TWI334576B - Method and system for reading rfid tags - Google Patents

Method and system for reading rfid tags Download PDF

Info

Publication number
TWI334576B
TWI334576B TW96129846A TW96129846A TWI334576B TW I334576 B TWI334576 B TW I334576B TW 96129846 A TW96129846 A TW 96129846A TW 96129846 A TW96129846 A TW 96129846A TW I334576 B TWI334576 B TW I334576B
Authority
TW
Taiwan
Prior art keywords
signal
data
reading
radio frequency
frequency identification
Prior art date
Application number
TW96129846A
Other languages
Chinese (zh)
Other versions
TW200825941A (en
Inventor
Chih Hung Lin
Chia Jen Yu
Jiunn Tsair Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW200825941A publication Critical patent/TW200825941A/en
Application granted granted Critical
Publication of TWI334576B publication Critical patent/TWI334576B/en

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

1334576 P65950028TW 22800twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種讀取射頻識別標籤(radio frequency identification tag,簡稱即仍 tag)之方法與系統, 且特別是㈣於-種f胃取聊式射頻識別標齡細以处① tag)之方法與系統。1334576 P65950028TW 22800twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a method and system for reading a radio frequency identification tag (referred to as a still tag), and in particular (4) The method and system for the type-f stomach-type radio frequency identification (1 tag).

【先前技術】 圖1繪不一個傳統的射頻識別讀取機1〇1與三個射頻識 別標籤1〇2-1〇4。讀取機1〇1發出超高頻(ultra獅加职啊, UHF)或尚頻(high frequency, HF)電磁波致能標籤1〇2_104,使 標籤102-104可以反向散射標籤訊號至讀取機 1(Π。射頻識別標籤發送之資料調變在此標籤訊號中。為了偵 測資料’此射頻識別標籤讀取機必須接收此標籤訊號然後根據[Prior Art] Fig. 1 depicts a conventional RFID reader 1〇1 and three radio frequency identification tags 1〇2-1〇4. The reader 1〇1 sends an ultra-high frequency (ultra lion, UHF) or high frequency (HF) electromagnetic wave enabled tag 1〇2_104, so that the tags 102-104 can backscatter the tag signal to read Machine 1 (Π. The data sent by the RFID tag is modulated in this tag signal. In order to detect the data 'This RFID tag reader must receive this tag signal and then according to

此標籤訊號產生上述資料。這個資料產生程序被稱為訊號偵 測、解碼或解調。 舉例說明’射頻識別標籤102-104可以使用FM0調變方 式(modulation scheme)來編碼資料。圖2繪示四個FM0調變方 式的資料圖形(data pattern)。在圖2中,有四個圖形S1〜S4。 S1或S4代表資料符號1。S2或S3代表資料符號〇。根據FM0 調變方式,兩個連續符號之間必須存在一個狀態轉變(從低狀 態到高狀態或從高狀態到低狀態)。圖3為根據FM0調變方式 之標戴訊號波形範例,波形301為一個完全無雜訊的標籤訊號 波形。 5 1334576 P65950028TW 22800twf.doc/n 有兩種傳統方法可以做訊號偵測,亦即為邊緣檢測(edge detection)與匹配過濾(matched filtering)。邊緣檢測透過中間線 305偵測標籤訊號波形之狀態轉變,然後根據狀態轉變之統計 資料重新建構資料位元。例如:資料符號丨在其符號週期内沒 有狀態轉變,而資料符號0在其符號週期中間有狀態轉變。邊 緣檢測只在標籤訊號波形具有相對之低雜訊時有用。如圖3 所示,波形302為一個從2公尺以外距離接受到的,帶有雜訊 的標籤訊號波形,並攜帶著與波形30丨相同之資料。雖然波形 302遭到雜訊扭曲,其資料圖形依然可以由邊緣檢測來重建。 縣-個例子來說明,波形3〇3為另一舰8公尺以外距離接 又到的,▼有雜訊的標籤訊號波形,也依然攜帶與波形 相同之資料。但嚴重的雜訊導致波形303有許多跨越中間線 305的叙性轉態。故此,會使邊緣檢測誤解資料圖形。 匹配過濾比起邊緣檢測具有更大之雜訊容忍度。匹配過漁 =在資料_ SM4與標籤訊號波形之__匹配^ 元。細,為了觀配爾正確缸作,標籤訊號之 =^脈速率必須為已知,而且必須歡。而獻之資料時脈 :況聽易獲得,特別是列印式___ 列印式射賴職齡實是㈣墨印 統之植入晶片標鐵便宜的多。然而,歹= 達^ 2:具有非f不穩定之資料時脈速率的馳。振幅漂移 是非常典型的。而且,其資料 在你移上一個符號(symbol)的資料時脈速率 6 1334576 P65950028TW 22800twf.d〇c/n 也許會跟下一個付號的資料時脈速率不同。因,— 頻識別標籤的標籤訊號帶有雜訊,使用邊緣檢_^2 = 【發明内容】 本發明提供—_轉賴職籤之枝 取射頻識別標籤方法更加有效。 得汍之6貝This tag signal produces the above information. This data generation program is called signal detection, decoding or demodulation. By way of example, the radio frequency identification tags 102-104 can encode data using an FM0 modulation scheme. Figure 2 shows the data pattern of four FM0 modulation methods. In Fig. 2, there are four patterns S1 to S4. S1 or S4 represents the data symbol 1. S2 or S3 represents the data symbol 〇. According to the FM0 modulation mode, there must be a state transition between two consecutive symbols (from low state to high state or high state to low state). Figure 3 is an example of a standard signal waveform according to the FM0 modulation method. Waveform 301 is a completely noise-free label signal waveform. 5 1334576 P65950028TW 22800twf.doc/n There are two traditional methods for signal detection, namely edge detection and matched filtering. The edge detection detects the state transition of the tag signal waveform through the intermediate line 305, and then reconstructs the data bit according to the state transition statistics. For example, the data symbol 丨 has no state transitions during its symbol period, while the data symbol 0 has a state transition in the middle of its symbol period. Edge detection is only useful when the tag signal waveform has relatively low noise. As shown in Figure 3, waveform 302 is a tag signal waveform with noise from a distance of 2 meters and carries the same information as waveform 30丨. Although waveform 302 is distorted by noise, its data pattern can still be reconstructed by edge detection. County - an example to illustrate, the waveform 3 〇 3 is the other ship 8 meters away from the distance, ▼ the noise of the tag signal waveform, still carry the same information as the waveform. However, severe noise causes waveform 303 to have many narrative transitions across intermediate line 305. Therefore, the edge detection will misinterpret the data pattern. Matching filtering has greater noise tolerance than edge detection. Match overfishing = in the data _ SM4 and the tag signal waveform __ match ^ yuan. Fine, in order to see the correct cylinder, the pulse rate of the tag signal must be known, and must be happy. The data of the offerings: the situation is easy to obtain, especially the printing type ___ printing type of aging is actually (four) ink printing system is cheaper than the implanted standard iron. However, 歹 = up to 2: has a non-f-stable data clock rate. The amplitude drift is very typical. Moreover, the data rate of the data when you move a symbol is 6 1334576 P65950028TW 22800twf.d〇c/n. The clock rate may be different from the data of the next payment. Because the label signal of the frequency identification tag carries noise, and the edge detection is used _^2 = [Summary of the Invention] The present invention provides a method for taking the radio frequency identification tag to be more effective. 6 shells

本發明提tn -種讀取麵識職狀统 決來自列印式射頻識別標籤之有雜訊訊號之時脈回復、同 步以及資料訊框(data frame)解碼的問題。因此, 傳統技術更加有效。 n.死比The present invention provides a problem of clock recovery, synchronization, and data frame decoding of a noise-receiving tag from a printed RFID tag. Therefore, traditional technology is more effective. Death ratio

濾技術是不可行的 本發明提供一種讀取射頻識別標籤之方法。此方法包括 ^步驟。該,從射賴難籤接收—個標籤訊號。根據 標籤訊號之脈衝長度之統計回復其資料時脈速率(data clock rate)。接著,根據此資料時脈速率進行一預設訊號圖 形(sig⑽1 patter)與標籤訊號中—段前導資料(preambie)之 間的訊號相關運算(signal correlati〇n)以決定在標籤訊號中 跟隨此前導資料的一資料訊框之同步點。最後,於擴展格 子圖(extended trellis diagram)上使用適應性維特比演算法 (adaptive Viterbi algorithm)解碼資料訊框’擴展格子圖上的節 點(node)與支線(branch)之排列是根據資料時脈速率的可 能變化。 本發明另提供一種讀取射頻識別標籤之系統。此系統包 括接收器、回復單元、同步單元以及解碼單元。接收器接 7 P65950028TW 22800twf.doc/n 別錢之標籤訊號。回復單元柄接至接收器,用 、二v籤訊,之脈衝長度之統相復賊訊號之資料時 2率。同步單元輕接至回復單元,用以根據此資料時脈速 一預?訊號圖形與標蕺訊號卜段前導資料之間的 ^ ’U目關運算以決定在標籤訊號中跟隨此前導資料的—資 =框之时點’碼單元墟朗步單元用以在擴展 :圖上使用適應性維特比演算法解碼資料訊框,而此擴 心子圖之即點與支線之排列則是根據此資料時脈速率的 可能變化》 【實施方式】 次、在^典型的標籤訊號中,射頻識別標籤會連續重複著傳送 ΐϊ、,每—次重複之標籤資料均包含在資料訊框裡面。而由前 2料引導每—個資料訊框^每—個前導資料與資料訊框包含 2個錄。_4為減本㈣—實_所私讀取射賴別 =方法的重點流程圖H從射頻識職籤接收標籤訊 :即步驟410) ’然後回復標籤訊號之資料時脈速率(即 二,420 )。當識別出資料時脈速率後,執行同步化步驟, =算前導㈣與跟隨於此料資料之資料訊框之間的訊框 =點的位置(即步驟43G)。此訊框同步點為前導資料 :東與資料訊框開始之點。在辨識出資料時脈速率與訊框 點之後,此流程將繼續進行解碼此資料訊框並獲得標 戴資料(即步驟440)。 雖然電路差異造成列印式射頻識別標籤的資料時脈 1334576 P65950028TW 22800twf.doc/nFiltration techniques are not feasible. The present invention provides a method of reading radio frequency identification tags. This method includes the ^ step. Therefore, receiving a tag signal from the difficult sign. The data clock rate is returned according to the pulse length of the tag signal. Then, according to the data clock rate, a signal correlation calculation (signal correlati〇n) between a preset signal pattern (sig(10)1 patter) and a preambie in the label signal is performed to decide to follow the previous guide in the label signal. The synchronization point of a data frame of the data. Finally, using the adaptive Viterbi algorithm to decode the data frame on the extended trellis diagram, the nodes and branches on the extended trellis diagram are based on the data clock. Possible changes in speed. The invention further provides a system for reading a radio frequency identification tag. The system includes a receiver, a reply unit, a synchronization unit, and a decoding unit. The receiver is connected to 7 P65950028TW 22800twf.doc/n. The reply unit handle is connected to the receiver, and the second and the second v are signed, and the pulse length is equal to the data of the thief signal. The synchronization unit is lightly connected to the reply unit for predicting the clock speed according to this data. The 'U-cut operation between the signal pattern and the leading data of the standard signal to determine the time at which the previous information is followed in the label signal. The code unit is used to expand the map. The adaptive Viterbi algorithm is used to decode the data frame, and the arrangement of the point and the branch of the expanded sub-picture is based on the possible change of the clock rate of the data. [Embodiment] Times, in the typical label signal The RFID tag repeats the transfer, and the tag data of each repetition is included in the data frame. The first two materials guide each data frame, and each of the preamble data and data frames contains two records. _4 is the reduction (four) - the actual _ private reading and shooting = the focus of the method flow chart H receives the label information from the radio frequency identification: step 410) 'and then reply to the label signal data rate (ie two, 420 ). After the data clock rate is identified, the synchronization step is performed, = the position of the frame = point between the preamble (4) and the data frame following the material data (ie, step 43G). The synchronization point of this frame is the leading data: the point where the east and the data frame start. After identifying the data clock rate and frame point, the process will continue to decode the data frame and obtain the data (ie, step 440). Although the circuit difference causes the data of the printed RFID tag 1334576 P65950028TW 22800twf.doc/n

速率漂移,㈣此漂移相賴_較慢,而且本實施 例之方法轉可適應時脈隸。因此,由賴訊號回復的 資枓時脈速率可間來計算訊簡步點。回復的資料時脈 速率亦可㈣來當作最被時脈鱗轉碼賴在訊框同 步點之後之貧料訊框。圖4之步驟詳細說明如下。 在本實施例中,時脈回復步驟(圖4之步驟42〇)可 以更進一步分解成圖5之4個步驟421〜424。首先,根據 標藏訊號之脈衝長度統計產生訊號矩形圖(signai histogram)(即為步驟421)。以FM0調變方式當例子做說明。 在此處-個脈衝代表標籤訊號之—個沒有狀態轉變的部分 (即沒有穿越中間線)。脈衝長度則代表介於標籤訊號之 兩個連續狀態轉變之間的長度。圖6A顯示自列印式射頻 識別標藏而來的具有雜訊的標籤訊號的訊號矩形圖。圖6A 的訊號矩形圖顯示標籤訊號之脈衝長度的機率統計。訊號 矩形圖之垂直軸代表來自脈衝長度之機率質量函數 (probability mass fimction,PMF)的機率大小。訊號矩形圖之水 平軸代表脈衝長度。脈衝長度的單位為一個脈衝之内的取 樣點個數。射頻識別標籤讀取機以預設的固定間隔取樣標籤 訊號。如圖6A所示,因為嚴重雜訊,訊號矩形圖内最常 出現的是長度為一個取樣點的極短脈衝。 產生訊號矩形圖之後,流程繼續進行產生多個圖形矩 形圖(pattern histogram)(即步驟422 )。每一個圖形矩形 圖是根據符合一預設時脈速率的標籤訊號之調變方式(在 本實施例即為FM0)的脈衝長度統計所產生,而這些圖形 1334576 P65950028TW 22800twf.doc/n 矩形圖之預設時脈速率是在賴範圍之内依照預設 速率間隔而挑選。舉例說明,圖6B〜6D 法下义 生之三種圖形矩形圖。每—個圖6B〜6D的圖== 符合各自的預設時脈速率的腫調變 ^鐵 訊號的脈触度域率崎。如_ 2與Rate drift, (4) This drift depends on _ slower, and the method of this embodiment can be adapted to the clock. Therefore, the resource clock rate replied by Lai Xing can be used to calculate the signal step. The data rate of the reply data can also be used as the most inferior frame after the synchronization of the clock scale. The steps of Figure 4 are described in detail below. In the present embodiment, the clock recovery step (step 42 of Fig. 4) can be further broken down into four steps 421 to 424 of Fig. 5. First, a signal histogram is generated based on the pulse length of the standard signal (ie, step 421). Take the example of FM0 modulation as an example. Here - a pulse represents the part of the tag signal that has no state transition (ie, does not cross the middle line). The pulse length represents the length between two consecutive state transitions of the tag signal. Figure 6A shows a signal histogram of a tag signal with noise from a fingerprint RFID tag. The signal rectangle of Figure 6A shows the probability statistics of the pulse length of the tag signal. Signal The vertical axis of the histogram represents the probability of a probability mass fimction (PMF) from the pulse length. The horizontal axis of the signal rectangle represents the pulse length. The unit of the pulse length is the number of sampling points within one pulse. The RFID tag reader samples the tag signal at a predetermined fixed interval. As shown in Figure 6A, the most common occurrence in the signal histogram is a very short pulse of one sample point due to severe noise. After generating the signal histogram, the flow proceeds to generate a plurality of pattern histograms (i.e., step 422). Each of the graphic rectangles is generated according to the pulse length statistics of the modulation signal (in this embodiment, FM0) conforming to a preset clock rate, and these graphics are 1334576 P65950028TW 22800twf.doc/n rectangular diagram The preset clock rate is selected within the range of the preset rate interval. For example, three kinds of graphic rectangles of the prosthesis under the methods of FIGS. 6B to 6D are illustrated. Each of the graphs of Figures 6B to 6D == swells to the respective preset clock rate. Such as _ 2 with

FMO調變”有兩種脈衝型態,即是短脈衝與長脈衝^豆 脈衝之機率是長脈_兩倍。假如對應某1形矩形 預設時脈速率是射賴職_取機轉轉之四倍,= 產生之圖形矩形圖如圖6B。假如對應某1形矩形°圖的預 設時脈速率是射頻識別標籤讀取機取樣頻率之六倍,則所產 生之圖形矩形圖如圖6C。假如對應某一圖形矩y圖的預設 時脈速率是射頻識別標籤讀取機取樣頻率之八倍,則所產生 之圖形矩形圖如® 6D。建議將上述預設時脈速率的預設範 圍設定成包含列印式射頻識別標籤之資料時脈速率的可能 變動範圍。There are two kinds of pulse patterns in FMO modulation, that is, the probability of short pulse and long pulse ^ bean pulse is long pulse _ twice. If the corresponding one-shaped rectangular preset clock rate is the shooting _ take the machine to turn Four times, = the resulting graphical rectangle is shown in Figure 6B. If the preset clock rate corresponding to a 1-shaped rectangle is six times the sampling frequency of the RFID reader, the resulting rectangular graph is shown in Figure 6C. If the preset clock rate corresponding to a graphic moment y map is eight times the sampling frequency of the RFID tag reader, the resulting graphic rectangle is as shown in the ® 6D. It is recommended to pre-set the above preset clock rate. Set the range to the range of possible variations in the clock rate of the data containing the printed RFID tag.

產生圖形矩形圖之後,流程繼續進行比較訊號矩形圖 與每一圖形矩形圖(即步驟423),然後選擇最接近訊號 矩形圖的圖形矩形圖的預設時脈速率當作標籤訊號之資料 時脈速率(即步驟424)。例如,在本實施例中可選擇在 所有圖形矩形圖中具有最小匹配錯誤(minimum matching error)之圖形矩形圖。 爲了較好的時脈回復’在本發明之其他實施例中,圖 形矩形圖上之無雜訊脈衝可用基於無雜訊脈衝之高士剖面 圖(Gaussianprofile)所取代。具有高士剖面圖之圖形矩形圖更 1334576 P65950028TW 22800twf.doc/n 容易和具有雜訊的訊號矩形圖匹配,可以更精確地回復資 料時脈速率。此外’在本發明之其他實施例中,由於圖形 矩形圖與個別之標鐵訊號沒有相關聯,因此圖形矩形圖可 以產生於接收個別之標籤訊號之前,並在稿後重複使用。 在這情況下,當圖形矩形圖產生之後,步驟422在接下來 的標籤讀取程序裡可以被忽略。 圖7為根據本實施例的兩種時脈回復方法以及兩種傳 統方法之比較。圖7之垂直軸為各方法所回復的符號週期 的對數均方誤差(mean square error,MSE)。較低的均方誤差 代表較佳的時脈回復性能。圖7之水平軸為所接收之標籤 訊號的訊雜比(signal-to-noise ratio, SNR)。較低的訊雜比代 表較具雜訊之標籤訊號。圖7共比較四種方法,分別為第 一試驗法(FirstTrial)、多數法(Majority)、簡單統計法(Si_eAfter generating the graph rectangle, the process continues to compare the signal rectangle and each graph rectangle (ie, step 423), and then selects the preset clock rate of the graph rectangle closest to the signal rectangle as the data clock of the label signal. Rate (ie, step 424). For example, in the present embodiment, a graphic histogram having a minimum matching error in all the graphic histograms can be selected. For better clock recovery' In other embodiments of the invention, the no-noise pulse on the graph rectangle can be replaced by a Gaussian profile based on a no-noise pulse. The graphic rectangle with the Coats profile is more convenient. 1365576 P65950028TW 22800twf.doc/n It is easy to match the signal rectangle with noise, which can restore the data clock rate more accurately. Further, in other embodiments of the present invention, since the graphical histogram is not associated with an individual target signal, the graphical histogram can be generated prior to receiving the individual tag signal and reused after the manuscript. In this case, after the graph histogram is generated, step 422 can be ignored in the next tag reader. Fig. 7 is a comparison of two clock recovery methods and two conventional methods according to the present embodiment. The vertical axis of Figure 7 is the mean square error (MSE) of the symbol period replied by each method. A lower mean square error represents better clock recovery performance. The horizontal axis of Figure 7 is the signal-to-noise ratio (SNR) of the received tag signal. The lower signal-to-noise ratio represents a more noisy tag signal. Figure 7 compares four methods, the first trial (FirstTrial), the majority (Majority), and the simple statistical method (Si_e).

Statistics)與進階統計法(Advanced Statistics)。第一試驗法為 傳統方法,做法是取用標籤訊號第一次狀態轉變之脈衝長 度,=後計算其符號週期之倒數當作資料時脈速率。此^ 法非常簡單,只能在訊雜比穩定且高的情況下運作,但是 對列印式射頻識別標籤而言,幾乎不可能有穩定且高的訊= ^多數法為另-種傳統方法,做法是取得標籤訊號的多 二人狀態轉變之間的多個脈衝長度,然後藉由多數表決 (rzo„nty vote)或脈衝長度之平均來計算符號週期。之後計 异符號週期的倒數並將其指定為資料時脈速率。此方法較 為複雜’當絲比在中上水準時效能_。然而,如^ 所不之波形3G3 ’當訊雜比非常高時,嚴重之雜訊導致許 11 1334576 P65950028TW 22800twf.doc/n 多^號狀態之假性轉變1—試驗法與多數法均因為假性 ,,造成之短脈衝而表現不佳。根據本發明之—實施例的 簡單統計法為包含無雜訊脈衝之圖形矩形圖之時脈回復方 法,而根據本發明另一實施例的進階統計法為包含高士剖 面圖之圖形矩形圖之時脈回復方法。如圖7所示,這兩種 根據本實施例之方法無論在訊雜比低或高之情況下均能優 於傳統之方法。另外進階統計法的效能會較簡單統計法來 得更好一些。 在資料時脈回復之後,下一階段是計算標籤訊號中跟 隨前導資料的資料訊框的訊框同步點。本實施例在前導資 料與一根據資料時脈速率而計算之預設訊號圖形(s ignal pattern)之間進行訊號相關運算。更具體地說,此預設訊號 圖形為列印式射頻識別標籤所遵循的標準規格所定義的前 導資料圖形(preamble pattern)。此外,使用於本實施例之訊 號相關運算為視窗滑動相關運算(wind〇w-sliding correlation)。由於訊框同步點是前導資料結束與資料訊框 開始之時,本實施例利用訊號相關運算決定前導資料在標 籤訊號之位置,然後就能決定標籤訊號中跟隨前導資料的 資料訊框的位置。 現在請參考圖8,圖8繪示標準規格所定義的前導資 料圖形800以及自標籤接收的前導資料波形801〜803,波 形801〜803是基於三種不同之資料時脈速率。前導資料波 形800為定義於標準規格中且為此技術領域中具有通常知 識者所熟知的。前導資料801〜803與前導資料圖形800相 12 1334576 P65950028TW 22800twf.doc/n • 似。=導資料801〜803與前導資料圖形800之不同處為雜 • 訊與資料魏漂移料致。本實關之視窗滑動相關運算 ^指f接收到的前導資料波形從左至右滑動並跨越標準之 ㈣資料圖形8GG。資料贿職兩侧形的最佳匹配位 ㈣始。於步驟420巾回復的資料時脈速率只是讀取機所 接收的前導資料的資料時脈速率的一個估計。即使這個估 計f實際接收的前導資料的資料時脈速率有一些不匹配, φ 視_滑動相關運算依然有效。但假如上述估計與實際接收 的前導資料的資料時脈速率相差太多,視窗滑動相關運算 就曰失敗這就疋爲什麼資料時脈速率必須於資料訊框同 步之前進行估計。於步驟伽估計之資料時脈速率提供良 好的參考點給訊號相關運算。請注意標準前導資料圖形 800之長度可能會對同步之精確性有決定性影響。前導資 料圖形_之長度越長,資料訊框同步的精確度就越高。 圖9緣不-種傳統同步方法以及根據本實施例之一種 • ㈤步^法之比較。圖9之垂直轴為線性刻度(linear)之同步 偏移量(synchronization offset)之岣方誤差。圖9之水平軸 為接收到的^籤訊號之訊雜比。功率臨界法(p〇wer ^hreshold)▲為傳統同步方法,做法是將所接收之標籤訊號的 人狀‘4轉變視為資料訊框之起始點。圖9的比較中, 功Ϊ臨界法有兩種變化。第—種變化使用長度為四個符號 的則V貝料對標籤信號作同步。第二種變化使用長度為十 個符號的前導資料對標籤信號作同步。相關運算法 (Correlator)為根據本實施例之同步方法。同樣地在圖9 13 1334576 P65950028TW 22800twf.doc/n 的比較中,相關運算法也有兩種變化。第一種變化使用長 度為四個符號的前導資料對標藏信號作同步。第二種變^ 使用長度為十個符號的前導資料對標籤信號作同步。如圖 9所示,相關運算法的效能遠優於功率臨界法,而且 的前導資料表現較佳。 x W舌^算軌框同步點之後’下—步驟為解碼資料訊框 j重新建構來自標籤之資料。為了克服雜訊與資料時脈漂 三本實施例於擴展格子圖上使用適應性維特比演算法 ^資料訊框。擴展格子圖為傳統格子圖之延伸。例如圖1〇 :不傳統格子圖1000,圖11繪示由傳統FMO格子圖所行 子圖咖。擴展麗格子圖謂包括多個節 1102)2多個連接節點之支線(例如支線 )/、中即點與支線之排列是根據資料訊框之調變方 工(在本實施例為FM0)與資料時脈速率的可能變化。 ,圖11所示,擴展格子圖中的節點組成多個超級 ^ =個超級節點包含三個節點,如超級 =子圖1刚上之超級節點類似於傳統格子圖麵上= :的符郎點的排列是根據資料訊框調變方式所可能產 列:另一方面,每一個超級節點其中的節點排 上方的可能變化。在超級節點之中處於 料時脈速率減‘目7付號之貧料時脈速率為前—符號的資 脈迷率單預設之時脈速率單元。例如預設之時 ㈣之+處於中間的節點代表目前符號之資料時 14 1334576 P65950028TW 22800twf.doc/n 前一個符號相同。在超級節點之中處於下方的節點代表目 刚符號之資料時脈速率為前一符號的資料時脈速率加上預 設之時脈速率單元。目此於祕格子圖丨觸上铜適應性 維特比演算法(Viterbi algorithm)可以解決雜訊與資料時^戸 移的問題。 、Statistics) and Advanced Statistics. The first test method is a conventional method in which the pulse length of the first state transition of the tag signal is taken, and the reciprocal of the symbol period is calculated as the data clock rate. This method is very simple and can only be operated with a stable and high signal-to-noise ratio. However, for printed RFID tags, it is almost impossible to have stable and high signals. ^ Most methods are another traditional method. The method is to obtain multiple pulse lengths between the transitions of the two-person state of the tag signal, and then calculate the symbol period by the majority vote (rzo„nty vote) or the average of the pulse lengths. Then count the reciprocal of the sign period and It is specified as the data clock rate. This method is more complicated 'When the wire is in the middle and upper level performance _. However, if the waveform is not 3G3', when the signal-to-noise ratio is very high, the serious noise leads to 11 11334576 P65950028TW 22800twf.doc/n Pseudo-transition of the multi-number state 1 - Both the test method and the majority method are poor due to the pseudo-sense, resulting in a short pulse. The simple statistical method according to the embodiment of the present invention contains none. The clock recovery method of the graph rectangle of the noise pulse, and the advanced statistical method according to another embodiment of the present invention is a clock recovery method including the graph rectangle of the Coats profile. As shown in FIG. root The method of the embodiment can be superior to the traditional method in the case of low or high signal-to-noise ratio. In addition, the performance of the advanced statistical method is better than the simple statistical method. After the data clock is replied, the next The stage is to calculate the frame synchronization point of the data frame following the preamble data in the tag signal. In this embodiment, the signal correlation operation is performed between the preamble data and a predetermined sigign pattern calculated according to the data clock rate. More specifically, the preset signal pattern is a preamble pattern defined by a standard specification followed by the printed RFID tag. In addition, the signal correlation operation used in the embodiment is a window sliding correlation operation. (wind〇w-sliding correlation). Since the frame synchronization point is the end of the preamble data and the beginning of the data frame, this embodiment uses the signal correlation operation to determine the position of the preamble data in the tag signal, and then can determine the tag signal to follow. The location of the data frame of the leading data. Referring now to Figure 8, Figure 8 shows the leading profile graphic 800 defined by the standard specifications. And preamble data waveforms 801-803 received from the tag, waveforms 801-803 are based on three different data clock rates. The preamble data waveform 800 is defined in standard specifications and is well known to those of ordinary skill in the art. The leading data 801~803 and the leading data graphic 800 phase 12 1334576 P65950028TW 22800twf.doc/n • Similar. = The difference between the information 801~803 and the leading data graphic 800 is the miscellaneous information and the information Wei drift material. The window sliding correlation operation ^ refers to the leading data waveform received by f from left to right and across the standard (4) data pattern 8GG. The best match between the two sides of the data bribe (four) begins. The data clock rate replied at step 420 is only an estimate of the data clock rate of the preamble data received by the reader. Even if there is some mismatch in the data rate of the data of the preamble data actually estimated by f, the φ-sliding correlation operation is still valid. However, if the above estimation differs too much from the data rate of the actual received preamble data, the window sliding correlation operation will fail. This is why the data clock rate must be estimated before the data frame is synchronized. The clock rate of the step gamma estimate provides a good reference point for signal correlation operations. Please note that the length of the standard lead data graph 800 may have a decisive influence on the accuracy of the synchronization. The longer the length of the leading data pattern _, the higher the accuracy of the data frame synchronization. Fig. 9 is not a conventional synchronization method and a comparison according to one of the embodiments (5). The vertical axis of Fig. 9 is the square error of the synchronization offset of the linear scale. The horizontal axis of Figure 9 is the signal-to-noise ratio of the received signal. The power threshold method (p〇wer ^hreshold) ▲ is a traditional synchronization method, which is to treat the human character '4 transition of the received label signal as the starting point of the data frame. In the comparison of Figure 9, there are two variations in the power critical method. The first variation uses a four-symbol length to synchronize the tag signal. The second variation uses a preamble of length ten symbols to synchronize the tag signals. A correlation algorithm (Correlator) is a synchronization method according to the present embodiment. Similarly, in the comparison of Fig. 9 13 1334576 P65950028TW 22800twf.doc/n, there are two variations of the correlation algorithm. The first variation uses a leading data of four symbols to synchronize the labeled signals. The second variation ^ synchronizes the tag signal with a preamble of length ten symbols. As shown in Figure 9, the performance of the correlation algorithm is much better than the power critical method, and the preamble data performs better. x W tongue ^ after the track frame synchronization point 'down' - the step is to reconstruct the data from the tag for decoding the data frame j. In order to overcome the noise and data clock drift, the third embodiment uses an adaptive Viterbi algorithm on the extended grid map. The extended trellis diagram is an extension of the traditional trellis diagram. For example, FIG. 1A: does not have a conventional grid map 1000, and FIG. 11 illustrates a sub-picture graph that is performed by a conventional FMO grid map. The extended plaid diagram includes a plurality of sections 1102) a branch line of two or more connected nodes (for example, a branch line), and an arrangement of the center point and the branch line is according to a modulation scheme of the data frame (FM0 in this embodiment) and Possible changes in the data rate of the data. As shown in Fig. 11, the nodes in the extended trellis diagram form a plurality of super ^ = super nodes containing three nodes, such as super = sub-picture 1 just super node is similar to the traditional grid surface = : The arrangement is based on the data frame modulation method possible on the other hand: on the other hand, each super node has a possible change above the node row. Among the super nodes, the clock rate of the material clock rate minus the head clock rate of the head line is the default clock rate unit of the symbol. For example, when the preset (4) + the node in the middle represents the current symbol data, 14 1334576 P65950028TW 22800twf.doc/n The previous symbol is the same. The node below the super node represents the data clock rate of the previous symbol plus the data rate of the previous symbol plus the preset clock rate unit. In this case, the Vitalbi algorithm can solve the problem of noise and data shifting. ,

夕^在擴展格子圖1100上之超級節點可以延伸為包含 多節點。例如每一個超級節點可以包括五個節點·’,=3 11 7的三個節點。在包含五個節點的超級節點中,田; ,的節點代表目前符號之龍時脈料騎—符 I %脈速率減去兩個預設之時脈速率單元, 认伙、’、 表目前符號之資料時脈速率為前一符號 脈 =個預設之時脈速率單元,其餘三個節 ^來二個節點相同。依此類推,每—個超級節點可^ 更f節點以適應更大的資料時脈漂移範圍。 脈速率之間必須一一對應。而且,上述之預 須在一個預設範圍内依據預設之逮率間=二時脈速率必 Γ須涵蓋於資料訊框之期間内資料時脈逮率 性維雜侧赌。適應 訊框同步點之時序變化。解碼資^^時脈速率漂移以及 ^ 一個步驟是㈣—個超”點當献個步雜。 在擴展格子时軸财m㈣㈣;^點子= 15 1334576 P65950028TW 2280〇twf.doc/n (trellis _)中找A最小錯誤 不之路控麵。第二個步驟是在第—個格=粗線標 所連接成的所有格子路“,找:最: 最後第由標示之路徑_。 邊的符號做為她子额所指示之最左The super node on the extended trellis diagram 1100 can be extended to include multiple nodes. For example, each super node may include five nodes ·', = 3 11 7 three nodes. In a super node with five nodes, the node of the field represents the current symbol of the dragon. The time of the ride is 1% of the pulse rate minus the two preset clock rate units, the identification, ', the current symbol of the table The data clock rate is the previous symbol pulse = a preset clock rate unit, and the other three nodes are the same. And so on, each super node can ^ more f nodes to accommodate a larger data clock drift range. There must be a one-to-one correspondence between pulse rates. Moreover, the foregoing must be within a predetermined range according to the preset rate of capture = the second clock rate must not be covered by the data clock during the period of the data frame. Adapt to the timing changes of the frame synchronization point. The decoding rate ^^ clock rate drift and ^ one step is (four) - a super" point when a step is mixed. In the expansion of the grid axis m (four) (four); ^ point = 15 1334576 P65950028TW 2280〇twf.doc / n (trellis _) In the middle of the road to find the smallest error is not the road control. The second step is in the first grid = thick line mark connected to all the grid road ", find: the most: the last marked path _. The side symbol is the leftmost indicated by her child's amount

法的η,據本實施例的解碼方法以及兩種傳統方 ::=12之水平軸是所接收之標鐵訊號的二 、'、、”匹配過;慮法都是前面的先前技術部份所提到之 傳統解碼方法。適應性維特比演算法則是根據本實施例之解碼 ^法。如圖12所示,無論訊雜比是低或高,適應性維特比演 异法都具有最低的位元錯誤率。 除了,上實施例的讀取射頻識別標籤之方法以外,本發 月亦包括項取射頻識別標籤之系統。請參照圖a,系統Goo 即為根據本發明另-實施例之讀取麵酬標籤之系統。此 系統包括接收器1301、回復單元13〇2、同步單元13〇3以 及,碼單元1304。回復單元1302耦接至接收器13〇1。同 步單元1303耦接至回復單元13〇2。解碼單元13〇4耦接至 同步單兀1303。接收器13〇1接收來自射頻識別標蕺之標籤訊 ,。回復單元1302根據標籤訊號之脈衝長度統計回復標籤訊 號之資料時脈速率。同步單元1303根據此資料時脈速率進 行一預設訊號圖形與標籤訊號中一段前導資料之間的訊號 16 1334576 P65950028TW 228〇〇twf.doc/n 的決疋在標籤訊號^跟隨此前導資科的資料^1框 應性維=比·法解碼資魏框。 ^使用適 事實上,系統1300遵照如圖4之流程執 別標籤之方法。圖m ^ 須識 m备〇 u w抑 瓜矛王-、系統1300之間存在緊密的對應 md'°n ”301執行步驟410。回復單元1302執行步 舟骚Μ同步單元1303執行步驟430。解碼單元1304執行 祐⑽\由於步驟410〜440之麟細節已簡露於前面的實 施例中’在此不再贅述。 綜亡所述,本發明提供的方法與系統使用訊號統計資 魏戴訊號的資料時脈速率,使用訊號圖形相關運 2 ,同步點位置’並且在擴展格子圖使用適應性維 特比續异法解碼資料訊框。因此,本發明提供之方法與系 統對於解碼來自列印式射頻識別標籤的有雜訊訊號具有優 =傳:统方法之效能。適應性維特比演算法在某種程度上可 谷忍資料時脈漂移與訊框同步點之誤差。因此,在回復階段 估計資料峡鱗以及在时階段計算赌时點不需要 =常精確。此有助於克服列印式射頻識別標籤之資料時脈時 :漂移的問題。本發明所提供之方法與系統之效能近似於 最大可月b f生解碼态(maxjmum此dec〇der,ml decoder)。然❿’本發明所提供之方法與系統之複雜度遠低 於最大可能性解碼器,這是因為本發明之方法與系統只是 追蹤符號邊界,而不是如最大可能性解碼器所做的計算每 一個符號的邊界。此外,雖然上述實施例之方法與系統只 17 1334576 P65950028TW 22800twf.doc/n 使用在讀取列印式射賴職,本發狄枝 可於讀取其讎狀義制顯上_絕纽能、例如^ 取非列印式_識職籤錢遵循電子產品碼第—級/第: 代鮮 Electronic pr0duct code Class 1/(}_咖幻之標一 雖然本發明已以實施例揭露如上,然其並非用=限定 本發明,任何所屬技術領域中具有通常知識者在不脫離 本發明之精神和範®内’當可作些許之更動與卿,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 圖1是習知之射頻識別標籤系統的標籤讀取機與射頻識 別標籤的示意圖。 圖2是FM0調變方式的資料符號波形圖。 圖3緣示來自射頻識別標籤之典型訊號之一個無雜訊 波形與兩個有雜訊波形。 圖4是依據本發明一實施例之讀取射頻識別標籤方法 之流程圖。 圖5是依據本發明一實施例之時脈回復階段之詳細流 程圖。 圖6A是本發明一實施例中有雜訊的接收訊號之訊號 矩形圖。 圖6B-6D是本發明一實施例中無雜訊的接收訊號之 圖形矩形圖。 1334576 P65950028TW 22800twf.d〇c/i 個傳==本發明一實施例的時脈回復方法以及兩 資料圖形與 圖8繪示依據本發明一實施例之標準前導 數個接收到的前導資料之波形。 圖9繪示依據本發明一 法之比較。 實施例之同步方法以及傳統方The η of the method, according to the decoding method of the embodiment and the two traditional parties: the horizontal axis of the =12 is the matching of the received standard iron signal, ',,'; the consideration is the previous prior art part The conventional decoding method mentioned. The adaptive Viterbi algorithm is the decoding method according to the embodiment. As shown in Fig. 12, the adaptive Viterbi algorithm has the lowest whether the signal-to-noise ratio is low or high. The bit error rate. In addition to the method of reading the radio frequency identification tag in the above embodiment, the present month also includes a system for receiving the radio frequency identification tag. Referring to FIG. a, the system Goo is another embodiment according to the present invention. The system includes a receiver 1301, a reply unit 13〇2, a synchronization unit 13〇3, and a code unit 1304. The reply unit 1302 is coupled to the receiver 13〇1. The synchronization unit 1303 is coupled to The reply unit 13〇2 is coupled to the synchronization unit 1303. The receiver 13〇1 receives the label information from the radio frequency identification tag, and the reply unit 1302 statistically responds to the label signal according to the pulse length of the label signal. Clock rate. The synchronization unit 1303 performs a signal between the preset signal pattern and a preamble data in the label signal according to the data clock rate. The resolution of the signal is 16 334 576 368 P f f 疋 疋 疋 疋 疋 疋 疋 疋 疋 ^ ^ 跟随 跟随The data ^1 box should be dimensioned = the ratio of the method is decoded by the Wei box. ^ In fact, the system 1300 follows the method of labeling the process as shown in Figure 4. Figure m ^ needs to know m 〇uw 瓜瓜矛王- There is a close corresponding md '°n 301 between the systems 1300 to perform step 410. The reply unit 1302 executes the step execution synchronization unit 1303 to perform step 430. The decoding unit 1304 executes the (10)\ because the details of the steps 410 to 440 have been simplified in the previous embodiment' and will not be described again. According to the comprehensive fall, the method and system provided by the present invention use the data rate of the statistical statistics of the Weidai signal, using the signal pattern correlation 2, the synchronization point position 'and the adaptive Viterbi continuation method in the extended lattice map. Information frame. Therefore, the method and system provided by the present invention have the effect of decoding the noise signal from the printed RFID tag. The adaptive Viterbi algorithm can to some extent compensate for the error of the data clock drift and the synchronization point of the frame. Therefore, it is not necessary to calculate the time scale of the data in the recovery phase and calculate the time of the bet in the time phase. This helps overcome the problem of drifting the data of the printed RFID tag: drift. The performance of the method and system provided by the present invention approximates the maxjmum dec〇der, ml decoder. The method and system provided by the present invention are much less complex than the maximum likelihood decoder, since the method and system of the present invention only tracks symbol boundaries, rather than the calculations performed by the maximum likelihood decoder. The boundary of a symbol. In addition, although the method and system of the above embodiment are only used in the reading and printing of the prints, the present invention can be read on the 雠 义 _ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , For example, ^ is not printed _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ It is not intended to limit the invention, and any person skilled in the art can make a few changes without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is attached to the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1 is a schematic diagram of a tag reader and a radio frequency identification tag of a conventional RFID tag system. Fig. 2 is a data symbol waveform diagram of an FM0 modulation mode. A noise-free waveform and two noise-carrying waveforms of a typical signal from a radio frequency identification tag. Figure 4 is a flow chart of a method for reading a radio frequency identification tag according to an embodiment of the present invention. Figure 5 is an embodiment of the present invention. Figure 6A is a signal rectangle diagram of a received signal with noise in an embodiment of the present invention. Figures 6B-6D are graphic rectangles of a received signal without noise in an embodiment of the present invention. 1334576 P65950028TW 22800twf.d〇c/i transmission == clock recovery method and two data patterns according to an embodiment of the present invention and FIG. 8 illustrates a standard preamble of received preamble data according to an embodiment of the present invention. Waveforms Figure 9 illustrates a comparison of a method in accordance with the present invention.

圖10 圖11 展格子圖。 繪示一個傳統FM0調變方式之格子圖。 繪示依據本發明一實施例之FM〇調變方式之擴 方法:L繪示依據本發明一實施例之解碼方法以及傳統 統之祕本糾—實關之讀取峨識職籤之系 【主要元件符號說明】 • 101 :射頻識別標籤讀取機 1〇2_104 :射頻識別標籤 S1〜S4 ·貧料符號圖形 301〜303 :標籤訊號波形 305:標籤訊號之中間線 驟410〜糊、421〜424 :讀取射賴別標藏方法之流程圖步 800 :標準前導資料圖形 801〜803 :接收到的前導資料之波形 1334576 P65950028TW 22800twf.doc/n 1000 :傳統FMO調變方式之格子圖 1010 :傳統格子路徑 1100 :本發明一實施例之FM0調變方式之擴展格子圖 1110 :擴展格子圖之格子路徑 1101 :擴展格子圖之節點 1102 :擴展格子圖之支線 1103 :擴展格子圖之超級節點 1300 :讀取射頻識別標籤之系統 1301 :接收器 1302 :回復單元 1303 :同步單元 1304 :解碼單元Figure 10 Figure 11 Exhibition grid. A grid diagram of a conventional FM0 modulation method is shown. The method for expanding the FM modulation mode according to an embodiment of the present invention is as follows: L illustrates a decoding method according to an embodiment of the present invention, and a system for reading the identification of the secrets of the traditional system. Main component symbol description] • 101: RFID tag reader 1〇2_104: Radio frequency identification tag S1~S4 · Barrier symbol pattern 301~303: Tag signal waveform 305: The middle line of the tag signal is 410~ paste, 421~ 424: Flow chart for reading the screening method Step 800: Standard leading data pattern 801 to 803: Waveform of the received leading data 1334576 P65950028TW 22800twf.doc/n 1000: Grid diagram 1010 of the conventional FMO modulation method: Conventional trellis path 1100: an extended trellis diagram 1110 of an FM0 modulation method according to an embodiment of the present invention: a trellis path 1101 of an extended trellis diagram: a node 1102 of an extended trellis diagram: a branch 1103 of an extended trellis diagram: a super node 1300 of an extended trellis diagram : System 1301 for reading a radio frequency identification tag: receiver 1302: reply unit 1303: synchronization unit 1304: decoding unit

2020

Claims (1)

P65950028TW 22800twf.doc/n 十、申請專利範圍: 1.一種讀取射頻識別標籤之方法,包括: 從該射頻識別標籤接收一標籤訊號; 根據該標籤訊號之脈衝長度之2 復-資料_速率,; 了目外戴訊魂回 ,據該資料時脈速率進行1設訊軸料該 2中-,資料之間的訊號蝴運算以決定在該標氧= =跟隨該前導資料的―資料訊框之訊框同步點的位置—δ; 於擴展格子圖上使用一適應性維特比演算法解石馬 ’其中該擴展格子圖上之節點與支線之排列^ 據該育料時脈速率的可能變化。 ' 方」:!請ί利?㈣1項所述之讀取射頻識別標籤之 、/、中回復該資料時脈速率之步驟更包括. 籤訊號之脈衝長度統計產生一訊號矩形圖; ㈣藤一夕個圖形矩形圖’其中每一該些圖形矩形圖均根 =應:預設時脈速率之標籤訊號之調變方式之脈衝長度 1° I生’該魏設時脈速枝在—預設範®内依照預 S又之速率間隔而選取; =該訊號矩形圖與每_該些圖形矩形圖比較;以及 k擇最接近該訊號矩形圖的該圖形矩形圖所對應的 該預設時脈輯當鱗脈速率。 ⑺專利範圍帛2項所述之讀取娜識別標籤之 八中該預設範圍為該射頻識別標籤之資料時脈速率之 21 1334576 P65950028TW 22800twf.doc/n 能變動範圍。 4·如申睛專利範圍第2項所述之讀取射頻識別標籤之 方法,其中每一該些圖形矩形圖代表對應該預設時脈逮率 之‘籤訊號之調變方式之脈衝長度之無雜訊機率統計。 5·如申請專利範圍第2項所述之讀取射頻識別標籤之 方法,其中每一該些圖形矩形圖包括對應該預設時脈速率P65950028TW 22800twf.doc/n X. Patent Application Range: 1. A method for reading a radio frequency identification tag, comprising: receiving a tag signal from the radio frequency identification tag; according to a pulse length of the tag signal, a complex data rate In addition to the data, the clock rate is 1 and the signal is calculated between the data to determine the data frame in the target oxygen = = follow the leading data Position of the synchronization point of the frame—δ; using an adaptive Viterbi algorithm on the extended trellis diagram to solve the arrangement of nodes and branches on the extended trellis diagram. . '方」:! Please please? (4) The step of reading the RFID tag of the radio frequency identification tag described in item 1 includes: the pulse length of the signing signal generates a rectangular chart of the signal; (4) the graphic rectangle of each of the vines The average of these graphic rectangles should be: the pulse length of the modulation signal of the preset clock rate is 1°, and the speed of the pulse is in the preset range. Selecting the interval; = comparing the signal rectangle to each of the graphic rectangles; and k selecting the preset clock corresponding to the graphic rectangle corresponding to the signal rectangle to be the scale rate. (7) The scope of the read-only identification tag in the patent range 帛2 item is the range of the clock rate of the RFID tag 21 1334576 P65950028TW 22800twf.doc/n. 4. The method for reading a radio frequency identification tag according to claim 2, wherein each of the graphic rectangles represents a pulse length corresponding to a modulation mode of the signature pulse rate of the preset clock capture rate. No noise probability statistics. 5. The method of reading a radio frequency identification tag as described in claim 2, wherein each of the graphical rectangles includes a corresponding clock rate 之標籤訊號之調變方式之脈衝長度之無雜訊機率統計所產 生的高士剖面圖。 6·如申凊專利範圍第1項所述之讀取射頻識別標籤之 方法,其中該預設訊號圖形為該射頻識別標籤所遵循的標 準規格所定義的前導資料圖形。 ^ 7.如申請專利範㈣1項所狀讀取射賴別標鐵之 方法,其中該訊號相關運算為視窗滑動相關運算。 ' 8.如申凊專利範圍第丨項所述之讀取射頻識別標籤之 方法,其中該些節點構成多個超級節點,而且每一該些 級節點包括多個該些節點。 ° 9. 如申請專利範圍帛8項所述之讀轉頻識別標鐵之 方^’其中該些超級節點之排列為根據該資料訊框之調變 10. 如申凊專利範圍第8項所述之讀取射頻識別標鐵之 其中每-該些超級節點之中的節點排列為根 枓時脈速率之可能變化。 貝 11. 如申料職圍第8項所述之讀轉綱別標鐵之 ,其中每一該些超級節點之該些節點與多個預設時脈 22 1334576 P65950028TW 2280〇t\yf.doc/n 速率之間有一一對應之關係。 之方法H〜專她圍帛11項所狀讀取棚識別標鐵 廣之速率間二:設時脈速率是在一預設範圍内依照預 之方法利範圍第12項所述之讀取射頻削標籤 時脈速率:可::範圍包含該資料訊框期間之内該資料The Coats profile generated by the no-noise probability of the pulse length of the modulation signal of the tag signal. 6. The method of reading a radio frequency identification tag according to claim 1, wherein the preset signal pattern is a preamble data pattern defined by a standard specification followed by the radio frequency identification tag. ^ 7. As in the case of applying for a patent (4), the method of reading the singularity of the singularity is the window sliding correlation operation. 8. The method of reading a radio frequency identification tag as described in claim </ RTI> wherein the plurality of nodes constitute a plurality of super nodes, and each of the plurality of nodes comprises a plurality of the nodes. ° 9. As described in the scope of application for patent application 帛8, the frequency of the reading and decoding identification of the standard ^', the arrangement of the super nodes is based on the modulation of the data frame 10. As claimed in the eighth paragraph of the patent scope Each of the super nodes in which the radio frequency identification tag is read is arranged as a possible change in the root clock rate. Bay 11. As stated in Item 8 of the application, the readings of the superscripts, the nodes of each of the super nodes and the plurality of preset clocks 22 1334576 P65950028TW 2280〇t\yf.doc There is a one-to-one correspondence between the /n rates. Method H~Specially she encircles 11 items to read the shed identification mark between the two rates: set the clock rate to be within a preset range according to the pre-determined method range Cut label clock rate: can:: range contains the data during the data frame period 方、、#·,4=u她圍帛8項所叙讀取射賴別標籤之 解碼該資料訊框的步驟更包括: ㈣比I去 展狄ft該些超級節點視為一個單一節點,並且在該擴Fang,,#·,4=u The steps of decoding the data frame of the 8 readings and readings of the index are further included: (4) Compared with I, the super nodes are regarded as a single node. And in the expansion —在該第-格子路徑上之每一該些超級節點之中各取— 即點所連接成的財奸雜巾,糾最 子路徑;以及 料之弟—格 訊框2第二格子路徑所指示的一個符號做為解碼該資料 15.—種讀取射頻識別標籤之系統,包括: 一接收器,接收來自一射頻識別標籤之標籤訊號. -回復單元,祕至該接收器,用以根據該標^ 脈衝長度之統計回復該標籤訊號之資料時脈速率;°唬之 一同步單元,耦接至該回復單元,用以根據該 逮率進行一預設訊號圖形與該標籤訊號中咨’、盼脈 别等賁料之間 23 1334576 P65950028TW 2280〇twf.d〇c/Q 算以決定在該標籤訊號中跟_前導資料的 貝枓訊框之訊框同步點的位置;以及 你田tf70,耦接至該同步單元,在一擴展格子圖上 使用一適應性維特比演算法解瑪該資料訊框,其中該擴展 格子圖上之節點與支線之㈣是根據㈣料時脈速的可 能變化。 夕备Γ如:ί專利範圍第15項所述之讀取射頻識別標籤 之糸統’/、巾該回復單元根據該標籤喊之脈衝長度統計 產生一訊號矩形圖。 17. 如申請專利範圍第16項所述之讀取射頻識別標氧 之系統’其中該回復單神產生多個形矩形圖,每一該 些圖形矩形®均根據對應—預設時脈速率之標籤訊號之調 變方式之脈衝長度統計而產生。 18. 如申%專利|&amp;圍帛17項所述之讀取射頻識別標鐵 之系統’其中該些預設時脈速率是在—預設範圍内依照預 設之速率間隔而選取。 19. 如申%專利範圍第18項所述之讀取射頻識別標籤 之系統,其中該預設範圍為該射頻識別標籤之資料時脈速率 之可能變動範圍。 20. 如申請專利範圍第17項所述之讀取射頻識別標籤 之系統,其中該回復單元將該訊號矩形圖與每一該些圖形 矩形圖比較,並選擇最接近該訊號矩形圖的該圖形矩形圖 所對應的該預設時脈速率當作該資料時脈速率。 21. 如申凊專利範圍第17項所述之讀取射頻識別標籤 24 1334576 P65950028TW 22800twf.doc/n 之系統 其中母-該些圖形矩形圖代表對應該預設脈速 率之標籤訊號之職方式之脈衝長度之無雜訊機率統計。 / 22·如申明專利範圍第^項所述之讀取射頻識別標籤 ^糸統’其中每—該些圖形矩形圖包括對應該預設時脈速 ^之標籤訊號之調變方式之脈衝長度之絲訊機率統計所 產生的高士剖面圖。 23·如巾明專利㈣第15項所述之讀取射頻識別標鐵 揭ΐ統’其中該預設訊號圖形為該射頻識別標籤所遵循的 祙準規格所定義的前導資料圖形。 夕备申4專她圍帛23項所述之讀取射躺別標籤 '一,其中該訊號相關運算為視窗滑動相關運算。 之备^如㈣15項所述之讀轉頻識別標籤 糸、洗,其中該些節點構成多個超級節點, 超級節點找乡健,點。 二 =6.如巾凊專職圍第25項所述之讀取射繼別標鐵 變^气纟中該些超級喊點之排列為根據該資料訊框之調 之系絲7.如+清—專利範圍帛25項所述之讀取射頻識別標籤 資料^其巾每—該些超級節點之中的節點排列為根據該 貧枓4脈速率之可能變化。 之系絲8如申4專概圍第25項所述之讀取射頻識別標籤 脈读圭,其中每一該些超級節點之該些節點與多個預設時 率之間有一一對應之關係。 .如申睛專職圍第28項所狀讀取軸識別標籤 25 1334576 P65950028TW 22800twfdoc/n 之系統’其中該些預設時脈速率是在一預設範圍内依照預 設之速率間隔所選取。- each of the super nodes on the first trellis path is taken - that is, the traitorous smear that is connected by the point, correcting the most sub-path; and the younger brother - the second trellis path of the frame 2 A symbol of the indication is used to decode the data. The system for reading a radio frequency identification tag comprises: a receiver for receiving a tag signal from a radio frequency identification tag. - a reply unit, secret to the receiver, for The statistical value of the pulse length of the label replies to the data rate of the label signal; a sync unit coupled to the reply unit for performing an initial signal pattern and the label signal according to the capture rate Between the hope and the other, 23 1334576 P65950028TW 2280〇twf.d〇c/Q is calculated to determine the position of the frame synchronization point of the frame with the _ preamble in the tag signal; and your field tf70 And coupled to the synchronization unit, using an adaptive Viterbi algorithm to solve the data frame on an extended trellis diagram, wherein the node and the branch line (4) on the extended trellis diagram are based on the (four) material clock speed Variety. For example, the system for reading a radio frequency identification tag as described in claim 15 of the patent scope&apos;, the reply unit generates a signal rectangle according to the pulse length of the tag. 17. The system for reading radio frequency identification of oxygen as described in claim 16 wherein the reply single god generates a plurality of rectangular shapes, each of which is based on a corresponding-predetermined clock rate. The pulse length of the modulation mode of the tag signal is generated by counting the pulse length. 18. The system for reading a radio frequency identification tag as described in claim 17 and wherein the predetermined clock rates are selected within a predetermined range according to a predetermined rate interval. 19. The system for reading a radio frequency identification tag according to claim 18, wherein the predetermined range is a possible variation range of a data clock rate of the radio frequency identification tag. 20. The system for reading a radio frequency identification tag according to claim 17, wherein the response unit compares the signal rectangle to each of the graphic rectangles and selects the graphic closest to the signal rectangle. The preset clock rate corresponding to the histogram is taken as the data clock rate of the data. 21. The system for reading the radio frequency identification tag 24 1334576 P65950028 TW 22800 twf.doc/n as described in claim 17 of the patent scope, wherein the graphic rectangles represent the manner of the tag signal corresponding to the preset pulse rate. Pulse length no-noise probability statistics. / 22· Read the radio frequency identification tag as described in the scope of claim 4, wherein each of the graphic rectangles includes a pulse length corresponding to the modulation mode of the tag signal of the preset clock speed ^ The Coats profile generated by the statistics of the probability of the wire. 23. The reading of the radio frequency identification standard as described in Item 15 of the Japanese Patent (4), wherein the preset signal pattern is a leading data pattern defined by the standard specification of the RFID tag. Xi Xi Shen 4 specializes in her reading of the 23-part reading and lying label '1, where the signal-related operation is a window sliding correlation operation. The preparation of the frequency conversion identification label as described in item (4), 糸, wash, wherein the nodes constitute a plurality of super nodes, the super node finds the home health, point. 2 = 6. As for the reading of the 25th item of the full-time enclosure, the array of the super-screams is arranged according to the tune of the data frame. - The reading of radio frequency identification tag data as described in the scope of patent ^25, the nodes of each of the super nodes are arranged according to the possible variation of the rate of the poor 4 pulse. The wire 8 is read by the radio frequency identification tag as described in Item 25 of the application of the fourth aspect, wherein each of the nodes of the super nodes has a corresponding correspondence with a plurality of preset time rates. relationship. For example, the system for reading the axis identification label 25 1334576 P65950028TW 22800twfdoc/n, wherein the preset clock rates are selected within a preset range according to the preset rate interval. / 30.如申請專利範圍第29項所述之讀取射頻識別標籤 之系統,其中該預設範圍包含該資料訊框期間之内該資料 時脈速率之可能變化。 Μ 如申5月專觀圍第25項所述之讀取射賴別標籤 ’其巾該解解元將每—該些軌節點視為-個單 所且在該擴展格子® _對應所有可~能狀態轉移的 第㈣、錯H㈣徑,然後在該 路k上之母—該些超級節點之中各取一从 4 馬該資料訊 t所有格子路徑巾,找出最小錯誤H所連接 第二格子路獲所指示的一個符號做為解傻’然The system for reading a radio frequency identification tag as described in claim 29, wherein the predetermined range includes a possible change in the clock rate of the data during the data frame period. Μ For example, the reading of the shooting label mentioned in the 25th item of the special observation section of May's towel will be regarded as a single item for each of the track nodes and the corresponding one in the extended lattice ® _ ~ The fourth (4), the wrong H (four) path of the state transition, and then the mother of the road k - each of the super nodes takes one from 4 horses of the information t all the lattice path towel, find the smallest error H connected The second lattice road is given a symbol as a solution. 2626
TW96129846A 2006-12-05 2007-08-13 Method and system for reading rfid tags TWI334576B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86854306P 2006-12-05 2006-12-05

Publications (2)

Publication Number Publication Date
TW200825941A TW200825941A (en) 2008-06-16
TWI334576B true TWI334576B (en) 2010-12-11

Family

ID=39547372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96129846A TWI334576B (en) 2006-12-05 2007-08-13 Method and system for reading rfid tags

Country Status (2)

Country Link
CN (1) CN101196978B (en)
TW (1) TWI334576B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986217B2 (en) * 2007-09-27 2011-07-26 Intel Corporation Mitigating processing latency in RFID exchanges
CN102932105B (en) * 2012-10-31 2016-02-17 上海坤锐电子科技有限公司 Based on the coding/decoding method that the FM0 of viterbi algorithm encodes
US20220125011A1 (en) * 2019-02-08 2022-04-28 Allflex Australia Pty Ltd Electronic animal identification tag reader synchronisation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687293B1 (en) * 2000-06-23 2004-02-03 Microchip Technology Incorporated Method, system and apparatus for calibrating a pulse position modulation (PPM) decoder to a PPM signal
CN100339861C (en) * 2002-08-01 2007-09-26 株式会社日立制作所 Interrogator of moving body identification device
CN1288589C (en) * 2004-10-21 2006-12-06 复旦大学 Power self-adaptive variable data rate communicator and method based on RF identification
CN1790367B (en) * 2005-12-28 2010-08-25 北京邮电大学 Modulation and demodulation method for electronic label detection of RFID system

Also Published As

Publication number Publication date
CN101196978B (en) 2010-09-15
TW200825941A (en) 2008-06-16
CN101196978A (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US7742547B2 (en) Method and system for reading RFID tags
EP0565759B1 (en) Method and device for decoding F2F signals read from a magnetic data carrier
CN102027538B (en) Word synchronization for servo read signals in tape drives
Shen et al. Separation of multiple passive RFID signals using software defined radio
EP2337290A2 (en) Signal processing device and method
TWI334576B (en) Method and system for reading rfid tags
CN101621488A (en) Method for synchronizing DVB-S2 system receiver full-mode physical layer frame
MX2008012725A (en) Method and system for information transmission.
JP2011254157A (en) Information processing device, reception method and radio communication system
KR20120025747A (en) Method and apparatus of a passive radio frequency identification reader digital demodulation for manchester subcarrier signal
Liu et al. Digital correlation demodulator design for RFID reader receiver
JP2009206594A (en) Clock regeneration circuit
JP3185716B2 (en) Demodulator
CN103106379B (en) A kind of non-contact IC card with robustness receives counting method
CN109818713A (en) Miller code coding/decoding method, device and the equipment and storage medium of subcarrier modulation
KR100876284B1 (en) Method and system receiving tag signal from rfid reader machine
CN104767701B (en) Whole frame data demodulation method and circuit with SOF, EOF and EGT
Liwicki et al. Reliable online stroke recovery from offline data with the data-embedding pen
CN106921466A (en) The method and apparatus decoded to FM0 codings
JP4551180B2 (en) ASK demodulator and radio apparatus using the same
US9203667B2 (en) Circuit and method for removing frequency offset, and communication apparatus
KR20110059878A (en) Semiconductor device
US8073082B2 (en) Mirror sub-carrier demodulation circuit, receiving device with the same, and mirror sub-carrier demodulating method
Boyle et al. Detecting signal structure from randomly-sampled data
Bae et al. Study on the demodulation structure of reader receiver in a passive RFID environment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees