TWI336961B - Light emitting diode structure and manufacturing method of the same - Google Patents

Light emitting diode structure and manufacturing method of the same Download PDF

Info

Publication number
TWI336961B
TWI336961B TW96102746A TW96102746A TWI336961B TW I336961 B TWI336961 B TW I336961B TW 96102746 A TW96102746 A TW 96102746A TW 96102746 A TW96102746 A TW 96102746A TW I336961 B TWI336961 B TW I336961B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
type
crystal structure
photonic crystal
Prior art date
Application number
TW96102746A
Other languages
Chinese (zh)
Other versions
TW200832741A (en
Inventor
ming li Hu
Bing Jung Chen
Chung Guang Chao
Jung Hsuan Chen
Original Assignee
Tera Xtal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Xtal Technology Corp filed Critical Tera Xtal Technology Corp
Priority to TW96102746A priority Critical patent/TWI336961B/en
Publication of TW200832741A publication Critical patent/TW200832741A/en
Application granted granted Critical
Publication of TWI336961B publication Critical patent/TWI336961B/en

Links

Landscapes

  • Led Devices (AREA)

Description

I?36^61 九、發明說明: 【發明所屬之技術領域】 本發明有關於—種發光二極體 一種罝有弁;曰邮 )特別疋有關於 製造i法。a日體結構之高發光效率發光:極體結構及其 【先前技術】 〜近來世界能源的短缺導致油價不斷的飆漲,全球各個 國豕莫不積極地投人節能產品的開發,例如省電燈泡便曰 此一趨勢下的產物。隨著發光二極體(LED)技術的進步^ 白光或其它顏色(例如:藍光)發光二極體的應用也逐漸開 展’其應用包括:液晶顯示器(LCD)背光板、印表機、用 於電腦之光學連接構件(optica丨interconnectsI? 36^61 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a type of light-emitting diode (a type of light-emitting diode); a high luminous efficiency of the Japanese body structure: polar body structure and its [prior art] ~ The recent shortage of energy in the world has led to a continuous increase in oil prices, and countries around the world are not actively investing in the development of energy-saving products, such as energy-saving light bulbs. Look at the product under this trend. With the advancement of light-emitting diode (LED) technology ^ The application of white light or other color (for example: blue light) light-emitting diodes has gradually developed. 'Applications include: liquid crystal display (LCD) backlights, printers, for Computer optical connecting member (optica丨interconnects

computers)、指示燈、地面燈、逃生燈、f療設備光源、 汽車儀錶及内裝燈、辅助照明、主照明…等等。簡而言之, 發光二極體係以背光源與照明功能為當前的主要應用。在 鲁下-世代的照明市場中,;j字是發光二極體的天T。由於發 光二極體具有輕巧、省電及壽命長等優點,因此,符合^ 世界的趨勢潮流。歐、A、日等國皆以舉國之力投入開發 的行列,而我國的發光二極體產業,在全球市場上,無論 研發以及製造均佔有舉足輕重的角色與地位。所以,在發 光二極體領域的下一世代發展中,台灣勢將不會缺席。X 目前,發光二極體在白光市場的應用,已將小型照明 市場,帶入另外一個境界。其中,手機的背光源已經被發 光二極體所取代。從早期的黃、綠光發光二極體到現在的 5 13369,61 白光或藍光發光二極體’已經將手機點綴的五彩繽紛。至 於個人數位助理(personal digital assistant : PDA)乃至液晶 顯示面板(TFT-LCD)的背光源,也都將成為發光二極體的 天下。其具有輕薄省電的優點將使其具有不可取代的地位。 就現階段而言,距離實際進入白光發光二極體照明時 代,尚有一段距離。若白光發光二極體要取代現階段照明 市場’發光效率至少要達到80 lm/W以上,這個目標也將 成為各國努力的目標之一。 在發光一極體的發光機制中,其發光效率取決於内部 的里子政率以及外部的取光效率,其中内部的量子發光效 率主要係由發光二極體的組成材料及其結晶性來控制。換 =之,發光二極體的發光效率主要係由磊晶的結構以及品 質來決定,當磊晶層中有缺陷存在時,由於結構中的缺陷 係造成光子被吸收的主要因素,因此,發光二極體的發光 效率將會大幅度地降低。 傳統之發光二極體之發光層所形成之光,在經由p型 半導體層與透明導電層之界面時會產生反射,使得該發光 一極體之光取出效率(light eXtracti〇n efficiency)受到影 曰此外,在發光二極體之發光表面增加粗縫化表面的圖 樣或是形成光子晶體結構,均是於半導體層上直接加工, 此種方法容易使得發光層被破壞或是造成元件損傷。此 外,由於藍寶石基板硬度高、耐腐蝕性強,因此加工上有 一定的困難度,一般的加工方式主要係利用微影蝕刻製 程 '電子束或雷射加工等方式於藍寳石基板製作特定的圖 6 13369,61 ^又限於上述製程之限制,較難得到奈米級的圖樣及進 '亍大面積元件的製作,並且上述技術之製造過程較繁複且 設備及製作成本相對的較昂貴。 再者,由於某些發光二極體之半導體層(例如:折 射率n>2.4)與空氣(折射率n約略=1 〇)之間的折射係數差 異很大’其全反射臨界角約只有2〇〜3〇度,造成大部分發 光層所產生的光只能在元件内部全反射,無法有效地出 ,光户斤以即使内部的發光效率提高,外部的取光效率若無 法改善也是枉然。 。因此,基於上述之問題,以及因應趨勢之需求,從製 =技,來改善發光二極體之取光效率已成為重要的發展方 °疋故,本發明將提出一種具有高發光效 體結構與其製造方法,其 今尤—桎 丹j以挺同發先一極體的光取出效 ction efficieney),並可降低發光二極體蟲晶 層之晶體缺陷,提高發光效率。 【發明内容】 本發明之目的在於提供一種新穎的具有多孔性光子曰 體結構之發光二極體結構與其製造方法。 曰曰 本發明之再一目的在於提# 一種具有(週期性) 孔洞的光子晶體結構之發光二極體。 " 本發明之目的在於提供—種具有(射 的光子晶體結構之發光二極體。 卞,及孔洞 本發明之另一目的在於將微米級週期性孔洞的光子曰 體結構建構於基板本身,使“门的先子晶 汉伞母使呈現規則性週期性排 7 1336^01 善蟲晶品質以減少側向漏光,並增加外部取光 厂、=放地提向發光二極體的發光效率。 fM士播造j之另目的在於將奈米級週期性孔洞的光子晶 期性排?丨於微米級光子晶體結構之上,使呈現規則且週 生之’此種方式可以改善蟲晶品質並降低蟲晶時所產 生之缺陷,使發光二極體之電性較佳。 於士而發月之又一目的在於提供一種可以簡化製程以適用 於大面積元件製造之發光二極體。 -種發光二極體,包括:第一光子晶體結構,形成於 二二1’Λ一光子晶體結構具有第一孔洞;第二光子晶 , 為、戍衝層),形成於基板與第一光子晶體結構之 =二光子晶體結構具有第二孔洞;第一型蟲晶層,形 成,第二光子晶體結構之上;發光層,形成於上述第一型 蟲曰曰層之上’第二型蟲晶層’形成於上述發光層之上;第 :接觸電極’形成於上述該第一型蠢晶層之上;以及,第 =接觸電極’形成於上述第二型蟲晶層之上。 一種發光二極體之製造方法,包括:首先,提供一基 板;接著,形成—多孔性第—光子晶體結構於基板之上, ”中第光子晶體結構具有第一孔洞;接著,形成一多孔 性第二光子晶體結構於基板與第一光子晶體結構之上,其 中第二光子晶體結構具有第二孔洞;隨後’形成一第一型 磊晶層於上述多孔性第二光子晶體結構之上;之後,形成 毛光層於上述第一型磊晶層之上;然後,形成一第二型 蟲晶層於上述發光層之上;接著’形成一第一接觸電極於 8 1测61 上述第一型磊晶層之上;之後,形成—莖_ 戍第一接觸電極於上 述第二型磊晶層上。 上述多孔性第二光子晶體結構包括利用純紹薄膜進行 陽極處理製程所形成之多孔性氧化鋁薄膜。 【實施方式】 本發明的一些實施例會詳細描述如下。然而,除了詳 7描述的實施例外,本發明可以廣泛地在其它的實施㈣ 把行ϋ且本發明之保言筻範圍並不受限於下述之實施例, 其係以後述的申請專利範圍為準。 再者,為提供更清楚的描述及更易理解本發明,圖示 中各部分並沒有依照其相對尺寸繪圖,不相關之細節部分 也未完全繪出’以求圖示的簡潔。 請參考圖示,其中所顯示僅僅是為了說明本發明之較 佳實施例,並非用以限制本發明。一般降低蟲晶層之晶格 缺的方式係對藍寶石基板直接作表面的加工處理,以形 鲁成奈米級或微米級的凹凸結構。 本發明先利用鍍膜沉積技術(或E_GUN、pECVD、 SpUUer等技術)於基板(例如藍寶石基板(sapphire)、氮化鎵 (GaN)、氮化鋁(Am)、碳化矽(Sic)或氮化鎵鋁(gain)。 表面沉積一層厚度為微米級之金屬薄膜,例如鋁金屬。然 後再利用濕韻刻處理技術(或乾敍刻、拋光、電子束、離子 束等技術)在基板表面製造一層具有週期性晶格係數之微 =級一維光子晶體結構,此光子晶體結構可以便利於後續 製程之進行。此種結構不僅可以有效改善磊晶品質,更可 9 I336Q61 以增加内部量子發光效率,並解決基板與磊晶層之間的光 全反射之問題以及減少沿著界面產生的側向漏光情形,結 果有效地提昇了發光二極體的外部取光效率。 本發明另外利用陽極處理技術(或電子束轟擊)在第一 層結構(例如AIN、Si〇2、A丨2〇3)表面製造一層具有(週期性) 奈米級晶格係數之二維光子晶體結構,此光子晶體結構可 以有效的改善磊晶品質,增加内部量子發光效率。再者, _奈米級晶格係數可以大幅降低磊晶生長時所產生之缺陷, 並控制與降低基板與磊晶層之間所產生之漏電流,使發光 二極體之電性大幅提昇。 • 在一實施例中,藉由調整發光層材料,使其發光介於 藍光範圍,利用本發明之多孔性氧化鋁光子晶體結構所產 生光激發現象,以增加發光二極體之發光強度。 請參閱第六圖,其係根據本發明之發光二極體結構之 戴面圖上述發光一極體結構,包括:一基板1 〇、微米級 鲁夕孔性光子晶體結構13、奈米級多孔性光子晶體結構丨4、 第一型磊晶層15、發光層17、第二型磊晶層18、第一接 觸電極19以及第二接觸電極丨6。舉一實施例而言,上述 基板ίο之材質可以為藍寶石(sapphire)、氮化鎵⑴…)、氮 化鋁(A1N)、碳化矽(Sic)或氮化鎵鋁(GaA1N)。上述基板⑺ 經過一祕化的製程而將基板1〇之表面粗糙化而形成粗 糙表面。舉一實施例而·r,上述表面粗縫化製程係首先在 基板10表面形成一層金屬薄膜,例如為紹金屬薄膜U, δ月參考第-圖。第—圖為本發明之發光二極體基板結構之 1236^61 截面圖。上述基板之表面沉積—層微米級金屬㈣^,例 如銘金屬薄膜,舉例而言’上述純㈣膜u可以透過蒸鍍 (E-GUN)、濺鏟(Sputter)、電漿式化學氣相沉積(pEc別、 化學亂相沉積(CVD)、物理氣相沉積(pVD)、熱浸鍍等技術 所完成,該薄膜厚度係在〇.5〜1〇微米之間。Computers), indicator lights, ground lights, escape lights, f-therapy equipment light sources, automotive instrumentation and interior lights, auxiliary lighting, main lighting, etc. In short, the light-emitting diode system is currently the main application with backlight and lighting functions. In the lighting market of Luxia-Generation, the j-character is the day T of the light-emitting diode. Because the light-emitting diode has the advantages of light weight, power saving and long life, it conforms to the trend of the world. Europe, A, Japan and other countries are all invested in the development of the country, and China's LED industry, in the global market, both in research and development and manufacturing have a pivotal role and status. Therefore, in the next generation of development in the field of light-emitting diodes, Taiwan will not be absent. X At present, the application of light-emitting diodes in the white light market has brought the small lighting market to another level. Among them, the backlight of the mobile phone has been replaced by the light-emitting diode. From the early yellow and green light-emitting diodes to the current 5 13369, 61 white or blue light-emitting diodes, the mobile phone has been embellished with colorful colors. As for the personal digital assistant (PDA) and even the backlight of the liquid crystal display panel (TFT-LCD), it will also become the world of light-emitting diodes. Its advantages of light and power saving will make it irreplaceable. At this stage, there is still a distance from the actual lighting age of white light emitting diodes. If the white light emitting diode is to replace the current lighting market, the luminous efficiency should be at least 80 lm/W or more, and this goal will become one of the goals of the countries. In the illuminating mechanism of the illuminating one body, the luminous efficiency depends on the internal neutron rate and the external light absorbing efficiency, and the internal quantum luminescence efficiency is mainly controlled by the constituent materials of the luminescent diode and its crystallinity. In other words, the luminous efficiency of the light-emitting diode is mainly determined by the structure and quality of the epitaxial layer. When there is a defect in the epitaxial layer, the photoreceptor is the main factor due to the defect in the structure. The luminous efficiency of the diode will be greatly reduced. The light formed by the light-emitting layer of the conventional light-emitting diode is reflected by the interface between the p-type semiconductor layer and the transparent conductive layer, so that the light extraction efficiency (light eXtracti〇n efficiency) of the light-emitting body is affected. In addition, the pattern of the roughened surface or the photonic crystal structure formed on the light-emitting surface of the light-emitting diode is directly processed on the semiconductor layer, and the method is easy to cause the light-emitting layer to be damaged or cause damage to the element. In addition, since the sapphire substrate has high hardness and high corrosion resistance, there is a certain degree of difficulty in processing. The general processing method mainly uses a lithography process, electron beam or laser processing, to produce a specific pattern on the sapphire substrate. 6 13369, 61 ^ Limited to the above-mentioned process limitations, it is difficult to obtain nano-scale patterns and the production of large-area components, and the manufacturing process of the above technology is complicated and the equipment and production costs are relatively expensive. Furthermore, since the refractive index between the semiconductor layer of some light-emitting diodes (for example, refractive index n > 2.4) and air (refractive index n is approximately = 1 〇) is large, the critical angle of total reflection is only about 2 〇~3〇, the light generated by most of the luminescent layer can only be totally reflected inside the component, and cannot be effectively emitted. Even if the internal luminous efficiency is improved, the external light extraction efficiency cannot be improved. . Therefore, based on the above problems and the demand for the trend, it is an important development to improve the light extraction efficiency of the light-emitting diodes. Therefore, the present invention proposes a structure having a high light-emitting effect and The manufacturing method, the current 桎 桎 j j 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以SUMMARY OF THE INVENTION An object of the present invention is to provide a novel light-emitting diode structure having a porous photonic germanium structure and a method of fabricating the same. Still another object of the present invention is to provide a light-emitting diode of a photonic crystal structure having (periodic) holes. < The object of the present invention is to provide a light-emitting diode having a photonic crystal structure. 卞, and a hole. Another object of the present invention is to construct a photonic germanium structure of a micron-order periodic hole in a substrate itself. Make "the first son of the door of the crystal Hanban umbrella to present a regular periodic row 7 1336 ^ 01 good insect crystal quality to reduce lateral light leakage, and increase the external light-receiving plant, = the grounding to the luminous efficiency of the light-emitting diode The other purpose of fM is to illuminate the photonic crystal phase of the nano-scale periodic pores on the micron-scale photonic crystal structure, so that it can be used to improve the quality of the crystal. And to reduce the defects caused by the insect crystal, so that the electrical properties of the light-emitting diode is better. Another purpose of the moon is to provide a light-emitting diode that can simplify the process for large-area component manufacturing. The light-emitting diode comprises: a first photonic crystal structure formed in a two-two 1'-one photonic crystal structure having a first hole; a second photonic crystal, a buffer layer) formed on the substrate and the first photonic crystal Structure = a two-photonic crystal structure having a second hole; a first type of worm layer formed over the second photonic crystal structure; and a luminescent layer formed on the first type of worm layer - a second type of worm layer Formed on the light-emitting layer; a: contact electrode 'formed on the first type of stray layer; and a = contact electrode 'on the second type of crystal layer. The manufacturing method comprises: firstly, providing a substrate; then, forming a porous photo-crystal structure on the substrate, wherein the middle photonic crystal structure has a first hole; and then forming a porous second photonic crystal Structured on the substrate and the first photonic crystal structure, wherein the second photonic crystal structure has a second hole; subsequently forming a first epitaxial layer over the porous second photonic crystal structure; Layered on the first type of epitaxial layer; then, forming a second type of insect layer on the light-emitting layer; then forming a first contact electrode to measure 61 of the first type of epitaxial layer Upper Forming - stem _ Shu first contact electrode on said epitaxial layer on the second type. The porous second photonic crystal structure includes a porous alumina film formed by an anodizing process using a pure film. [Embodiment] Some embodiments of the present invention will be described in detail below. However, the present invention is broadly applicable to the other embodiments (4), and the scope of the present invention is not limited to the following embodiments, which are described below. Prevail. Further, in order to provide a clearer description and a better understanding of the present invention, the various parts of the drawing are not drawn according to their relative dimensions, and the irrelevant details are not fully drawn to illustrate the simplicity of the illustration. The drawings are only for the purpose of illustrating the preferred embodiments of the invention and are not intended to limit the invention. Generally, the method of reducing the crystal lattice of the insect crystal layer is directly processed on the surface of the sapphire substrate to form a concave-convex structure of nanometer or micrometer order. The invention first uses a coating deposition technique (or E_GUN, pECVD, SpUUer, etc.) on a substrate (such as sapphire, gallium nitride (GaN), aluminum nitride (Am), tantalum carbide (Sic) or gallium nitride. A surface of a metal film with a thickness of a micron, such as aluminum, and then a wet-grain processing technique (or dry lithography, polishing, electron beam, ion beam, etc.) to create a layer on the surface of the substrate. The micro-level one-dimensional photonic crystal structure of the periodic lattice coefficient, the photonic crystal structure can facilitate the subsequent process. This structure can not only effectively improve the epitaxial quality, but also increase the internal quantum luminous efficiency, and Solving the problem of total light reflection between the substrate and the epitaxial layer and reducing lateral light leakage along the interface, effectively improving the external light extraction efficiency of the light emitting diode. The present invention additionally utilizes anodizing technology (or Electron beam bombardment) A two-dimensional photon with (periodic) nanoscale lattice coefficients is fabricated on the surface of the first layer structure (eg AIN, Si〇2, A丨2〇3) Crystal structure, the photonic crystal structure can effectively improve the epitaxial quality and increase the internal quantum luminescence efficiency. Furthermore, the _ nanometer lattice coefficient can greatly reduce the defects generated during epitaxial growth, and control and reduce the substrate and the ray. The leakage current generated between the crystal layers greatly increases the electrical conductivity of the light-emitting diode. • In one embodiment, the porous layer is oxidized by adjusting the light-emitting layer material so that the light is in the blue light range. The light-exciting phenomenon generated by the aluminum photonic crystal structure increases the luminous intensity of the light-emitting diode. Please refer to the sixth figure, which is a light-emitting diode structure according to the light-emitting diode structure of the present invention, comprising: a substrate 1 〇, a micron-scale Lu Xikong photonic crystal structure 13, a nano-scale porous photonic crystal structure 丨 4, a first-type epitaxial layer 15, a light-emitting layer 17, a second-type epitaxial layer 18, and a first contact The electrode 19 and the second contact electrode 丨6. In one embodiment, the material of the substrate ίο may be sapphire, gallium nitride (1)...), aluminum nitride (A1N), tantalum carbide (Sic) or nitrogen. Gallium aluminum (GaA1N). The substrate (7) is subjected to a secret process to roughen the surface of the substrate 1 to form a rough surface. In one embodiment, the surface roughening process first forms a metal film on the surface of the substrate 10, for example, a metal film U, which is referred to in the drawings. Fig. 1 is a cross-sectional view of the 1236^61 of the structure of the light-emitting diode of the present invention. The surface of the substrate is deposited - a layer of micron-sized metal (4), such as a metal film, for example, 'the above pure (four) film u can be vapor-deposited (E-GUN), sputter, and plasma chemical vapor deposition. (PEc, chemical chaotic deposition (CVD), physical vapor deposition (pVD), hot dip plating, etc., the thickness of the film is between 55~1〇 microns.

然後,形成一光阻層12於鋁金屬薄膜u之上,如第 二圖所示。総層12經過一曝光與顯影(微影製程)之後, 形成一光阻圖案’其中曝光區之光阻層為光阻層ua。之 後,再利用濕式姓刻(或乾❹!、拋光、電子束、離子束等 技術)將紹至屬,摩膜1 1表面韻刻形成一具有週期性孔洞 13a結構的圖# 13 ’如第三圖所示。舉例而言,氧化銘薄 膜孔洞13a直徑,約〇.5〜5微米,孔洞與孔洞之間的距離(排 列8週期I約為1〜10微米,孔洞密度約為每平方公分具有 1 〇 1 〇個n此外’濕式#刻之似彳溶液例如為草酸 (C2H204),奋液、磷酸溶液等。換言之,酸性蝕刻溶液對於Then, a photoresist layer 12 is formed over the aluminum metal film u as shown in the second figure. After the enamel layer 12 is subjected to an exposure and development (lithography process), a photoresist pattern is formed, wherein the photoresist layer of the exposed region is the photoresist layer ua. After that, using the wet type engraving (or cognac!, polishing, electron beam, ion beam, etc.) to the genus, the surface of the film 1 1 is engraved to form a pattern with periodic holes 13a. The third picture shows. For example, the diameter of the oxidized film hole 13a is about 55 to 5 μm, and the distance between the hole and the hole (arrangement 8 period I is about 1 to 10 μm, and the hole density is about 1 〇1 per square centimeter). In addition, the 'wet type 刻 彳 彳 彳 solution is, for example, oxalic acid (C2H204), hydrating solution, phosphoric acid solution, etc. In other words, the acidic etching solution is

紹金屬薄膜有蝕刻的作用,在此實施例之中,銘金屬之蚀 刻作用為先利用賴將銘金屬反應轉化成為氧化銘之後, 再藉由^4 ^將氧化!g予以融化並侵钮,其化學&應如下所The metal film has an etching effect. In this embodiment, the etching effect of the metal is to first convert the metal reaction of Lai Ming into an oxidation mark, and then oxidize by ^4 ^! g is melted and invaded, its chemical & should be as follows

Al2〇3 + 2H3P04—2A1P04 + 3H2〇 ik後,利用鍍膜沉積技術(例如蒸鑛(e_gun)、濺鍍 (Sputter)、電漿式化學氣相沉積(pECVD)、熱浸鍍)形成一 金屬薄膜20於基板10與金屬薄膜圖案13之上,如第四圖 所不。舉-實施例而言’金屬薄膜2〇為鋁金屬肖膜,其薄 丨 Π369‘61 膜厚度為0.5〜2.0微米。 然後,再利用陽極處理(an〇dizati〇n)技術在基板與 !呂金屬薄膜圖案! 3表面形成週期性 制膜丨4’請參考第五圖。舉例而言,上述多孔性= 屬溥膜14包括複數個孔洞形成於基板1 〇或金屬薄膜圖案 U之上。舉例而言’形成於基板10上之孔洞14b的深度 比形成於金屬薄膜圖案13上之孔洞Ma深度還大。又 舉例而s,對於上述純鋁薄膜之陽極處理係在0.2〜0.5 莫耳濃度(M)的草酸(C2fi2〇4)溶液,外加20〜50伏特之直流 電壓之環境下進行。隨著陽極處理之時間的改變,多孔^ •氧化銘薄膜厚度逐漸增加,舉例而言,氧化紹薄膜孔洞直 徑約為5〜彻奈米(較佳為30〜80奈来),孔洞與孔洞之間 的距離(排列週期)約為8〇〜12〇奈米’孔洞密度約為每平方 公分具有108〜1〇】2個孔洞。 一般而言,陽極處理金屬薄膜後呈現細胞管狀 # (ceiiulartube)結構。形成此種結構型態的過程詳述如下: 開始通電時’銘陽極表面的某些部位開始溶解,隨著時間 增長,銘溶解量增加,而陽極表面開始呈現凹凸不平 糖度,時間續增’由於凹凸不平造成溶解速率不一,、容解 較快的部位逐漸凹陷,而溶解的銘離子逐漸形成氮氛化銘 與氧化銘沉積在表面,但是仍留有孔隙以供溶解反應繼續 進仃,一段時間之後,堆積的沉澱即形成管壁,管壁的主 要成份包含水氧化銘或勝狀氫氧化銘,其中愈接近管壁中 央含水量愈少,愈接近純氧化紹,而接近電解液區域即為 12 1336^61 鋁溶解沉積的區域,沉積愈久則愈緻密。 =酸性溶液進行陽極處理時,酸性電解質會分解純 紹金屬表面’並且開始成長氧化層。純铭金屬表面 成、”田小孔4的產生’同時孔洞底部會形成阻障層使得 層與金屬鋁隔離’當孔洞形成趨於穩定時,則將以一定 率開始成長,形成類似蜂巢結構的氧化鋁層。 、 陽極處理時操作電壓會影響孔洞、孔距與細胞After Al2〇3 + 2H3P04-2A1P04 + 3H2〇ik, a metal film is formed by coating deposition techniques such as e_gun, sputter, plasma chemical vapor deposition (pECVD), hot dip plating 20 is above the substrate 10 and the metal thin film pattern 13, as shown in the fourth figure. In the embodiment, the metal film 2 is an aluminum metal film having a film thickness of 0.5 to 2.0 μm. Then, use the anodized (an〇dizati〇n) technique on the substrate and the !Lu metal film pattern! 3 Surface formation periodic film formation ’ 4' Please refer to the fifth figure. For example, the above porosity = belonging to the ruthenium film 14 includes a plurality of holes formed on the substrate 1 or the metal thin film pattern U. For example, the depth of the hole 14b formed on the substrate 10 is larger than the depth of the hole Ma formed on the metal thin film pattern 13. Further, for example, the anode treatment of the above pure aluminum film is carried out in an environment of 0.2 to 0.5 molar concentration (M) of oxalic acid (C2fi2〇4), plus a DC voltage of 20 to 50 volts. As the time of the anode treatment changes, the thickness of the porous oxide film gradually increases. For example, the pore size of the oxide film is about 5 to Chennai (preferably 30 to 80 nm), and the pores and pores are The distance between the two (arrangement period) is about 8 〇 ~ 12 〇 nano 'hole density is about 108~1 每 per square centimeter] 2 holes. In general, an anodized metal film exhibits a tubular (#) ceiiular tube structure. The process of forming this type of structure is detailed as follows: When starting the energization, some parts of the surface of the anode begin to dissolve. As time goes on, the amount of dissolved is increased, and the surface of the anode begins to show irregularities, and the time continues to increase. The unevenness causes the dissolution rate to be different, and the part with faster disintegration gradually sags, while the dissolved ionic ions gradually form a nitrogen atmosphere and the oxidized deposit is deposited on the surface, but there are still pores for the dissolution reaction to continue. After the time, the deposited precipitate forms the wall of the pipe. The main component of the pipe wall contains water oxidation or sulphuric acid. The closer the water content is to the center of the pipe wall, the closer to the pure oxidation, and the closer to the electrolyte zone. For the area where 12 1336^61 aluminum is dissolved, the longer the deposition, the denser it is. = When the acidic solution is anodized, the acidic electrolyte decomposes the pure metal surface and begins to grow the oxide layer. The pure metal surface is formed, "the production of the small hole 4" and the barrier layer is formed at the bottom of the hole to isolate the layer from the metal aluminum. When the hole formation tends to be stable, it will start to grow at a certain rate to form a honeycomb structure. Alumina layer. Operating voltage during anode treatment affects pores, pores and cells.

小’它們之間的關係是成正比的。換言之,施加的電壓越 大,其孔洞、孔距與細胞也相對的較大。 理論上,陽極氧化㈣的孔洞可以規則性的排列,但 是通常其範圍不會超過幾微米。在孔洞形成之初,無次序 的孔洞生成將造成陽極氧化㈣正面孔洞不規則,而 ^成穩定時,模板背面才可以看到規則的孔洞排列。為:r 传到大範圍的規則孔洞,可以利用二次陽極處 (w-step an〇dlzation)或在雀呂金屬層表面預置圖案㈣等兩 種方法。 —鋁金屬陽極處理所使用的電解液可以包括很多種,其 中每-種電解液的主要化學成份不同’經其處理後的薄膜 組織不同’孔洞性質也因之有所差異。舉例而言,上述電 解液包括:(1)硫酸液,例如15〜2〇%硫酸,操作電壓為 14 22伏特、電流密度為、環境溫度18〜25艽、 處理時間1G〜6G分鐘,其可以形成薄膜厚度為⑽微米。 硫酸溶液製程所得㈣薄膜抗難良好,而且抗磨耗性 佳,此製程若將操作溫度降至5t以下,硫酸濃度降至7 13 1336961 4 · %左右,處理電壓提高至Μ〜12〇伏特,可以長時間處理 以獲得厚度200微米以上的相對硬質陽極薄膜;(2)鉻酸 液,例如包括5〜1 〇%鉻酸,操作電壓為4〇伏特、電流密 度為0.15〜0.30A/dm2、環境溫度35°C、處理時間3〇分鐘在 其可以形成薄膜厚度約為2〜3微米,鉻酸溶液製程:得里到 的薄膜亦具有良好抗蝕性;(3)草酸液,例如包含〇 3莫耳 =〜f酸(c2H2〇4),電壓為4G〜6G伏特、電流密度 為idA/dm、環境溫度】8〜2〇t、處理時間4〇〜6〇分鐘, 其可以形成薄膜厚度約為1G〜65微米,此外,當 降至經長時間處理可以獲得厚度625㈣的薄皿膜又 L4)二酸3 液:^ /皿! 23〜25 C、處理時間2〇〜30公链,甘π ^ t , 于间3〇刀知,其可以形成薄臈厚 又、力為1〜2微米,磷酸液處理之薄膜孔隙較大。 種電解液之成分組成以及其操作條件僅係本發 护成Si施例’並非用以限定本發明。這四種電解液中 —成薄二’實際上有一定的孔隙,允許銘金屬持續溶出 以持續^至:膜具有一定的溶解度,因此薄膜可 常= …合解速度與成長速度相等為止。此外,它 不容易1“;:::、酒石酸液等’其生成的薄膜較緻密, 薄的薄膜:電解溶出’因此適合使用於形成較 ::施例而言,多孔性氧化金屬薄膜14例如為多孔 氧二::Γ。然後’再透過—熱處理製程,其可以利用 盧官執仃,爐管内抽真空使其真空度達1M(rw> 1336961 處理溫度於攝氏500〜1100度底下進行’時間為4小時。 經由熱處理製程完成後,二氧化鋁(A丨Ay晶體生長完成之 後:其^薄膜圖案13與基板1G之上便形成二氧化紹多晶 狀態磊晶體,可以作為週期性孔洞之緩衝層。 此外,本發明之發光二極體包括一 N型半導體層15, 形成於金屬薄臈圖案13與氧化金屬薄膜14之上。n型半 導體磊晶層1 5可以透過化學氣相沉積(CVD)、有機金屬化 學氣相沉積(MOCVD)方式形成。另外,一發光層17,形成 於上述N型半導體層15之上。上述發光層17為一主動層 (active layer) ’其可以由複數個井層(weH丨叮“)與複數個阻 障層(barrier layer)交互堆疊而形成。一 p型半導體磊晶層 18,形成於上述發光層17之上,同樣地,p型半導體層 18可以透過化學氣相沉積(CVD)、有機金屬化學氣相沉積 (MOCVD)方式形成。上述p型半導體層18*Ns半導體 層15之材質可以選自氮化鎵(GaN)、氮化銦鎵(InGaN)、氤 鲁化鎵系或氮基(nitride-based)半導體磊晶之一。 第一接觸電極19’形成於上述p型半導體層18之表 面’其係用以作為P型接點或N型接點。另外,一第二接 觸電極16,形成於上述N型半導體層15之上,其係用以 作為N型接點或p型接點。上述二接觸電極,其材質可以 選自鈦/紹(TiAl)、鈦/铭/鈦/金(Ti/A1/Ti/Au)及鈦/銘/錄/金 (Ti/Al/Ni/Au)合金之一。 此外’本發明亦提供發光二極體之製造方法,其主要 步驟包括:首先,提供一基板1〇。接著,形成一金屬薄膜 15 1336961 11於基板10之上,然後,形成一光阻層丨2於金屬薄膜i i 之上,藉由微影與蝕刻製程以圖案化金屬薄膜丨丨以得到金 屬薄膜圖案13。隨後,形成第二金屬薄膜2〇於基板1〇與 金屬薄膜圖案13之上,接著,針對第二金屬薄膜2〇進行 陽極處理製程而形成奈米級多孔性氧化金屬薄膜14,此即 為本發明之多孔性光子晶體結構14。舉一實施例而言,上 述基板ίο之材質包括藍寶石(sapphire)、I化鎵(GaN)、氣 化鋁(A1N)、碳化矽(Si〇或氮化鎵鋁(GaAiN)。 籲 然後,形成一 N型半導體層1 5於多孔性光子晶體結 構14之上。之後,形成發光層17於上述N型半導體層u 之上上述發光層17為一主動層(active layer),其可以由 複數個井層(well layer)與複數個阻障層(barrier Uyer)交互 堆i而形成。接著,形成一 p型半導體層18於發光層P 之上。 然後,形成一第一電極16KN型半導體層15之表面, •其係用來作為N型接觸電極。之後,形成一第二電極19 於P型半導體層18上,其係用來作為p型接觸電極。上 述二電極,其材質可以選自氮化鈦、鈦/鋁(TiAl)、鈦/鋁/ 鈦 /金(Ti/Al/Ti/Au)及鈦 /銘 /鎳 /金(Ti/A1/Ni/Au)合金之一。 利用上述多孔性氧化鋁薄膜之特性,使得上述發光層 17所形成之發光路徑在N型半導體層15與基板1〇之界面 之間降低反射率,使得大部分激發之光可以輻射至元件之 外部。結果使得本發明之發光二極體之取光效率 extraction efficiency)提高。另外,此光子晶體結構也能有 16 1336961 噌加内部量 子發光效率 效的改善磊晶品質 本發明的主要優點如下 利用濕式蝕刻製程於(藍寶 的效果,能大幅提昇外;成:: 以“昇發光二極體内部發光效率二了 避免因製程加工所造成的損害。 了❺化h ’ 的二程於(藍寳石)基板上達到表面粗化 的效果除了砲有效提昇内部發光效率 跑長時所產生的缺陷,避免因界面與蟲晶 漏電流對發光二極體所造成的損害。 的 3·利用熱處理過程,將缥褕爲+ a仔a 增強其結構。 將,讀層之金屬轉化成氧化紹, 4.利用光子晶體效應,可以有效的 側向漏光問題,而結構本身週期性的凹凸型及 基板=晶層之間的全反射情形,增加光的取出效率:- 二極體之發光強度。有光料特》•生’可以增加發光 二.本發明之製程簡易且適合用於大面積元件的製造。 本發明以較佳實施例說明如上,㈣_ 發明所主張之鼻未丨趨刹f同 仕 限疋本 申上主直4卜 利範圍。其專利保護範圍當視後附之 申印專利乾圍及其等同領域而定。凡孰籴 者,在不脫離本專利精神或範圍内,所作:更動或^藝 均屬於本發明所揭示精神下所完成之等效改變或設二,且 應包含在下述之申請專利範圍内。 —X。 17 1336961 * i 【圖式簡單說明】 藉由以下詳細之描述,結 上述内容及此項發明之諸多 第一圖為根據本發明之 圖。 合所附圖示,將可輕易的了解 優點,其中: 形成金屬薄膜於基板上之戴面 之形成光阻圖案於金屬薄臈上之 第二圖為根據本發明 截面圖。Small 'the relationship between them is directly proportional. In other words, the larger the applied voltage, the larger the hole, the hole pitch and the cell. Theoretically, the pores of the anodized (d) can be regularly arranged, but usually the range does not exceed a few microns. At the beginning of the formation of the holes, the disordered hole formation will cause anodization (4) the front hole irregularities, and when the stability is stabilized, the regular hole arrangement can be seen on the back side of the template. For: r to a large range of regular holes, you can use the secondary anode (w-step an〇dlzation) or preset pattern (4) on the surface of the metal layer of the bird. - The electrolyte used for the anodizing of the aluminum metal may include a wide variety, and the main chemical composition of each of the electrolytes is different 'the film structure after the treatment is different', and the pore properties are also different. For example, the electrolyte solution includes: (1) a sulfuric acid liquid, for example, 15 to 2% sulfuric acid, an operating voltage of 14 22 volts, a current density of 18 to 25 环境, and a treatment time of 1 G to 6 G minutes. The film thickness was formed to be (10) microns. The sulfuric acid solution process (4) film is difficult to resist, and the anti-wear property is good. If the operating temperature is reduced to below 5t, the sulfuric acid concentration is reduced to about 7 13 1336961 4 · %, and the treatment voltage is increased to Μ~12〇V, which can be Long-term treatment to obtain a relatively hard anode film with a thickness of 200 microns or more; (2) chromic acid solution, for example, including 5 to 1% chromic acid, operating voltage of 4 volts, current density of 0.15 to 0.30 A/dm2, environment The temperature of 35 ° C, the treatment time of 3 〇 minutes can form a film thickness of about 2 to 3 microns, the chromic acid solution process: the film obtained also has good corrosion resistance; (3) oxalic acid liquid, for example, including 〇 3 Moer = ~ f acid (c2H2 〇 4), voltage is 4G ~ 6G volts, current density is idA / dm, ambient temperature -8 ~ 2 〇 t, processing time 4 〇 ~ 6 〇 minutes, which can form a film thickness of about For 1G ~ 65 microns, in addition, when reduced to a long time processing can obtain a thickness of 625 (four) of the film and then L4) diacid 3 liquid: ^ / dish! 23~25 C, treatment time 2〇~30 public chain, Gan π ^ t, in the case of 3 knives, it can form thin and thick, and the force is 1~2 microns, and the film treated by phosphoric acid solution has larger pores. The composition of the electrolyte and the operating conditions thereof are merely for the purpose of limiting the invention. Among the four electrolytes, the thinner ones actually have a certain porosity, allowing the metal to continue to dissolve for a long time until the film has a certain solubility, so the film can often be ... the solution speed is equal to the growth rate. Further, it is not easy to "1::::, tartaric acid, etc., which produces a film which is denser, and a thin film: electrolytically dissolved" is therefore suitable for use in forming: for example, the porous oxidized metal film 14 is for example It is porous oxygen two:: Γ. Then 're-transmission-heat treatment process, which can be used by Luguan, vacuuming the furnace tube to a vacuum of 1M (rw> 1336961 processing temperature is under 500~1100 degrees Celsius' time After 4 hours of completion of the heat treatment process, after the completion of the growth of the A丨Ay crystal: the thin film pattern 13 and the substrate 1G form a crystal of the polycrystalline polycrystal, which can serve as a buffer for the periodic pores. In addition, the light-emitting diode of the present invention comprises an N-type semiconductor layer 15 formed on the metal thin germanium pattern 13 and the metal oxide film 14. The n-type semiconductor epitaxial layer 15 can be transparently deposited by chemical vapor deposition (CVD). And an organic metal chemical vapor deposition (MOCVD) method. Further, a light-emitting layer 17 is formed on the N-type semiconductor layer 15. The light-emitting layer 17 is an active layer 'which can be recovered from A well layer (weH丨叮) is formed by alternately stacking a plurality of barrier layers. A p-type semiconductor epitaxial layer 18 is formed on the light-emitting layer 17, and similarly, the p-type semiconductor layer 18 is formed. It can be formed by chemical vapor deposition (CVD) or organometallic chemical vapor deposition (MOCVD). The material of the p-type semiconductor layer 18*Ns semiconductor layer 15 can be selected from gallium nitride (GaN) or indium gallium nitride ( One of InGaN), a gallium-based or a nitride-based semiconductor epitaxial. The first contact electrode 19' is formed on the surface of the p-type semiconductor layer 18, which is used as a P-type contact or N. In addition, a second contact electrode 16 is formed on the N-type semiconductor layer 15 for use as an N-type contact or a p-type contact. The two contact electrodes may be made of titanium. / Shao (TiAl), titanium / Ming / titanium / gold (Ti / A / Ti / Au) and titanium / Ming / recorded / gold (Ti / Al / Ni / Au) alloy. In addition, the present invention also provides light The main method of manufacturing the diode includes: firstly, providing a substrate 1 〇. Next, forming a metal film 15 1336961 11 on the substrate 10 Then, a photoresist layer 2 is formed on the metal film ii, and the metal film is patterned by a lithography and etching process to obtain a metal thin film pattern 13. Subsequently, a second metal thin film is formed. The substrate 1 is formed on the metal thin film pattern 13, and then the second metal thin film 2 is subjected to an anodizing process to form a nano-sized porous metal oxide film 14, which is the porous photonic crystal structure 14 of the present invention. In one embodiment, the material of the substrate λ includes sapphire, gallium nitride (GaN), vaporized aluminum (A1N), tantalum carbide (Si〇 or aluminum gallium nitride (GaAiN). Then, an N-type semiconductor layer 15 is formed over the porous photonic crystal structure 14. Thereafter, the light-emitting layer 17 is formed on the N-type semiconductor layer u. The light-emitting layer 17 is an active layer, which can be interacted with a plurality of barrier layers by a plurality of well layers. The pile i is formed. Next, a p-type semiconductor layer 18 is formed over the light-emitting layer P. Then, a surface of a first electrode 16KN-type semiconductor layer 15 is formed, which is used as an N-type contact electrode. Thereafter, a second electrode 19 is formed on the P-type semiconductor layer 18, which serves as a p-type contact electrode. The above two electrodes may be made of titanium nitride, titanium/aluminum (TiAl), titanium/aluminum/titanium/gold (Ti/Al/Ti/Au), and titanium/ing/nickel/gold (Ti/A1/Ni). /Au) One of the alloys. By utilizing the characteristics of the porous alumina film, the light-emitting path formed by the light-emitting layer 17 reduces the reflectance between the interface between the N-type semiconductor layer 15 and the substrate 1〇, so that most of the excited light can be radiated to the outside of the element. . As a result, the extraction efficiency of the light-emitting diode of the present invention is improved. In addition, the photonic crystal structure can also have 16 1336961 内部 plus internal quantum luminescence efficiency to improve the epitaxial quality. The main advantages of the invention are as follows: using the wet etching process (the effect of sapphire can be greatly improved; "The internal luminous efficiency of the illuminating diode is two to avoid damage caused by the processing. The effect of surface roughening on the (sapphire) substrate of the sapphire h' is not only effective but also improves the internal luminous efficiency. The defects generated during the time avoid the damage caused by the interface and the leakage current of the insect crystal to the light-emitting diode. 3. Using the heat treatment process, the structure is enhanced by the addition of 缥褕 to a a. Oxidation, 4. Using the photonic crystal effect, the problem of lateral leakage can be effectively effective, while the periodicity of the structure itself and the total reflection between the substrate and the crystal layer increase the efficiency of light extraction: - diode Luminous intensity. Light-emitting material can be added to light. 2. The process of the present invention is simple and suitable for the manufacture of large-area components. The present invention is described above with reference to preferred embodiments, (d) _ The scope of the patent protection is determined by the scope of the patent pending and the equivalent field. The equivalents or modifications made by the spirit of the present invention are included in the scope of the invention as set forth below, and are included in the scope of the following claims. X. 17 1336961 * i [Brief Description of the Drawings] By way of the following detailed description, the foregoing and the first drawings of the invention are in accordance with the drawings of the present invention. A second view of the formation of a photoresist pattern on a metal thin web of a metal film on a substrate is a cross-sectional view in accordance with the present invention.

第三圖為根據本發明之形成圖案化金屬薄膜之截面 第四圖為根據本發明之形成另—金屬薄膜於基板 案化金屬薄膜上之戴面圖。 〃圖 第五圖為根據本發明之形成奈米級多孔性光子晶體社 構於圖案化金屬薄膜上之截面圖。 _、、σ 第六圖為根據本發明之具有奈米級多孔性光子晶體結 構之發光二極體之戴面圖。 【主要元件符號說明】 基板10 金屬薄膜11 光阻層12 曝光區之光阻層12a 金屬薄膜圖案13 孔洞13a 金屬薄膜20 多孔性氧化金屬薄膜14 18 1336961 孔洞 14a、14b N型半導體層15 第一電極16 發光層17 P型半導體層18 第二電極19The third figure is a cross-section of a patterned metal film according to the present invention. The fourth figure is a front view of a metal film formed on a substrate-formed metal film according to the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 5 is a cross-sectional view showing the formation of a nano-scale porous photonic crystal structure on a patterned metal film in accordance with the present invention. _, σ Fig. 6 is a front view of a light-emitting diode having a nano-scale porous photonic crystal structure according to the present invention. [Description of main component symbols] Substrate 10 Metal film 11 Photoresist layer 12 Photoresist layer 12a of exposed area Metal film pattern 13 Hole 13a Metal film 20 Porous oxidized metal film 14 18 1336961 Hole 14a, 14b N-type semiconductor layer 15 First Electrode 16 luminescent layer 17 P-type semiconductor layer 18 second electrode 19

1919

Claims (1)

1336961 十、申請專利範圍: h 一種發光二極體,包括: 基板; 第一光子晶體結構’形成於1玄基板之上,該第一光子晶 體結構具有第一孔洞; 第一光子晶體結構’形成於6亥基板與該第一光子晶體会士 構之上,該第二光子晶體結構具有第二孔洞; 第一型磊晶層,形成於該第二光子晶體結構之上; 發光層,形成於該第一型磊晶層之上; 第一型遙晶層,形成於該發光層之上; 第一接觸電極’形成於該第一型磊晶層之上;以及 第一接觸電極,形成於該第二型蟲晶層之上。 2. 如申請專利範圍第1項之發光二極體,其中該基板之材 吳包括藍寶石(sapphire)、氮化鎵(GaN)、氮化鋁(AIN)、 石厌化石夕(SiC)或氤化鎵紹(GaAIN)。 3. 如申請專利範圍第1項之發光二極體,其中該第一光子 日曰體結構之材質包括紹。 4. 如申請專利範圍第1項之發光二極體,其中該第一光子 晶體結構之厚度為0.5〜10微米。 20 1 ,如申請專利範圍第1項之發光二極體,其中該第一孔洞 1336961 之大小為0.5〜5微米。 6. 如申請專利範圍第1項之發光二極體,其中該第 之排列週期為1〜10微米。 7. 如申Μ專利範圍第1項之發光二極體,其中該第 之孔洞密度為每平方公分具有108〜1012個孔洞。 馨8.如申請專利範圍第1項之發光二極體,其中該第 晶體結構之厚度為0.5〜2.0微米。 9·如申請專利範圍第1項之發光二極體,其中該第 大小為5〜4〇〇奈米。 10. 如申請專利範圍第1項之發光二極體,其中該第 • 之排列週期為8〇〜U0奈米。 11. 如申請專利範圍第!項之發光二極體,其中該第 之孔洞密度為每平方公分具有1〇8〜1〇12個孔洞。 12. 如申請專利範圍第1項之發光二極體,其中 晶體結構包括多孔性氧化紹薄膜。 一孔洞 —孔洞 二光子 二孔洞 一光子 13.如申請專利範圍第 12項之發光二極體, 其中該多孔性 1336961 氧化鋁薄祺係對純鋁薄膜進行陽極處理製程所形成。 14. 如申請專利範圍第13項之發光二極體,其中該純鋁薄 膜係透過蒸鍍、濺鍍、熱浸鍍、電漿式化學氣相沉積之 方法所形成。 15. 如申請專利範圍第13項之發光二極體,其中該陽極處 修 理之電解液包括硫酸液、鉻酸液、草酸液、磷酸液、硼 酸液或酒石酸液或其組合溶液。 16. :申請專利範圍第1項之發光二極體,其中該第二光子 晶體結構係藉由陽極處理所形成。 17. 士曰°申請專利範圍帛1項之發光二才亟體,其中該第一型蟲 :曰層之材貝可以選自氮化鎵(GaN)、I化銦鎵(hGaN)、 • 氮化鎵系或氮基半導體磊晶之一。 以士曰口申請專利範圍第!項之發光二極體,其中該第二型蠢 :曰層之材貝可以選自氮化鎵(GaN)、氤化銦鎵(〗nGaN)、 氣化鎵系或氮基半導體磊晶之一。 19.如申請專利範圍第i項之發光二極體,其中該第一型為 N型與該第二型為P型,或該第一型為p型與該第二塑 為N型。 22 1336961 « « 20. —種發光二極體之製造方法,包括: 提供"基板; 形成一第一光子晶體結構於該基板之上,該第一光子晶 體結構具有第一孔洞; 升> 成一第一光子晶體結構於該基板與該第一光子晶體 結構之上,該第二光子晶體結構具有第二孔洞; 形成一第一型磊晶層於該第二光子晶體結構之上; 形成一發光層於該第一型磊晶層之上; 形成一第二型磊晶層於該發光層之上; 形成一第一接觸電極於該第一型磊晶層之上;以及 形成一第一接觸電極於該第二型蟲晶層之上。 21. 如申請專利範圍第2〇項之發光二極體之製造方法,其 中《亥基板之材質包括藍寶石(sapphire)、氤化鎵(GaN)、 氮化鋁(A1N)、碳化矽(Sic)或氮化鎵鋁(GaA丨N)。 22. 如申凊專利範圍第2〇項之發光二極體之製造方法,其 中該第一光子晶體結構之材質包括鋁。 23. 如申請專利範圍第2〇項之發光二極體之製造方法,其 中》亥第一光子晶體結構之厚度為〇 5〜1〇微米。 24· A申明專利範圍第2〇項之發光二極體之製造方法,其 中該第一孔洞之大小為0.5〜5微米。 23 申明專利範圍第2〇項之發光二極體之製造方法,其 中該第一孔洞之排列週期為丨〜10微来。 申叫專利Ιϋ圍第20項之發光二極體之製造方法,其 令及第一孔洞之孔洞密度為每平方公分具有1〇8〜1〇12 個孔洞。 女申叫專利範圍第項之發光二極體之製造方法,其 中邊第二光子晶體結構之厚度為〇 5〜2 〇微米。 28.如申凊專利範圍第2〇項之發光二極體之製造方法,其 中δ玄第一孔洞大小為5〜400奈米。 29’如申凊專利範圍第20項之發光二極體之製造方法,其 中5玄第二孔洞之排列週期為80〜120奈米。 30.如申請專利範圍第2〇項之發光二極體之製造方法,其 中5玄第二孔洞之孔洞密度為每平方公分具有1 〇8〜1 〇12 個孔洞。 3 1.如申凊專利範圍第20項之發光二極體之製造方法,其 中該第二光子晶體結構包括多孔性氧化鋁薄膜。 24 32.如申請專利範圍第31項之發光二極體之势造方法 中該多孔性氧化1呂薄膜係對純在呂薄膜進行陽極處理f 程所形成。 处里衣 33.如申請專利範圍第32項之發光-坧牌—… 奴疋一極體之製造方法,苴 中該純鋁薄膜係透過蒗鍍、濺鍍、鈦β /、 …、敕叹狨熱浸鍍、電漿式化學 氣相沉積之方法所形成。 • 34.如申請專利範圍第32項之發光二極體之製造方法,豆 中該陽極處理之電解液包括硫酸液、鉻酸液、草酸液: 磷酸液、硼酸液或酒石酸液或其組合溶液。 .35.如申請專利範圍帛20項之發光二極體之製造方法,其 中該第-光子晶體結構係藉由微影與#刻製程所形成。 籲36.如申凊專利範圍第20項之發光二極體之製造方法,其 中泫第二光子晶體結構係藉由陽極處理所形成。 37.如申請專利範圍第36項之發光二極體之製造方法,更 包括於該陽極處理之後進行一熱處理製程。 38·如申請專利範圍第20項之發光二極體之製造方法,其 中該第一型磊晶層之材質可以選自氮化鎵(GaN)、氤化 銦鎵(InGaN)、氮化鎵系或氮基半導體磊晶之一。 25 I 1336^61 39. 如申請專利範圍第2G項之發光二極體之製造方法,其 中該第二型磊晶層之材質可以選自氮化鎵(GaN)、氮化 銦鎵(InGaN)、氮化鎵系或氮基半導體磊晶之一。 40. 如申二專利範圍第2〇項之發光二極體之製造方法,其 中°玄第型為與該第二型為P型,或該第__刑 型與該第二型◎型。 型為P1336961 X. Patent application scope: h A light-emitting diode comprising: a substrate; a first photonic crystal structure formed on a first substrate, the first photonic crystal structure having a first hole; and a first photonic crystal structure forming The second photonic crystal structure has a second hole on the 6 hai substrate and the first photonic crystal structure; the first type epitaxial layer is formed on the second photonic crystal structure; the luminescent layer is formed on a first type of epitaxial layer formed on the light emitting layer; a first contact electrode 'on the first type of epitaxial layer; and a first contact electrode formed on Above the second type of insect layer. 2. The light-emitting diode of claim 1, wherein the substrate material comprises sapphire, gallium nitride (GaN), aluminum nitride (AIN), stone anastomosis (SiC) or germanium. GaAIN. 3. For the light-emitting diode of claim 1, wherein the material of the first photon structure is included. 4. The light-emitting diode of claim 1, wherein the first photonic crystal structure has a thickness of 0.5 to 10 μm. 20 1 . The light-emitting diode of claim 1, wherein the first hole 1336961 has a size of 0.5 to 5 micrometers. 6. The light-emitting diode of claim 1, wherein the first arrangement period is 1 to 10 μm. 7. The light-emitting diode of claim 1, wherein the first hole has a density of 108 to 1012 holes per square centimeter. A light-emitting diode according to the first aspect of the invention, wherein the thickness of the first crystal structure is 0.5 to 2.0 μm. 9. The light-emitting diode of claim 1, wherein the first size is 5 to 4 nanometers. 10. The light-emitting diode of claim 1, wherein the first arrangement period is 8 〇 to U0 nm. 11. If you apply for a patent scope! The light-emitting diode of the item, wherein the first hole has a density of 1〇8~1〇12 holes per square centimeter. 12. The light-emitting diode of claim 1, wherein the crystal structure comprises a porous oxide film. One hole - hole Two photon Two hole One photon 13. The light emitting diode of claim 12, wherein the porous 1336961 alumina thin tantalum system is formed by anodizing a pure aluminum film. 14. The light-emitting diode of claim 13, wherein the pure aluminum film is formed by evaporation, sputtering, hot dip plating, or plasma chemical vapor deposition. 15. The light-emitting diode of claim 13, wherein the electrolyte repaired at the anode comprises a sulfuric acid solution, a chromic acid solution, an oxalic acid solution, a phosphoric acid solution, a boric acid solution or a tartaric acid solution or a combination thereof. 16. The light-emitting diode of claim 1, wherein the second photonic crystal structure is formed by anodization. 17. The gravitational bismuth body of the 曰1 application patent range ,°, wherein the first worm: the bismuth material may be selected from gallium nitride (GaN), indium gallium nitride (hGaN), • nitrogen One of the gallium or nitrogen-based semiconductor epitaxial. Apply for the patent scope of Shishikou! The light-emitting diode of the item, wherein the second type is stupid: the material of the bismuth layer may be selected from one of gallium nitride (GaN), indium gallium arsenide (〗 〖nGaN), gallium hydride or nitrogen-based semiconductor epitaxial . 19. The light-emitting diode of claim i, wherein the first type is an N type and the second type is a P type, or the first type is a p type and the second type is an N type. 22 1336961 « «20. A method of manufacturing a light-emitting diode, comprising: providing a substrate; forming a first photonic crystal structure on the substrate, the first photonic crystal structure having a first hole; Forming a first photonic crystal structure over the substrate and the first photonic crystal structure, the second photonic crystal structure having a second hole; forming a first type epitaxial layer over the second photonic crystal structure; forming a The light emitting layer is over the first type epitaxial layer; forming a second type epitaxial layer on the light emitting layer; forming a first contact electrode on the first type epitaxial layer; and forming a first A contact electrode is over the second type of worm layer. 21. The method for manufacturing a light-emitting diode according to the second aspect of the patent application, wherein the material of the substrate comprises sapphire, gallium antimonide (GaN), aluminum nitride (A1N), tantalum carbide (Sic). Or gallium nitride aluminum (GaA丨N). 22. The method of fabricating a light-emitting diode according to the second aspect of the invention, wherein the material of the first photonic crystal structure comprises aluminum. 23. The method of fabricating a light-emitting diode according to the second aspect of the invention, wherein the thickness of the first photonic crystal structure is 〇 5 to 1 μm. The method of manufacturing the light-emitting diode according to the second aspect of the invention, wherein the first hole has a size of 0.5 to 5 μm. The method for manufacturing a light-emitting diode according to the second aspect of the invention, wherein the arrangement period of the first holes is 丨 10 10 micrometers. The manufacturing method of the light-emitting diode of claim 20 is as follows, and the hole density of the first hole is 1〇8~1〇12 holes per square centimeter. The invention refers to a method for manufacturing a light-emitting diode according to the scope of the patent, wherein the thickness of the second photonic crystal structure is 〇 5 to 2 〇 micrometer. 28. The method of manufacturing a light-emitting diode according to the second aspect of the invention, wherein the first hole of the δ Xuan is 5 to 400 nm. 29' The method for manufacturing a light-emitting diode according to claim 20, wherein the arrangement period of the 5 second holes is 80 to 120 nm. 30. The method for manufacturing a light-emitting diode according to the second aspect of the patent application, wherein the hole density of the fifth hole of the second hole is 1 〇 8 〜 1 〇 12 holes per square centimeter. 3. The method of manufacturing a light-emitting diode according to claim 20, wherein the second photonic crystal structure comprises a porous alumina film. 24 32. The method for producing a light-emitting diode according to the scope of claim 31 in the invention is that the porous oxide film is formed by anodizing the pure film. Lie 33. If the application of the scope of the 32nd item of the illuminating - 坧 brand - ... 疋 疋 疋 疋 疋 该 该 该 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯 纯It is formed by hot dip plating and plasma chemical vapor deposition. 34. The method for manufacturing a light-emitting diode according to claim 32, wherein the anode treated electrolyte comprises sulfuric acid solution, chromic acid solution, oxalic acid solution: phosphoric acid solution, boric acid solution or tartaric acid solution or a combination solution thereof . .35. A method of fabricating a light-emitting diode according to claim 20, wherein the photonic crystal structure is formed by a lithography and an etch process. The method of manufacturing a light-emitting diode according to claim 20, wherein the second photonic crystal structure is formed by anodization. 37. The method of manufacturing a light-emitting diode according to claim 36, further comprising performing a heat treatment process after the anode treatment. 38. The method for manufacturing a light-emitting diode according to claim 20, wherein the material of the first type epitaxial layer is selected from the group consisting of gallium nitride (GaN), indium gallium telluride (InGaN), and gallium nitride. Or one of the epitaxial crystals of a nitrogen-based semiconductor. 25 I 1336^61 39. The method for manufacturing a light-emitting diode according to claim 2G, wherein the material of the second type epitaxial layer may be selected from the group consisting of gallium nitride (GaN) and indium gallium nitride (InGaN). One of the epitaxial grains of gallium nitride or nitrogen-based semiconductors. 40. The method for manufacturing a light-emitting diode according to the second aspect of the second aspect of the invention, wherein the second type is a type P and the second type is a type P, or the first type and the second type. Type P 2626
TW96102746A 2007-01-24 2007-01-24 Light emitting diode structure and manufacturing method of the same TWI336961B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96102746A TWI336961B (en) 2007-01-24 2007-01-24 Light emitting diode structure and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96102746A TWI336961B (en) 2007-01-24 2007-01-24 Light emitting diode structure and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW200832741A TW200832741A (en) 2008-08-01
TWI336961B true TWI336961B (en) 2011-02-01

Family

ID=44818961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96102746A TWI336961B (en) 2007-01-24 2007-01-24 Light emitting diode structure and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI336961B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064016B1 (en) * 2008-11-26 2011-09-08 엘지이노텍 주식회사 Light emitting device and manufacturing method
TWI416723B (en) * 2010-12-27 2013-11-21 Ind Tech Res Inst Nitride semiconductor structure and manufacturing method thereof
CN102361053B (en) * 2011-11-01 2013-05-01 东南大学 Light-emitting diode with photonic crystal structure

Also Published As

Publication number Publication date
TW200832741A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
TWI396297B (en) Light emitting diode structure and manufacturing method of the same
TWI419367B (en) Optoelectronic device and method for manufacturing the same
US9647183B2 (en) Vertical light emitting diode with photonic nanostructures and method of fabrication thereof
CN102244170B (en) Photonic quasicrystal graph sapphire substrate and manufacturing method thereof and light emitting diode and preparation method thereof
KR101299942B1 (en) Method of manufacturing vertical light emitting diode using light emitting diode epilayer growthed on patterned sappaire substrate and vertical light emitting diode manufactured by the method
TW201037763A (en) Method for separating an epitaxial substrate from a semiconductor layer
TW201342472A (en) Semiconductor device and fabrication method thereof
JP2011040739A (en) Vertical light emitting diode and manufacturing method of the same
CN103227265A (en) Non-planar bonding method for fabricating gallium nitride-based light emitting device
CN111739989A (en) AlGaN-based deep ultraviolet LED epitaxial wafer and preparation method thereof
WO2023137814A1 (en) Method for manufacturing high-voltage led chip
TWI336961B (en) Light emitting diode structure and manufacturing method of the same
KR101457202B1 (en) Light emitting diode having the transparent electrode layer with nano rods or nano holes and method of fabricating the same
CN101740704B (en) Method for manufacturing GaN-based LED with photonic crystal structure
TW201015752A (en) Light emitting diode chip and fabricating method thereof
TW201021246A (en) A lighting device having high efficiency and a method for fabricating the same
CN104701137B (en) AlN buffer layers and with the buffer layer chip preparation method
CN101488549B (en) LED manufacturing method capable of increasing light emission rate
CN110649130A (en) Ultraviolet light-emitting diode and preparation method thereof
TWI335678B (en) Light emitting diode structure and manufacturing method of the same
Wang et al. Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film
CN108538974B (en) Preparation method of nano-scale patterned sapphire substrate
TWI443864B (en) Fabrication of crystalline structure
Chen et al. Zigzag and Helical AlN Layer Prepared by Glancing Angle Deposition and Its Application as a Buffer Layer in a GaN‐Based Light‐Emitting Diode
TW200822385A (en) Light emitting diode structure and manufacturing method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees