TWI335678B - Light emitting diode structure and manufacturing method of the same - Google Patents

Light emitting diode structure and manufacturing method of the same Download PDF

Info

Publication number
TWI335678B
TWI335678B TW95140839A TW95140839A TWI335678B TW I335678 B TWI335678 B TW I335678B TW 95140839 A TW95140839 A TW 95140839A TW 95140839 A TW95140839 A TW 95140839A TW I335678 B TWI335678 B TW I335678B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
epitaxial layer
gallium nitride
Prior art date
Application number
TW95140839A
Other languages
Chinese (zh)
Other versions
TW200822387A (en
Inventor
Chuen Guang Chao
ming li Hu
Jung Hsuan Chen
Shiu Tong Liu
Original Assignee
Tera Xtal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Xtal Technology Corp filed Critical Tera Xtal Technology Corp
Priority to TW95140839A priority Critical patent/TWI335678B/en
Publication of TW200822387A publication Critical patent/TW200822387A/en
Application granted granted Critical
Publication of TWI335678B publication Critical patent/TWI335678B/en

Links

Landscapes

  • Led Devices (AREA)

Description

1335678 九、發明說明: 【發明所屬之技術領域】 本發明有關於一種發光二極體(led),特別是有關於 -種具有光子晶體結構之高發光效率發光 製造方法。 紅、,,。構及其 【先前技術】 近來世界能源的短缺導致油價不斷的飄漲,全球 國家莫不積極地投人節能產品的開發,其中省電 此一趨勢下的產物。另外,隨著發光_ / 疋 迎有A尤一極體(LED )技術 的進步’白光或其它顏色(例如:藍光光二極體的岸 用也逐漸開展,其應用包括:液晶顯示器(LC.D)背光板: 印表機、用於電腦之光學連接構件(。叫…^^ :㈣、指示燈、地面燈、逃生燈、醫療設備光源、 八車儀錶及内裝燈、輔助照明、主照明.·等。門而士之, 其係以背光源與照明功能為當前的主要應用。所以;一世 代的照明市場,將是發光二極體的天下。由於發光二極體 具有輕巧、省電及壽命長等優點’因&,符合了世界的趨 勢潮流。歐、美、日等國皆以舉國之力投入開發的行列, 而我國的發光二極體產業,在全球市場上,無論研發以及 製造均佔有舉;1輕重的角色與地位。所以,在發光二極體 領域的下一世代發展中,台灣勢將不會缺席。 目#心光一極體在白光市場的應用,已將小型照明 市琢▼人另夕卜_ ^界。其中,手機的背光源已經被發 光二極體所取代。從早期的* , 攸干期的更、綠光發光二極體到現在的 1335678 白光或監光發光二極體,已經將手機點綴的五彩繽紛。至 於個人數位助理(personal digital assistant: PDA)乃至液 晶顯示面板(TFT-LCD)的背光源,也都將成為發光二極 體的天下。其具有輕薄省電的優點將使其具有不可取代的 地位。 就現階段而言,距離實際進入白光發光二極體照明時 代,尚有一段距離。若白光發光二極體要取代現階段照明 _ 市場,發光效率至少要達到80 lm/W以上,這個目標也將 成為各國努力的目標之一。 在發光二極體的發光機制中,其發光效率取決於内部 的量子效率以及外部的取光效率,其中内部的量子發光效 率主要係由發光二極體的組成材料及其結晶性來控制。換 言之,發光二極體的發光效率主要係由磊晶的結構以及品 質來決定,當蟲晶詹中有缺陷存在時,由於結構中的缺陷 係造成光子被吸收的主要因素,因此,發光二極體的發光 φ 效率將會大幅度地降低。 …傳統之發光二極體之發光層所形成之光,在經由卩型 半導體層與透明層之界面時會產生反射,使得該發光 :極體之發光率(lightextracti〇n)受到影響。此外,在發 光二極體之發光表面增加粗越化表面的圖樣或是形成光子 晶體結構,均是於半導體層上直接加工,此種方法容易使 得發光層被破壞或是造成元件損傷。而目前之加工方式主 要仍係利用微影製程搭配電子束、雷射或是其它乾式㈣ •技術來完成,此種方式較難得到奈米級的圖樣及進行大面 積元件的製作,並且上述技術 製作成本相對的較昂貴。 較^歿且設備及 再者由於某些發光二極體之1335678 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode (LED), and more particularly to a high luminous efficiency light-emitting manufacturing method having a photonic crystal structure. red,,,. Structure and its [Prior Art] Recently, the shortage of energy in the world has caused oil prices to continue to rise. The global countries are not actively investing in the development of energy-saving products, among which the products of this trend are saved. In addition, with the illuminating _ / 疋 有 A A special one (LED) technology advancement 'white light or other colors (for example: the shore of the blue light diode is also gradually developed, its applications include: liquid crystal display (LC.D Backlight board: printer, optical connecting member for computer (....^^: (4), indicator light, ground light, escape light, medical equipment light source, eight-vehicle instrument and interior light, auxiliary lighting, main lighting .. etc.. It is the main application of backlight and lighting function. Therefore, the lighting market of the first generation will be the world of light-emitting diodes. Because the light-emitting diodes are light and power-saving. And the advantages of long life, such as &, in line with the trend of the world. Europe, the United States, Japan and other countries are all invested in the development of the country, and China's LED industry, in the global market, regardless of research and development And the manufacturing has a role; 1 light and heavy role and status. Therefore, in the next generation of the field of light-emitting diodes, Taiwan will not be absent. The purpose of the #心光一极 in the white light market has been small Lighting market 琢▼ In addition, the backlight of the mobile phone has been replaced by a light-emitting diode. From the early *, the dry, more green light-emitting diode to the current 1335678 white light or the light-emitting diode Body, the color of the mobile phone has been dotted. As for the personal digital assistant (PDA) and even the backlight of the liquid crystal display panel (TFT-LCD), it will also become the world of light-emitting diodes. It has light and power-saving The advantages will make it irreplaceable. At this stage, there is still a long distance from the actual era of white light emitting diode illumination. If the white light emitting diode is to replace the current stage lighting, the luminous efficiency must be at least Achieving above 80 lm / W, this goal will also become one of the goals of the efforts of various countries. In the illuminating mechanism of the light-emitting diode, its luminous efficiency depends on the internal quantum efficiency and external light extraction efficiency, of which the internal quantum light The efficiency is mainly controlled by the constituent materials of the light-emitting diode and its crystallinity. In other words, the luminous efficiency of the light-emitting diode is mainly caused by the epitaxial junction. As well as the quality, when there are defects in the insect crystal, the luminescence φ efficiency of the light-emitting diode will be greatly reduced due to the defects in the structure, which will cause the photon to be absorbed. The light formed by the light-emitting layer of the diode is reflected by the interface between the germanium-type semiconductor layer and the transparent layer, so that the light-emitting rate of the polar body is affected. In addition, the light-emitting diode is The light-emitting surface of the body is increased in the pattern of the roughened surface or the photonic crystal structure is formed directly on the semiconductor layer. This method is easy to cause the luminescent layer to be destroyed or cause damage to the component. It is difficult to obtain nano-scale patterns and large-area components by using lithography processes with electron beams, lasers or other dry (four) • techniques, and the above-mentioned techniques are relatively expensive to manufacture. More than the device and the other due to some light-emitting diodes

姑安、0 d、 丁〒瓶尽L例如:GaN 折射率n>2.4)與空氣(折射率 數#袅印女,#人e Α ·ϋ J之間的折射係 數差異很大,其全反射臨界角約只有2〇 分發光層所產生的弁口妒力-从+ A 化成大部 出光,所以^ 部全反射’無法有效地Gu'an, 0 d, Ding bottle, L, for example: GaN refractive index n > 2.4) and air (refractive index #袅印女, #人e Α ·ϋ J, the refractive index is very different, its total reflection The critical angle is only about 2 〇, and the 妒 妒 force generated by the illuminating layer - from + A to most of the light, so ^ total reflection 'cannot be effective

所即使内部的發光效率提高,外部的取光效率若 無法改善也是柱然》 疋双手方 因此,基於上述之問題,以及因應趨勢之需求,從製 程技術來改善發光二極體之取光效率已成為重要的發展^ ^,是故’本發明賴出—種具有高發光子⑽結構録 製造方*,其可以S高發光二極體的取光㈣(light extraction efficiency)= 【發明内容】 本發明之目的在於提供一種新穎的具有多孔性光子晶 • 體結構之發光二極體結構與其製造方法。 本發明之再一目的在於提供一種具有奈米級週期光子 晶體結構之發光二極體。 本發明之另一目的在於提供一種可以有效地提高發光 二極體的取光效率之發光二極體。 本發明之又一目的在於提供一種可以簡化製程以適用 於大量元件製造之發光二極體。 一種發光二極體’包括:基板;第一型磊晶層’形成 於上述基板之上;發光層,形成於上述第一型磊晶層之上; 7 13.35678 第二型磊晶層,形成於上述發光層之上;多孔性光子晶體 結構,形成於上述第二型磊晶層之上;第一接觸電極,形 成於上述該第-型县晶層之上;以及,第二接觸電極,形 成於上述第二型磊晶層之上。 植發光二極體之製造方法Even if the internal light-emitting efficiency is improved, if the external light-receiving efficiency cannot be improved, it is also a matter of the two hands. Therefore, based on the above problems and the demand for the trend, the light-receiving efficiency of the light-emitting diode has been improved from the process technology. It has become an important development ^ ^, so the 'research of the invention' has a high illuminator (10) structure record maker *, which can take light extraction efficiency of the S-light-emitting diode = (invention content) SUMMARY OF THE INVENTION It is an object of the invention to provide a novel light-emitting diode structure having a porous photonic crystal structure and a method of fabricating the same. It is still another object of the present invention to provide a light-emitting diode having a nano-period periodic photonic crystal structure. Another object of the present invention is to provide a light-emitting diode which can effectively improve the light extraction efficiency of a light-emitting diode. It is still another object of the present invention to provide a light-emitting diode which can simplify the process for a large number of component fabrications. A light emitting diode includes: a substrate; a first type epitaxial layer formed on the substrate; a light emitting layer formed on the first type epitaxial layer; 7 13.35678 a second type epitaxial layer formed on Above the light-emitting layer; a porous photonic crystal structure formed on the second type epitaxial layer; a first contact electrode formed on the first-type county layer; and a second contact electrode formed Above the second type epitaxial layer. Method for manufacturing plant light emitting diode

板;接著,形成-第-型蟲晶層於上述基板上;之後,形 成一發光層於上述第一型磊晶層之上;隨後,形成一第二 型磊晶層於上述發光層之上;然後,形成一第一接觸電極 於上述第-型磊晶層之上;接著’形成一第二接觸電極於 上述第二型爲晶層上;最後,形成一多孔性光子晶 於上述第二型磊晶層之上。 純鋁薄膜進行陽極 上述多孔性光子晶體結構包括利用 處理製知所形成之多孔性氧化链薄膜。 【實施方式】 她例έ砰細描述如「。眾向,除了蟑 細描述的實施例外’本發明 ” w 、,丄 个知乃J以廣泛地在其它的實施例中 鈀订,亚且本發明之保護範圍並不受限於下述之 其係以後述的申請專利範圍為準。 、 再者,為提供更清楚的描述及更易理解本發明 令各部分並沒有依照其相對尺寸給 圖不 也未完全繪出,以求圖示的簡潔。 刀 請參考圖示,其中所顯示僅僅是為了說 佳實施例,並非用以限制本發明。 a 之較 術在半導體層表面製造一層且有太:,用陽極處理技Forming a first-type insect layer on the substrate; thereafter, forming a light-emitting layer over the first-type epitaxial layer; and subsequently forming a second-type epitaxial layer on the light-emitting layer And forming a first contact electrode on the first-type epitaxial layer; then forming a second contact electrode on the second layer as a seed layer; finally, forming a porous photonic crystal in the above Above the type II epitaxial layer. Anode of Pure Aluminum Film The above porous photonic crystal structure includes a porous oxidized chain film formed by treatment. [Embodiment] Her example is described in detail as "the general direction, except for the implementation of the detailed description of the present invention" w, and the other is widely used in other embodiments, palladium, and The scope of the invention is not limited by the scope of the following claims. Further, in order to provide a clearer description and a more comprehensible understanding of the present invention, the parts are not in accordance with their relative dimensions, and are not fully drawn, for simplicity of illustration. The present invention is shown by way of example only, and is not intended to limit the invention. a comparison of the fabrication of a layer on the surface of the semiconductor layer and there is too:, using anodizing technology

層具有奈切孔洞之二維光U 8 13.35678 I 體結構,此光子晶體結構可以達到表面粗链化 而言,光子晶體結構之主要成分包括氧化^n=15〜^例 此外,光子晶體之折射率的改變,可以順利將光 少内部全反射的發生’再者,由於光子晶體效應亦可有: 地控制出光波長,發出較窄頻寬的光源。 在實把例中’藉由調整發光層材料,使其發光介於 藍光範圍’利用本發明之多孔性氧化糾子晶體結產 生光激發光現象,以增加發光二極體之發光強度。本發明 之發光二極體可以應用於奈米科技、半導體產業與光電產 業。 請參閱圖-,其係根據本發明之發光二極體結構之截 面圖。上述發光二極體結構,包括:一基板1G; — N型半 導體層12,形成於基板1〇之上。心半導體蠢晶層12可 以透過有機金屬化學氣相沉積(M〇CVD)方式形成。舉 一實施例而言,上述基板1〇之材質可以為藍寶石 (sapphire)、氮化鎵(GaN)、氮化鋁(AlN)、碳化矽(μ) 或氮化鎵鋁(GaAIN)。另外,一發光層13,形成於上述N 型半導體層12之上。上述發光層13為一主動層(active layer),其可以由複數個井層(weu 1&丫^)與複數個阻障 層(bamerlayer)交互堆疊而形成。一 p型半導體磊晶層 14,形成於上述發光層13之上,同樣地,p型半導體層 14可以透過有機金屬化學氣相沉積(MOCVD )方式形成。 上述P型半導體層14或N型半導體層12之材質可以選自 氣化錄(GaN )、氛化銦鎵(InGaN )、氮化鎵系或氮基 9 (nitride-based)半導體磊晶之_。 .…上述P型半導體層14經過__表面層的製程而將p型 層14之表面形成一具有奈米級多孔性光子晶體結 構層表面。舉-實施例而言,上述表面層製程係 型半導體層表面形成—層金屬薄膜,例如為链金屬薄膜 上輪薄膜U可以透過蒸鍍,或熱 X 7成。然後,再利用陽極處理技術在P型半導 ^二表面形成多孔性氧化金屬薄膜17,例如為多孔性 賴17,請參考圖二,虛線處為形成孔洞之處。舉 ]而。氧化鋁薄臈17之厚度為〇.〇5〜1〇〇微米。 舉例而言’對於上述純雀呂薄膜^陽極處理係在Μ七 莫:濃度(M)的草酸(C2H2〇4)溶液,外加2〇〜%伏特 之直流電壓之環境下進行。隨著陽極處理之時間的改變, =氧化鋁薄臈厚度逐漸增加’舉例而言,氧化鋁薄膜 週期)約為4。〜520 :Ϊ,=洞之間的距離(排列 1〇8〜1〇12個孔度約絲平方公分具有 的/又而5 ’陽極處理(anodization)金屬薄膜後呈現 二,狀UeUu心tube )結構。形成此種結構型態的過程 ^ t T ’始通電時,1呂陽極表面的某些部位開始溶解, 逐约間增長,銘溶解量增加,而陽極表面開始呈現凹凸 不平的粗糙度,時間續增,由於凹凸不平造成溶解速率不 」浴解較快的部位逐漸凹陷,而溶解的銘離子逐漸形成 虱氧化叙與氧化叙沉積在表面,但是仍留有孔隙以供溶解 管::,進行,一段時間之後,堆積的沉澱即形成管壁, 近;份包含水氧化銘或谬狀氫氧化紹,其中愈接 區域=量愈少,愈接近純氧化紹,而接近電解液 為紹溶解沉積的區域,沉積愈久則愈緻密。 鋁今ΓΓ酸性r液進订陽極處理時’酸性電解質會分解純 成,面’亚且開始成長氧化層。純銘金屬表面分解造 声血么同的產生’同時孔洞底部會形成阻障層使得氧化 金屬㈣離’當孔洞形成趨於穩定時,則將以一定速 羊開始成長,形成類似蜂巢結構的氧化鋁層。 陽極處理時操作電塵會影響孔洞、孔g距與細胞的大 ’它們之間的.關係是成正比的。換言之,施加的電壓越 大,其孔洞、孔距與細胞也相對的較大。 鋁金屬陽極處理所使用的電解液可以包括很多種,苴. 中每-種電解液的主要化學成份不同,經其處理後的薄膜 組織不同’孔洞排列週期也因之有所差異。舉例而言,上 述電解液以及操作條件包括:⑴硫酸液,15〜2〇% 硫酸’操作電壓為14〜22伏特、電流密度為、環 境溫度18〜25t、處理時間1〇〜6〇分鐘,其可以形成孔洞 週期為45〜50奈米。(2)草酸液,例如包含〇 3莫耳或 3〜5wt%草酸(C2H2〇4)’電壓為4〇〜6〇伏特、電流密度為 ^A/dm2、環境溫度18〜2〇t、處理時間4〇〜6〇分鐘,1 可以形成孔洞週期》9G〜12()奈米。(4)雜液,例如含 1〇%磷酸,電壓為10〜12伏特、環境溫度23〜25〇C、處理 時間20〜30刀知’其可以形成孔洞週期為〜奈米。 ^35678 上述四種電解液之成分組成以及其操作條件僅係本發 明舉出之實施例,並非用以限定本發明。 第一接觸電極15,形成於上述p型半導體層14之表 面,其係用以作為p型接點或N型接點。另外,一第二接 觸電極16,形成於上述N型半導體層12之上,其係用以 作為N型接點或P型接點。上述二接觸電極,其材質可以 選自鈦/鋁(TiAl)、鈦/鋁/鈦/金(Ti/AyTi/Au)及鈦/鋁/ 錦/金(Ti/Al/Ni/Au)合金之一。 此外,本發明亦提供發光二極體之製造方法,其主要 步驟包括:首先,提供一基板1〇。接著’形成一 N型半導 體層12於基板1〇之上。舉一實施例而言,上述n型半導 體層12之材質包括藍寶石(哪邮小i化鎵(GaN)、 虱化鋁(A1N)、碳化矽(Sic)或氮化鎵鋁(GaA1N)。 然後,形成一發光層13於上述N型半導體層12之上。 上述發光層13為一主動層(active layer),其可以由複數 個井層(welllayeO與複數個阻障層(barrieriayer)交互 堆而形成。接著,形成一 p型半導體層14於發光層 之上。 然後’形成一第一電極15於!>型半導體層14之表面, 其係用來作為ρ型接觸電極。之後,形成一第二電極16 於Ν型半導體層12上,其係用來作為Ν型接觸電極。上 述二電極,其材質可以選自氮化鈦 '鈦/鋁(TiA1)、鈦/鋁 /鈦/金(Ti/Al/Ti/Au)及鈦/銘/錄 / 金(Ti/A1/Ni/Au)合金之 12 田y形成夕孔性光子晶體結構17於P型半導體 孔性光子晶體結構㈣透過純㈣膜 0处理衣耘而形成之多孔性氧化鋁薄膜。 13所^上述多孔性氧化㈣膜之特性,使得上述發光層 間降:發光路徑在P型半導體層14與空氣之界面之 反射率’使得大部分激發之光可以輻射至 '。結果使得本發明之發光二極體之取光效卜〖The layer has a two-dimensional light U 8 13.35678 I structure of the Niche hole. The photonic crystal structure can achieve surface thick chaining. The main components of the photonic crystal structure include oxidation ^n=15~^ In addition, the refractive index of the photonic crystal The change can smoothly reduce the occurrence of internal total reflection by light. Again, due to the photonic crystal effect, there is also a ground source that controls the wavelength of light and emits a narrower bandwidth. In the actual example, the photoexcited light phenomenon is generated by the porous oxidized entangled crystal junction of the present invention by adjusting the luminescent layer material so that its luminescence is in the blue light range to increase the luminescence intensity of the luminescent diode. The light-emitting diode of the present invention can be applied to nanotechnology, semiconductor industry and photovoltaic industry. Referring to the drawings, which are cross-sectional views of a light emitting diode structure in accordance with the present invention. The above light emitting diode structure comprises: a substrate 1G; an N-type semiconductor layer 12 formed on the substrate 1A. The core semiconductor stray layer 12 can be formed by metalorganic chemical vapor deposition (M〇CVD). In one embodiment, the material of the substrate 1 may be sapphire, gallium nitride (GaN), aluminum nitride (AlN), tantalum carbide (μ) or gallium aluminum nitride (GaAIN). Further, a light-emitting layer 13 is formed on the N-type semiconductor layer 12. The luminescent layer 13 is an active layer, which may be formed by stacking a plurality of well layers (weu 1 & ) ^) and a plurality of barrier layers. A p-type semiconductor epitaxial layer 14 is formed on the above-mentioned light-emitting layer 13, and similarly, the p-type semiconductor layer 14 can be formed by a metalorganic chemical vapor deposition (MOCVD) method. The material of the P-type semiconductor layer 14 or the N-type semiconductor layer 12 may be selected from a gas crystal recording (GaN), an indium gallium nitride (InGaN), a gallium nitride-based or a nitride-based semiconductor epitaxial wafer. . The P-type semiconductor layer 14 is subjected to a process of forming a surface layer to form a surface of the p-type layer 14 having a nano-scale porous photonic crystal structure layer. In the embodiment, the surface layer of the surface layer-type semiconductor layer is formed as a metal film, for example, a chain metal film, and the upper film U can be vapor-deposited or heat-treated. Then, an anodized oxidized metal film 17 is formed on the surface of the P-type semiconducting surface by an anodic treatment technique, for example, a porous ray 17, please refer to Fig. 2, where the dotted line is where the holes are formed. And] The thickness of the alumina thin crucible 17 is 〇.〇5~1〇〇micron. For example, the above-mentioned pure ruthenium film was subjected to an anodic treatment in a solution of a concentration (M) of oxalic acid (C2H2〇4) in an environment of a DC voltage of 2 Torr to 1 volt. As the time of the anode treatment changes, the thickness of the alumina thin crucible gradually increases 'for example, the alumina film period is about 4'. ~ 520 : Ϊ, = the distance between the holes (arranged 1 〇 8 ~ 1 〇 12 holes 约 平方 square centimeters have / and 5 'anodization of the metal film after the appearance of two, UeUu heart tube) structure. When the process of forming such a structure type is started, some parts of the surface of the anode are dissolved, and the amount of dissolution increases, and the surface of the anode begins to exhibit uneven roughness. Increasing, the dissolution rate is not due to unevenness. The portion where the bath solution is faster is gradually sag, and the dissolved ionic ions gradually form 虱 虱 与 and oxidized 沉积 deposited on the surface, but there are still pores for the dissolution tube::, proceed, After a period of time, the deposited precipitate forms the wall of the pipe, and the part contains water oxidized or sulphuric acid. The more the area is, the smaller the amount is, the closer it is to pure oxidation, and the near electrolyte is dissolved and deposited. In the area, the longer the deposition, the denser it is. When the aluminum acid solution is ordered to be anodized, the acidic electrolyte will decompose into pure, and the surface will begin to grow. The pure metal surface decomposes to produce the same sound. At the same time, the barrier layer is formed at the bottom of the hole, so that the oxidized metal (4) is separated from the 'when the pore formation tends to be stable, then it will grow at a certain speed to form a honeycomb-like oxidation. Aluminum layer. The operation of the electric dust during the anodizing process will affect the relationship between the hole, the hole g and the cell's large relationship. In other words, the larger the applied voltage, the larger the hole, the hole pitch and the cell. The electrolyte used for the anodizing of the aluminum metal may include a plurality of types, and the main chemical components of each of the electrolytes are different, and the order of the pores of the treated film is different. For example, the electrolyte and the operating conditions include: (1) sulfuric acid solution, 15 to 2% sulfuric acid, operating voltage of 14 to 22 volts, current density, ambient temperature of 18 to 25 tons, and treatment time of 1 to 6 minutes. It can form a hole period of 45 to 50 nm. (2) oxalic acid solution, for example, containing 〇3 mole or 3~5wt% oxalic acid (C2H2〇4)' voltage is 4〇~6〇V, current density is ^A/dm2, ambient temperature 18~2〇t, treatment Time 4 〇 ~ 6 〇 minutes, 1 can form a hole cycle "9G ~ 12 () nm. (4) The liquid mixture, for example, containing 1% by weight of phosphoric acid, having a voltage of 10 to 12 volts, an ambient temperature of 23 to 25 Torr C, and a treatment time of 20 to 30 knives, which can form a pore period of ~ nanometer. The composition of the above four electrolytes and the operating conditions thereof are merely examples of the present invention and are not intended to limit the present invention. The first contact electrode 15 is formed on the surface of the p-type semiconductor layer 14 and is used as a p-type contact or an N-type contact. Further, a second contact electrode 16 is formed on the N-type semiconductor layer 12 for use as an N-type contact or a P-type contact. The above two contact electrodes may be made of titanium/aluminum (TiAl), titanium/aluminum/titanium/gold (Ti/AyTi/Au), and titanium/aluminum/gold/gold (Ti/Al/Ni/Au) alloy. One. In addition, the present invention also provides a method of manufacturing a light-emitting diode, the main steps of which include: first, providing a substrate 1 〇. Next, an N-type semiconductor layer 12 is formed over the substrate 1A. In one embodiment, the material of the n-type semiconductor layer 12 includes sapphire (GaN), aluminum telluride (A1N), tantalum carbide (Sic) or aluminum gallium nitride (GaA1N). Forming a light-emitting layer 13 on the N-type semiconductor layer 12. The light-emitting layer 13 is an active layer, which may be stacked by a plurality of well layers (welllayeO and a plurality of barrier layers) Then, a p-type semiconductor layer 14 is formed on the light-emitting layer. Then, a first electrode 15 is formed on the surface of the !>-type semiconductor layer 14, which is used as a p-type contact electrode. Thereafter, a The second electrode 16 is on the 半导体-type semiconductor layer 12 and is used as a Ν-type contact electrode. The two electrodes may be made of titanium nitride titanium/aluminum (TiA1), titanium/aluminum/titanium/gold (Ti). Ti/Al/Ti/Au) and Ti/A/Ni/Au alloys 12 Field y forming a photonic crystal structure 17 in a P-type semiconductor hole photonic crystal structure (4) through pure (4) A porous alumina film formed by treating the coating with a film of 0. The characteristics of the porous oxidized (tetra) film described above are Drop between the light emitting layer: a light emitting path of the air interface and the reflectance of the P-type semiconductor layer 14 'so that most of the excitation of the light may be radiated to' the present invention with the result that the light emitting diode of the light-trapping effect 〖BU.

:r:;:rncy)提^或經由奈米級光子晶體效應, 約侍到純度較高之光源。 本發明的主要優點如下: ••利用陽極處理製程於氮基半導體上達到表面粗化 的效果’除了能有效提昇外部取光效率之外,也可 以簡化製程,避免因製程加工所造成的損害。:r:;:rncy) or through the nano-scale photonic crystal effect, about the source of higher purity. The main advantages of the present invention are as follows: • The use of an anodizing process to achieve surface roughening on a nitrogen-based semiconductor' In addition to effectively improving external light extraction efficiency, the process can be simplified to avoid damage caused by process processing.

2. ^用光子晶體效應,能夠得到純度較高之光源,而 、’。構本身週期性的凹凸型態亦可以減少氮基半導 體與空氣之間的全反射情$,增力口光的#出效率。 3. 利用光子晶體本身具有光激發光特性,可以增加發 光二極體之發光強度。 4.本發明之製程簡易且適合用於大面積元件的製造。 本發明以較佳實施例說明如上,然其並非用以限定本 :明所主張之專利權利範圍。其專利保護範圍當視後附之 :請專利範圍及其等同領域而^。凡熟悉此領域之技藝 在不脫離本專利精神或範圍内,所作之更動或潤飾, 岣屬於本發明所揭示精神下所完成之等效改變或設計,且 13 13.35678 應包含在下述之申請專利範圍内。 【圖式簡單說明】 圖一為根據本發明之發光二極體結構之截面圖。 圖二為根據本發明之發光二極體結構之截面圖。 【主要元件符號說明】 基板10 鋁金屬薄膜11 N型半導體層12 發光層13 P型半導體層14 第一電極1.5 第二電極16 多孔性氧化鋁薄膜17 142. Using the photonic crystal effect, a light source with a higher purity can be obtained, and . The periodic concave-convex shape of the structure itself can also reduce the total reflection between the nitrogen-based semiconductor and the air, and increase the efficiency of the light. 3. The photon crystal itself has the characteristics of photoexcitation light, which can increase the luminous intensity of the light-emitting diode. 4. The process of the present invention is simple and suitable for the manufacture of large area components. The present invention has been described above by way of a preferred embodiment, and is not intended to limit the scope of the invention. The scope of its patent protection is attached as follows: Please cover the patent scope and its equivalent fields. Modifications or modifications made by those skilled in the art, without departing from the spirit or scope of the patent, are equivalent to modifications or designs made under the spirit of the present invention, and 13 13.35678 should be included in the scope of the following claims. Inside. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the structure of a light-emitting diode according to the present invention. Figure 2 is a cross-sectional view showing the structure of a light emitting diode according to the present invention. [Description of main component symbols] Substrate 10 Aluminum metal thin film 11 N-type semiconductor layer 12 Light-emitting layer 13 P-type semiconductor layer 14 First electrode 1.5 Second electrode 16 Porous aluminum oxide film 17 14

Claims (1)

&quot;9B. 7. 2 &amp;--—~Ί 年月曰修(約正本 1335678 ► « 十、申請專利範圍: 1. 一種發光二極體,包括: 基板; 第一型磊晶層,形成於該基板之上; 發光層,形成於該第一型磊晶層之上; 第二型磊晶層,形成於該發光層之上; 多孔性光子晶體結構,形成於該第二型磊晶層之上; 第一接觸電極,形成於該第一型磊晶層之上;以及 第二接觸電極,形成於該第二型磊晶層之上。 2. 1申請專利範圍第丨項之發光二極體,其中該基板之材 質包括藍寶石(sapphire )、氮化鎵(GaN )、氮化鋁 (A1N)、碳化矽(sic)或氮化鎵銘(GaAlN)。 、 二發8冗體’其中該多孔性先&quot;9B. 7. 2 &amp;---~Ί Year of the month repair (about the original 1335678 ► « Ten, the scope of application for patent: 1. A light-emitting diode, including: substrate; the first type of epitaxial layer, formed On the substrate; a light emitting layer formed on the first type epitaxial layer; a second type epitaxial layer formed on the light emitting layer; a porous photonic crystal structure formed on the second type of epitaxial layer a first contact electrode formed on the first type epitaxial layer; and a second contact electrode formed on the second type epitaxial layer. a diode, wherein the material of the substrate comprises sapphire, gallium nitride (GaN), aluminum nitride (A1N), sic or GaN (GaAlN). Where the porosity is first 5.如申請專利範圍 子晶體層之孔洞 洞0 6.如申請專利範圍第丨項之發二 子晶體層包括多孔性氧化紹=。體’其中該多孔性光 7·:申J專利範圍第6項之發光二 化㈣㈣對馳相特陽 ^其中該多孔性氧 I程所形成。 15 1335678 8如申請^利範圍第7項之發光二極體,其中該純鋁薄膜 係透過蒸鍍、濺鍍或熱浸鍍之方法所形成。 、 9. 如申請專利範圍第7項之發光二極體,其中該陽極處理 之電解液包括硫酸液、草酸液、填酸液。 10. 如申請專利範圍第6項之發光二極體,其中該氧化鋁 膜之厚度為0.05〜1〇〇微米。 11. 如申明專利範圍第1項之發光二極體,其中該多孔性光 子晶體結構係藉由陽極處理所形成。 12. 如申請專利範圍第丨項之發光二極體,其中該第一型磊 晶層之材質可以選自氮化鎵(GaN )、氮化銦鎵 (InGaN )、氮化鎵系或氮基半導體磊晶之一。 13. =申請專利範圍第1項之發光二極體,其中該第二型磊 晶層之材質可以選自氮化鎵(GaN )、氮化銦鎵 (InGaN)、氮化鎵系或氮基半導體磊晶之一。 —種發光二極體之製造方法,包括: 提供一基板; 形成一第一型磊晶層於該基板之上; 形成一,光層於該第一型磊晶層之上; 幵f成一第二型磊晶層於該發光層之上; 形成一第一接觸電極於該第一型磊晶層之上; 形成一第二接觸電極於該第二型磊晶層之上;以及 形成一多孔性光子晶體結構於該第二型磊晶層之上。 15.如申請專利範圍第14項之發光二極體之製造方法,其 1335678 中该基板之材質包括藍寶石( (GaN )、氮化鋁(A1N )、石山各^ apphlre )、亂化蘇 (GaAlN)〇 厌化矽(SiC)或氮化鎵鋁 l6nt:i圍$14項之發光二極體之製造方法,其 中5亥夕孔性光子晶體層之孔洞大小為30〜80奈米。 17.=申請專利範圍帛14項之發光二極體之 方法,苴 :該夕孔性光子晶體層之孔洞排列週期ί 40〜520 i 圍第14項之發光二極體之製造方法,其 1〇^〇12個^Γ。晶體層之孔洞密度為每平方公分具有 圍· 14項之發光二極體之製造方法,其 '^夕L性光子晶體層包括多孔性氧化鋁薄膜。 20.如,,專利範圍第19項之發光二極體之製造方法,其 中該多孔性氧化鋁薄膜係對純鋁薄膜進^陽極處理g 程所形成。 請專利範圍第20項之發光二極體之製造方法,其 。亥純紹薄獏係透過蒸鍍、濺鍍或熱浸鍍之方法所形 成0 22.如,,專利範圍第2〇項之發光二極體之製造方法,其 中該陽極處理之電解液包括硫酸液、草酸液、磷酸液。 3.如申吻專利範圍第19項之發光二極體之製造方法,其 17 1335678 中该氧化鋁薄獏之厚度為〇 〇5〜1〇〇微米。 圍第14項之發光二極體之製造方法,其 中忒夕孔性光子晶體結構係藉由陽極處理所形成。 專利範圍第14項之發光二極體之製造方法,其 ^第一型磊晶層之材質可以選自氮化鎵(GaN )、氮 化銦鎵(InGaN)、氮化鎵系或氮基半導體磊晶之一。 26.如申請專利範圍第14項之發光二極體之製造方法,其 中该第二型磊晶層之材質可以選自氮化鎵(GaN )、氮 化銦鎵(InGaN )、氮化鎵系或氮基半導體磊晶之一。5. If the patent application scope hole of the sub-crystal layer is 0. 6. The secondary crystal layer of the second aspect of the patent application includes porous oxidation. The bulk of the porous light 7·: the light-emitting dimerization of the sixth item of the patent scope of the patent (4) (4) is formed by the phase of the porous oxygen. 15 1335678 8 The light-emitting diode of claim 7, wherein the pure aluminum film is formed by evaporation, sputtering or hot dip plating. 9. The light-emitting diode of claim 7, wherein the anode-treated electrolyte comprises a sulfuric acid solution, an oxalic acid solution, and an acid filling solution. 10. The light-emitting diode of claim 6, wherein the aluminum oxide film has a thickness of 0.05 to 1 micron. 11. The light-emitting diode of claim 1, wherein the porous photonic crystal structure is formed by anodization. 12. The light-emitting diode of claim </ RTI> wherein the material of the first type of epitaxial layer may be selected from the group consisting of gallium nitride (GaN), indium gallium nitride (InGaN), gallium nitride or nitrogen. One of the semiconductor epitaxial. 13. The light-emitting diode of claim 1 wherein the material of the second type epitaxial layer may be selected from the group consisting of gallium nitride (GaN), indium gallium nitride (InGaN), gallium nitride or nitrogen. One of the semiconductor epitaxial. a method for manufacturing a light emitting diode, comprising: providing a substrate; forming a first type epitaxial layer on the substrate; forming a light layer on the first type epitaxial layer; a second type epitaxial layer is over the light emitting layer; a first contact electrode is formed on the first type epitaxial layer; a second contact electrode is formed on the second type epitaxial layer; and a plurality of layers are formed A porous photonic crystal structure is over the second epitaxial layer. 15. The method for manufacturing a light-emitting diode according to claim 14, wherein the material of the substrate in 1335678 comprises sapphire ((GaN), aluminum nitride (A1N), stone mountain ^ apphlre), chaotic (GaAlN) The manufacturing method of the light-emitting diode of SiC or GaN aluminum l6nt:i is about 14th, wherein the hole size of the 5th hole photonic crystal layer is 30~80 nm. 17.=Method for applying the illuminating diode of the patent range 帛14, 苴: The hole arrangement period of the layer of the photonic crystal layer ί 40~520 i The manufacturing method of the light-emitting diode of the 14th item, 1 〇^〇12 ^Γ. A method for producing a light-emitting diode having a hole density of a crystal layer of about 14 terms per square centimeter, wherein the layer of the photonic crystal layer comprises a porous alumina film. 20. The method of producing a light-emitting diode according to claim 19, wherein the porous alumina film is formed by subjecting a pure aluminum film to an anodizing process. Please refer to the manufacturing method of the light-emitting diode of the 20th patent range. The method for producing a light-emitting diode according to the second aspect of the invention, wherein the electrolyte for the anode treatment comprises sulfuric acid, wherein the method of producing the light-emitting diode of the second aspect of the invention is formed by a method of vapor deposition, sputtering or hot dip plating. Liquid, oxalic acid, phosphoric acid. 3. The method for manufacturing a light-emitting diode according to claim 19 of the patent application, wherein the thickness of the alumina thin crucible in 17 1335678 is 〜 5 to 1 μm. A method of producing a light-emitting diode according to item 14, wherein the porphyrin photonic crystal structure is formed by anodization. The manufacturing method of the light-emitting diode of the fourth aspect of the patent, wherein the material of the first type epitaxial layer may be selected from gallium nitride (GaN), indium gallium nitride (InGaN), gallium nitride or nitrogen-based semiconductor One of the epitaxial. 26. The method of fabricating a light-emitting diode according to claim 14, wherein the material of the second epitaxial layer is selected from the group consisting of gallium nitride (GaN), indium gallium nitride (InGaN), and gallium nitride. Or one of the epitaxial crystals of a nitrogen-based semiconductor. 1818
TW95140839A 2006-11-03 2006-11-03 Light emitting diode structure and manufacturing method of the same TWI335678B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95140839A TWI335678B (en) 2006-11-03 2006-11-03 Light emitting diode structure and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95140839A TWI335678B (en) 2006-11-03 2006-11-03 Light emitting diode structure and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW200822387A TW200822387A (en) 2008-05-16
TWI335678B true TWI335678B (en) 2011-01-01

Family

ID=44770752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95140839A TWI335678B (en) 2006-11-03 2006-11-03 Light emitting diode structure and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI335678B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635605B (en) * 2017-11-02 2018-09-11 錼創顯示科技股份有限公司 Micro-led display panel
US11949043B2 (en) 2020-10-29 2024-04-02 PlayNitride Display Co., Ltd. Micro light-emitting diode

Also Published As

Publication number Publication date
TW200822387A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
TWI396297B (en) Light emitting diode structure and manufacturing method of the same
CN104465917B (en) Patterned photoelectric substrate and manufacturing method thereof
TWI544656B (en) Semiconductor light emitting element and manufacturing method thereof
TWI422068B (en) Roughening method and method for manufacturing light emitting diode having roughened surface
CN112018223B (en) Thin film flip structure Micro-LED chip with transfer printing of bonding layer and preparation method thereof
TW467874B (en) Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
TW201027800A (en) Semiconductor optical element array and method of manufacturing the same
JP2007521641A (en) Highly efficient (B, Al, Ga, In) N-based light emitting diode by surface roughening
US20100219437A1 (en) Nitride semiconductor light emitting diode
TW201248792A (en) LED substrate and LED
TW200905908A (en) Semiconductor light-emitting element and process for making the same
CN108615797A (en) AlGaN base uv-LED devices and preparation method thereof with surface phasmon round platform nano-array
An et al. Increased light extraction from vertical GaN light-emitting diodes with ordered, cone-shaped deep-pillar nanostructures
JP2006303154A (en) Semiconductor light emitting device and its manufacturing method
KR20120084839A (en) Method of manufacturing vertical light emitting diode using light emitting diode epilayer growthed on patterned sappaire substrate and vertical light emitting diode manufactured by the method
TW200929624A (en) White light emitting diode chip and manufacturing method thereof
WO2020011117A1 (en) Ultraviolet light emitting diode chip for improving light extraction efficiency, and manufacturing method therefor
WO2023137814A1 (en) Method for manufacturing high-voltage led chip
CN109346564A (en) A kind of production method of upside-down mounting LED chip
TWI335678B (en) Light emitting diode structure and manufacturing method of the same
TWI336961B (en) Light emitting diode structure and manufacturing method of the same
CN104319328A (en) GaN-based LED chip surface roughening method
CN101740704B (en) Method for manufacturing GaN-based LED with photonic crystal structure
TW201015752A (en) Light emitting diode chip and fabricating method thereof
CN110649130A (en) Ultraviolet light-emitting diode and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees