal - the evaluation period of the corresponding transition, determining the logical departure of the first node, the lock output throttling logic state; and the logic state of the input point during the evaluation cycle. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following description is made to enable those skilled in the art to grasp the invention and the specific application environment and requirements provided by the present invention. However, it is obvious that the skilled person can modify the preferred embodiment, and the general principles defined herein are still turned to other embodiments. Therefore, the present invention is not limited to the specific implementations described herein, but should be related to the principles and new directivity of the present invention. The inventors of the present application have recognized the need to provide a temporary storage for the logic circuit, where speed is a key factor and also requires an excellent: overall; 'If you increase the speed by reducing the number of devices and reduce the chip area ^ In addition, you have realized that you need a more robust (r〇bust) logic circuit, which has 1337002 CNTR2202 21757twf.doc/e temporary rim 'rhyme The turn-time _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Therefore, 'dynamic logic temporary storage, and method' have been developed to provide _-type and temporary storage for the evaluation function, which is significantly faster than the (4) structure, which minimizes the time-keeping requirements of certain wheel sets. And the bean into the heart: there is a significant reduction in the heart. And it is more than the current 7 device (four) pulse output

當採用極大依賴於暫存器將資料從—級傳送到另一級 ί流水線結構時’ _本發明實關岐相祕邏輯暫存 斋使整體裝置操作速度極Α提升,同時減少了晶片佈局 區。除此之外,由於對保持時間的要求降低,而使設計更 為強健。 圖1是先前技術之動態電路100的示意圖,用於表示 現今的動態電路技術。本領域的技術人Μ也稱此動態電路 100為多米諾(domino)電路100或多米諾邏輯1〇〇。動 態電路1GG包括輸人部分,此輸人部分由堆疊式p通道和 N通道裝置卩卜犯和犯組成❶裝置^和犯為一對互 補評估裝置’域置N1為評估邏輯單元。ρι的源極與電 源電壓VDD連接’且&極與節點1G5連接,以提供信號 HPN1的汲極與節點1〇5連接,且其源極與N2的汲極連 接。N2的源極接地。透過節點1〇1提供輸入時脈信號 給P1和N2的閘極。透過節點丨〇3提供輸入資料信號Data 給N1的閘極。節點1〇5與反相器1〇7的輸入端連接,此 反相器的輸出端與提供輸出信號OUT的節點1〇9連接。 1337002 CNTR2202 21757twf.doc/e ,持器電路111與節點105連接。此保持器電路U1包括 ^ 第一反相器111A,其輪入端與節點105連接,用於接收 k 號且其輸出^與第一反相器111B的輸入端連接。 . 第一反相态111B的輸出端與節點1〇5連接。 現在參照圖2,圖2繪示為動態電路1〇〇操作的時序 圖200,其中繪不出CLK、DATA、HI及OUT信號與時 間的關係。在時間T0,當CLK信號為低電位時,N2戴止, φ 且P1導通,將信號預充電到邏輯高電位,以準備在 的上升邊緣求DATA信號的值。在CLK信號為低電位(即 CLK為非時脈狀態)的半週期期間,透過反相器 也將OUT信號確定為低電位。在CLK為低電位的半週期 期間’通常信號DATA也為低電位,如時間τι所示,因 為通常將動態電路100如圖1A所示配置成串接(cascade) 形式’即將前一電路的OUT信號與後一電路的dATA信 號連接。因此’在時間T1 ’因為DATA信號處於邏輯低 電位,所以N1截止。 籲 在下一時間T2,CLK信號確定為高電位(即clk為 “時脈”狀態),使N2導通,且P1截止。由於在T2時 間DATA信號為低電位’所以N1截止,因而不由輸入部 分驅動HI信號。可是’在此期間’保持器電路維持 HI信號的邏輯高電位,且反相器107維持out信號為低 電位,因此保存在CLK的上升邊所取樣DATA的狀態。 然而,若在CLK信號為高電位的半週期期間將DATA信 號驅動到邏輯高電位,如下一時間T3所示,則當N2導通 c S > 11 1337002 i CNTR2202 21757twf.d〇c/e τ N1也^通,這使保持器電路i】i過負載,以便將信號 HI放電到邏輯低電位。反相器1〇7的響應是將ου?信號 驅動為高電位,因此改變了輸出節點1〇9的狀態。因此,ϋ 輸出信號out不再反映在CLK的上升邊緣所取樣data 的狀態。When the data is transferred from the level to the other stage using the register is greatly dependent on the scratchpad, the actual operation speed of the whole device is greatly improved, and the wafer layout area is reduced. In addition, the design is more robust due to lower retention time requirements. 1 is a schematic diagram of a prior art dynamic circuit 100 for representing today's dynamic circuit techniques. Those skilled in the art also refer to this dynamic circuit 100 as a domino circuit 100 or a domino logic. The dynamic circuit 1GG includes an input portion which is composed of a stacked p-channel and an N-channel device, and a pair of complementary evaluation devices, and the N1 is an evaluation logic unit. The source of ρι is connected to the power supply voltage VDD' and the & pole is connected to node 1G5 to provide a signal. The drain of HPN1 is connected to node 1〇5, and its source is connected to the drain of N2. The source of N2 is grounded. The input clock signal is supplied to the gates of P1 and N2 through node 1〇1. The input data signal Data is supplied to the gate of N1 through the node 丨〇3. The node 1〇5 is connected to the input terminal of the inverter 1〇7, and the output of this inverter is connected to the node 1〇9 which supplies the output signal OUT. 1337002 CNTR2202 21757twf.doc/e, the holder circuit 111 is connected to the node 105. This keeper circuit U1 includes a first inverter 111A whose turn-in terminal is connected to the node 105 for receiving the k-number and whose output is connected to the input terminal of the first inverter 111B. The output of the first inverted state 111B is connected to the node 1〇5. Referring now to Figure 2, there is shown a timing diagram 200 of a dynamic circuit operation in which the CLK, DATA, HI, and OUT signals are plotted versus time. At time T0, when the CLK signal is low, N2 is held, φ and P1 are turned on, precharging the signal to a logic high to prepare the value of the DATA signal at the rising edge. During the half cycle of the CLK signal being low (ie, CLK is non-clock state), the OUT signal is also asserted low by the inverter. During the half cycle of CLK being low, the normal signal DATA is also low, as indicated by time τι, since the dynamic circuit 100 is typically configured in a cascade form as shown in Figure 1A, which is the OUT of the previous circuit. The signal is connected to the dATA signal of the latter circuit. Therefore, at time T1', since the DATA signal is at a logic low level, N1 is turned off. At the next time T2, the CLK signal is determined to be high (ie, clk is the "clock" state), turning N2 on and P1 is off. Since the DATA signal is at a low potential at the time T2, N1 is turned off, so that the HI signal is not driven by the input portion. However, during this period, the keeper circuit maintains the logic high level of the HI signal, and the inverter 107 maintains the out signal at a low level, thus preserving the state of the DATA sampled on the rising edge of CLK. However, if the DATA signal is driven to a logic high level during a half cycle in which the CLK signal is high, as shown by the time T3, then when N2 is turned on, c S > 11 1337002 i CNTR2202 21757twf.d〇c/e τ N1 Also, this causes the keeper circuit i]i to be overloaded to discharge the signal HI to a logic low. The response of the inverter 1〇7 is to drive the ου? signal to a high potential, thus changing the state of the output node 1〇9. Therefore, the output signal out no longer reflects the state of the data sampled at the rising edge of CLK.

β在這點上,本發明人注意到如本領域技術人員所理解 的是,先前技術動態電路100顯示對設定時間的要求為〇 (或實際而言,小於G)。這是因為允許在CLK的上升邊緣 ,至之後,DATA從邏輯低電位狀態變成邏輯高電位狀 '且改麦輸出k號OUT的狀態,以反映改變後的data 狀態。 CLK信號隨後變成低電位,且在時間T4,data俨 號也被驅動為低電位Μ再次將m信號預充電為高電位。, t〇U士T信號拉為低電位。在下一時間Τ5,當DATA為低 ^ 咖信號再次被確定為高電位,從而N2導通, 截止。因此,HI信號未被放電,且〇 低電位。可是,本領域技術人員應理解,在時間 仏波放電,並且使QUT信號翻動為低電位。 、。動態電路,如圖1所示的動態電路100,比實現相同 邏^評估函數設計的其他t路結構(包括靜巧現j 路的輸出預先設置(如預充i)為-種邏輯 位,以便:至〇ϋ為低電位時’ hi信號預充電為高電 續將OUT信號預充電為低電位。實際上消除了資 12 丄jj/υυζ CNTR2202 21757twf. d〇c/e 為::=:(如。1,N2)與評估邏輯單元 的評估邏輯單元㈣ 函數)代替動態電路1()()中戶ί函數、多輸入副χ 〇中所不間早評估邏輯單元裝置 ’偉:二對其速度或有關電源限制產生負面影響。 電_ ’但—前為止’沒有提供有關輸入 提到的…閃鎖機制或0UT信號的暫存機制 。如上面所 位值之$ 信號仍為高電位的半週期期間求得低電 信號從低電位變成高電位=二== =者:供工作區來為這些裝置提供穩定== 述的工作區技術涉及為現有動態電路使用暫 —種工作區技術提供脈衝式時 期比非時脈狀態週期短很多。例如脈,週 使得當—態;=== , |(J 〇UT ^ 交成鬲電位的時間T2的取樣狀態改變。 但是’上述工作區使積體電路整體上更複雜 人和/或產生並分配脈衝式時脈信號。本發明二 些缺點’因此在複雜的邏輯評估電路内提供 ^的暫存機制,其採用動態電路原縣提高確定資= 顯示的設定時間限制,極大降低對;邏輯所 要求,使__要求與相鱗 (S ) 13 1337002 CNTR2202 21757twf.doc/e 離,從而顯示的時脈輸出時間比到目前為止提 ' 減少。現在將參照圖3-5描述本發明。 、 • 圖3是根據本發明實施例實現之包含保持時間降 制之反相動態暫存器300之示意圖。動態邏輯暫存器3〇〇 的輸入部分包括P通道裝置pl和N通道裝置N2,將^配 置成一對互補評估裝置、以及評估邏輯單元3〇2,其^式 與^的動態電路100大致相Θ。在一個實施例中,評估 % 邏輯單元302包括圖2所示的N通道裝置N2。其他實施 例中的其他評估邏輯單元302結構包括p通道和^'或n通 道裝置以串接(cascade)和/或串級(casc〇de)配置,進而實現 邏輯評估函數’如NAND函數、N〇R函數、組合的NAND 和NOR函數、包括求一個以上資料輸入值邏輯的多輸入 優先順序mux,但不受此限制。可是,為清楚起見,下面 對根據本發明的動態暫存器300的描述是指,包含裝置N1 作為評估邏輯單元302的實施例操作。 N1的汲極與預充電節點3〇7連接,且源極與N2的汲 矚極連接。N2的源極與參考電壓連接,此參考電壓通常為接 地。透過節點301提供輸入時脈信號CLK給ρι和N2的 閘極,以及給非反相延遲單元^的輸入端和N通道裝置 N6的閘極。在一個實施例中,非反相延遲單元n或“缓衝 器”11包括2個串聯的反相器。透過節點3〇3提供輸入資 料信號DATA給N1的閘極。預充電節點3〇7與n通道通 路(pass)裝置N3的閘極連接,且與堆疊式p通道和N通道 裝置P5和N5的閘極連接。預充電節點3〇7也與第一保持 1337002 CNTR2202 21757twf.doc/e 器電路連接。第-保持器電路如包括第一反相器i4, 第-反相$ 14的輸人端與節點3()7連接,用 TOP,且第-反相器14的輸出端與第二反相器13的= 端連接。第一反相器13的輸出端與節點3〇7連接。 延遲早兀11的輸出端與節點304連接,提供信號 KIU。節點304也與通路裝置N3的源極及反相延遲單元 的輸人端連接。在-個實施财,反相延遲單元i2包括 單個反相益。在其他實施例中,反相延遲單元包括奇數個 串聯反相’以提供與設計要求—致的延遲。此後,將此 反相延遲單Tt稱為反相器12。反相器12的輸出端與p通道 裝置P3的閘極連接。p3的源極與電源電壓VDD連接,且 P3的汲極與節點306連接,以提供信號KIL2。節點3〇6 也與N3的汲極和p通道截斷(km)裝置p4的閘極連接。 P4的源極與電源電壓VDD連接,且P4的汲極與P5的源 極連接。P5的汲極構成初級(preiiminary)輸出節點3〇8,以 提供信號Q。初級輸出節點308與第二反相器15的輸入端 以及第二保持器電路313連接。第二保持器電路313包括 反相為16,其輸入端與節點308連接,用於接收信號q, 而其輸出端與反相器17的輸入端連接。反相器17的輸出 端與節點308連接。此外,N5的汲極與節點3〇8連接。反 相裔15的輸出端與輸出節點315連接,以提供輸出信號 QB。N6的汲極與N5的源極連接,而Νό的源極與參考電 壓連接。輸出信號QB提供CLK上升邊緣取樣的輸入信號 DATA的反相狀態。 15 1337002 CNTR2202 21757twf.doc/e 1Λ就操作上而言’與參照圖1和2描述的現今動態電路 ‘ 、〇相&根據本發明的動態邏輯暫存器300所提供動態 • ❹米諾與評估邏輯單元地所集成的反相式暫存功能。 反相動感暫存裔300需要針對輸入信號DATA的設定時間 近似為〇,且不需要脈衝式時脈信號clk。此外,反相動 1 '態暫存1 300的保持時間要求相關於取樣DATA的狀離。 运種貢料相關的保持時間要求,如下面更詳細討論,在串 % 接多米諾電路應用中是有利的,尤其是前述多米諾級提供 -種比相對於C L K的其他輸鎌態快得彡的輸丨狀態。根 據本毛明,在取樣的data為邏輯低電位的第一種情況 下]對保持時間的要求驗’從而可優化前述多米諾電路, 以為DATAk低電位轉換成高電位提供更快的時脈輸出時 間。本發明人注意到提供輸入信號〇八丁八的前述電路不必 為多^諾電路。如上所述,裝fP4控制是否允許信號τ〇ρ $狀恶通過輸出節點315傳送。當信號KIL2變成高電位 時,裝置P4截止,從而防止高電位通過p5(若由τ〇ρ導 藝通)傳送到初級輸出節點308。 。根據本發明,若當CLK變成高電位時,DATA為低邏 輯電位,CLK變成高電位後使P4截止的路徑得到加速。 如上所述,這種狀態在串接多米諾結構中十分有用,因為 不這樣的話,如參照圖1和2所作的描述,若CLK變成高 電,後DATA回到高電位,則輸出信號QB的狀態會改g 狀態。並且,如本領域技術人員會理解的是,對初始取= 16 1337002 CNTR2202 21757twf.doc/e 時,允許正常的DATA評估,為高邏輯電位DATA的保 時間的要求。 'In this regard, the inventors have noted that as understood by those skilled in the art, prior art dynamic circuit 100 shows that the set time requirement is (or in fact, less than G). This is because DATA is allowed to change from a logic low state to a logic high state at the rising edge of CLK, and the state of k output OUT is changed to reflect the changed data state. The CLK signal then goes low, and at time T4, the data 也 is also driven low, again pre-charging the m signal to a high potential. , t〇U Shi T signal is pulled low. At the next time Τ5, when DATA is low, the coffee signal is again determined to be high, so that N2 is turned on and turned off. Therefore, the HI signal is not discharged and is low. However, those skilled in the art will appreciate that the pulse is discharged at time and the QUT signal is flipped to a low potential. ,. The dynamic circuit, such as the dynamic circuit 100 shown in FIG. 1, is a logical bit other than the other t-way structure that implements the same logic evaluation function design (including the output of the static current channel (such as pre-charge i). : When the signal is low, the 'Hi signal is precharged to high power. The OUT signal is precharged to a low level. In fact, the 12 丄jj/υυζ CNTR2202 21757twf. d〇c/e is::=:( Such as: 1, N2) and evaluation logic unit evaluation logic unit (four) function) instead of dynamic circuit 1 () () in the user ί function, multi-input χ 〇 评估 评估 评估 评估 评估 评估 评估 评估 : : : Speed or related power restrictions have a negative impact. The _ ‘but—before” does not provide a staging mechanism for the input of the ... flash lock mechanism or 0UT signal. If the value of the above value is still high, the low-frequency signal is changed from low potential to high potential during the half-cycle period. =====: For the working area to provide stability for these devices == Workspace technology Involving the use of temporary work area techniques for existing dynamic circuits provides a pulsed period that is much shorter than a non-clock state period. For example, the pulse, the week makes the state -===, |(J 〇UT ^ the sampling state of the time T2 at which the potential is changed to the zeta potential. However, the above-mentioned working area makes the integrated circuit as a whole more complicated and/or generated. The pulsed clock signal is distributed. The two disadvantages of the present invention are therefore provided in the complex logic evaluation circuit, and the temporary storage mechanism is provided in the complex logic evaluation circuit, which adopts the dynamic circuit of the original county to improve the set time limit of the determination = display, greatly reducing the pair; It is required that the __ request is separated from the phase scale (S) 13 1337002 CNTR2202 21757twf.doc/e, so that the displayed clock output time is reduced compared to the present. The present invention will now be described with reference to Figs. 3-5. 3 is a schematic diagram of an inverting dynamic register 300 including a hold time reduction according to an embodiment of the present invention. The input portion of the dynamic logic register 3A includes a P channel device pl and an N channel device N2, which will be ^ The configuration is a pair of complementary evaluation devices, and an evaluation logic unit 3〇2, which is substantially opposite to the dynamic circuit 100. In one embodiment, the evaluation % logic unit 302 includes the N-channel device N2 shown in FIG. Other embodiments The other evaluation logic unit 302 structure includes p-channel and ^' or n-channel devices in a cascade and/or cascade configuration to implement a logic evaluation function such as a NAND function, an N〇R function, The combined NAND and NOR functions, including the multiple input priority order mux for more than one data input value logic, are not subject to this limitation. However, for clarity, the following description of the dynamic register 300 in accordance with the present invention is The operation includes the device N1 as an embodiment of the evaluation logic unit 302. The drain of N1 is connected to the precharge node 3〇7, and the source is connected to the drain of N2. The source of N2 is connected to the reference voltage, this reference The voltage is typically grounded. The pass node 301 provides the input clock signal CLK to the gates of ρι and N2, and the input to the non-inverting delay unit and the gate of the N-channel device N6. In one embodiment, the non-reverse The phase delay unit n or "buffer" 11 comprises two inverters connected in series. The input node signal DATA is supplied through the node 3〇3 to the gate of N1. The precharge node 3〇7 and the n-channel pass device N3 gate connection, and stacked The p-channel is connected to the gates of the N-channel devices P5 and N5. The pre-charge node 3〇7 is also connected to the first holding 13370702 CNTR2202 21757twf.doc/e circuit. The first-holder circuit includes a first inverter i4, The input terminal of the first-inverted $14 is connected to the node 3()7, with TOP, and the output of the first-inverter 14 is connected to the = terminal of the second inverter 13. The first inverter 13 The output is connected to node 3〇 7. The output of the delay early 11 is connected to node 304 to provide a signal KIU. Node 304 is also coupled to the source of path device N3 and the input terminal of the inverting delay unit. In an implementation, the inverse delay unit i2 includes a single reverse benefit. In other embodiments, the inverting delay unit includes an odd number of series inversions' to provide a delay associated with design requirements. Hereinafter, this inverted delay single Tt is referred to as an inverter 12. The output of the inverter 12 is connected to the gate of the p-channel device P3. The source of p3 is coupled to supply voltage VDD, and the drain of P3 is coupled to node 306 to provide signal KIL2. Node 3〇6 is also connected to the gate of N3 and the p-channel cutoff (km) device p4. The source of P4 is connected to the power supply voltage VDD, and the drain of P4 is connected to the source of P5. The drain of P5 constitutes a preiiminary output node 3〇8 to provide a signal Q. The primary output node 308 is coupled to the input of the second inverter 15 and to the second keeper circuit 313. The second keeper circuit 313 includes an inversion of 16, an input coupled to node 308 for receiving the signal q, and an output coupled to the input of the inverter 17. The output of inverter 17 is coupled to node 308. In addition, the drain of N5 is connected to node 3〇8. The output of the inverse 15 is coupled to the output node 315 to provide an output signal QB. The drain of N6 is connected to the source of N5, and the source of Νό is connected to the reference voltage. The output signal QB provides the inverted state of the input signal DATA sampled by the rising edge of CLK. 15 1337002 CNTR2202 21757twf.doc/e 1 ΛIn terms of operation 'with today's dynamic circuit described with reference to Figures 1 and 2', 〇 phase & dynamics provided by dynamic logic register 300 in accordance with the present invention • ❹米诺和Evaluate the inverted inversion function of the logic unit. The phase-shifted temporary storage 300 requires a set time for the input signal DATA to be approximately 〇, and does not require the pulsed clock signal clk. In addition, the hold time requirement for the inverse 1 'state temporary storage 1 300 is related to the shape of the sample DATA. The retention time requirements associated with the tribute, as discussed in more detail below, are advantageous in the case of a series of Domino circuit applications, especially if the aforementioned Domino stage provides a faster output than other CLK states.丨 status. According to Ben Maoming, in the first case where the sampled data is logic low, the requirement for the hold time can be optimized to optimize the aforementioned domino circuit to provide faster clock output time for the DATAk low potential to be converted to a high potential. . The inventors have noticed that the aforementioned circuit for providing an input signal is not necessarily a multi-circuit. As described above, the fP4 control allows the signal τ〇ρ$ to be transmitted through the output node 315. When the signal KIL2 goes high, the device P4 is turned off, thereby preventing the high potential from being transmitted to the primary output node 308 through p5 (if τ 〇 导). . According to the present invention, when CLK becomes a high potential, DATA is a low logic potential, and a path in which P4 is turned off after CLK becomes a high potential is accelerated. As mentioned above, this state is very useful in concatenating domino structures, because otherwise, as described with reference to Figures 1 and 2, if CLK becomes high and DATA returns to a high potential, the state of the output signal QB is output. Will change the g state. Also, as will be understood by those skilled in the art, a normal DATA evaluation is allowed for the initial take = 16 1337002 CNTR2202 21757twf.doc/e, which is a time requirement for the high logic potential DATA. '

在取樣時DATA為邏輯低電位的第一種情況下,節點 3〇7的信號TOP维持預充電在邏輯高電位。因此,當clk 變成高電位時,通路裝置N3已導通,而CLK的邏輯 位通過延遲單元II並透過導通的通路裝置以使Η迅 速截止。如本領域技術人員會理解的是,在第一種情況 信號KIL2的實際電位近似為VDD減去Ν3的臨界 壓’且此電壓隸減足赠Ρ4纽,以及防止高電位 信號通過Ρ4和Ρ5傳送到節點。因此,此情況下 持時間要求,大部分由通過延遲單元η的延遲來確定。這 是-種有用的情形,即期望具有縮減保持時間的要求。 此外,在取樣時DATA騎輯高電平的第二種情泥 下^節點307的信號T0P “評估,,,亦即當clk變成高電 位時’ TOP放電到邏輯低電位。當τ〇ρ放電時,通路裝置 =戴止’迫使通過反漏12和裝置ρ3建立信號ΚΚ;狀 悲的路徑’其比第-種情況下的保持時間要求長。此外, ^到即使當TOP部分放電時,也要防止信號KIU透過 =二f ΓKIL1透過裝置N3傳送所產生的信號 KIL2電壓近似特TOT的電_去臨界電 Π、12和P3的延遲之和要大於川求得驗八高2 = 而要的時間’以便在初級輸出信#uQ上確立正確的電位。 通過11的延遲只需要長到足以使信號TOP的部分放電迫 1337002 CNTR2202 2l757twf.d〇c/e 傳送到節點308,以確立信號Q上的邏輯高電位,因此信 號維持邏輯低電位。In the first case where DATA is logic low during sampling, the signal TOP of node 3〇7 maintains precharge at logic high. Therefore, when clk becomes high, the path device N3 is turned on, and the logic bit of CLK passes through the delay unit II and passes through the turned-on path device to quickly turn off the Η. As will be understood by those skilled in the art, in the first case, the actual potential of the signal KIL2 is approximately VDD minus the critical voltage of Ν3 and this voltage is reduced by Ρ4, and the high potential signal is prevented from being transmitted through Ρ4 and Ρ5. To the node. Therefore, the time requirement in this case is mostly determined by the delay through the delay unit η. This is a useful case where it is desirable to have a reduced hold time requirement. In addition, during sampling, DATA rides a high level of the second level of the signal _P 307 of the node 307 "evaluate,, that is, when clk becomes high, TOP discharges to a logic low. When τ 〇 ρ discharge When the path device = wear stop 'forces the signal through the back leak 12 and the device ρ3; the path of sadness' is longer than the hold time of the first case. In addition, ^ even when the TOP part is discharged, To prevent the signal KIU from transmitting through the = two f Γ KIL1 through the device N3 to generate a signal KIL2 voltage approximating the TOT of the electric_de-threshold power, the sum of the delays of 12 and P3 is greater than the sum of the test to get the high eight 2 = Time 'to establish the correct potential on the primary output signal #uQ. The delay through 11 only needs to be long enough to cause the partial discharge of the signal TOP to force 1337002 CNTR2202 2l757twf.d〇c/e to be transmitted to node 308 to establish signal Q The logic is high, so the signal is held at a logic low.

但是當T1時間TOP放電時,通路裝置N3截止。然 而,CLK的狀態不透過延遲單元n、反相器12和p3的路 徑傳送,因此P4截止直到時間T3。注意到在N3截止後, 在蛉間T2的信號KIL1變為高電位,因此阻止高邏輯電位 使P4截止直到P3導通的T3時間。相應地,在圖4中將 根據本發明的評估視窗4〇1表示為EVAL· 1,如上所述, 評估視窗401是經由延遲單元n、反相器12和裝置p3的 延遲之和而確定。 在日可間T4,CLK返回低電位,使ρι導通,N2和N6 截止,且將top預充電到邏輯高電位。因此N3再次導通, 使KIL1上的低電位通過N3傳送到節點3 %,從而當clk 上的低電位透過延遲單元Η傳送至信號kiu時,在時間 HI導通N。但是當丁4時間T〇P變為高電位時,P5 止一而隔離Q ’且保持器313維持節點308的 狀^邏^電位)。因此,的狀態為Q的相反狀態。 此使::二崎八為低電位’且CLK為高電位,因 位保持=,:是由於剛 因為TOP 11維持τορ上的高電位。 ,"、 為同電位,且信號KIU提供了你由Ν3至r赴 306的加速截斷路栌。闵μ '、、、工 至即點 W T7 ^ ^ 在料間,信號KIL1經:’:30二且KIU變為向電位。 由N3傳适到節點306使P4截 1337002 λ CNTR2202 21757twf.d〇c/e 止,而阻止高電位經由Μ傳送到節點308的信號Q,使得 、 DATA將返回到高電位。 • 在時間T9 ’ DATA返回到高電位,使TOP放電,而 一 N5截止且P5導通。但是在T8時間時,KIL2上 位使P4截止,保持器313維持Q上的低電位,也即維持 QB上的尚電位。相應地,在圖4中將根據本發明的第二 評估視窗402表示為EVAL 2,如上所述,第二評估視窗 φ 402是由經由延遲單元11和通路裝置N3的延遲之和而確 疋。/主思到第二評估視窗402的長度為對DATA上低電位 的保持時間要求。 _ 在時間T10,CLK返回低電位,使pi導通,N2和 N6截止’並且再次將T0P預充電到邏輯高電位。因此, N3再次導通,使KiL1上的低電位經N3傳送到節點3〇6, 從而當CLK上的低電位經由延遲單元n傳送到信號 KIL1(在時間T11)時,在時間T12再次導通p4,並且之後 在時間T12經由N3使P4截止。但是,當在時間丁1〇且 攀 TOP為高電位時,Ρ5截止且Ν6截止,從而隔離Q,且保 持器313保留節點308的狀態(邏輯高電位)。因此,QB的 狀態為Q的相反狀態。 在時間T13〜T15,反相動態暫存器3〇〇的操作與上面 討論在時間T1〜T3的情況大致相同,因此以丁13〜丁15為界 限的評估視窗401來表示。 ’ 1 現在參照圖5,圖5疋表示根據本發明實施例之動態 暫存輸出信號方法之流程圖500。 u 20 1337002 CNTR2202 21757twf.doc/e 操作從步驟S502開始,其中根據本發明之反相動態 暫存為處於預充電狀態。即如上面參照圖3和4討論的實 施例中,當時脈信號處於第_邏輯狀態時預先設置第一節 點。例如之前描述的實施例中,當cLK信號為低電位時, 將提供TOP信號的節點3〇7預充電到高邏輯狀態。 在步驟S503中,當時脈信號轉換成第二邏輯狀態時, 求邏輯函數的值,以控制第—節點的邏輯狀態。繼續上一 例子,备%脈“號CLK被斷定為高電位時,評估邏輯單元 根據一個或多個輸入資料信號評估邏輯函數。當 ^虎,被放電到低電位狀態時,邏輯函數的評估結果為第 一狀態° f TOP信號被放電到低電位狀態時,邏輯函數的 評估結果為第二狀態。However, when the T1 time TOP is discharged, the path device N3 is turned off. However, the state of CLK is not transmitted through the path of delay unit n, inverter 12, and p3, so P4 is turned off until time T3. Note that after N3 is turned off, the signal KIL1 of T2 becomes high at daytime, thus preventing the high logic potential from turning off P4 until the T3 time at which P3 is turned on. Accordingly, the evaluation window 〇1 according to the present invention is represented as EVAL·1 in Fig. 4, and the evaluation window 401 is determined via the sum of the delays of the delay unit n, the inverter 12, and the device p3 as described above. During daytime T4, CLK returns to a low potential, causing ρι to turn on, N2 and N6 to turn off, and precharge to a logic high. Therefore, N3 is turned on again, so that the low potential on KIL1 is transmitted to the node 3% through N3, so that when the low potential on clk is transmitted to the signal kiu through the delay unit ,, N is turned on at time HI. However, when D4 times T〇P becomes high, P5 stops I and isolates Q' and the keeper 313 maintains the state of node 308. Therefore, the state is the opposite state of Q. This causes:: 二崎八 is low potential' and CLK is high, and the bit remains =, : because the TOP 11 maintains a high potential on τορ. , ", is the same potential, and the signal KIU provides you with an acceleration cutoff path from Ν3 to r to 306.闵μ ',,, work to the point W T7 ^ ^ between the materials, the signal KIL1 by: ': 30 two and KIU becomes the potential. Passing from N3 to node 306 causes P4 to intercept 1337002 λ CNTR2202 21757twf.d〇c/e, while blocking the high-potential signal Q transmitted to node 308 via Μ so that DATA will return to a high potential. • At time T9 'DATA returns to high, TOP is discharged, and a N5 is turned off and P5 is turned on. However, at time T8, KIL2 uppers turns P4 off, and retainer 313 maintains a low potential on Q, that is, maintains a good potential on QB. Accordingly, the second evaluation window 402 according to the present invention is represented as EVAL 2 in Fig. 4, and as described above, the second evaluation window φ 402 is confirmed by the sum of the delays via the delay unit 11 and the path device N3. / The main idea is that the length of the second evaluation window 402 is a hold time requirement for a low potential on DATA. _ At time T10, CLK returns to a low potential, causing pi to turn on, N2 and N6 to turn off and again precharge T0P to a logic high. Therefore, N3 is turned on again, so that the low potential on KiL1 is transferred to node 3〇6 via N3, so that when the low potential on CLK is transmitted to signal KIL1 via delay unit n (at time T11), p4 is turned on again at time T12. And then P4 is turned off via N3 at time T12. However, when the time is 〇1 and TOP is high, Ρ5 is turned off and Ν6 is turned off, thereby isolating Q, and the holder 313 retains the state of the node 308 (logic high). Therefore, the state of QB is the opposite state of Q. At times T13 to T15, the operation of the inverting dynamic register 3A is substantially the same as the case of the above-mentioned discussion at times T1 to T3, and therefore is represented by an evaluation window 401 whose limits are limited to 13 to 15 . Referring now to Figure 5, there is shown a flow diagram 500 of a method of dynamic temporary storage of output signals in accordance with an embodiment of the present invention. u 20 1337002 CNTR2202 21757twf.doc/e Operation begins in step S502, in which the inverting dynamics are temporarily pre-charged in accordance with the present invention. That is, as in the embodiment discussed above with reference to Figs. 3 and 4, the first node is previously set when the clock signal is in the _th logic state. For example, in the previously described embodiment, when the cLK signal is low, the node 3〇7 providing the TOP signal is precharged to a high logic state. In step S503, when the current pulse signal is converted into the second logic state, the value of the logic function is obtained to control the logic state of the first node. Continuing with the previous example, when the % pulse "CLK" is asserted to a high potential, the evaluation logic unit evaluates the logic function based on one or more input data signals. When the tiger is discharged to a low potential state, the evaluation result of the logic function When the first state ° f TOP signal is discharged to the low potential state, the evaluation result of the logic function is the second state.

在步驟S504中,延遲時脈錢CL =該肌2被稱為延_日_號 二Ϊίΐί估結果為第一狀態時,截斷信號得到加速, =邏=評估結果為第二狀態時的短。輸入到評估邏 輯早兀之>料的評估週期或保持時間,處 斷信號的工作邊緣之間。可配置從時脈ϋ乍 緣到戴斷信號KIL2的工作邊 疏CLK的工作邊 保證邏輯祕㈣細所必㈣糾^續日㈣’以提供 在步驟S505中,根據在評估週 邏輯狀態,_輸出節點的邏輯狀態。卽點的 暫存器300,若在評估週期内,相動態邏輯 '隹持向電位’則輸出 21 1J37002 CNTR2202 21757twf.doc/e :號:==若在評估週期内,T0P拉為低電 位幻輪出k唬Q閂鎖為高電位。 在忙506中’在每個評估週期結束與下一評估週 輸節點308(如Q信號)的邏輯狀態。按這種In step S504, the delay clock money CL = the muscle 2 is called the delay_day_number. When the estimation result is the first state, the truncation signal is accelerated, and the logic = the evaluation result is short in the second state. Enter the evaluation period or hold time of the > material that evaluates the logic early, between the working edges of the interrupt signal. It can be configured from the clock edge to the working edge of the wear-break signal KIL2 to ensure that the logic edge (4) is fine (four) correcting the day (four)' to provide in step S505, according to the logic state in the evaluation week, _ The logical state of the output node. The temporary register 300, if the phase dynamic logic 'holds the potential' during the evaluation period, outputs 21 1J37002 CNTR2202 21757twf.doc/e: No.: == If during the evaluation period, T0P is pulled to a low potential Turn the k唬Q latch to a high potential. In busy 506, the logical state of node 308 (e.g., Q signal) is terminated at the end of each evaluation period and the next evaluation. According to this

持i出評估週期結束時確定該邏輯狀態,就維 f的狀⑮直到下—評估週期開始,贿證輸出仲 Q的完整性而與輸入資料信號的波動無關。 出Q 在V驟S5〇7中,緩衝並反相輸出節點308的信號q, 以提供互補輸出信號QB,用以驅動隨後的輸人紅如 的速討論巾可知’本發明提供可配置之動態電路 太^ 以及暫存器的㈣保㈣性。此外,根據 ί=動態邏輯暫存機制,其呈現-〇設定時間要求 間時間娜一標稱(__時脈輸出時 著傳統暫的動態邏輯暫存機佩邏輯評估器後跟 Φ ⑽延遲反相;t快。為這裡所述截斷機制所提供的 輸出TOP傳送聰、=㈣間隔,以允許動態評估器的 時,極大降t了^ Q。當在邏輯健位#料初始取樣 -+貝料輸入的保持時間要求。 版本和4=、、、其十的優選實施例詳細描述本發明,其他 器簡單可=考慮的。例如’期望反相動態暫存 人員式;了按本領域技術 置來說明—種2發明使用金屬氧化物半導體(M0S)型裝 只,包括互補M0S裝置等,如NM〇s和 22 丄州7002 CNTR2202 21757twf.doc/e PMOS電晶n,也可崎财式將它應狀不同或類比型 . 技術和結構中,如雙極性裝置等。 • 最後,本領域中的技術人員應理解他們很容易使用所 ‘ 公開的概念和特定實施例作為設計或修改其他結構的基 礎,以執行本發明的相同意圖,而不偏離本發明的權利要 求中定義的本發明的實質和範圍。 【圖式簡單說明】 (0 圖1為先前技術之動態電路之示意圖。 圖2為圖1之動態電路操作特性之時序圖。 圖3為依照本發明實施例實現之包含保持時間降低機 制之反相動態暫存器之示意圖。 圖4為圖3之動態暫存器操作之時序圖。 圖5為依照本發明實關之_暫存輸出錄方法之流 程圖 【主要元件符號說明】 100 :動態電路 β P卜P3 : P通道裝置The logic state is determined at the end of the evaluation period, and the dimension of the dimension f is up to the beginning of the evaluation period. The integrity of the bribe output is not related to the fluctuation of the input data signal. Output Q in step V5, buffering and inverting the signal q of the output node 308 to provide a complementary output signal QB for driving the subsequent input of the red. The present invention provides configurable dynamics. The circuit is too ^ and the (four) guarantee (four) of the scratchpad. In addition, according to the ί=dynamic logic staging mechanism, its presentation-〇 set time requirement between time and time is a nominal (__clock output is the traditional temporary dynamic logic temporary storage machine with the logic estimator followed by Φ (10) delay anti- Phase; t fast. For the output TOP provided by the truncation mechanism described here, the Cong, = (four) interval is transmitted to allow the dynamic estimator to be greatly reduced by ^ Q. When the logical position # initial sampling - + shell The retention time requirement of the material input. The preferred embodiment of the version and 4=,, and ten thereof describes the present invention in detail, and other devices can be simply considered. For example, 'desired inversion dynamic temporary storage personnel type; To illustrate - 2 inventions use metal oxide semiconductor (M0S) type only, including complementary MOS devices, such as NM〇s and 22 丄州7002 CNTR2202 21757twf.doc/e PMOS 晶晶 n, also can be used It should be different or analogous. Technology and structure, such as bipolar devices, etc. • Finally, those skilled in the art will understand that they can easily use the disclosed concepts and specific embodiments as design or modify other structures. Foundation to implement this The same intentions of the invention are not deviated from the spirit and scope of the invention as defined in the claims of the invention. [FIG. 1 is a schematic diagram of a prior art dynamic circuit. FIG. 2 is a dynamic circuit of FIG. FIG. 3 is a timing diagram of an inverse dynamic register including a hold time reduction mechanism according to an embodiment of the invention. FIG. 4 is a timing diagram of the operation of the dynamic register of FIG. 3. FIG. Flowchart of the temporary storage output recording method of the present invention [Description of main component symbols] 100: Dynamic circuit β P Bu P3 : P channel device

Nl、Ν2、Ν6 : Ν通道裝置 VDD :電源電壓 10卜 1〇3、1〇5、1〇9、30卜3〇3、3〇4、3〇6、3〇7、3〇8、 315 :節點 CLK :輸入時脈信號 DATA :輸入資料信號 107、16、17 :反相器 23 1337002 CNTR2202 21757twf.doc/e 111 :保持器電路 、 111A、14 :第一反相器 11 IB、13、15 :第二反相器 HI、TOP、Q、KIL1、KIL2 :信號 OUT、QB :輸出信號 J 200、400 :時序圖 300 :反相動態暫存器 302:評估邏輯單元 ® Π、12 :延遲單元 N3 : N通道通路裝置 P5 :堆疊式P通道裝置 N5 :堆疊式N通道裝置 311 :第一保持器電路 313 :第二保持器電路 P4 : P通道截斷裝置 500 :流程圖。 ψ·. S502〜S507 :本發明實施例之步驟 24Nl, Ν2, Ν6 : Ν channel device VDD: power supply voltage 10 卜1〇3,1〇5,1〇9,30卜3〇3,3〇4,3〇6,3〇7,3〇8, 315 : node CLK : input clock signal DATA : input data signal 107 , 16 , 17 : inverter 23 1337002 CNTR2202 21757twf.doc / e 111 : keeper circuit, 111A, 14 : first inverter 11 IB, 13, 15: Second inverter HI, TOP, Q, KIL1, KIL2: Signals OUT, QB: Output signal J 200, 400: Timing diagram 300: Inverting dynamic register 302: Evaluation logic unit Π, 12: Delay Unit N3: N-channel path device P5: stacked P-channel device N5: stacked N-channel device 311: first keeper circuit 313: second keeper circuit P4: P-channel intercept device 500: flowchart. ψ·. S502~S507: Step 24 of the embodiment of the present invention

Claims (1)

1337002 99-8-16 π年?月/6曰修 、申請專利範面 一種反相動態邏輯暫存器,包括· 一對互補娜裝置,響胁-時脈信號. 一評估邏輯單元,連接在該對 姐:輯二 =: 該截斷信號之間的延遲包含一保持該時脈信號與 該第-狀態時該保持時間縮短;、’心’輯函數評估為 古帝―門鎖邏輯單元,響應於該雜信號、觸㈣以及铁預 狀態’用於蝴脈信號的工作邊“該截斷;號 制輸出3==評估週_間’根據該預充電節點的狀態控 ’-於山、〜’否則使該輸出節點處於三態狀況;以及 相輸^點有與該輸出節點連接的輸入端和與反 其中項麟之反_祕㈣存器, - P通道裝置’其具有接收該時脈信號的_和連接在一 電源電壓與該預充電節點之間的沒極和源極;以及 N通道裝置,其具有接收該時脈信號的閘極和連接在 時估邏料元與—參考電壓之_祕和源極。 3.如申請專利範圍第】項所述之反相動態邏輯暫存器, 、中該評估邏輯單元包括-獅邏輯電路。 25 ^^/002 ^^/002 99-8-16 (年分月丨(?日修正替換頁 4. 如申請專利範圍第1項所述之反相動態邏輯暫存器, 其中該延遲邏輯單元包括一缓衝器。 5. 如申請專利範圍第1項所述之反相動態邏輯暫存器, 其中該延遲邏輯單元包括一串聯的反相器鏈。 6. 如申凊專利範圍第1項所述之反相動態邏輯暫存器, 其中該延遲邏輯單元包括一反相器’其與該Ρ通道裝置的閘極 連接’用於當該邏輯函數評估為該第二狀態時傳送該截斷信 號。 ° 7·如申請專利範圍第1項所述之反相動態邏輯暫存器, 其中該延遲邏料元包括-Ν通道通路裝置,麟當該邏輯 函數評估為該第一狀態時縮短該保持時間。 8·如申請專利範圍第1項所述之反相動態邏輯暫存器, 其中該閂鎖邏輯單元包括: 第一 Ρ通道拉升裝置,其具有接收該截斷信號的閘極和連 接在電源電壓與第二1>通道裝置的m的雜和汲極,其 中該第二P通道裝置具有與該預充電節點連接的閘極和與該 輸出節點連接的汲極;以及 夕個N通道拉低裝置,其連接在該輸出節點與該參考電 壓之間,且由該時脈信號和該預充電節點控制。 9·如申請專利範圍第1項所述之反相動態邏輯暫存器, 還縣器電路,其與該預充電節點連接’驗當該評估 邏輯單元在該評估週期期間評估該邏輯函數為該帛二狀態,並 且在之後至少有-個該輸人資料信號改變狀態時,保持該預充 電卽點的狀態。 26 1337002 99-8-16 ί1年Μ Μ修正替換頁 1〇. —動態暫存器電路,包括^ -動態電路’驗當-時脈信號為低電辦對一第一節點 預充電’並且用於評估-邏輯函數為—第—狀態或一第二狀 態,以及錄當辦脈信號㈣高電辦,鋪該第一節點的 狀態, -延遲邏輯電路,用於接收該時脈信號,以及用於提供一 截斷信號,該截斷信號為延遲的該時脈信號,其中該時脈信號 與該鑛錄之咖延遲包含―保持關,並且#該邏輯函數 評估為該第一狀態時該保持時間縮短; Η鎖電路’其與該動態電路和一延遲反相器連接,用於 ^始於該時脈輯變為高電位與止於賴斷信賴為高電位 能平估週捕間根據該n點的狀態控制輸&節點的狀 t,否則使該輸出節點處於三態狀況;以及 一保持器電路,其與該輸出節點連接。 1丨_如申明專利乾圍第10項所述之動態暫存器電路,立 中該動態電路包括: p通道裝置,其無H料接,當辦脈信號為低 電位時,對該第一節點預充電; 、-邏輯電路,其與該第—節點連接,以評倾邏輯函數; 以及 _ N通奴置’林該賴電路連接,崎當該時脈信 號變為高電位時,該邏輯電路評估該邏輯函數為該第二狀態。 12.如申請專利範圍第1〇項所述之動態暫存器電路,其 中該延遲邏輯電路包括一串聯的反相器鏈。 27 Μ辑月ifc日修正替換頁 99-8-16 13·如申請專利範圍第12項所述之動態暫存器電路,其 中該延遲邏輯電路還包括_個衫個反相器,其與ρ通道^ ,極連接,用於當該邏輯函數評估為該第二狀態時傳送^戴 斷化號,其中該一個或多個反相器的數量為奇數。 如申請專利範圍第12項所述之動態暫存器電路, 2延遲邏輯電路還包括—Ν通道通路裝置,祕當該邏輯 函數評估為該第一狀態時縮短該保持時間。 15. —種動態暫存輸出信號之方法’包括: .當一時脈信聽n邏輯狀態時,預先設置一第一節 當該時脈信號轉變成—第二邏輯狀_,動態評估邏輯函 :、第-狀態或-第二狀態,以控制該第一節點的邏輯狀 態, 延遲時脈信號’且提供—饋職,其巾賴斷信 遲的該時脈信號; 當邏輯函數評估為該第一狀態時,加速該鑛信號; ,據在始於該時脈錢轉變成所述第二邏輯狀態與止於 號的下—相應轉變的評估週期期間媒定該第一節點 、邏輯狀態閂鎖該輸出節點的邏輯狀態;以及 保持在評估週期之間的該輸出節點的邏輯狀離, 其中上述閂鎖包括: 椏^^一第一卩通道拉升裝置’其具有接收該截斷信號的閘 ί—電源電類—第二置的源極之間的源 'U該第二1>通道裝置具有與該第-節點連接的閘 28 山/002 Ή年1月_修正替換頁 99-8-16 極’和與該輸出節點連接的汲極;以及 提供多個Ν通道拉低裝置,其連接在該輸出節點與一參 考電壓之間,且由該時脈信號和該第一節點控制。 16.如申請專利範圍第15項所述之方法,1 置第一節點包括將該第一節點預充電到高電位邏輯狀够。° 反相15 _緩衝並 18. 如申請專利範圍第15項所述之方法, :估之間的該輸出節點的邏輯狀態包括使:出I:: 於二=狀況’以及將一保持器電路與該輪 幹接出即點處 19. 如申請專利範圍苐15棚述 ^點連接。 中該加速_錢包括: H钟電路,其 縮短該時脈信號與該戴斷信號之間的該延遲時間。 291337002 99-8-16 π years? Month/6曰 repair, patent application, a reverse-phase dynamic logic register, including · a pair of complementary devices, the threat-clock signal. An evaluation logic unit, connected to the sister: Series II =: The delay between the truncated signals includes a decrease in the hold time when the clock signal is maintained and the first state; and the 'heart' function is evaluated as the Gudi-door lock logic unit in response to the hash signal, the touch (four), and the iron The pre-state 'working edge for the butterfly signal' is the truncation; the number system output 3==evaluation week_between the state control according to the pre-charging node--Yushan,~' otherwise the output node is in a three-state state And the phase input has an input terminal connected to the output node and an inverse _ secret (four) register, and the P channel device has a _ receiving the clock signal and is connected to a power supply voltage a non-polar and a source between the pre-charging nodes; and an N-channel device having a gate receiving the clock signal and a source and a source connected to the reference voltage. Inverted dynamic logic described in the scope of patent application In the scratchpad, the evaluation logic unit includes the lion logic circuit. 25 ^^/002 ^^/002 99-8-16 (Year-by-month 丨 (? Japanese correction replacement page 4. If the patent application scope is the first item) The inverting dynamic logic register, wherein the delay logic unit comprises a buffer. 5. The inverting dynamic logic register according to claim 1, wherein the delay logic unit comprises a series connection 6. The inverting dynamic logic register of claim 1, wherein the delay logic unit comprises an inverter 'which is connected to the gate of the channel device'. The truncation signal is transmitted when the logic function is evaluated as the second state. The anti-phase dynamic logic register of claim 1, wherein the delay logic element comprises a - channel path device When the logic function is evaluated as the first state, the hold time is shortened. 8. The inverting dynamic logic register according to claim 1, wherein the latch logic unit comprises: a first channel a lifting device having the intercept signal a gate and a drain and a drain connected to the power supply voltage and m of the second 1> channel device, wherein the second P-channel device has a gate connected to the precharge node and a drain connected to the output node; And an N-channel pull-down device connected between the output node and the reference voltage, and controlled by the clock signal and the pre-charging node. 9. The inverse dynamic logic as described in claim 1 a register, a county circuit coupled to the precharge node, wherein the evaluation logic unit evaluates the logic function for the second state during the evaluation period, and at least one of the input data signals thereafter When the state is changed, the state of the pre-charge defect is maintained. 26 1337002 99-8-16 ί1年Μ ΜCorrect replacement page 1〇. —Dynamic register circuit, including ^-dynamic circuit' verification-clock signal is The low power office pre-charges a first node and is used to evaluate - the logic function is - the first state or a second state, and the recording signal (four) high power office, paving the state of the first node, - delay Logic circuit, Receiving the clock signal, and for providing a truncation signal, the truncated signal is a delayed clock signal, wherein the clock signal and the mine record delay include "hold off, and # the logic function evaluates to In the first state, the hold time is shortened; the shackle circuit is connected to the dynamic circuit and a delay inverter, and is used to start the pulse generation to become a high potential and to stop relying on the high potential energy The flattened weekly capture controls the state of the input & node according to the state of the n point, otherwise the output node is in a tristate state; and a keeper circuit that is coupled to the output node. 1丨_If the dynamic register circuit described in claim 10 of the patent circumference, the dynamic circuit includes: a p-channel device, which has no H-connection, and when the pulse signal is low, the first Node pre-charging; - logic circuit connected to the first node to evaluate the logic function; and _ N-pass slave 'Lin's circuit connection, when the clock signal becomes high, the logic The circuit evaluates the logic function to the second state. 12. The dynamic scratchpad circuit of claim 1, wherein the delay logic circuit comprises a series of inverter chains. The 暂 日 if if if 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 The channel ^, the pole connection, is used to transmit a break number when the logic function evaluates to the second state, wherein the number of the one or more inverters is an odd number. The dynamic register circuit of claim 12, wherein the delay logic circuit further comprises a channel path means for shortening the hold time when the logic function evaluates to the first state. 15. A method for dynamically storing an output signal 'includes: when a clock is listening to the n logic state, a first section is set in advance when the clock signal is converted into a second logic state, the dynamic evaluation logic: a first state or a second state to control a logic state of the first node, delay a clock signal 'and provide a job, the clock signal delayed by the letter; when the logic function evaluates to the first In a state, the mine signal is accelerated; and the first node is logically latched during an evaluation period starting from the time when the clock money is converted into the second logic state and the lower-corresponding transition a logic state of the output node; and a logical separation of the output node maintained between the evaluation cycles, wherein the latch comprises: a first channel riser 'having a gate ί receiving the cutoff signal - power supply type - source between the second set source 'U the second 1> channel device has a gate connected to the first node 28 mountain / 002 January 1 _ correction replacement page 99-8-16 Pole 'and the bungee connected to the output node And providing a plurality of channels Ν down means connected between the output node and a reference voltage, and controlled by the clock signal and the first node. 16. The method of claim 15, wherein setting the first node comprises precharging the first node to a high potential logic. ° Inverted 15 _ buffered and 18. As described in claim 15 of the patent application, the logic state of the output node between the estimated: includes: I:: in the second = condition 'and a keeper circuit Connect with the wheel dry point. 19. If the patent application scope is 棚15, the point is connected. The acceleration_money includes: an H clock circuit that shortens the delay time between the clock signal and the wear signal. 29
TW96101266A 2006-01-15 2007-01-12 Inverting dynamic register with data-dependent hold time reduction mechanism TWI337002B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/332,496 US7358775B2 (en) 2005-01-14 2006-01-15 Inverting dynamic register with data-dependent hold time reduction mechanism

Publications (2)

Publication Number Publication Date
TW200731670A TW200731670A (en) 2007-08-16
TWI337002B true TWI337002B (en) 2011-02-01

Family

ID=38694389

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101266A TWI337002B (en) 2006-01-15 2007-01-12 Inverting dynamic register with data-dependent hold time reduction mechanism

Country Status (2)

Country Link
CN (1) CN101001082B (en)
TW (1) TWI337002B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990180B2 (en) * 2009-09-09 2011-08-02 Via Technologies, Inc. Fast dynamic register
CN110943716B (en) * 2018-09-21 2023-09-15 兆易创新科技集团股份有限公司 Oscillator circuit and nonvolatile memory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377078B1 (en) * 1999-12-30 2002-04-23 Intel Corporation Circuit to reduce charge sharing for domino circuits with pulsed clocks
US7034578B2 (en) * 2003-04-28 2006-04-25 Via Technologies, Inc. N-domino output latch with accelerated evaluate path
TWI237265B (en) * 2003-08-13 2005-08-01 Ip First Llc Non-inverting domino register

Also Published As

Publication number Publication date
CN101001082B (en) 2011-09-21
CN101001082A (en) 2007-07-18
TW200731670A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
TWI329990B (en) N-domino register with accelerated non-discharge path
JP4099261B2 (en) Domino logic circuit, apparatus, and method for controlling precharge based upon completion of evaluation by next domino logic stage
TW200408193A (en) Logic circuit and an apparatus and method for reducing power consumption in a logic circuit
US6111447A (en) Timing circuit that selectively triggers on a rising or falling input signal edge
JP5224657B2 (en) Semiconductor integrated circuit device
KR20120059438A (en) Race free semi-dynamic d-type flip-flop
US6191618B1 (en) Contention-free, low clock load domino circuit topology
US7321243B1 (en) P-domino register with accelerated non-charge path
TWI300652B (en) Dynamic logic register
US6420905B1 (en) Vented CMOS dynamic logic system
US10447249B2 (en) Hold violation free scan chain and scanning mechanism for testing of synchronous digital VLSI circuits
TWI337002B (en) Inverting dynamic register with data-dependent hold time reduction mechanism
TWI543533B (en) Fast dynamic register, integrated circuits, methods of registering data, and scannable fast dynamic register
US6744282B1 (en) Latching dynamic logic structure, and integrated circuit including same
US8026754B2 (en) Low latency flop circuit
JP2001237675A (en) D-ff circuit
US7940087B1 (en) Clockless return to state domino logic gate
WO1988004864A1 (en) Self-timing circuit
US7358775B2 (en) Inverting dynamic register with data-dependent hold time reduction mechanism
TWI436589B (en) Fast dynamic register circuit and related data registering method and integrated circuit
JP3573687B2 (en) Data temporary storage
JPH11330948A (en) Self-reset dynamics logic circuit and its resetting method
US7173456B2 (en) Dynamic logic return-to-zero latching mechanism
JP2002026697A (en) Flip-flop circuit
US7936185B1 (en) Clockless return to state domino logic gate