TWI335463B - Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same - Google Patents

Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same Download PDF

Info

Publication number
TWI335463B
TWI335463B TW93131926A TW93131926A TWI335463B TW I335463 B TWI335463 B TW I335463B TW 93131926 A TW93131926 A TW 93131926A TW 93131926 A TW93131926 A TW 93131926A TW I335463 B TWI335463 B TW I335463B
Authority
TW
Taiwan
Prior art keywords
substrate
color filter
display area
thin film
forming
Prior art date
Application number
TW93131926A
Other languages
Chinese (zh)
Other versions
TW200508742A (en
Inventor
Li Nien Lin
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW93131926A priority Critical patent/TWI335463B/en
Publication of TW200508742A publication Critical patent/TW200508742A/en
Application granted granted Critical
Publication of TWI335463B publication Critical patent/TWI335463B/en

Links

Description

1335463 九、發明說明: 【發明所屬之技術領域】 本發明疋有關於一種液晶顯不面板(liquid crystal display panel),且特別是關於一種將彩色濾光薄膜整合於薄膜電晶體陣列 上(color filter on array,簡稱C0A)製作之薄膜電晶體液晶顯示面 板、其陣列基板及其製作方法。 【先前技術】 隨著高科技之發展’視訊產品,特別是數位化之視訊或影像 裝置已經成為在一般日常生活中所常見的產品。這些數位化之視 訊或影像裝置中,顯示器是一個重要元件,以顯示相關資訊。使 用者可由顯示器讀取資訊,或進而控制裝置的運作。 為了配合現代生活模式,視訊或影像裝置之體積日漸趨於薄 輕。傳統的陰極層射線顯示器,雖然仍有其優點,但是其需佔用 大體積且耗電。因此’配合光電技術與半導體製造技術,面板式 的顯示器已被發展出成為目前常見之顯示器產品,例如薄膜電晶 體液晶顯示器。薄膜電晶體液晶顯示器由於具有低電壓操作、無 輻射線散射、重量輕以及體積小等傳統陰極射線管(cathode ray tube ’簡稱CRT)所製造之顯示器無法達到的優點,與其他平板式 顯示器如電聚顯示器及電致發光(electroluminance)顯示器,成為近 年來顯示器研究的主要課題,更被視為二十一世紀顯示器的主流。 而習知的薄膜電晶體液晶顯示面板如第1圖所示,通常具有 一薄膜電晶體陣列基板102、一對向基板104與一液晶層(未繪 示)’其中液晶層是位於基板102與104之間。而在薄膜電晶體陣 列基板102上有薄膜電晶體陣列112,其中包括掃描配線、資料配 線以及數個薄膜電晶體等。然後,在基板102與104之間會有一 1335.463 框膠i Ο 6 ’用以封閉基板i Ο 2與i ο 4之間的空間,使液晶能 中,而這個被封閉的區域主要是用以顯示圖案或色彩,因此稱為 顯示區(display region)。而且,框膠106需預留一液晶注入口(LC injection hole) 108,以利液晶注入。 除了上述普通的薄膜電晶體液晶顯示面板外,目前更有一種 受褐目之製作薄膜電晶體液晶顯示面板的技術,其特徵是在具有 薄膜電晶⑽列m的餘1()2上直接製作彩色瀘光薄膜,:其 優點之-是能提高面板開口率n這種將彩㈣光薄膜整合 於薄膜電晶體陣列基板上製作之薄膜電晶體液晶顯示面板是目前 應用於輕薄、高解析度的NB面板或是液晶電視、高階液晶監視器 等產品的液晶顯不面板之一。 然而,前述將彩色慮光薄膜整合於薄膜電晶體陣列基板上製 作的薄膜電晶體液晶顯示面板,有以下缺點: 首先以第1圖為例,一般在具有薄膜電晶體陣列112的基板 104上直接製作》色濾'光薄膜之冑,無彳避免地都需把黑色矩陣 (black matrix,簡稱BM)先製作出來’因此要如何縮減利用c〇A 技術製作的薄膜電晶體液晶顯示面板之製程時間與成本,已成為 各方研究的重點之一。而且’當BM與彩色濾光薄膜是形成於不 同一片基板時,則前述兩者之對位問題將會影響到產品的良率。 再者’於第1圖中的顯示區邊緣(b〇rder)11〇常有漏光從基板 102上的線路間發射出來,而影響薄膜電晶體液晶顯示面板之顯示 品質。此外,顯示區域邊緣所預留的液晶注入口 1〇8同樣會有漏 光問題急需解決。 另外’通常在第1圖之薄膜電晶體陣列112中的每個薄膜電 晶體或是薄膜電晶體陣列112周邊的導線都會具有一修補(repair) 結構(未繪示),以於薄膜電晶體故障或產生線缺陷(line defect)時進 1335463 行修補製程。不過,習知的修補結構卻常因為被厚厚的介電層所 覆蓋,而在進行修補製程時發生介電層爆裂(burst)現象,以致無法 完成修補製程,導致需要修補的薄膜電晶體仍無法使用,線缺陷 亦無法修補。 除前述各缺點之外,請再次參照第1圖,薄膜電晶體陣列112 中的每個薄膜電晶體還具有一儲存電容器(storage capacitor,又稱 Cst),其結構主要是在兩層金屬層之間夾一絕緣層,而且較上層的 金屬層需藉由與晝素電極相連接,以受薄膜電晶體操控。不過, 由於微影製程例如顯影或蝕刻製程的失誤,使得儲存電容器上的 介電層未完全曝光或蝕刻不完全,而有部分介電層殘留,所以會 導致金屬層與晝素電極的介面接觸不良而使液晶電容無法在所要 求的時間内維持一定的灰階,致使面板效能(performance)變差。 【發明内容】 因此,本發明之目的是提供一種薄膜電晶體液晶顯示面板及 其製作方法,以節省製程時間。 本發明之再一目的是提供一種薄膜電晶體液晶顯示面板及其 製作方法,以降低製造成本。 本發明之另一目的是提供一種薄膜電晶體液晶顯示面板及其 製作方法,以減少顯示區域邊緣的漏光。 本發明之又一目的是提供一種薄膜電晶體液晶顯示面板及其 製作方法,以減少液晶注入口的漏光。 本發明之又一目的是提供一種薄膜電晶體液晶顯示面板及其 製作方法,以避免修補結構在進行修補製程時發生介電層爆裂。 本發明之另一目的是提供一種薄膜電晶體液晶顯示面板及其 製作方法,以解決儲存電容器接觸不良的問題。 1335463 根據上述與其它目的,本發明提出一種薄膜電晶體陣列基 板,包括一基材、掃描配線、資料配線、薄膜電晶體、畫素電極、 彩色濾光薄膜以及彩色濾光疊層。而掃描配線與資料配線係配置 在基材上,其中資料配線與掃描配線係構成數個晝素區域。而薄 膜電晶體是配置於資料配線與掃描配線的交錯處,且係藉由資料 配線與掃描配線控制。晝素電極則是配置於晝素區域中,且分別 與對應之薄膜電晶體電性連接。再者,彩色濾光薄膜係配置於畫 素區域上,而彩色濾光疊層則配置於薄膜電晶體上方的彩色濾光 薄膜上。 此外,如再加上一對向基板與液晶層夾在兩基板之間即可得 一薄膜電晶體液晶顯示面板。 本發明又提出一種薄膜電晶體畫素結構,在一基材上具有數 個畫素區域,其中包括數個畫素電極、數個薄膜電晶體'數個導 線、數個第一、第二與第三彩色濾光疊層。而晝素電極是位於畫 素區域内、薄膜電晶體則配置於晝素區域内。導線則配置於晝素 區域之交接處,用以定義出畫素區域,其中畫素電極係與導線經 由薄膜電晶體電性連結。第一彩色濾光疊層位於晝素電極上、第 二彩色濾光疊層位於導線上以及第三彩色濾光疊層位於薄膜電晶 體上。 本發明又提出一種薄膜電晶體陣列基板的製造方法,包括於 一基材上形成一第一金屬層,再圖案化第一金屬層,以形成數個 閘極與數條掃描配線。接著,於基材上形成一閘極絕緣層,再於 閘極上形成一圖案化非晶矽層,以形成數個通道層。之後,於基 材上形成一第二金屬層,再圖案化第二金屬層,以形成數個源極、 數個汲極於閘極上以及形成數條資料配線於基材上,其中資料配 線與掃描配線係構成數個晝素區域,且閘極、通道層、源極以及 1335463 汲極係組成數個薄膜電晶體。而後,於些晝素區域内形成數個第 一彩色濾光薄膜,再形成數個第二彩色濾光薄膜覆蓋於薄膜電晶 體上方的第一彩色濾光薄膜。然後,於畫素區域中的基材上形成 數個畫素電極,這些晝素電極分別與對應之薄膜電晶體電性連接。 此外,可再提供一對向基板,相對於薄膜電晶體陣列基板配 置,然後於對向基板與薄膜電晶體陣列基板之間形成一液晶層, 即可製作出薄膜電晶體液晶顯示面板。 本發明又提出一種薄膜電晶體陣列基板的製作方法,包括於 一基材上形成複數條掃描配線,再於基材上形成數條資料配線, 其中資料配線與掃描配線係構成數個晝素區域。之後,於資料配 線與掃描配線的交錯處形成數個薄膜電晶體,且薄膜電晶體係藉 由資料配線與掃描配線控制,然後,於畫素區域中形成數個晝素 電極,這些畫素電極分別與對應之薄膜電晶體電性連接。接著, 於畫素區域上形成數個彩色濾光薄膜,再於薄膜電晶體上方的彩 色濾光薄膜上形成數個彩色濾光疊層。 本發明繼續提出一種薄膜電晶體陣列基板,包括一顯示區與 一非顯示區,其特徵在於配置於非顯示區環繞顯示區邊緣的一環 狀彩色濾光疊層。 本發明再提出一種薄膜電晶體陣列基板,包括一顯示區與一 非顯示區,其特徵在於數個第一金屬層,配置於顯示區邊緣,亦 即非顯示區;以及數個第二金屬層,部分重疊第一金屬層配置, 以防止顯示區邊緣漏光。 本發明再提出一種薄膜電晶體陣列基板,包括一顯示區與一 非顯示區,其特徵在於一第一金屬層,配置於顯示區邊緣、一第 二金屬層,部分重疊第一金屬層配置;以及至少一環狀彩色渡光 薄膜,環繞顯示區邊緣配置。 1335463 本發明再提出一種遮光結構,適用於一薄膜電晶體陣列基板 之一非顯示區,包括一第一金屬層,配置於非顯示區、一第二金 屬層,與第一金屬層重疊配置,其中第一與第二金屬層以一絕緣 層電性隔離;以及至少一彩色濾光薄膜,配置於第一與第二金屬 層上。 本發明再提出一種薄膜電晶體陣列基板的製造方法,包括於 一基材上形成一第一金屬層,其中基材包括一顯示區與一非顯示 區。之後,圖案化第一金屬層,以形成數個閘極與數條掃描配線, 其中掃描配線延伸至顯示區邊緣。接著,於基材上形成一閘極絕 緣層與一非晶矽層,再移除閘極上方以外的非晶矽層,以形成數 個通道層。之後,於基材上形成一第二金屬層,再圖案化第二金 屬層,以於閘極上形成源極、汲極、於基材上形成資料配線以及 於顯示區邊緣形成數條擬金屬層,其中資料配線與掃描配線係構 成數個畫素區域,且閘極、通道層、源極以及汲極係組成數個薄 膜電晶體,且擬金屬層部分重疊於掃描配線。而後,於基材上形 成一第一彩色濾光薄膜,再圖案化第一彩色濾光薄膜,以保留畫 素區域内以及顯示區邊緣的部分第一彩色濾光薄膜。接著,形成 一第二彩色濾光薄膜覆蓋於顯示區邊緣的第一彩色濾光薄膜。然 後,於畫素區域中的基材上形成數個畫素電極,這些晝素電極分 別與對應之薄膜電晶體電性連接。 本發明又提出一種薄膜電晶體陣列基板的製作方法,包括提 供一基材,其包括一顯示區與一非顯示區,其特徵在於在非顯示 區中的基材上形成一環狀彩色濾光疊層,而環狀彩色濾光疊層並 環繞顯示區邊緣。 本發明又提出一種薄膜電晶體陣列基板的製作方法,包括於 一基材上形成一第一金屬層,基材包括一顯示區與一非顯示區。 後®案化第—金屬層,以於顯示區内形成數個門太 播配線’其中掃描配線延伸至顯示區邊缘:個閘極與數條掃 —閉極絕緣届s q主顯不£邊緣。接|,於基材上形成 ii、t® 再於閘極上形成一圖案化非晶矽層,以###/ 通道層。之後,於基材上層叫成數個 層,域第一金屬層’再圖案化第二今属 次 ;3極上形成數個源極、數個汲極,並於美 ’ 負料配線以及於、土材上形成數條 於顯不區邊緣形成數條擬金屬層,其中眘祖耐a 知描配線係構餘财素區域,祕m、巾讀配線與 :=:Γ:二::::: = .·肩不£邊緣漏光。接著,於書音 防止 光薄膜,再㈣干㈣基社形錢個彩色濾 材上形成數個畫素電極,這些佥辛雷 極係與對應之薄膜電晶體電性連接。 一-素電 本發明又提出-種薄膜電晶體陣列基板的製作方法, ^材上形成^金屬層’基材包括一顯示區與—非顯示區。 ^ ’圖案化-金屬層,以於顯示區内形成數個閘極與數條 描配線以及於㈣區邊緣形成數條擬金騎。隨後,於基材_ 成-問極絕緣層’再在閘極上形成—圖案化非W層, 個通道層。之後’於基材上形成—第二金屬層,再圖案化第二金 屬層’以於_上形成數個雜、數個汲極,並於糾上形成數 條資料配線,其中資料配線延伸至顯示區邊緣,且資料配線盘掃 描配線係構成數個畫素區域,且閘極、通道層、源極以及没極係 組成數個薄膜電晶體’而擬金屬層部分重疊於f料配線,以防止 顯示區邊緣漏光。接著,於畫素區域内的基材上形成數個彩色渡 光薄膜,再於顯不區内的基材上形成數個晝素電極,畫素電極係 與對應之薄膜電晶體電性連接。 本發明又提出-種薄膜電晶體陣列基板的製作方法,包括提 供一基材,其包括—顯示區與-非顯示區,其特徵在於在顯示區 1335.463 且 邊緣形成數個第—金屬層以及於基材上形成數個第二金屬與 第一金屬層係部分重疊第一金屬層,以防止顯示區邊緣漏^ 本發明接著又提出一種薄膜電晶體陣列基板的製作方法 括於基材上形成一第一金屬層,基材包括一顯示區與 包 .、、、後’圖案化第—金屬層,以於顯示區内形錢個閑極 '、掃描配線,其中掃描配線延伸至顯示區邊緣,再於美 二 一巧極絕緣層。接著,在閘極上形成一圖案化非晶矽層,以形成 數個通道層,再於基材上形成一第 二金屬層。之後,圖案化第一 金屬層,以於閘極上形成數個源極、數個沒極並於基材上形成 數條資料配線以及於顯示區邊緣形成數條擬金屬層,其中資料配 線與掃描配線係構成數個畫素區域,閘極、通道層、源極以及汲 極係組成數個薄膜電晶體,且擬金屬層部分重疊於掃描配線,以 防止顯示區邊緣漏光。之後,於基材上形成一第—彩色濾光薄膜, 再圖案化第一彩色濾光薄膜,以保留畫素區域内的部分第一彩色 濾光薄膜以及於顯示區邊緣形成一第一環狀彩色濾光薄膜。隨 後,於顯示區内的基材上形成數個畫素電極,這些晝素電極係與 對應之薄膜電晶體電性連接。 本發明再提出一種薄膜電晶體陣列基板的製作方法,包括於 一基材上形成一第一金屬層,基材包括一顯示區與一非顯示區, 再圖案化第一金屬層,以於顯示區内形成數個閘極與數條掃描配 線以及於顯示區邊緣形成數條擬金屬層。之後,於基材上形成一 閘極絕緣層,再於閘極上形成一圖案化非晶矽層,以形成數個通 道層。接著’於基材上形成一第二金屬層,再圖案化第二金屬層, 以於閘極上形成數個源極、數個汲極,並於基材上形成數條資料 配線,其中資料配線延伸至顯示區邊緣,其中資料配線與掃描g己 線係構成數個畫素區域,閘極 '通道層、源極以及〉及極則组成數 12 1335463 個薄膜電晶體,且擬金屬層部分重疊於資料配線,以防止顯示區 邊緣漏光。接著,於基材上形成一第一彩色濾光薄膜,再圖案化 第一彩色濾光薄膜,以保留晝素區域内的部分第一彩色濾光薄膜 以及於顯示區邊緣形成一第一環狀彩色濾光薄膜。然後,於顯示 區内的基材上形成數個晝素電極,這些晝素電極係與薄膜電晶體 電性連接。 本發明再提出一種薄膜電晶體陣列基板的製作方法,包括提 供一基材,基材包括一顯示區與一非顯示區,其特徵在於在顯示 區邊緣形成數個第一金屬層,再於基材上形成數個第二金屬層, 第二金屬層係部分重疊第一金屬層。隨後,環繞顯示區邊緣形成 至少一環狀彩色滤光薄膜。 本發明再提出一種薄膜電晶體陣列基板,包括一顯示區與一 非顯示區,其中非顯示區具有一液晶注入口,其特徵在於有數個 第一金屬層,配置於非顯示區、數個第二金屬層,部分重疊第一 金屬層配置、一彩色渡光疊層,配置於液晶注入口以外的非顯示 區;以及一第一彩色濾光區塊,位於非顯示區之液晶注入口所暴 露的區域上。 本發明再提出一種薄膜電晶體陣列基板,包括一顯示區與一 非顯示區,其中顯示區邊緣具有一液晶注入口,其特徵在於有數 個第一金屬層,配置於顯示區邊緣的液晶注入口所暴露的基材上 以及數個第二金屬層,部分重疊第一金屬層配置,以防止該顯示 區邊緣的該液晶注入口漏光。 本發明再提出一種薄膜電晶體陣列基板的製造方法,包括於 一基材上形成一第一金屬層,其中基材包括一顯示區與一非顯示 區,而顯示區邊緣具有一液晶注入口。之後,圖案化第一金屬層, 以形成數個閘極與數條掃描配線,其中掃描配線延伸至顯示區邊 13 1335.463 緣。接著,於基材上形成—閘極絕緣層與一非晶砂層再移除間 極上方以外的非晶矽層,以形成數個通道層。之後,於基材上形 成-第二金屬層’再圖案化第二金屬層,以於閘極上形成源極、 汲極、於基材上形成資料配線以及於顯示區邊緣形成數條擬金屬 層,其中資料配線與掃描配㈣構成數個畫素區域,且閘極、通 道層、源極以及汲極係組成數個薄膜電晶體,且擬金屬層部分重 疊於掃描配線。而後,於基材上形成-彩色滤光薄_,再圖案化 此-彩色遽光薄膜,以保留畫素區域内以及於顯示區邊緣的液晶 注入口所暴露^之基材上的彩色縣區塊。接著,於畫素區域中 的基材上形成數個畫素電極,這些畫素電極分別與封應之薄膜電 晶體電性連接。 〜 本發明接著提出一種薄膜電晶體陣列基板的製作方法,包括 於基材上形成-第—金屬層,基材包括一顯示區與一非顯示 區’其中顯示區邊緣具有—液晶注人口。之後,圖案化第一金屬 層,以於顯示區内形成數個閘極與數條掃描配線以及於顯示區邊 緣的液a日/主入口所暴路的基材上形成數條擬金屬層。然後,於基 材上形成-閘極絕緣層’再在閘極上形成—圖案化非晶㈣,以 形成數個通道層。之後,於基材上形成—第二金屬層再圖案化 第一金屬層,以於閘極上形成數個源極、數個汲極,並於基材上 形成數條資料配線,這些資料配線延伸至顯示區邊緣的液晶注入 口 ’其中資料配線與掃描配線係構成數個畫素區域,且擬金屬層 部分重疊於資料配線,以防止顯示區邊緣的液晶注人口漏光,且 閘極、通道層、源極以及祕係組成數個薄膜電晶體。接著,於 畫素區_形成數個彩色遽光薄膜’再於畫素區域中形成數個查 素電極’這些晝素電極係與對應之薄膜電晶體電性連接。~~ 本發月接著再提出-種薄膜電晶體陣列基板的製作方法 1335463 括提供一基材,基材包括一顯示區與一非顯示區,其中非顯示區 邊緣具有一液晶注入口,其特徵在於在顯示區邊緣形成數個第一 金屬層,之後於基材上形成數個第二金屬層,這些第二金屬層係 部分重疊第一金屬層,以防止顯示區邊緣的液晶注入口漏光。 本發明再提出一種薄膜電晶體陣列基板的製作方法,包括於 一基材上形成一第一金屬層,基材包括一顯示區與一非顯示區, 其中顯示區邊緣具有一液晶注入口。之後,圖案化第一金屬層, 以於顯示區内形成數個閘極與數條掃描配線以及於顯示區邊緣的1335463 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display panel, and more particularly to a color filter film integrated on a thin film transistor array (color filter) On array, referred to as C0A), a thin film transistor liquid crystal display panel, an array substrate thereof, and a method of fabricating the same. [Prior Art] With the development of high technology, video products, especially digital video or video devices, have become common products in everyday life. In these digital video or video devices, the display is an important component to display relevant information. The user can read the information from the display or, in turn, control the operation of the device. In order to cope with modern lifestyles, the size of video or video devices is becoming thinner and lighter. Conventional cathode ray display, while still having its advantages, requires a large volume and consumes power. Therefore, panel-type displays have been developed to become common display products, such as thin film electro-crystal liquid crystal displays, in conjunction with optoelectronic technology and semiconductor manufacturing technology. Thin film transistor liquid crystal displays have advantages that cannot be achieved with conventional cathode ray tubes (CRTs) manufactured by low-voltage operation, no radiation scattering, light weight, and small size, and other flat-panel displays such as electricity Poly-displays and electroluminescence displays have become the main topics of display research in recent years, and are regarded as the mainstream of displays in the 21st century. As shown in FIG. 1 , a conventional thin film transistor liquid crystal display panel generally has a thin film transistor array substrate 102, a pair of substrates 104 and a liquid crystal layer (not shown), wherein the liquid crystal layer is located on the substrate 102 and Between 104. On the thin film transistor array substrate 102, there is a thin film transistor array 112 including scanning wiring, data wiring, and a plurality of thin film transistors. Then, between the substrates 102 and 104, there will be a 1335.463 frame glue i Ο 6 ' to close the space between the substrates i Ο 2 and i ο 4 so that the liquid crystal can be in the middle, and the closed area is mainly used for display. The pattern or color is therefore called the display region. Moreover, the sealant 106 needs to reserve a liquid crystal injection port (108) for liquid crystal injection. In addition to the above-mentioned conventional thin film transistor liquid crystal display panel, there is a technology for producing a thin film transistor liquid crystal display panel by a brown eye, which is characterized in that it is directly fabricated on the remaining 1 () 2 of the thin film electrocrystal (10) column m. Color calendering film, the advantage of which is to increase the panel aperture ratio n. The thin film transistor liquid crystal display panel which is formed by integrating the color (four) light film on the thin film transistor array substrate is currently applied to thin and high resolution. NB panel or one of the liquid crystal display panels of LCD TVs, high-end LCD monitors and other products. However, the above-mentioned thin film transistor liquid crystal display panel formed by integrating a color light-sensitive film on a thin film transistor array substrate has the following disadvantages: First, taking FIG. 1 as an example, it is generally directly on the substrate 104 having the thin film transistor array 112. After making the "color filter" light film, it is necessary to make the black matrix (BM) first in the future. Therefore, how to reduce the processing time of the thin film transistor liquid crystal display panel made by c〇A technology With cost, it has become one of the focuses of research. Moreover, when the BM and the color filter film are formed on the same substrate, the alignment problem of the above two will affect the yield of the product. Further, in the display area edge (b〇rder) 11 of Fig. 1, light leakage is often emitted from the lines on the substrate 102, which affects the display quality of the thin film transistor liquid crystal display panel. In addition, the liquid crystal injection port 1〇8 reserved at the edge of the display area also has a problem of light leakage. In addition, each of the thin film transistors in the thin film transistor array 112 of FIG. 1 or the wires around the thin film transistor array 112 may have a repair structure (not shown) for the failure of the thin film transistor. Or in the case of line defects, enter the 1353546 line repair process. However, the conventional repair structure is often covered by a thick dielectric layer, and a dielectric layer burst occurs during the repair process, so that the repair process cannot be completed, resulting in a thin film transistor that needs to be repaired. Unable to use, line defects cannot be repaired. In addition to the foregoing disadvantages, referring again to FIG. 1, each of the thin film transistors 112 further has a storage capacitor (also referred to as Cst) whose structure is mainly in two metal layers. An insulating layer is interposed, and the upper metal layer is connected to the halogen electrode to be manipulated by the thin film transistor. However, due to errors in the lithography process, such as development or etching processes, the dielectric layer on the storage capacitor is not fully exposed or incompletely etched, and some of the dielectric layer remains, which may result in contact between the metal layer and the element of the halogen electrode. Poor performance causes the liquid crystal capacitor to not maintain a certain gray level for the required time, resulting in poor panel performance. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to save process time. It is still another object of the present invention to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to reduce manufacturing costs. Another object of the present invention is to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to reduce light leakage at the edge of the display area. It is still another object of the present invention to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to reduce light leakage from a liquid crystal injection port. It is still another object of the present invention to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to prevent the dielectric structure from bursting during the repair process. Another object of the present invention is to provide a thin film transistor liquid crystal display panel and a method of fabricating the same to solve the problem of poor contact of the storage capacitor. 1335463 In accordance with the above and other objects, the present invention provides a thin film transistor array substrate comprising a substrate, a scan wiring, a data wiring, a thin film transistor, a pixel electrode, a color filter film, and a color filter stack. The scanning wiring and the data wiring system are disposed on the substrate, and the data wiring and the scanning wiring system constitute a plurality of pixel regions. The thin film transistor is disposed at the intersection of the data wiring and the scanning wiring, and is controlled by the data wiring and the scanning wiring. The halogen electrodes are disposed in the halogen region and are electrically connected to the corresponding thin film transistors, respectively. Further, the color filter film is disposed on the pixel region, and the color filter layer is disposed on the color filter film above the film transistor. Further, a thin film transistor liquid crystal display panel can be obtained by adding a pair of a substrate and a liquid crystal layer between the two substrates. The invention further provides a thin film transistor pixel structure having a plurality of pixel regions on a substrate, including a plurality of pixel electrodes, a plurality of thin film transistors, a plurality of wires, and a plurality of first and second A third color filter stack. The halogen electrode is located in the pixel region, and the thin film transistor is disposed in the halogen region. The wires are disposed at the intersection of the halogen regions to define a pixel region, wherein the pixel electrodes are electrically connected to the wires via the thin film transistors. The first color filter stack is on the pixel electrode, the second color filter stack is on the wire, and the third color filter stack is on the thin film transistor. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, and then patterning the first metal layer to form a plurality of gates and a plurality of scan lines. Next, a gate insulating layer is formed on the substrate, and a patterned amorphous germanium layer is formed on the gate to form a plurality of channel layers. Thereafter, a second metal layer is formed on the substrate, and the second metal layer is patterned to form a plurality of sources, a plurality of drain electrodes on the gate, and a plurality of data wires are formed on the substrate, wherein the data wiring and the data are The scanning wiring system constitutes a plurality of halogen regions, and the gate, the channel layer, the source, and the 1354463 drain are composed of a plurality of thin film transistors. Then, a plurality of first color filter films are formed in the pixel regions, and a plurality of second color filter films are formed to cover the first color filter film above the film transistors. Then, a plurality of pixel electrodes are formed on the substrate in the pixel region, and the halogen electrodes are electrically connected to the corresponding thin film transistors, respectively. In addition, a pair of substrates can be further provided, and a thin film transistor liquid crystal display panel can be fabricated by disposing a liquid crystal layer between the opposite substrate and the thin film transistor array substrate with respect to the thin film transistor array substrate. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a plurality of scanning wires on a substrate, and then forming a plurality of data wires on the substrate, wherein the data wires and the scanning wires form a plurality of pixel regions . Thereafter, a plurality of thin film transistors are formed at the intersection of the data wiring and the scanning wiring, and the thin film electrocrystallization system is controlled by the data wiring and the scanning wiring, and then a plurality of pixel electrodes are formed in the pixel region, and the pixel electrodes are formed. They are electrically connected to the corresponding thin film transistors. Then, a plurality of color filter films are formed on the pixel region, and a plurality of color filter stacks are formed on the color filter film above the film transistors. The present invention further provides a thin film transistor array substrate comprising a display area and a non-display area, characterized by a ring-shaped color filter stack disposed around the edge of the display area in the non-display area. The present invention further provides a thin film transistor array substrate comprising a display area and a non-display area, characterized in that a plurality of first metal layers are disposed at an edge of the display area, that is, a non-display area; and a plurality of second metal layers Partially overlapping the first metal layer configuration to prevent light leakage at the edge of the display area. The present invention further provides a thin film transistor array substrate, comprising a display area and a non-display area, wherein a first metal layer is disposed on the edge of the display area, a second metal layer, and partially overlapping the first metal layer; And at least one annular color light-transmissive film disposed around the edge of the display area. 1335463 The present invention further provides a light-shielding structure, which is applicable to a non-display area of a thin film transistor array substrate, and includes a first metal layer disposed on the non-display area and a second metal layer, and is disposed to overlap with the first metal layer. The first and second metal layers are electrically isolated by an insulating layer; and the at least one color filter film is disposed on the first and second metal layers. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, wherein the substrate comprises a display area and a non-display area. Thereafter, the first metal layer is patterned to form a plurality of gates and a plurality of scan lines, wherein the scan lines extend to the edge of the display area. Next, a gate insulating layer and an amorphous germanium layer are formed on the substrate, and the amorphous germanium layer other than above the gate is removed to form a plurality of channel layers. Thereafter, a second metal layer is formed on the substrate, and the second metal layer is patterned to form a source and a drain on the gate, form a data wiring on the substrate, and form a plurality of pseudo metal layers on the edge of the display region. The data wiring and the scanning wiring system form a plurality of pixel regions, and the gate, the channel layer, the source, and the drain are composed of a plurality of thin film transistors, and the pseudo metal layer partially overlaps the scan wiring. Then, a first color filter film is formed on the substrate, and the first color filter film is patterned to retain a portion of the first color filter film in the pixel region and at the edge of the display region. Next, a second color filter film is formed to cover the first color filter film at the edge of the display area. Then, a plurality of pixel electrodes are formed on the substrate in the pixel region, and the halogen electrodes are electrically connected to the corresponding thin film transistors, respectively. The invention further provides a method for fabricating a thin film transistor array substrate, comprising providing a substrate comprising a display area and a non-display area, characterized in that an annular color filter is formed on the substrate in the non-display area. The laminate is laminated with an annular color filter and surrounding the edge of the display area. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area. After the case, the metal layer is formed to form a plurality of gate wirings in the display area. The scanning wiring extends to the edge of the display area: a gate and a plurality of sweeps - the closed-pole insulation s q main display. Connected to form ii, t® on the substrate and then form a patterned amorphous germanium layer on the gate to ###/ channel layer. After that, the upper layer of the substrate is called a plurality of layers, and the first metal layer of the domain is re-patterned to the second time; a plurality of sources and a plurality of drains are formed on the three poles, and the wiring of the 'negative material and the earth and the earth are Several strips of pseudo-metal layers are formed on the material to form a number of pseudo-metal layers on the edge of the display area. Among them, the cautious a-recognition wiring system is structured in the financial sector, the secret m, the towel reading wiring and:=:Γ:2::::: = .· Should not leak the edge. Next, a plurality of pixel electrodes are formed on the color film of the book sound-preventing light film, and (4) the core material, and the bismuth-spirit electrodes are electrically connected to the corresponding film transistors. The present invention further proposes a method for fabricating a thin film transistor array substrate, wherein the metal layer is formed on the substrate to include a display region and a non-display region. ^ 'Pattern-metal layer to form several gates and several strips of wiring in the display area and several quasi-gold rides at the edge of the (4) area. Subsequently, a non-W layer, a channel layer, is patterned on the substrate _ into a gate insulating layer. Then, 'the second metal layer is formed on the substrate, and then the second metal layer is patterned' to form a plurality of impurities and a plurality of drain electrodes on the _, and to form a plurality of data wirings, wherein the data wiring extends to The edge of the display area, and the data distribution board scanning wiring system constitutes a plurality of pixel areas, and the gate, the channel layer, the source and the immersion system constitute a plurality of thin film transistors, and the pseudo metal layer partially overlaps the f material wiring, Prevent light leakage at the edge of the display area. Then, a plurality of color light-transmissive films are formed on the substrate in the pixel region, and a plurality of halogen electrodes are formed on the substrate in the display region, and the pixel electrodes are electrically connected to the corresponding thin film transistors. The invention further provides a method for fabricating a thin film transistor array substrate, comprising: providing a substrate comprising: a display region and a non-display region, characterized in that a plurality of first metal layers are formed on the edge of the display region 1335.463 and Forming a plurality of second metal and a first metal layer partially overlapping the first metal layer on the substrate to prevent edge leakage of the display region. The present invention further proposes a method for fabricating a thin film transistor array substrate, which is formed on the substrate. a first metal layer, the substrate comprises a display area and a package, and a 'patterned first metal layer for forming a dummy electrode in the display area, and scanning wiring, wherein the scan wiring extends to the edge of the display area, Then the United States is a very dense insulation layer. Next, a patterned amorphous germanium layer is formed on the gate to form a plurality of via layers, and a second metal layer is formed on the substrate. Thereafter, the first metal layer is patterned to form a plurality of sources on the gate, a plurality of immersions, and a plurality of data lines are formed on the substrate, and a plurality of pseudo metal layers are formed on the edge of the display area, wherein the data wiring and scanning The wiring system constitutes a plurality of pixel regions, and the gate, the channel layer, the source, and the drain are composed of a plurality of thin film transistors, and the pseudo metal layer is partially overlapped with the scan wiring to prevent light leakage at the edge of the display region. Thereafter, a first color filter film is formed on the substrate, and the first color filter film is patterned to retain a portion of the first color filter film in the pixel region and form a first ring shape at the edge of the display region. Color filter film. Subsequently, a plurality of pixel electrodes are formed on the substrate in the display region, and the halogen electrodes are electrically connected to the corresponding thin film transistors. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, the substrate comprises a display area and a non-display area, and then patterning the first metal layer for display A plurality of gates and a plurality of scanning wires are formed in the region, and a plurality of pseudo metal layers are formed on the edge of the display region. Thereafter, a gate insulating layer is formed on the substrate, and a patterned amorphous germanium layer is formed on the gate to form a plurality of channel layers. Then forming a second metal layer on the substrate, and then patterning the second metal layer to form a plurality of sources and a plurality of drain electrodes on the gate, and forming a plurality of data wirings on the substrate, wherein the data wiring Extending to the edge of the display area, wherein the data wiring and the scanning g line constitute a plurality of pixel regions, the gate 'channel layer, the source and the > and the poles constitute 12 1335463 thin film transistors, and the pseudo metal layers partially overlap Wiring the data to prevent light leakage at the edge of the display area. Then, a first color filter film is formed on the substrate, and then the first color filter film is patterned to retain a portion of the first color filter film in the halogen region and form a first ring shape at the edge of the display region. Color filter film. Then, a plurality of halogen electrodes are formed on the substrate in the display region, and the halogen electrodes are electrically connected to the thin film transistor. The invention further provides a method for fabricating a thin film transistor array substrate, comprising providing a substrate comprising a display area and a non-display area, wherein a plurality of first metal layers are formed on the edge of the display area, and then A plurality of second metal layers are formed on the material, and the second metal layer partially overlaps the first metal layer. Subsequently, at least one annular color filter film is formed around the edge of the display area. The present invention further provides a thin film transistor array substrate comprising a display area and a non-display area, wherein the non-display area has a liquid crystal injection port, characterized by a plurality of first metal layers, disposed in the non-display area, and several a second metal layer partially overlapping the first metal layer, a color light-emitting layer disposed in the non-display area outside the liquid crystal injection port; and a first color filter block exposed by the liquid crystal injection port in the non-display area On the area. The present invention further provides a thin film transistor array substrate comprising a display area and a non-display area, wherein the display area edge has a liquid crystal injection port, characterized by a plurality of first metal layers, and a liquid crystal injection port disposed at an edge of the display area The exposed substrate and the plurality of second metal layers partially overlap the first metal layer configuration to prevent light leakage from the liquid crystal injection port at the edge of the display region. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, wherein the substrate comprises a display area and a non-display area, and the edge of the display area has a liquid crystal injection port. Thereafter, the first metal layer is patterned to form a plurality of gates and a plurality of scan lines, wherein the scan lines extend to the edge of the display area 13 1335.463. Next, a gate insulating layer and an amorphous sand layer are formed on the substrate to remove an amorphous germanium layer other than above the interpole to form a plurality of channel layers. Thereafter, a second metal layer is formed on the substrate to re-pattern the second metal layer to form a source and a drain on the gate, form a data wiring on the substrate, and form a plurality of pseudo metal layers on the edge of the display region. The data wiring and the scanning (4) constitute a plurality of pixel regions, and the gate, the channel layer, the source and the drain are composed of a plurality of thin film transistors, and the pseudo metal layer partially overlaps the scan wiring. Then, a color filter thin film is formed on the substrate, and the color light-thin film is patterned to preserve the color county area on the substrate exposed by the liquid crystal injection port in the pixel region and at the edge of the display region. Piece. Next, a plurality of pixel electrodes are formed on the substrate in the pixel region, and the pixel electrodes are electrically connected to the sealed thin film transistor, respectively. The present invention further provides a method of fabricating a thin film transistor array substrate comprising forming a -first metal layer on a substrate, the substrate comprising a display region and a non-display region, wherein the edge of the display region has a liquid crystal population. Thereafter, the first metal layer is patterned to form a plurality of gates and a plurality of scanning lines in the display region and a plurality of pseudo metal layers formed on the substrate of the liquid a day/main entrance path at the edge of the display region. Then, a gate insulating layer is formed on the substrate and then formed on the gate - patterned amorphous (tetra) to form a plurality of channel layers. Thereafter, a second metal layer is formed on the substrate to pattern the first metal layer to form a plurality of sources and a plurality of drain electrodes on the gate, and a plurality of data lines are formed on the substrate, and the data lines are extended. The liquid crystal injection port to the edge of the display area, wherein the data wiring and the scanning wiring system form a plurality of pixel regions, and the pseudo metal layer partially overlaps the data wiring to prevent the liquid crystal population at the edge of the display area from leaking light, and the gate and the channel layer The source and the secret system form several thin film transistors. Next, a plurality of color fluorescent films are formed in the pixel region ‘ and a plurality of pixel electrodes are formed in the pixel region. These halogen electrode electrodes are electrically connected to the corresponding thin film transistors. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A plurality of first metal layers are formed on the edge of the display region, and then a plurality of second metal layers are formed on the substrate. The second metal layers partially overlap the first metal layer to prevent light leakage from the liquid crystal injection port at the edge of the display region. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area, wherein the edge of the display area has a liquid crystal injection port. Thereafter, the first metal layer is patterned to form a plurality of gates and a plurality of scan lines in the display area and at the edge of the display area

液Ha/主入口所暴露的基材上形成擬金屬層。之後,於基材上形成 一閘極絕緣層與一非晶矽層,再移除閘極上方以外的非晶矽層, 以形成數個通道層。隨後,於基材上形成一第二金屬層,再圖案 化第二金屬層,以於閘極上形成數個源極、數個汲極,並於基和 上形成數條資料配線,這些資料配線延伸至顯示區邊緣的液晶3 入口,其中資料配線與掃描配線係構成數個畫素區域,且擬金肩 層部分重疊於掃描配線,且閘極、通道層、源極以及汲極係余 數個/專臈電晶體。接著,於基材上形成一彩色濾光薄膜,^ 化彩色濾光薄膜’以保留畫素區域内的部分彩色據光薄 負A pseudo metal layer is formed on the substrate exposed by the liquid Ha/main inlet. Thereafter, a gate insulating layer and an amorphous germanium layer are formed on the substrate, and the amorphous germanium layer other than above the gate is removed to form a plurality of channel layers. Subsequently, a second metal layer is formed on the substrate, and the second metal layer is patterned to form a plurality of sources and a plurality of drain electrodes on the gate, and form a plurality of data wirings on the base and the data wiring. a liquid crystal 3 inlet extending to the edge of the display area, wherein the data wiring and the scanning wiring system constitute a plurality of pixel regions, and the gold shoulder layer partially overlaps the scanning wiring, and the gate, the channel layer, the source, and the drain are the remainder / special transistor. Next, a color filter film is formed on the substrate, and the color filter film is replaced to retain a portion of the color data in the pixel region.

顯示區邊緣的液晶注入口所暴露出之基材上形成—第—,及方 區塊。之後’於畫素區域中形成數個畫素電極,這些書象色濾另 與對應之薄膜電晶體電性連接。 〜素電極令 本發明再提出一種薄膜電晶體陣列基板的製作方法 供一基材,基材包括一顯示區與一非顯示區,其中非顯 括提 具有一液晶注入口,其特徵在於在顯示區邊緣形成數j不區邊緣 層’再於基材上形成數個第二金屬層’這些第二金屬層/金屬 疊第一金屬層。隨後,於顯示區邊緣之液晶注入口所2邹分重 上形成一第一彩色濾光區塊。 〜路的區域 15 1335463 本發明接著再提出一種薄膜電晶體陣列基板,具有數個修補 結構,其結構包括第一金屬層、第二金屬層、絕緣層、通道層、 介電層、透明電極以及至少一彩色濾光薄膜。第一金屬層係配置 在一基材上,其包括掃描配線、閘極以及數個第一修補金屬層。 絕緣層則覆蓋第一金屬層。而通道層係配置於閘極上方之絕緣層 上。第二金屬層則配置在基材上,其包括源極、個汲極、資料配 線以及數個第二修補金屬層,其中源極與汲極配置於閘極上方之 通道層兩側,且資料配線與掃描配線係構成數個晝素區域,而第 二修補金屬層與第一修補金屬層係互相重疊,以組成數個修補結 構,且閘極、通道層、源極以及汲極係組成數個薄膜電晶體。而 介電層係配置於第一金屬層、絕緣層以及第二金屬層上,其中介 電層具有修補開口以及接觸窗口,而修補開口暴露出修補結構的 第二修補金屬層、接觸窗口則暴露出薄膜電晶體的源極。透明電 極是配置於介電層上,包括數個晝素電極以及數個浮置電極,其 中晝素電極係配置於畫素區域中,藉由接觸窗口分別與對應之薄 膜電晶體之源極電性連接,而浮置電極係藉由修補開口與第二修 補金屬電性連接。再者,彩色濾光薄膜是配置於修補開口以外的 晝素區域上。 此外,如再加上一對向基板與液晶層夾在兩基板之間即可得 一薄膜電晶體液晶顯示面板。 本發明再提出一種薄膜電晶體陣列基板的製造方法,包括於 一基材上形成一第一金屬層,再圖案化第一金屬層,以形成掃描 配線、閘極以及數個第一修補金屬層。之後,於基材上形成一閘 極絕緣層與一非晶矽層,並移除閘極上方以外的非晶矽層,以形 成通道層。接著,於基材上形成一第二金屬層,再圖案化第二金 屬層,以形成源極、汲極、資料配線以及數個第二修補金屬層, 16 1335.463 其中源極與汲極配置於閘極上方之通道層兩側,而資料配線與掃 描配線係構成數個畫素區域,且第二修補金屬層與第一修補金屬 層係互相重疊,以組成修補結構,閘極、通道層、源極以及汲極 則組成數個薄膜電晶體。然後,於第一金屬層、絕緣層以及第二 金屬層上形成一介電層,其中介電層具有修補開口以及接觸窗 口,而修補開口暴露出修補結構的第二修補金屬層、接觸窗口則 暴露出薄膜電晶體的源極,再於開口以外的畫素區域内形成數個 第一彩色濾光薄膜。之後,形成數個第二彩色濾光薄膜,覆蓋於 薄膜電晶體上方的部分第一彩色濾光薄膜,再於基材上形成一透 明電極,其包括數個晝素電極與數個浮置電極,畫素電極係藉由 接觸窗口分別與對應之薄膜電晶體之源極電性連接,浮置電極係 藉由修補開口與第二修補金屬電性連接。 此外,可再提供一對向基板,相對於薄膜電晶體陣列基板配 置,然後於對向基板與薄膜電晶體陣列基板之間形成一液晶層, 即可製作出薄膜電晶體液晶顯示面板。 本發明再提出一種薄膜電晶體陣列基板的製作方法,包括於 一基材上形成一第一金屬層,其中包括數條掃描配線、數個閘極 以及數個第一修補金屬層。之後,於基材上形成一絕緣層覆蓋第 一金屬層,再於閘極上方之絕緣層上形成數個通道層,再於基材 上形成一第二金屬層,其包括數個源極、數個汲極、數條資料配 線以及數個第二修補金屬層,其中源極與汲極配置於閘極上方之 通道層兩側,且資料配線與掃描配線係構成數個晝素區域,而第 二修補金屬層與第一修補金屬層係互相重疊,以組成修補結構, 且閘極、通道層、源極以及汲極係組成數個薄膜電晶體。接著, 於第一金屬層、絕緣層以及第二金屬層上形成一介電層,其中介 電層具有數個修補開口以及數個接觸窗口,而修補開口暴露出修 17 1335.463 補結構的第二修補金屬層、接觸窗口則暴露出薄膜電晶體的源 極。之後,於畫素區域中形成數個晝素電極,其中畫素電極係藉 由接觸窗口分別與對應之薄膜電晶體之源極電性連接,再於修補 開口以外的畫素區域上形成至少一彩色濾光薄膜。 本發明再提出一種薄膜電晶體陣列基板,具有數個儲存電容 器,其結構包括第一金屬層、第二金屬層、絕緣層、通道層、介 電層、保護層、晝素電極以及彩色濾光薄膜。第一金屬層係配置 在一基材上,其包括掃描配線、閘極以及數個第一儲存電容金屬 層,其具有數個第一開口。絕緣層則覆蓋第一金屬層。而通道層 係配置於閘極上方之絕緣層上。第二金屬層則配置在基材上,其 包括源極、個汲極、資料配線以及數個第二儲存電容金屬層,其 中源極與汲極配置於閘極上方之通道層兩側,且資料配線與掃描 配線係構成數個晝素區域,而第二儲存電容金屬層與第一儲存電 容金屬層係互相重疊,以與絕緣層組成儲存電容器,且閘極、通 道層、源極以及汲極係組成數個薄膜電晶體。而介電層係配置於 第一金屬層、絕緣層以及第二金屬層上,其中介電層具有數個第 二開口以及數個第三開口,而第二開口大致暴露出第一開口上方 的第二儲存電容金屬層、第三開口則暴露出薄膜電晶體的源極。 而畫素電極則配置於畫素區域中,其中畫素電極係藉由第二開口 分別與第二儲存電容金屬層電性連接以及藉由第三開口與對應之 薄膜電晶體之源極電性連接。再者,彩色濾光薄膜是配置於第二 開口以外的晝素區域上。 此外,如再加上一對向基板與液晶層夾在兩基板之間即可得 一薄膜電晶體液晶顯示面板。 本發明另外提出一種薄膜電晶體陣列基板的製造方法,包括 於一基材上形成一第一金屬層,再圖案化第一金屬層,以形成掃 18 1335.463 描配線、閘極以及數個第一儲存電容金屬層,具有數個第一開口。 之後,於基材上形成一閘極絕緣層,再在該些閘極上形成一圖案 化非晶矽層,以形成通道層。接著,於基材上形成一第二金屬層, 再圖案化第二金屬層,以形成源極、汲極、資料配線以及數個第 二儲存電容金屬層,其中源極與汲極配置於閘極上方之通道層兩 侧,而資料配線與掃描配線係構成數個晝素區域,且第二儲存電 容金屬層與第一儲存電容金屬層係互相重疊,以與絕緣層組成儲 存電容器,閘極、通道層、源極以及汲極則組成數個薄膜電晶體。 然後,於第一金屬層、絕緣層以及第二金屬層上形成一介電層, 其中介電層具有第二開口以及第三開口,而第二開口大致暴露出 第一開口上方的第二儲存電容金屬層、第三開口則暴露出薄膜電 晶體的源極。然後,於第二開口以外的畫素區域内形成數個彩色 濾光薄膜。之後,於基材上形成數個畫素電極,係藉由第二開口 分別與第二儲存電容金屬層電性連接以及藉由第三開口與對應之 薄膜電晶體之源極電性連接。 此外,可再提供一對向基板,相對於薄膜電晶體陣列基板配 置,然後於對向基板與薄膜電晶體陣列基板之間形成一液晶層, 即可製作出薄膜電晶體液晶顯示面板。 最後本發明提出一種薄膜電晶體陣列基板的製作方法,包括 於一基材上形成一第一金屬層,此一第一金屬層包括數條掃描配 線、數個閘極以及數個第一儲存電容金屬層,其中第一儲存電容 金屬層具有數個第一開口。接著,於基材上形成一絕緣層,覆蓋 第一金屬層,再於閘極上方之絕緣層上形成數個通道層,再於基 材上形成一第二金屬層,其中第二金屬層包括數個源極、數個汲 極、數條資料配線以及數個第二儲存電容金屬層,其中源極與汲 極配置於閘極上方之通道層兩側,且資料配線與掃描配線係構成 19 1335463 數個畫素區域,而這些第二儲存電容金屬層與第一儲存電容金屬 層係互相重疊,以與絕緣層組成儲存電容器,且閘極、通道層、 源極以及汲極係組成複數個薄膜電晶體。之後,於第一金屬層、 絕緣層以及第二金屬層上形成一介電層,其中介電層具有數個第 二開口以及數個第三開口,而第二開口大致暴露出第一開口上方 的第二儲存電容金屬層、第三開口則暴露出薄膜電晶體的源極。 然後,於畫素區域中形成數個晝素電極,其中畫素電極係藉由第 二開口分別與第二儲存電容金屬層電性連接以及藉由第三開口與 對應之薄膜電晶體之源極電性連接。接著,於第二開口以外的畫 素區域上形成數個彩色濾光薄膜。 本發明由於在薄膜電晶體上形成堆疊的彩色濾光疊層取代黑 色矩陣,因此可節省製程時間與成本。 而且,本發明之薄膜電晶體陣列基板的顯示區邊緣可搭配彩 色濾光疊層以及部分重疊之金屬層,所以能獲得極佳的遮光效果。 另外,本發明在薄膜電晶體陣列基板之顯示區邊緣的液晶注 入口結構採用部分重疊之金屬層並可搭配彩色濾光區塊,故可獲 得極佳的遮光效果並增加液晶注入口的口徑。 再者,本發明僅有一保護層覆蓋於薄膜電晶體陣列基板之修 補結構的焊點上,所以不會發生習知因焊點上有介電層,而在進 行修補製程時發生介電層爆裂現象。 此外,本發明之彩色濾光薄膜整合電晶體陣列基板之儲存電 容器結構因為採用如修補結構一般的焊點,故可改善源於儲存電 容器之金屬層與晝素電極的介面接觸不良所造成之面板效能變差 的情形。而且其中的第一金屬層避開作為烊點的開口,所以在進 行焊接製程時,可避免第一與第二金屬層導通的錯誤發生。 總之,本發明利用堆疊的的彩色濾光疊層取代黑色矩陣,所 20 1335.463 以可以大幅節省製程時間與成本。此外,本發明還同時因應液晶 顯示面板各部位的特殊要求,在製程及結構上作改良,並配合基 本的製造流程,因此本發明能使薄膜電晶體液晶顯示面板之製作 達到最省時省力的功效。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】A -, and a square block are formed on the substrate exposed by the liquid crystal injection port at the edge of the display area. Then, a plurality of pixel electrodes are formed in the pixel region, and these book color filters are electrically connected to the corresponding thin film transistors. The present invention further provides a method for fabricating a thin film transistor array substrate for a substrate, the substrate comprising a display area and a non-display area, wherein the liquid crystal injection port is not explicitly provided, and is characterized in that The edge of the region forms a number j without the edge layer 'and then forms a plurality of second metal layers' on the substrate 'the second metal layer/metal stack first metal layer. Subsequently, a first color filter block is formed on the liquid crystal injection port at the edge of the display area. 〜路的范围 15 1335463 The present invention further proposes a thin film transistor array substrate having a plurality of repair structures including a first metal layer, a second metal layer, an insulating layer, a channel layer, a dielectric layer, a transparent electrode, and At least one color filter film. The first metal layer is disposed on a substrate including a scan line, a gate, and a plurality of first repair metal layers. The insulating layer covers the first metal layer. The channel layer is disposed on the insulating layer above the gate. The second metal layer is disposed on the substrate, and includes a source, a drain, a data wiring, and a plurality of second repair metal layers, wherein the source and the drain are disposed on both sides of the channel layer above the gate, and the data The wiring and the scanning wiring system form a plurality of halogen regions, and the second repair metal layer and the first repair metal layer overlap each other to form a plurality of repair structures, and the gate, the channel layer, the source, and the drain are composed A thin film transistor. The dielectric layer is disposed on the first metal layer, the insulating layer and the second metal layer, wherein the dielectric layer has a repair opening and a contact window, and the repairing opening exposes the second repair metal layer of the repair structure, and the contact window is exposed. The source of the thin film transistor. The transparent electrode is disposed on the dielectric layer, and includes a plurality of halogen electrodes and a plurality of floating electrodes, wherein the halogen electrodes are disposed in the pixel region, and the source of the corresponding thin film transistor is respectively connected by the contact window The floating electrode is electrically connected to the second repair metal by the repairing opening. Further, the color filter film is disposed on a halogen region other than the repair opening. Further, a thin film transistor liquid crystal display panel can be obtained by adding a pair of a substrate and a liquid crystal layer between the two substrates. The present invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, and then patterning the first metal layer to form a scan line, a gate, and a plurality of first repair metal layers. . Thereafter, a gate insulating layer and an amorphous germanium layer are formed on the substrate, and an amorphous germanium layer other than above the gate is removed to form a channel layer. Next, a second metal layer is formed on the substrate, and then the second metal layer is patterned to form a source, a drain, a data wiring, and a plurality of second repair metal layers, 16 1335.463, wherein the source and the drain are disposed on The two sides of the channel layer above the gate, and the data wiring and the scanning wiring system form a plurality of pixel regions, and the second repair metal layer and the first repair metal layer overlap each other to form a repair structure, a gate, a channel layer, The source and the drain form a plurality of thin film transistors. Then, a dielectric layer is formed on the first metal layer, the insulating layer and the second metal layer, wherein the dielectric layer has a repair opening and a contact window, and the repairing opening exposes the second repair metal layer of the repair structure, and the contact window The source of the thin film transistor is exposed, and a plurality of first color filter films are formed in the pixel region other than the opening. Thereafter, a plurality of second color filter films are formed to cover a portion of the first color filter film above the film transistor, and a transparent electrode is formed on the substrate, which includes a plurality of halogen electrodes and a plurality of floating electrodes The pixel electrodes are electrically connected to the source of the corresponding thin film transistor through the contact window, and the floating electrode is electrically connected to the second repair metal through the repair opening. In addition, a pair of substrates can be further provided, and a thin film transistor liquid crystal display panel can be fabricated by disposing a liquid crystal layer between the opposite substrate and the thin film transistor array substrate with respect to the thin film transistor array substrate. The invention further provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, comprising a plurality of scan lines, a plurality of gates and a plurality of first repair metal layers. Thereafter, an insulating layer is formed on the substrate to cover the first metal layer, and then a plurality of channel layers are formed on the insulating layer above the gate, and then a second metal layer is formed on the substrate, which includes a plurality of sources, a plurality of drain electrodes, a plurality of data wires, and a plurality of second repair metal layers, wherein the source and the drain are disposed on both sides of the channel layer above the gate, and the data wiring and the scanning wiring system constitute a plurality of pixel regions, and The second repair metal layer and the first repair metal layer overlap each other to form a repair structure, and the gate, the channel layer, the source and the drain are composed of a plurality of thin film transistors. Next, a dielectric layer is formed on the first metal layer, the insulating layer and the second metal layer, wherein the dielectric layer has a plurality of repair openings and a plurality of contact windows, and the repair opening exposes a second repaired structure of 1 335.463 Repairing the metal layer and contacting the window exposes the source of the thin film transistor. Then, a plurality of pixel electrodes are formed in the pixel region, wherein the pixel electrodes are electrically connected to the source of the corresponding thin film transistor through the contact window, and at least one of the pixel regions other than the repair opening is formed. Color filter film. The invention further provides a thin film transistor array substrate having a plurality of storage capacitors, the structure comprising a first metal layer, a second metal layer, an insulating layer, a channel layer, a dielectric layer, a protective layer, a halogen electrode, and color filter film. The first metal layer is disposed on a substrate including a scan line, a gate, and a plurality of first storage capacitor metal layers having a plurality of first openings. The insulating layer covers the first metal layer. The channel layer is disposed on the insulating layer above the gate. The second metal layer is disposed on the substrate, and includes a source, a drain, a data wiring, and a plurality of second storage capacitor metal layers, wherein the source and the drain are disposed on both sides of the channel layer above the gate, and The data wiring and the scanning wiring system form a plurality of halogen regions, and the second storage capacitor metal layer and the first storage capacitor metal layer overlap each other to form a storage capacitor with the insulating layer, and the gate, the channel layer, the source, and the gate The polar system consists of several thin film transistors. The dielectric layer is disposed on the first metal layer, the insulating layer and the second metal layer, wherein the dielectric layer has a plurality of second openings and a plurality of third openings, and the second opening substantially exposes the first opening The second storage capacitor metal layer and the third opening expose the source of the thin film transistor. The pixel electrodes are disposed in the pixel region, wherein the pixel electrodes are electrically connected to the second storage capacitor metal layer through the second opening and the source electrical properties of the corresponding thin film transistor through the third opening connection. Further, the color filter film is disposed on a halogen region other than the second opening. Further, a thin film transistor liquid crystal display panel can be obtained by adding a pair of a substrate and a liquid crystal layer between the two substrates. The present invention further provides a method for fabricating a thin film transistor array substrate, comprising: forming a first metal layer on a substrate, and then patterning the first metal layer to form a trace 18 1335.463 trace wiring, gate, and a plurality of first The storage capacitor metal layer has a plurality of first openings. Thereafter, a gate insulating layer is formed on the substrate, and a patterned amorphous germanium layer is formed on the gates to form a channel layer. Then, a second metal layer is formed on the substrate, and then the second metal layer is patterned to form a source, a drain, a data wiring, and a plurality of second storage capacitor metal layers, wherein the source and the drain are disposed in the gate The two sides of the channel layer on the upper side, and the data wiring and the scanning wiring system form a plurality of halogen regions, and the second storage capacitor metal layer and the first storage capacitor metal layer overlap each other to form a storage capacitor and a gate with the insulating layer The channel layer, the source and the drain electrode form a plurality of thin film transistors. Forming a dielectric layer on the first metal layer, the insulating layer, and the second metal layer, wherein the dielectric layer has a second opening and a third opening, and the second opening substantially exposes the second storage above the first opening The capacitor metal layer and the third opening expose the source of the thin film transistor. Then, a plurality of color filter films are formed in the pixel region other than the second opening. Then, a plurality of pixel electrodes are formed on the substrate, and are electrically connected to the second storage capacitor metal layer through the second opening and electrically connected to the source of the corresponding thin film transistor through the third opening. In addition, a pair of substrates can be further provided, and a thin film transistor liquid crystal display panel can be fabricated by disposing a liquid crystal layer between the opposite substrate and the thin film transistor array substrate with respect to the thin film transistor array substrate. Finally, the present invention provides a method for fabricating a thin film transistor array substrate, comprising forming a first metal layer on a substrate, the first metal layer comprising a plurality of scan lines, a plurality of gates, and a plurality of first storage capacitors a metal layer, wherein the first storage capacitor metal layer has a plurality of first openings. Then, an insulating layer is formed on the substrate, covering the first metal layer, and then forming a plurality of channel layers on the insulating layer above the gate, and then forming a second metal layer on the substrate, wherein the second metal layer comprises a plurality of sources, a plurality of drains, a plurality of data lines, and a plurality of second storage capacitor metal layers, wherein the source and the drain are disposed on both sides of the channel layer above the gate, and the data wiring and the scanning wiring system are formed. 1335463 a plurality of pixel regions, and the second storage capacitor metal layer and the first storage capacitor metal layer overlap each other to form a storage capacitor with the insulating layer, and the gate, the channel layer, the source and the drain are composed of a plurality of pixels Thin film transistor. Thereafter, a dielectric layer is formed on the first metal layer, the insulating layer and the second metal layer, wherein the dielectric layer has a plurality of second openings and a plurality of third openings, and the second opening substantially exposes the first opening The second storage capacitor metal layer and the third opening expose the source of the thin film transistor. Then, a plurality of pixel electrodes are formed in the pixel region, wherein the pixel electrodes are electrically connected to the second storage capacitor metal layer through the second opening and the source of the corresponding thin film transistor through the third opening Electrical connection. Next, a plurality of color filter films are formed on the pixel regions other than the second opening. The present invention saves process time and cost by forming a stacked color filter stack on the thin film transistor instead of the black matrix. Moreover, the edge of the display area of the thin film transistor array substrate of the present invention can be matched with the color filter layer and the partially overlapping metal layer, so that an excellent light-shielding effect can be obtained. In addition, the liquid crystal injection port structure of the edge of the display area of the thin film transistor array substrate adopts a partially overlapping metal layer and can be matched with the color filter block, so that an excellent light shielding effect can be obtained and the diameter of the liquid crystal injection port can be increased. Furthermore, in the present invention, only one protective layer covers the solder joint of the repair structure of the thin film transistor array substrate, so that there is no known dielectric layer on the solder joint, and the dielectric layer bursts during the repair process. phenomenon. In addition, the storage capacitor structure of the color filter film integrated with the transistor array substrate of the present invention can improve the panel caused by poor contact between the metal layer of the storage capacitor and the halogen electrode due to the use of a solder joint such as a repair structure. The situation of poor performance. Moreover, the first metal layer avoids the opening as a defect, so that the conduction of the first and second metal layers can be prevented from occurring when the soldering process is performed. In summary, the present invention replaces the black matrix with a stacked color filter stack, which can greatly save process time and cost. In addition, the invention also improves the process and structure in accordance with the special requirements of various parts of the liquid crystal display panel, and cooperates with the basic manufacturing process, so that the invention can make the production of the thin film transistor liquid crystal display panel the most time-saving and labor-saving. efficacy. The above and other objects, features, and advantages of the present invention will become more apparent and understood by the appended claims appended claims

本發明係於一將彩色濾光薄膜整合於薄膜電晶體陣列上 (color filter on array,簡稱COA)製作之薄膜電晶體陣列基板的各 個區域作不同的設計,以符合各項製程或應用上的需求,且可省 略黑色矩陣的製作。而為詳細說明本發明之應用,請參考下列各 實施例。 第一實施例 第2圖所示係依照本發明之薄膜電晶體液晶顯示面板的透視 示意圖。The invention relates to a different design of a thin film transistor array substrate prepared by integrating a color filter film into a color filter on array (COA) to conform to various processes or applications. Requirements, and the production of the black matrix can be omitted. For a detailed description of the application of the present invention, please refer to the following embodiments. First Embodiment Fig. 2 is a perspective view showing a thin film transistor liquid crystal display panel in accordance with the present invention.

請參照第2圖,本發明之薄膜電晶體液晶顯示面板200係由 一薄膜電晶體陣列基板202、一對向基板204與一液晶層(未繪示) 所構成,其中液晶層是位於薄膜電晶體陣列基板202與對向基板 204之間。而在薄膜電晶體陣列基板202上會有數條掃描配線 210、數條資料配線212、薄膜電晶體216、畫素電極218、彩色濾 光薄膜(未標示)以及數個彩色濾光疊層220。而資料配線212與掃 描配線210係構成數個畫素區域214。再者,於資料配線212與掃 描配線210的交錯處配置的是薄膜電晶體216,且其係藉由資料配 線212與掃描配線210控制。而晝素電極218則配置於畫素區域 214中,且分別與對應之薄膜電晶體216電性連接。彩色濾光薄膜 21 1335463 (未繪示)則配置於畫素區域214上,其中彩色濾光薄膜包括紅色濾 光薄膜、綠色濾光薄膜以及藍色濾光薄膜。而彩色濾光疊層220 則是配置於薄膜電晶體216上方的彩色濾光薄膜上,當彩色濾光 薄膜是第一色光之彩色濾光薄膜時,彩色濾光疊層220則例如是 互相堆疊的第二色光與第三色光之彩色濾光薄膜或者是單一層的 第二色光或第三色光之彩濾光薄膜。而且,當彩色濾光疊層220 是互相堆疊的第二色光與第三色光之彩色濾光薄膜時,較接近薄 膜電晶體216的那一層彩色濾光薄膜比遠離薄膜電晶體216的那 一層彩色濾光薄膜厚。再者,因藍色濾光薄膜之吸光效率最好, 次之為紅色濾光薄膜、綠色濾光薄膜,因此當只選擇一層彩色濾 光薄膜時,藍色濾光薄膜應為較佳的選擇。而本實施例之製造流 程如下列之第3A圖至第3D圖。 第3A圖至第3D圖係依照本發明之第一實施例之薄膜電晶體 陣列基板的製造流程剖面示意圖。請同時參照第2圖與第3A圖, 於一基材202上形成一第一金屬層,再圖案化第一金屬層,以形 成數個閘極302與數條掃描配線(請見第2圖之210)。之後,於基 材202上形成一閘極絕緣層304與一非晶矽層,再移除閘極302 上方以外的非晶矽層,以形成數個通道層306。隨後,於基材202 上形成一第二金屬層,再圖案化第二金屬層,以於閘極302上形 成數個源極與汲極308以及於基材300上形成數條資料配線(請見 第2圖之212)。其中,資料配線與掃描配線係構成數個晝素區域(請 見第2圖之214),且閘極302、通道層306、源極、汲極308係組 成數個薄膜電晶體216。 接著,請同時參照第2圖與第3B圖,於薄膜電晶體216上形 成一保護層312,再於晝素區域214上形成一第一彩色濾光薄膜 314。然後,於薄膜電晶體216上方之第一彩色濾光薄膜314上形 22 1335463 成彩色濾光疊層220,其中彩色濾光疊層220包括一第二彩色濾光 薄膜316與一第三彩色濾光薄膜318。於第3B圖右半部的第一彩 色濾光薄膜314是薄膜電晶體216所屬的畫素中的彩色濾光片 (C/F) ’而本圖左半部的第二彩色濾光薄膜316則是另一個晝素中 的C/F,且相鄰的兩彩色濾光薄膜314與316會在資料配線212 與掃描配線210上部分重疊。 之後,請參照第3C圖,於基材202上形成一介電層322,以 覆蓋整個基材202,其中介電層322之材質例如是壓克力(acryiic acid)。然後,於介電層322上形成一晝素電極218,其中晝素電極 218與薄膜電晶體216之汲極308電性連接。 然後,清參照第3 D圖,本圖為薄膜電晶體液晶顯示面板之組 合圖’主要是提供一對向基板204相對前述第3C圖之基材(薄膜 電晶體陣列基板202)配置,其中對向基板204具有共用電極 (common electrode)222。之後,於對向基板204與薄膜電晶體陣列 基板202之間形成一液晶層340。此外,可在形成液晶層340之前 於介電層322上形成一光間隔物(photo spacer,簡稱ps)326,作為 維持晶穴間隙(cell gap )之用。此外’薄膜電晶體陣列基板202與 液晶層340之間可包括一配向膜(未繪示)。而對向基板204與液晶 層340之間可包括另一配向膜(未缯示)。另外,於薄膜電晶體陣列 基板202與對向基板204之外表面均可配置一偏光片(未繪示)。 再者,為詳細說明本實施例之結構,請同時參考第3D圖與第 4圖’其中第4圖係依照本發明之第一實施例之薄膜電晶體陣列基 板之俯視圖。 請參照第3D圖與第4圖,本發明之彩色濾光疊層220係位於 薄膜電晶體216上方,其中的第二與第三彩色遽光薄膜316、318 係層層疊在第一彩色濾光薄膜314上。而第一彩色瀘光薄膜314 23 1335463 則是作為畫素區域214(請見第2圖)的彩色濾光片,且其具有一個 開口 400暴露出晝素電極218與薄膜電晶體216的沒極308電性 連接處。此外,有一層第二或第三彩色濾光薄膜316或318覆蓋 另一側的畫素結構,且其邊緣可與第一彩色濾光薄膜314重疊, 這層第二或第三彩色濾光薄膜316或318是作為另一晝素區域的 彩色濾光片。 第二膏施例 本實施例主要是針對本發明之薄嫉電晶體液晶顯示面板的顯 示區邊緣(border)做改良,請參考第2圖,顯示區5〇〇是指具有畫 素區域214可顯示圖案、色彩的區域;反之,顯示區5〇〇以外, 亦即顯示區邊緣的部分就是「非顯示區」。 第5A圖至第5C圖係依照本發明之一第二實施例之薄膜電晶 體液晶顯示面板的製造流程剖面示意圖,其與第—實施例的不同 點如下:請先參照第5A圖,於基材202上形成並經圖案化的第一 金屬層’除了第3A圖中的構件外,還有形成於顯示區5〇〇邊緣的 一金屬層502。之後,於基材202上形成閘極絕緣層3〇4,於此僅 作為絕緣層之用。隨後,於基材202上形成並經圖案化的第二金 屬層,除了第3A圖中的構件外,還於顯示區500邊緣形成另一金 屬層506 ’且金屬層5〇2與506係相互鄰接,較佳為部分重疊(如 第5D圖所示)’以防止顯示區500邊緣漏光。此外,當金屬層5〇2 作為外接線路時,其係與掃描配線210相連,且另一金屬層506 則疋作為假線路(dummy line)的擬金屬層;反之,當金屬層506作 為外接線路時,其係與資料配線212相連,且擬金屬層則是金屬 層502。再者,金屬層5〇2與金屬層5〇6均可同時作為擬金屬層, 不與任何掃描配線210與資料配線212連接,而利用金屬層5〇2 與金屬層506的鄰接,甚至進而部分重疊(如第5E)圖所示),可遮 24 ^35.463 蔽入射非顯示區的光線,防止漏光。 接著’請參照第5B圖,於基材202上形成保護層312。之後, 可選擇性地於顯示區5〇〇邊緣的基材202上形成至少一層的彩色 據光薄膜來加強遮光效果,譬如本圖中是以形成如第2圖形成於 薄膜電晶體216上方的第一彩色濾光薄膜314上的彩色濾光疊層 220為例。此外,這層彩色濾光疊層22〇還可以是單一層的第二彩 色渡光薄膜或是第三彩色濾光薄膜。 然後’請參照第5C圖,於基材202上形成介電層322,覆蓋 彩色濾光疊層220。之後,於基材202上形成一框膠522,譬如是 具有球間隔物(ball spacer)之框膠。接著,提供對向基板204,並 膠合兩基板。 另外’請特別注意’本實施例雖然於基板202上製作彩色濾 光疊層220與鄰接或部分重疊之金屬層5〇2、506,如第5A與第 5D圖所示’但是其實只要在薄膜電晶陣列基板之顯示區5〇〇邊緣 製作出具有遮光效用的結構即可,所以前述製程可以省略彩色濾 光疊層220的製作,而只要形成鄰接或部分重疊之金屬層502、 506 ;抑或是不用製作部分重疊之金屬層502、506,而只要製作出 彩色濾光疊層220即可。 再者,為詳細說明本實施例之結構,請同時參考第5C圖與第 6圖’其中第6圖係依照本發明之第二實施例之薄膜電晶體陣列基 板之顯示區邊緣的俯視圖。 請參照第5C圖與第6圖,本實施例之彩色濾光疊層220係位 於顯示區500邊緣,金屬層502與506則位於彩色濾光疊層220 與基材202之間’其中金屬層502、506係相互電性隔絕且鄰接或 部分重疊’用以防止漏光。此外,與製程之情形相似,本實施例 之結構部分同樣可以選擇在顯示區500邊緣只具有彩色濾光疊層 25 1335463 220或是只鄰接或具有部分重疊的金屬層502、506。無論是只有 彩色濾光疊層220、只有鄰接或部分重疊的金屬層502、506或者 是兩者兼具,都可以達到遮光的效果。 第三實施例 本實施例主要是針對本發明之薄膜電晶體液晶顯示面板的顯 示區邊緣的液晶注入口(LC injection hole)做改良,請參考第2圖, 液晶注入口 700的位置係在顯示區500邊緣,可從此處將液晶注 入。 第7A圖至第7B圖係依照本發明之第三實施例之薄膜電晶體 液晶顯示面板的製造流程剖面示意圖,其與第二實施例大致相 同,其不同點在於形成鄰接或部分重疊的金屬層502、506之後的 步驟。請先參照第7A圖,為了有助於液晶的注入,在液晶注入口 700需預留較大的口徑,所以此時可於液晶注入口 700所暴露的基Referring to FIG. 2, the thin film transistor liquid crystal display panel 200 of the present invention is composed of a thin film transistor array substrate 202, a pair of substrates 204 and a liquid crystal layer (not shown), wherein the liquid crystal layer is located in the thin film. The crystal array substrate 202 is between the opposite substrate 204. On the thin film transistor array substrate 202, there are a plurality of scanning lines 210, a plurality of data lines 212, a thin film transistor 216, a pixel electrode 218, a color filter film (not shown), and a plurality of color filter layers 220. The data wiring 212 and the scanning wiring 210 constitute a plurality of pixel regions 214. Further, a thin film transistor 216 is disposed at the intersection of the data wiring 212 and the scanning wiring 210, and is controlled by the data wiring 212 and the scanning wiring 210. The halogen electrodes 218 are disposed in the pixel region 214 and are electrically connected to the corresponding thin film transistors 216, respectively. The color filter film 21 1335463 (not shown) is disposed on the pixel region 214, wherein the color filter film includes a red filter film, a green filter film, and a blue filter film. The color filter stack 220 is disposed on the color filter film above the thin film transistor 216. When the color filter film is the color filter film of the first color light, the color filter stack 220 is, for example, mutually The stacked color filter films of the second color light and the third color light are either a single layer of the second color light or the third color light color filter film. Moreover, when the color filter stack 220 is a color filter film of the second color light and the third color light stacked on each other, the color filter film that is closer to the film transistor 216 is colored than the layer that is farther away from the film transistor 216. The filter film is thick. Furthermore, the blue filter film has the best light absorption efficiency, followed by the red filter film and the green filter film. Therefore, when only one color filter film is selected, the blue filter film should be a better choice. . The manufacturing process of this embodiment is as shown in Figs. 3A to 3D below. 3A to 3D are cross-sectional views showing the manufacturing process of the thin film transistor array substrate in accordance with the first embodiment of the present invention. Referring to FIG. 2 and FIG. 3A simultaneously, a first metal layer is formed on a substrate 202, and the first metal layer is patterned to form a plurality of gates 302 and a plurality of scan lines (see FIG. 2). 210). Thereafter, a gate insulating layer 304 and an amorphous germanium layer are formed on the substrate 202, and an amorphous germanium layer other than above the gate 302 is removed to form a plurality of channel layers 306. Subsequently, a second metal layer is formed on the substrate 202, and the second metal layer is patterned to form a plurality of source and drain electrodes 308 on the gate 302 and form a plurality of data lines on the substrate 300 (please See 212 in Figure 2). The data wiring and the scanning wiring system constitute a plurality of halogen regions (see 214 in Fig. 2), and the gate 302, the channel layer 306, the source, and the drain 308 are combined to form a plurality of thin film transistors 216. Next, referring to FIGS. 2 and 3B, a protective layer 312 is formed on the thin film transistor 216, and a first color filter film 314 is formed on the halogen region 214. Then, a color filter stack 220 is formed on the first color filter film 314 above the thin film transistor 216. The color filter stack 220 includes a second color filter film 316 and a third color filter. Light film 318. The first color filter film 314 in the right half of FIG. 3B is the color filter (C/F) in the pixel to which the thin film transistor 216 belongs, and the second color filter film 316 in the left half of the figure. Then, it is C/F in another element, and the adjacent two color filter films 314 and 316 partially overlap the data line 212 and the scan line 210. Thereafter, referring to FIG. 3C, a dielectric layer 322 is formed on the substrate 202 to cover the entire substrate 202. The material of the dielectric layer 322 is, for example, an Acryiic acid. Then, a halogen electrode 218 is formed on the dielectric layer 322, wherein the halogen electrode 218 is electrically connected to the drain 308 of the thin film transistor 216. Then, referring to FIG. 3D, this figure is a combination diagram of a thin film transistor liquid crystal display panel. The main purpose is to provide a pair of substrates 204 with respect to the substrate (thin film transistor array substrate 202) of the foregoing 3C diagram, wherein The substrate 204 has a common electrode 222. Thereafter, a liquid crystal layer 340 is formed between the opposite substrate 204 and the thin film transistor array substrate 202. In addition, a photo spacer (ps spacer 326) may be formed on the dielectric layer 322 before the formation of the liquid crystal layer 340 for maintaining the cell gap. Further, an alignment film (not shown) may be included between the thin film transistor array substrate 202 and the liquid crystal layer 340. Another alignment film (not shown) may be included between the opposite substrate 204 and the liquid crystal layer 340. In addition, a polarizer (not shown) may be disposed on the outer surfaces of the thin film transistor array substrate 202 and the opposite substrate 204. Further, in order to explain the structure of the present embodiment in detail, please refer to both FIG. 3D and FIG. 4', wherein FIG. 4 is a plan view of the thin film transistor array substrate according to the first embodiment of the present invention. Referring to FIGS. 3D and 4, the color filter stack 220 of the present invention is disposed above the thin film transistor 216, wherein the second and third color calender films 316, 318 are layered on the first color filter. On the film 314. The first color calender film 314 23 1335463 is a color filter as a pixel region 214 (see FIG. 2), and has an opening 400 exposing the halogen electrode 218 and the thin film transistor 216 308 electrical connection. In addition, a second or third color filter film 316 or 318 covers the pixel structure on the other side, and an edge thereof may overlap with the first color filter film 314. This second or third color filter film 316 or 318 is a color filter that serves as another halogen region. Second Paste Embodiment This embodiment mainly improves the border of the display area of the thin silicon oxide liquid crystal display panel of the present invention. Please refer to FIG. 2, and the display area 5 〇〇 means that the pixel area 214 can be used. The area where the pattern and the color are displayed; otherwise, the portion other than the display area 5〇〇, that is, the edge of the display area is the "non-display area". 5A to 5C are schematic cross-sectional views showing a manufacturing process of a thin film transistor liquid crystal display panel according to a second embodiment of the present invention, which is different from the first embodiment as follows: Please refer to FIG. 5A for The first metal layer formed and patterned on the material 202 has a metal layer 502 formed on the edge of the display region 5 in addition to the member in FIG. 3A. Thereafter, a gate insulating layer 3?4 is formed on the substrate 202, and is used only as an insulating layer. Subsequently, a second metal layer is formed on the substrate 202 and patterned, and in addition to the components in FIG. 3A, another metal layer 506' is formed on the edge of the display region 500 and the metal layers 5〇2 and 506 are mutually connected. Adjacent, preferably partially overlapping (as shown in Figure 5D) 'to prevent light leakage from the edge of display area 500. In addition, when the metal layer 5〇2 is used as an external line, it is connected to the scan wiring 210, and the other metal layer 506 is used as a pseudo metal layer of a dummy line; otherwise, when the metal layer 506 is used as an external line When it is connected to the data wiring 212, the pseudo metal layer is the metal layer 502. Furthermore, both the metal layer 5〇2 and the metal layer 5〇6 can serve as a pseudo metal layer at the same time, without being connected to any of the scan lines 210 and the data lines 212, but by the abutment of the metal layer 5〇2 and the metal layer 506, and even further Partial overlap (as shown in Figure 5E) can cover 24^35.463 light incident on the non-display area to prevent light leakage. Next, please refer to FIG. 5B to form a protective layer 312 on the substrate 202. Thereafter, at least one layer of the color light-transmitting film may be selectively formed on the substrate 202 at the edge of the display region 5 to enhance the light-shielding effect, for example, in the figure, formed on the film transistor 216 as shown in FIG. The color filter stack 220 on the first color filter film 314 is exemplified. In addition, the color filter stack 22 can also be a single layer of a second color light-emitting film or a third color filter film. Then, referring to FIG. 5C, a dielectric layer 322 is formed on the substrate 202 to cover the color filter stack 220. Thereafter, a sealant 522 is formed on the substrate 202, such as a sealant having a ball spacer. Next, the opposite substrate 204 is provided and the two substrates are glued. In addition, please pay special attention to the present embodiment. Although the color filter layer 220 is formed on the substrate 202 and the adjacent or partially overlapping metal layers 5, 2, 506, as shown in the 5A and 5D drawings, The edge of the display region 5 of the electro-crystalline array substrate can be formed with a light-shielding effect, so that the above process can omit the fabrication of the color filter stack 220, as long as the adjacent or partially overlapping metal layers 502, 506 are formed; It is not necessary to make the partially overlapping metal layers 502, 506, but only the color filter stack 220 is produced. Further, in order to explain the structure of the present embodiment in detail, please refer to FIG. 5C and FIG. 6 respectively, wherein FIG. 6 is a plan view of the edge of the display region of the thin film transistor array substrate according to the second embodiment of the present invention. Referring to FIGS. 5C and 6 , the color filter stack 220 of the present embodiment is located at the edge of the display area 500 , and the metal layers 502 and 506 are located between the color filter stack 220 and the substrate 202 . 502, 506 are electrically isolated from each other and are adjacent or partially overlapping 'to prevent light leakage. Moreover, similar to the case of the process, the structure of this embodiment can also optionally have only a color filter stack 25 1335463 220 at the edge of the display area 500 or only adjacent or partially overlapping metal layers 502, 506. Whether it is only the color filter stack 220, only the adjacent or partially overlapping metal layers 502, 506 or both, the shading effect can be achieved. Third Embodiment This embodiment mainly improves the liquid crystal injection hole at the edge of the display area of the thin film transistor liquid crystal display panel of the present invention. Referring to FIG. 2, the position of the liquid crystal injection port 700 is displayed. At the edge of zone 500, liquid crystal can be injected from here. 7A to 7B are schematic cross-sectional views showing a manufacturing process of a thin film transistor liquid crystal display panel according to a third embodiment of the present invention, which is substantially the same as the second embodiment, except that adjacent or partially overlapping metal layers are formed. Steps after 502, 506. Please refer to FIG. 7A first. In order to facilitate the injection of the liquid crystal, a large aperture is reserved in the liquid crystal injection port 700, so that the base exposed at the liquid crystal injection port 700 at this time can be used.

I 材202上形成數個彩色濾光區塊,來加強遮光效果,譬如本圖中 是在液晶注入口 700的位置形成兩兩相鄰的三種彩色濾光區塊 314、316、318,其係與第二實施例中的彩色濾光疊層314與彩色 濾光疊層220 —併形成。 然後,請參照第7B圖,於基材202上形成介電層322,覆蓋 彩色濾光區塊314、316、318。之後的步驟與第二實施例相似。另 外,請特別注意,本實施例雖然於基材202上製作彩色濾光區塊 314、316、318與鄰接或部分重疊之金屬層502、506,但是其實 只要具有遮光效用的結構即可。 再者,本實施例之結構如第7B圖與第8圖所示,其中第8圖 係依照本發明之第三實施例之薄膜電晶體陣列基板之液晶注入口 的俯視圖。請參照第7B圖與第8圖,本實施例與第二實施例之差 別在於因為液晶注入口 700(請見第2圖)需要在薄膜電晶體陣列基 26 1335463 板202與對向基板204之間保留較大的空間,以利液晶注入,所 以本發明於液晶注入口的結構中將彩色濾光薄膜設計成兩兩相鄰 的區塊形式,以降低其高度,使介電層322與基材202之間的距 離符合液晶注入之需求。 此外,與製程相似,本實施例之結構部分同樣可以選擇只具 有鄰接或部分重疊的金屬層502、506,而省略彩色濾光薄膜314、 316、318,就可達到遮光與防止漏光的功用。 第四實施例 本實施例主要是針對本發明之薄膜電晶體陣列基板的修補 (repair)結構做改良。 第9A圖至第9C圖係依照本發明之第四實施例之薄膜電晶體 陣列基板的製造流程剖面示意圖,其可與第一實施例之製造流程 互相配合。請先參照第9A圖,於基材202上形成並圖案化的第一 金屬層,除了第3A圖中的構件外,還有數個第一修補金屬層902 〇 之後的步驟與第一實施例相同,於基材202上形成絕緣層304。隨 後,於基材202上形成並經圖案化的第二金屬層,除了第3A圖中 的構件外,還形成數個第二修補金屬層906,其中第二修補金屬層 906與第一修補金屬層902係互相鄰接或重疊配置於晝素區域(請 見第2圖之214)内,以組成修補結構。 接著,請參照第9B圖,於基材202上形成一保護層312,覆 蓋第二修補金屬層906與絕緣層304。然後,可於第二修補金屬層 906上方以外的畫素區域内形成彩色濾光薄膜314與其上的彩色 濾光疊層220,譬如於第一實施例中的彩色濾光疊層220係形成於 薄膜電晶體216上。接著,於基材202上形成介電層322,覆蓋整 個基材202 隨後,請參照第9C圖,定義介電層322與保護層312,以形 27 1335463 成作為修補結構的焊點(weldingp〇int)的開口 91〇並暴露出第二修 補金屬層906。 一少 之後’請參照第9〇圖,於介電層322上形成一畫素電極218, 其係電性洋置且配置於開口 91〇表面,以覆蓋暴露出之第二修補 金屬層906’並作為第二修補金屬層9〇6的保護層。當然除了採用 的畫素電極218作為保護層之外,也可以使用其他層取代。由於 本發明之修補結構的焊點(即開口 910處)僅有一作為保護層的晝 素電極218覆蓋於其上,所以不會發生習知因焊點上有介電層 322 ’而在進行修補製程時發生介電層爆裂(burst)現象。 再者’為詳細說明本實施例之結構,請同時參考第9D圖與第 10圖,其中第10圖係依照本發明之第四實施例之薄膜電晶體陣列 基板之修補結構的俯視圖。 請參照第9D圖與第10圖,本實施例之結構與第一實施例的 差別在於具有第二修補金屬層906與第一修補金屬層902的修補 結構之焊點(即開口 91〇處)上方僅有一作為保護層的畫素電極218 覆蓋於其上。此外’本實施例中的彩色濾光薄膜314與彩色濾光 疊層220則係避開修補結構的焊點(即開口 910處)配置。 笫五實施例 第11A圖至第nc圖係依照本發明之第五實施例之薄膜電晶 體陣列基板之儲存電容器(storage)的製造流程剖面示意圖,其係與 第四實施例相似’不同點在於形成於基材202上並圖案化的第一 金屬層部分重疊的金屬層’除了第3A圖中的構件外,還有數個第 一儲存電容金屬層1102 ’如第11A圖所示,其中第一儲存電容金 屬層1102具有數個第一開口 1103,且第一儲存電容金屬層1102 可以是掃描配線的一部份或是一共用配線(common line)。之後的 步驟與第四實施例相同,於基材202上形成絕緣層304。隨後,於 28 1335,463 基材202上形成並經圖案化的第二金屬層,除了第3A圖中的構件 外,還形成數個第二儲存電容金屬層11〇6,其中互相重疊的第二 儲存電容金屬層1106'第一儲存電容金屬層11〇2與絕緣層3〇4組 成一儲存電容器。 接著,請參照第11B圖,於基材2〇2上形成一保護層312, 覆蓋第二儲存電容金屬層1106與絕緣層3〇4。之後,可於第一開 口 1103外之保護層312上形成一彩色濾光薄膜314、316或318。 之後,於基材202上形成-介電層322,此處的彩色濾光薄膜314、 316或318為各畫素區域的彩色渡光片。 然後,請參照第11C圖,定義介電層322與保護層312,以 形成作為接觸窗的一第二開口 1110,並暴露出第一開口 1103上之 第二儲存電容金屬層1106。 接著,凊參照第11D圖,於介電層322上形成畫素電極218, 且其係藉由第二開口 1110而與第二儲存電容金屬層ιι〇6電性連 接。而且,在形成畫素電極218之後,可進行一焊接製程,以焊 接位於第二開口 1110之晝素電極218與第二儲存電容金屬層 屬。由於第-儲存電容金屬層⑽選擇關料接觸窗的一第 二開口 1110,所以在畫素電極218與第二儲存電容金屬層謂因 接觸不良而需進行焊接製程時,可避免第一與第二儲存電 層1002與1〇〇6導通的錯誤發生。 再者,為詳細說明本實施例之結構,請同時參考第ud圖與 第12圖’其中第12圖係依照本發明之第五實施例之薄膜電晶體 陣列基板之儲存電容器的俯視圖。 請參照第UD圖與第12圖,本實施例因為採用如第四實施例 ㈣補結構一般的焊點(即開口 111〇處)’故可改善藉由新增一焊 接製程’焊接畫素電極218與第二儲存電容金屬層⑽,以解決 29 1335463 兩者介面接觸不良的問題,以加強儲存電容器之功效。而且,其 中的第一儲存電容金屬層1102避開作為接觸窗的開口 111〇,所以 在進行焊接製程時,可避免第一與第二儲存電容金屬層11〇2與 11〇6導通的錯誤發生。 本發明之特點包括: 1. 在本發明之薄膜電晶體陣列基板中因為利用堆疊的彩色濾 光疊層取代黑色矩陣,所以可改善因薄膜電晶體陣列基板與對向 基板之對位誤差所損失的良率。 2. 本發明在薄膜電晶體陣列基板的顯示區邊緣可搭配彩色濾 光疊層以及鄰接或部分重疊之金屬&,所以能獲得極佳的遮光效 果。 3. 本發明在薄膜電晶體陣列基板之顯示區邊緣的液晶注入口 結構採用部分鄰接或部份重疊之金屬層並可搭配彩色濾光區塊, 故可獲知極佳的遮光效果並增加液晶注入口的口徑。 4·本發明僅有-保護層覆蓋於薄膜電晶體陣列基板之修補結 構的焊點上,所以不會發生習知因焊點上有介電層,而在進行修 補製程時介電層爆裂(burst)現象。 5.本發明之彩色渡光薄膜整合電晶體陣列基板之儲存電容器 結構因為採用如修補結構一般的焊點,故可改善金屬層盘畫素電 極之介面接觸不良問題,以加強健存電容之功效,而且其中的第 金屬層避開作為接觸窗的開口,所以在進行焊接製程時,可避 免第一與第二金屬層導通的錯誤發生。 综上所述,本發明因為利用堆疊的的彩色瀘光疊層取代黑色 ^車’可以大幅節省製程時間與成m,本發明還同時因應 液晶顯示面板各部位的特殊要求,而在製程及結構上作改良,以 達到最省時省力的功效。 1335463 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本 發明,任何熟習此技藝者,在不脫離本發明之精神和範圍内,當 可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 【圖式簡單說明】 第1圖所不係習知之薄膜電晶體液晶顯不面板不意圖, 第2圖所示係依照本發明之薄膜電晶體液晶顯示面板的透視 不意圖, 第3A圖至第3D圖係依照本發明之第一實施例之薄膜電晶體 陣列基板的製造流程剖面示意圖; 第4圖係依照本發明之第一實施例之薄膜電晶體陣列基板之 俯視圖; 第5A圖至第5C圖係依照本發明之一第二實施例之薄膜電晶體 液晶顯示面板的製造流程剖面示意圖; 第5 D圖係依照本發明之第二實施例之薄膜電晶體液晶顯示面板之 剖面示意圖; 第6圖係依照本發明之第二實施例之薄膜電晶體陣列基板之 顯示區邊緣的俯視圖; 第7 A圖至第7 B圖係依照本發明之第三實施例之薄膜電晶體液 晶顯示面板的製造流程剖面示意圖; 第8圖係依照本發明之第三實施例之薄膜電晶體陣列基板之 液晶注入口的俯視圖, 第9A圖至第9C圖係依照本發明之第四實施例之薄膜電晶體陣 列基板的製造流程剖面示意圖; 第10圖係依照本發明之第四實施例之薄膜電晶體陣列基板之 31 1335463 修補結構的俯視圖; 第11A圖至第11C圖係依照本發明之第五實施例之薄膜電晶體 陣列基板之儲存電容器的製造流程剖面示意圖;以及 第12圖係依照本發明之第五實施例之薄膜電晶體陣列基板之 儲存電容器的俯視圖。 【主要元件符號說明】 102、 104、202、204 :基板 106、 522 :框膠 108、 70 0 .液晶注入口 110 : 顯示區邊緣 112 : 薄膜電晶體陣列 200 : 薄膜電晶體液晶顯不面板 210 : 掃描配線 212 : 資料配線 214 : 畫素區域 216 : 薄膜電晶體 218 : 晝素電極 220 : 彩色濾光疊層 222 : 共用電極 302 : 閘極 304 : 絕緣層 306 : 通道層 308 : 源極與汲極 314、 316、318 :彩色濾光薄膜 312 : 保護層A plurality of color filter blocks are formed on the I material 202 to enhance the shading effect. For example, in the figure, three color filter blocks 314, 316, and 318 adjacent to each other are formed at the position of the liquid crystal injection port 700. The color filter stack 314 and the color filter stack 220 are formed in the same manner as in the second embodiment. Then, referring to Fig. 7B, a dielectric layer 322 is formed on the substrate 202 to cover the color filter blocks 314, 316, and 318. The subsequent steps are similar to the second embodiment. In addition, in particular, in this embodiment, although the color filter blocks 314, 316, and 318 are formed on the substrate 202 and the adjacent or partially overlapping metal layers 502 and 506, it is only necessary to have a light-shielding structure. Further, the structure of this embodiment is as shown in Figs. 7B and 8 , and Fig. 8 is a plan view of the liquid crystal injection port of the thin film transistor array substrate according to the third embodiment of the present invention. Referring to FIGS. 7B and 8 , the difference between this embodiment and the second embodiment is that the liquid crystal injection port 700 (see FIG. 2 ) needs to be on the thin film transistor array substrate 26 1335463 plate 202 and the opposite substrate 204 . A large space is reserved to facilitate liquid crystal injection. Therefore, in the structure of the liquid crystal injection port, the color filter film is designed in the form of two adjacent blocks to reduce the height thereof, and the dielectric layer 322 and the base are The distance between the materials 202 is in accordance with the requirements of liquid crystal injection. In addition, similar to the process, the structural portion of the embodiment can also select only the adjacent or partially overlapping metal layers 502, 506, and the color filter films 314, 316, and 318 are omitted, thereby achieving the functions of shading and preventing light leakage. Fourth Embodiment This embodiment is mainly directed to an improvement of the repair structure of the thin film transistor array substrate of the present invention. 9A to 9C are schematic cross-sectional views showing a manufacturing process of a thin film transistor array substrate according to a fourth embodiment of the present invention, which can cooperate with the manufacturing flow of the first embodiment. Referring to FIG. 9A, the first metal layer formed and patterned on the substrate 202 has the same steps as the first embodiment except for the components in FIG. 3A and the plurality of first repair metal layers 902. An insulating layer 304 is formed on the substrate 202. Subsequently, a second metal layer is formed on the substrate 202 and patterned, and in addition to the components in FIG. 3A, a plurality of second repair metal layers 906 are formed, wherein the second repair metal layer 906 and the first repair metal The layers 902 are adjacent to each other or overlapped in a halogen region (see 214 of FIG. 2) to constitute a repair structure. Next, referring to Fig. 9B, a protective layer 312 is formed on the substrate 202 to cover the second repair metal layer 906 and the insulating layer 304. Then, a color filter film 314 and a color filter stack 220 thereon may be formed in a pixel region other than the second repair metal layer 906. For example, the color filter layer 220 in the first embodiment is formed on the pixel filter layer 220. On the thin film transistor 216. Next, a dielectric layer 322 is formed on the substrate 202 to cover the entire substrate 202. Subsequently, referring to FIG. 9C, the dielectric layer 322 and the protective layer 312 are defined, and the shape is 27 1335463 as a solder joint for the repair structure (weldingp〇). The opening 91 of the int) and exposes the second repair metal layer 906. After a small amount, please refer to FIG. 9 to form a pixel electrode 218 on the dielectric layer 322, which is electrically disposed and disposed on the surface of the opening 91 to cover the exposed second repair metal layer 906'. And as a protective layer of the second repair metal layer 9〇6. Of course, in addition to the pixel electrode 218 used as the protective layer, other layers may be used instead. Since the solder joint of the repair structure of the present invention (i.e., at the opening 910) has only one halogen electrode 218 as a protective layer overlying it, there is no conventional repair due to the dielectric layer 322' on the solder joint. A dielectric layer burst occurs during the process. Further, in order to explain the structure of the present embodiment in detail, please refer to FIGS. 9D and 10, respectively, wherein FIG. 10 is a plan view showing a repair structure of the thin film transistor array substrate according to the fourth embodiment of the present invention. Referring to FIGS. 9D and 10, the structure of the present embodiment differs from the first embodiment in that the solder joint of the repair structure of the second repair metal layer 906 and the first repair metal layer 902 (ie, the opening 91〇) Only one pixel electrode 218 as a protective layer is overlaid thereon. Further, the color filter film 314 and the color filter layer 220 in the present embodiment are disposed away from the solder joints of the repair structure (i.e., at the opening 910). [Fourth Embodiment] FIG. 11A to FIG. nc are schematic cross-sectional views showing a manufacturing process of a storage capacitor of a thin film transistor array substrate according to a fifth embodiment of the present invention, which is similar to the fourth embodiment. The metal layer partially overlapped by the first metal layer formed on the substrate 202 and patterned. In addition to the components in FIG. 3A, there are a plurality of first storage capacitor metal layers 1102' as shown in FIG. 11A, wherein the first The storage capacitor metal layer 1102 has a plurality of first openings 1103, and the first storage capacitor metal layer 1102 can be a part of the scan wiring or a common line. The subsequent steps are the same as in the fourth embodiment, and an insulating layer 304 is formed on the substrate 202. Subsequently, a second metal layer is formed on the substrate 202 and patterned, and a plurality of second storage capacitor metal layers 11〇6 are formed in addition to the components in FIG. 3A, wherein the overlapping layers are The second storage capacitor metal layer 1106' first storage capacitor metal layer 11〇2 and the insulating layer 3〇4 constitute a storage capacitor. Next, referring to FIG. 11B, a protective layer 312 is formed on the substrate 2〇2 to cover the second storage capacitor metal layer 1106 and the insulating layer 3〇4. Thereafter, a color filter film 314, 316 or 318 may be formed on the protective layer 312 outside the first opening 1103. Thereafter, a dielectric layer 322 is formed on the substrate 202, where the color filter film 314, 316 or 318 is a color light-passing sheet of each pixel region. Then, referring to FIG. 11C, the dielectric layer 322 and the protective layer 312 are defined to form a second opening 1110 as a contact window, and expose the second storage capacitor metal layer 1106 on the first opening 1103. Next, referring to FIG. 11D, a pixel electrode 218 is formed on the dielectric layer 322, and is electrically connected to the second storage capacitor metal layer ι6 by the second opening 1110. Moreover, after the pixel electrode 218 is formed, a soldering process may be performed to solder the germane electrode 218 and the second storage capacitor metal layer located in the second opening 1110. Since the first storage capacitor metal layer (10) selects a second opening 1110 of the contact contact window, the first and the first steps can be avoided when the pixel electrode 218 and the second storage capacitor metal layer are subjected to a soldering process due to poor contact. An error occurs in the storage of the electrical layer 1002 and the conduction of 1〇〇6. Further, in order to explain the structure of the present embodiment in detail, please refer to both the ud diagram and the 12th diagram. FIG. 12 is a plan view of the storage capacitor of the thin film transistor array substrate according to the fifth embodiment of the present invention. Referring to the UD diagram and the 12th figure, the present embodiment can improve the soldering process by adding a soldering process by using a solder joint (ie, the opening 111) of the fourth embodiment (4). 218 and the second storage capacitor metal layer (10) to solve the problem of poor contact between the two interfaces of 29 1335463 to enhance the efficiency of the storage capacitor. Moreover, the first storage capacitor metal layer 1102 avoids the opening 111〇 as the contact window, so that the error of the conduction between the first and second storage capacitor metal layers 11〇2 and 11〇6 can be avoided during the soldering process. . The features of the present invention include: 1. In the thin film transistor array substrate of the present invention, since the stacked color filter stack is used instead of the black matrix, the loss of alignment error between the thin film transistor array substrate and the opposite substrate can be improved. Yield. 2. The present invention can be matched with a color filter stack and an adjacent or partially overlapping metal & at the edge of the display area of the thin film transistor array substrate, so that an excellent light-shielding effect can be obtained. 3. The liquid crystal injection port structure at the edge of the display area of the thin film transistor array substrate adopts a partially adjacent or partially overlapping metal layer and can be matched with a color filter block, so that an excellent shading effect can be obtained and the liquid crystal injection can be increased. The caliber of the entrance. 4. The present invention only has a protective layer covering the solder joint of the repair structure of the thin film transistor array substrate, so that it is not known that there is a dielectric layer on the solder joint, and the dielectric layer bursts during the repair process ( Burst) phenomenon. 5. The storage capacitor structure of the color illuminating film integrated transistor array substrate of the present invention can improve the interface contact problem of the metal layer disk electrode by using a solder joint such as a repair structure, thereby enhancing the effect of the storage capacitor. And the metal layer therein avoids the opening as the contact window, so that the conduction of the first and second metal layers can be prevented from occurring when the soldering process is performed. In summary, the present invention can greatly reduce the process time and m by using the stacked color light-emitting stack instead of the black car, and the invention also meets the special requirements of various parts of the liquid crystal display panel in the process and structure. Improve it to achieve the most time-saving and labor-saving effect. 1335463 The present invention has been described above by way of a preferred embodiment, and it is not intended to limit the invention, and it is intended that various modifications and changes may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is not a conventional thin film transistor liquid crystal display panel, and FIG. 2 is a perspective view of a thin film transistor liquid crystal display panel according to the present invention, FIG. 3A to FIG. 3D is a schematic cross-sectional view showing a manufacturing process of a thin film transistor array substrate according to a first embodiment of the present invention; and FIG. 4 is a plan view of a thin film transistor array substrate according to a first embodiment of the present invention; 5A to 5C Figure 5 is a cross-sectional view showing a manufacturing process of a thin film transistor liquid crystal display panel according to a second embodiment of the present invention; Figure 5D is a schematic cross-sectional view of a thin film transistor liquid crystal display panel according to a second embodiment of the present invention; Figure 7 is a plan view showing the edge of the display region of the thin film transistor array substrate according to the second embodiment of the present invention; Figs. 7A to 7B are diagrams showing the manufacture of the thin film transistor liquid crystal display panel according to the third embodiment of the present invention. FIG. 8 is a plan view showing a liquid crystal injection port of a thin film transistor array substrate according to a third embodiment of the present invention, and FIGS. 9A to 9C are diagrams. FIG. 10 is a plan view showing a manufacturing process of a thin film transistor array substrate according to a fourth embodiment of the present invention; FIG. 10 is a plan view of a 31 1335463 repair structure of a thin film transistor array substrate according to a fourth embodiment of the present invention; 11C is a schematic cross-sectional view showing a manufacturing process of a storage capacitor of a thin film transistor array substrate according to a fifth embodiment of the present invention; and FIG. 12 is a plan view showing a storage capacitor of a thin film transistor array substrate according to a fifth embodiment of the present invention. . [Main component symbol description] 102, 104, 202, 204: substrate 106, 522: sealant 108, 70 0. Liquid crystal injection port 110: display area edge 112: thin film transistor array 200: thin film transistor liquid crystal display panel 210 : Scanning wiring 212 : Data wiring 214 : pixel area 216 : thin film transistor 218 : halogen electrode 220 : color filter layer 222 : common electrode 302 : gate 304 : insulating layer 306 : channel layer 308 : source and Bungee 314, 316, 318: color filter film 312: protective layer

32 1335463 322 :介電層 326 :光間隔物 340 ·液晶層 400、910、1103、1110 :開口 500 :顯示區 502、506、902、906、1102、1106 :金屬層32 1335463 322: Dielectric layer 326: Photo spacer 340 · Liquid crystal layer 400, 910, 1103, 1110: Opening 500: Display area 502, 506, 902, 906, 1102, 1106: Metal layer

3333

Claims (1)

1335463 为年乡月V曰修(更)正本 十、申請專利範圍: 1. 一種薄膜電晶體陣列基板,具有一顯示區與一非顯示區,該 非顯示區具有一液晶注入口,包括: 複數個第一金屬層,配置於該非顯示區; 複數個第二金屬層,至少鄰接該些第一金屬層配置; 一彩色濾光疊層,配置於該液晶注入口以外的該非顯示區; 以及 一第一彩色濾光區塊,位於該非顯示區之該液晶注入口所暴 露的區域上。 2. 如申請專利範圍第1項所述之薄膜電晶體陣列基板,更包括 該些第二金屬層與部分該第一金屬層重疊配置。 3. 如申請專利範圍第1項所述之薄膜電晶體陣列基板,更包 括: 複數條掃描配線,配置在該顯示區内; 複數條資料配線,配置在該顯示區内,其中該些資料配線與 該些掃描配線係構成複數個晝素區域; 複數個薄膜電晶體,配置於該些資料配線與該些掃描配線之 交錯處,且係藉由該些資料配線與該些掃描配線控制; 複數個晝素電極,配置於該些晝素區域中,且分別與對應之 該些薄膜電晶體電性連接;以及 複數個彩色濾光薄膜,配置於該些晝素區域上。 4. 如申請專利範圍第3項所述之薄膜電晶體陣列基板,其中位 於該顯示區邊緣之該液晶注入口所暴露的區域上更包括一第二彩 色濾光區塊與該第一彩色濾光區塊鄰接。 5. 如申請專利範圍第4項所述之薄膜電晶體陣列基板,其中位 於該顯示區邊緣之該液晶注入口所暴露的區域上更包括一第三彩 1335463 色渡光區塊與該第二彩色濾光區塊鄰接。 6.如申請專利範圍第3項所述之薄膜電晶體陣列基板,其中該 些彩色濾光薄膜係延伸至該顯示區域邊緣。 7·如申請專利範圍第6項所述之薄膜電晶體陣列基板,其中該 些彩色濾光薄膜包括一第一彩色濾光薄膜。 8.如申請專利範圍第7項所述之薄膜電晶體陣列基板,其中該 办色濾光疊層包括互相堆疊的一第二彩色濾光薄膜以及一第三彩 色濾光薄膜。 9·如申請專利範圍第7所述之薄膜電晶體陣列基板,其中該彩 色濾光疊層包括一第二彩色濾光薄膜以及一第三彩色濾光薄膜其 中之一。 ⑺.—種薄膜電晶體陣列基板,具有一顯示區與一非顯示區, 該顯示區邊緣具有一液晶注入口,包括: 複數個第一金屬層,配置於該顯示區邊緣的該液晶注入口所 暴露的該基材上;以及 複數個第二金屬層,至少鄰接該些第一金屬層配置,以防止 該顯示區邊緣的該液晶注入口漏光。 11. 如申請專利範圍第10項所述之薄膜電晶體陣列基板,更包 括該些第二金屬層與部分該第一金屬層重疊配置。 12. 如申’請專利範圍第10項所述之薄膜電晶體陣列基板,更包 括: 複數條掃描配線,配置在該顯示區内的該基材上; 複數條資料配線,配置在該顯示區内的該基材上,其中該些 資料配線與該些掃描配線係構成複數個畫素區域; 複數個薄膜電晶體,配置於該些資料配線與該些掃描配線之 交錯處,且係藉由該些資料配線與該些掃描配線控制; 35 1335463 複數個晝素電極,配置於該些畫素區域中,且分別與對應之 該些薄膜電晶體電性連接;以及 複數個彩色濾光薄膜,配置於該些畫素電極下方。 13. 如申請專利範圍第12項所述之薄膜電晶體陣列基板,其中 該些彩色濾光薄膜包括紅色濾光薄膜、綠色濾光薄膜以及藍色濾 光薄膜。 14. 一種薄膜電晶體陣列基板的製作方法,包括: 於一基材上形成一第一金屬層,該基材包括一顯示區與一非 顯示區,其中該顯示區邊緣具有一液晶法入口; 圖案化該第一金屬層,以於該顯示區内形成複數個閘極與複 數條掃描配線,其中該些掃描配線延伸至該顯示區邊緣的該液晶 注入口; 於該基材上形成一閘極絕緣層; 在該些閘極上形成一圖案化非晶矽層,以形成複數個通道層; 於該基材上形成一第二金屬層; 圖案化該第二金屬層,以於該些閘極上形成複數個源極、複 數個汲極,並於該基材上形成複數條資料配線以及於該顯示區邊 緣的該液晶注入口所暴露的該基材上形成複數條擬金屬層,其中 該些資料配線與該些掃描配線係構成複數個晝素區域,且該些擬 金屬層部分重疊於該些掃描配線,以防止該顯示區邊緣的該液晶 注入口漏光,且該些閘極、該些通道層、該些源極以及該些汲極 係組成複數個薄膜電晶體; 於該些晝素區域内形成複數個彩色濾光薄膜;以及 於該畫素區域中形成複數個晝素電極,該些晝素電極係與對 應之該些薄膜電晶體電性連接。 15. —種薄膜電晶體陣列基板的製作方法,包括: 36 1335463 於一基材上形成一第一金屬層,該基材包括一顯示區與一非 顯示區,其中該顯示區邊緣具有一液晶注入口; . 圖案化該第一金屬層,以於該顯示區内形成複數個閘極與複 數條掃描配線以及於該顯示區邊緣的該液晶注入口所暴露的該基 材上形成複數條擬金屬層; 於該基材上形成一閘極絕緣層; 在該些閘極上形成一圖案化非晶矽層,以形成複數個通道層; 於該基材上形成一第二金屬層; 圖案化該第二金屬層,以於該些閘極上形成複數個源極、複 ® 數個汲極,並於該基材上形成複數條資料配線,該些資料配線延 伸至該顯示區邊緣的該液晶注入口,其中該些資料配線與該些掃 描配線係構成複數個晝素區域,且該些擬金屬層部分重疊於該些 資料配線,以防止該顯示區邊緣的該液晶注入口漏光,且該些閘 極、該些通道層、該些源極以及該些汲極係組成複數個薄膜電晶 ' 體; 於該些晝素區域内形成複數個彩色濾光薄膜;以及 於該晝素區域中形成複數個晝素電極,該些晝素電極係與對 φ 應之該些薄膜電晶體電性連接。 16. —種薄膜電晶體陣列基板的製作方法,提供一基材,該基 材具有一顯示區與一非顯示區,該非顯示區邊緣具有一液晶注入 口,包括: 於該顯示區邊緣形成複數個第一金屬層;以及 於該基材上形成複數個第二金屬層,該些第二金屬層係部分 重疊該些第一金屬層,以防止該顯示區邊緣的該液晶注入口漏光。 17. 如申請專利範圍第16項所述之製作方法,更包括: 於該顯示區内形成複數條掃描配線; 37 1335463 於該顯示區内形成複數條資料配線,其中該些資料配線與該 些掃描配線係構成複數個晝素區域; 於該些資料配線與該些掃描配線之交錯處形成複數個薄膜電 晶體,該些薄膜電晶體係藉由該些資料配線與該些掃描配線控制; 於該些晝素區域中形成複數個晝素電極,讓些晝素電極分別 與對應之該些薄膜電晶體電性連接;以及 於該些晝素區域上形成複數個彩色濾光薄膜。 18. —種薄膜電晶體陣列基板的製作方法,包括: 於一基材上形成一第一金屬層,該基材包括一顯示區與一非 顯不區’其中該顯不區邊緣具有.-液晶注入口, 圖案化該第一金屬層,以於該顯示區内形成複數個閘極與複 敖條掃描配線,其中該些掃描配線延伸至該顯示區邊緣的該液晶 注入口; 於該基材上形成一閘極絕緣層; 在該些閘極上形成一圖案化非晶矽層,以形成複數個通道層; 於該基材上形成一第二金屬層; 圖案化該第二金屬層,以於該些閘極上形成複數個源極、複 數個汲極,並於該基材上形成複數條資料配線以及於該顯示區邊 緣的該液晶注入口所暴露的該基材上形成複數條擬金屬層,其中 該些資料配線與該些掃描配線係構成複數個晝素區減,且該些擬 金屬層部分重疊於該些掃描配線,且該些閘極、該些通道層、該 些源極以及該些汲極係組成複數個薄膜電晶體; 於該基材上形成一彩色濾光薄膜; 圖案化該彩色濾光薄膜,以保留該些晝素區域内的部分該彩 色濾光薄膜以及於該顯示區邊緣的該液晶注入口所暴露出之該基 材上形成一第一彩色濾光區塊;以及 1335463 於該晝素區域中形成複數個畫素電極,該些畫素電極係與對 應之該些薄膜電晶體電性連接。 . 19.如申請專利範圍第18項所述之製作方法,其中圖案化該彩 色濾光薄膜之步驟後,更包括於該顯示區邊緣的該液晶注入口所 暴露出之該基材上形成一第二彩色濾光區塊,相鄰於該第一彩色 濾光區塊。 20. 如申請專利範圍第19項所述之製作方法,其中形成該第二 彩色濾光區塊之步驟後,更包括於該顯示區邊緣的該液晶注入口 所暴露出之該基材上形成一第三彩色濾光區塊,相鄰於該第二彩 籲色遽光區塊。 21. —種薄膜電晶體陣列基板的製作方法,包括: 於一基材上形成一第一金屬層,該基材包括一顯示區與一非 顯示區,其中該顯示區邊緣具有一液晶注入口; 圖案化該第一金屬層,以於該顯示區内形成複數個閘極與複 ' 數條掃描配線以及於該顯示區邊緣的該液晶注入口所暴露的該基 材上形成複數條擬金屬層; 於該基材上形成一閘極絕緣層與一非晶矽層; φ 移除該些閘極上方以外的該非晶矽層,以形成複數個通道層; 於該基材上形成一第二金屬層; 圖案化該第二金屬層,以於該些閘極上形成複數個源極、複 數個汲極,並於該基材上形成複數條資料配線,該些資料配線延 伸至該顯示區邊緣的該液晶注入口,其中該些資料配線與該些掃 描配線係構成複數個晝素區域,且該些擬金屬層部分重疊於該些 掃描配線,且該些閘極、該些通道層、該些源極以及該些汲極係 組成複數個薄膜電晶體; 於該基材上形成一彩色濾光薄膜; 39 1335463 t 圖案化該彩色濾光薄膜,以保留該些晝素區域内的部分該彩 色濾光薄膜以及於該顯示區邊緣的該液晶注入口所暴露出之該基 材上形成一第一彩色濾光區塊;以及 於該晝素區域中形成複數個晝素電極,該些畫素電極係與對 應之該些薄膜電晶體電性連接。 22. 如申請專利範圍第21項所述之製作方法,其中圖案化該彩 色濾光薄膜之步驟後,更包括於該顯示區邊緣的該液晶注入口所 暴露出之該基材上形成一第二彩色濾光區塊,相鄰於該第一彩色 濾光區塊。 23. 如申請專利範圍第22項所述之製作方法,其中形成該第二 彩色濾光區塊之步驟後,更包括於該顯示區邊緣的該液晶注入口 所暴露出之該基材上形成一第三彩色濾光區塊,相鄰於該第二彩 色濾光區塊。 24. —種薄膜電晶體陣列基板的製作方法,包括提供一基材, 該基材包括一顯示區與一非顯示區,其中該非顯示區邊緣具有一 液晶注入口,其特徵在於: 於該顯示區邊緣形成複數個第一金屬層; 於該基材上形成複數個第二金屬層,該些第二金屬層係部分 重疊該些第一金屬層;以及 於該顯示區邊緣之該液晶注入口所暴露的區域上形成一第一 彩色濾光區塊。 25. 如申請專利範圍第24項所述之製作方法,更包括: 於該顯示區内形成複數條掃描配線; 於該顯示區内形成複數條資料配線,其中該些資料配線與該 些掃描配線係構成複數個晝素區域; 於該些資料配線與該些掃描配線之交錯處形成複數個薄膜電 1335463 晶體,該些薄膜電晶體係藉由該些資料配線與該些掃描配線控制; 於該些晝素區域中形成複數個畫素電極,該些晝素電極分別 . 與對應之該些薄膜電晶體電性連接;以及 於該些晝素區域上形成複數個彩色濾光薄膜。 26. 如申請專利範圍第25項所述之製作方法,其中該些彩色濾 光薄膜係延伸至該顯示區域邊緣。 27. 如申請專利範圍第26項所述之製作方法,其中該些彩色濾 光薄膜包括一第一彩色濾、光薄膜。 28. 如申請專利範圍第24項所述之製作方法,其中形成該第一 ® 彩色濾光區塊之步驟後,更包括於該顯示區邊緣之該液晶注入口 所暴露的區域上形成一第二彩色濾光區塊,相鄰於該第一彩色濾 光區塊。 29. 如申請專利範圍第28項所述之製作方法,其中形成該第二 彩色濾光區塊之步驟後,更包括於該顯示區邊緣之該液晶注入口 ' 所暴露的區域上形成一第三彩色濾光區塊,相鄰於該第二彩色濾 光區塊。1335463 is the year of the month V曰 repair (more) original ten, the scope of application patent: 1. A thin film transistor array substrate, having a display area and a non-display area, the non-display area has a liquid crystal injection port, including: a plurality of a first metal layer disposed in the non-display area; a plurality of second metal layers disposed adjacent to at least the first metal layers; a color filter stack disposed in the non-display area outside the liquid crystal injection port; A color filter block is located on a region of the non-display area where the liquid crystal injection port is exposed. 2. The thin film transistor array substrate of claim 1, further comprising the second metal layer and a portion of the first metal layer being disposed to overlap each other. 3. The thin film transistor array substrate of claim 1, further comprising: a plurality of scan lines disposed in the display area; a plurality of data lines arranged in the display area, wherein the data lines are arranged And the plurality of thin film transistors are disposed at the intersection of the data lines and the scan lines, and are controlled by the data lines and the scan lines; The individual halogen electrodes are disposed in the halogen regions and electrically connected to the corresponding thin film transistors, and a plurality of color filter films are disposed on the halogen regions. 4. The thin film transistor array substrate of claim 3, wherein the area exposed by the liquid crystal injection port at the edge of the display area further comprises a second color filter block and the first color filter. The light blocks are adjacent. 5. The thin film transistor array substrate of claim 4, wherein the area exposed by the liquid crystal injection port at the edge of the display area further comprises a third color 1335463 color light-emitting block and the second The color filter blocks are adjacent. 6. The thin film transistor array substrate of claim 3, wherein the color filter films extend to an edge of the display area. The thin film transistor array substrate of claim 6, wherein the color filter films comprise a first color filter film. 8. The thin film transistor array substrate of claim 7, wherein the color filter stack comprises a second color filter film and a third color filter film stacked on each other. 9. The thin film transistor array substrate of claim 7, wherein the color filter stack comprises one of a second color filter film and a third color filter film. (7) A thin film transistor array substrate having a display area and a non-display area, the display area edge having a liquid crystal injection port, comprising: a plurality of first metal layers, the liquid crystal injection port disposed at an edge of the display area The substrate is exposed; and a plurality of second metal layers are disposed adjacent to at least the first metal layers to prevent light leakage from the liquid crystal injection port at the edge of the display region. 11. The thin film transistor array substrate of claim 10, further comprising the second metal layer being partially overlapped with the first metal layer. 12. The thin film transistor array substrate of claim 10, further comprising: a plurality of scanning wires disposed on the substrate in the display area; a plurality of data wires arranged in the display area In the inner substrate, the data wires and the scan wires form a plurality of pixel regions; a plurality of thin film transistors are disposed at the intersection of the data wires and the scan wires, and The data wiring and the scanning wiring control; 35 1335463 a plurality of halogen electrodes, disposed in the pixel regions, and electrically connected to the corresponding thin film transistors; and a plurality of color filter films, It is disposed under the pixel electrodes. 13. The thin film transistor array substrate of claim 12, wherein the color filter films comprise a red filter film, a green filter film, and a blue filter film. A method for fabricating a thin film transistor array substrate, comprising: forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area, wherein the display area edge has a liquid crystal method inlet; Patterning the first metal layer to form a plurality of gates and a plurality of scan lines in the display region, wherein the scan lines extend to the liquid crystal injection port at the edge of the display region; forming a gate on the substrate a gate insulating layer; a patterned amorphous germanium layer is formed on the gates to form a plurality of channel layers; a second metal layer is formed on the substrate; and the second metal layer is patterned to serve the gates Forming a plurality of source electrodes and a plurality of drain electrodes on the electrode, forming a plurality of data wires on the substrate, and forming a plurality of pseudo metal layers on the substrate exposed by the liquid crystal injection port at an edge of the display region, wherein the plurality of metal layers are formed on the substrate The data wiring and the scan wiring system form a plurality of halogen regions, and the pseudo metal layers are partially overlapped with the scan lines to prevent light leakage of the liquid crystal injection port at the edge of the display region, and The gates, the channel layers, the source electrodes, and the drain electrodes comprise a plurality of thin film transistors; forming a plurality of color filter films in the pixel regions; and forming in the pixel regions The plurality of halogen electrodes are electrically connected to the corresponding thin film transistors. 15. A method of fabricating a thin film transistor array substrate, comprising: 36 1335463 forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area, wherein the display area edge has a liquid crystal Injecting the first metal layer to form a plurality of gates and a plurality of scan lines in the display region and forming a plurality of stripes on the substrate exposed by the liquid crystal injection port at an edge of the display region a metal layer; forming a gate insulating layer on the substrate; forming a patterned amorphous germanium layer on the gates to form a plurality of channel layers; forming a second metal layer on the substrate; patterning The second metal layer forms a plurality of sources and a plurality of drain electrodes on the gates, and forms a plurality of data lines on the substrate, the data lines extending to the edge of the display area Injecting, wherein the data wires and the scan wires form a plurality of pixel regions, and the metal layers are partially overlapped with the data wires to prevent the liquid crystal injection port at the edge of the display region Light, and the gates, the channel layers, the sources, and the drains form a plurality of thin film electro-crystal bodies; forming a plurality of color filter films in the halogen regions; A plurality of halogen electrodes are formed in the halogen region, and the halogen electrodes are electrically connected to the thin film transistors corresponding to φ. 16. A method of fabricating a thin film transistor array substrate, comprising: a substrate having a display area and a non-display area, the non-display area edge having a liquid crystal injection port, comprising: forming a plurality of edges at the edge of the display area a first metal layer; and forming a plurality of second metal layers on the substrate, the second metal layers partially overlapping the first metal layers to prevent light leakage from the liquid crystal injection port at the edge of the display region. 17. The method of claim 16, further comprising: forming a plurality of scan lines in the display area; 37 1335463 forming a plurality of data lines in the display area, wherein the data lines and the data lines The scanning wiring system constitutes a plurality of halogen regions; a plurality of thin film transistors are formed at the intersection of the data wirings and the scanning wirings, and the thin film electro-crystalline systems are controlled by the data wirings and the scanning wirings; A plurality of halogen electrodes are formed in the halogen regions, and the halogen electrodes are electrically connected to the corresponding thin film transistors respectively; and a plurality of color filter films are formed on the halogen regions. 18. A method of fabricating a thin film transistor array substrate, comprising: forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area, wherein the display area edge has a. Forming the first metal layer in the liquid crystal injection port to form a plurality of gate and reticle scanning lines in the display region, wherein the scan lines extend to the liquid crystal injection port at the edge of the display area; Forming a gate insulating layer on the material; forming a patterned amorphous germanium layer on the gates to form a plurality of channel layers; forming a second metal layer on the substrate; patterning the second metal layer, Forming a plurality of sources and a plurality of drain electrodes on the gates, forming a plurality of data lines on the substrate, and forming a plurality of strips on the substrate exposed by the liquid crystal injection port at an edge of the display area a metal layer, wherein the data lines and the scan lines form a plurality of pixel regions, and the metal layers are partially overlapped with the scan lines, and the gates, the channel layers, and the sources Extremely and some Forming a plurality of thin film transistors on the substrate; forming a color filter film on the substrate; patterning the color filter film to retain a portion of the color filter film in the pixel region and at the edge of the display area Forming a first color filter block on the substrate exposed by the liquid crystal injection port; and 1335463 forming a plurality of pixel electrodes in the halogen region, the pixel electrodes and the corresponding film The transistor is electrically connected. 19. The method of claim 18, wherein the step of patterning the color filter film further comprises forming a substrate on the substrate exposed by the liquid crystal injection port at an edge of the display region. a second color filter block adjacent to the first color filter block. 20. The method according to claim 19, wherein the step of forming the second color filter block further comprises forming on the substrate exposed by the liquid crystal injection port at the edge of the display area. A third color filter block is adjacent to the second color-shifting light block. 21. A method of fabricating a thin film transistor array substrate, comprising: forming a first metal layer on a substrate, the substrate comprising a display area and a non-display area, wherein the display area edge has a liquid crystal injection port Patterning the first metal layer to form a plurality of gates and a plurality of scan lines in the display region and forming a plurality of pseudo-metals on the substrate exposed by the liquid crystal injection port at an edge of the display region Forming a gate insulating layer and an amorphous germanium layer on the substrate; φ removing the amorphous germanium layer except the upper portions of the gates to form a plurality of channel layers; forming a first layer on the substrate Forming the second metal layer to form a plurality of sources and a plurality of drain electrodes on the gates, and forming a plurality of data lines on the substrate, the data lines extending to the display area The liquid crystal injection port of the edge, wherein the data wires and the scan wires form a plurality of pixel regions, and the pseudo metal layers partially overlap the scan wires, and the gates, the channel layers, The sources And the plurality of thin film transistors are formed on the substrate; forming a color filter film on the substrate; 39 1335463 t patterning the color filter film to retain a portion of the color filter in the halogen regions And forming a first color filter block on the substrate exposed by the liquid crystal injection port at the edge of the display area; and forming a plurality of halogen electrodes in the pixel region, the pixel electrodes Electrically connecting with the corresponding thin film transistors. 22. The method of claim 21, wherein the step of patterning the color filter film further comprises forming a surface on the substrate exposed by the liquid crystal injection port at the edge of the display area. Two color filter blocks adjacent to the first color filter block. 23. The method according to claim 22, wherein the step of forming the second color filter block further comprises forming on the substrate exposed by the liquid crystal injection port at the edge of the display area. A third color filter block is adjacent to the second color filter block. 24. A method of fabricating a thin film transistor array substrate, comprising: providing a substrate, the substrate comprising a display area and a non-display area, wherein the non-display area edge has a liquid crystal injection port, wherein: the display Forming a plurality of first metal layers on the edge of the region; forming a plurality of second metal layers on the substrate, the second metal layers partially overlapping the first metal layers; and the liquid crystal injection port at the edge of the display region A first color filter block is formed on the exposed area. 25. The method of claim 24, further comprising: forming a plurality of scan lines in the display area; forming a plurality of data lines in the display area, wherein the data lines and the scan lines Forming a plurality of halogen regions; forming a plurality of thin film electric 1353463 crystals at the intersection of the data wires and the scan wires, and the thin film electro-crystal systems are controlled by the data wires and the scan wires; A plurality of pixel electrodes are formed in the pixel regions, and the pixel electrodes are electrically connected to the corresponding thin film transistors, and a plurality of color filter films are formed on the halogen regions. 26. The method of claim 25, wherein the color filter films extend to an edge of the display area. 27. The method of claim 26, wherein the color filter film comprises a first color filter, a light film. 28. The method of claim 24, wherein the step of forming the first color filter block further comprises forming a first region on the edge of the display region where the liquid crystal injection port is exposed. Two color filter blocks adjacent to the first color filter block. 29. The method of claim 28, wherein the step of forming the second color filter block further comprises forming a surface on the area exposed by the liquid crystal injection port at the edge of the display area. A three color filter block adjacent to the second color filter block. 4141
TW93131926A 2003-07-22 2003-07-22 Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same TWI335463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93131926A TWI335463B (en) 2003-07-22 2003-07-22 Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93131926A TWI335463B (en) 2003-07-22 2003-07-22 Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW200508742A TW200508742A (en) 2005-03-01
TWI335463B true TWI335463B (en) 2011-01-01

Family

ID=45075023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93131926A TWI335463B (en) 2003-07-22 2003-07-22 Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI335463B (en)

Also Published As

Publication number Publication date
TW200508742A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
TWI309327B (en) Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same
JP4303214B2 (en) Liquid crystal display device and manufacturing method thereof
US7666557B2 (en) Liquid crystal display panel, color filter and manufacturing methods thereof
US9075269B2 (en) Array substrate and liquid crystal display device including the same
CN102096255B (en) Array substrate for liquid crystal display device and method of fabricating the same
TWI237219B (en) Opto-electronic device and electronic machine
CN110515233A (en) COT type liquid crystal display device
US7643114B2 (en) Transflective display device with reflection pattern on the color filter substrate
US8089600B2 (en) Active device array substrate and display panel
KR100525880B1 (en) Electro-optical device and projector
TW564327B (en) Active color filter on array structure and its manufacturing method
TWI395016B (en) Active device array substrate and fabricating mothod thereof
US20110217823A1 (en) Storage capacitor having an increased aperture ratio and method of manufacturing the same
TWI375839B (en) Liquid crystal panel and method of making the same
TWI335463B (en) Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same
TWI329223B (en) Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same
WO2023077555A1 (en) Display panel, array substrate and manufacturing method therefor
JPH09230379A (en) Liquid crystal display device and its production
TWI330293B (en) Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same
JP2004317728A (en) Substrate with alignment mark and manufacturing method therefor, and substrate for electrooptic device and electrooptic device
KR20150137278A (en) Array substrate and liquid crystal display device inluding the same
TWI336012B (en) Thin film transistor liquid crystal display panel, array substrate of the same, and method of manufacturing the same
JP2002258290A (en) Liquid crystal display device
KR101198217B1 (en) LCD and Method of fabricating of the same
WO2022193439A1 (en) Array substrate and manufacturing method, and display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees