TWI333958B - - Google Patents

Download PDF

Info

Publication number
TWI333958B
TWI333958B TW092122744A TW92122744A TWI333958B TW I333958 B TWI333958 B TW I333958B TW 092122744 A TW092122744 A TW 092122744A TW 92122744 A TW92122744 A TW 92122744A TW I333958 B TWI333958 B TW I333958B
Authority
TW
Taiwan
Prior art keywords
gpc3
peptide
cell
fmoc
hla
Prior art date
Application number
TW092122744A
Other languages
Chinese (zh)
Other versions
TW200413406A (en
Inventor
Nishimura Yasuharu
Nakatsura Tetsuya
Yusuke Nakamura
Original Assignee
Oncotherapy Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncotherapy Science Inc filed Critical Oncotherapy Science Inc
Publication of TW200413406A publication Critical patent/TW200413406A/en
Application granted granted Critical
Publication of TWI333958B publication Critical patent/TWI333958B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4725Proteoglycans, e.g. aggreccan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney

Description

1333958 玫、發明說明: 【發明所屬之技術領域】 本發明係關於在做為癌疫苗上有效之新顆胜肽、包含該 胜肽之治療及預防腫瘤用之醫藥以及肝細胞癌之新類診斷 劑。 【先前技術】 原發性肝細胞癌(HCC)為世界中最常見之惡性疾病之 一。由於B型及C型肝炎之世界流行,在亞洲及歐洲諸國中 HCC 之發生率急劇上升(Schafer, D.F·及 Sorrell, M.F, Lancet 353,1253-1257 (1999)),若考慮從 HCC 感染至發病 之長潛在期’可以預測今後50年該傾向將持續。病況惡化 之HCC之癒後不佳,亟需新的治療戰略。 另一方面’近年隨著分子生物學及腫瘤免疫學之進展, 鐘定出多個編碼可被腫瘤回應性細胞傷害性T淋巴球(Ctl) 識別之腫瘤抗原及抗原性胜肽之基因,因而提高抗原特異 性腫瘤免疫療法之可能性(Boon,T.及van der Bruggen,P., J.1333958 玫,发明说明: [Technical Field of the Invention] The present invention relates to a novel peptide which is effective as a cancer vaccine, a medicine for treating and preventing tumors, and a new type of diagnosis of hepatocellular carcinoma including the peptide Agent. [Prior Art] Primary hepatocellular carcinoma (HCC) is one of the most common malignant diseases in the world. Due to the worldwide prevalence of hepatitis B and C, the incidence of HCC has risen sharply in Asia and Europe (Schafer, DF· and Sorrell, MF, Lancet 353, 1253-1257 (1999)), if considering HCC infection to The long-term potential period of onset can predict that this trend will continue in the next 50 years. The worsening the HCC of the disease, the new treatment strategy is urgently needed. On the other hand, in recent years, with the advancement of molecular biology and tumor immunology, a number of genes encoding tumor antigens and antigenic peptides recognizable by tumor-responsive cytotoxic T lymphocytes (Ctl) have been identified. Increase the likelihood of antigen-specific tumor immunotherapy (Boon, T. and van der Bruggen, P., J.

Exp. Med. 183, 725-729 (1996); Rosenberg, S.A., J. Natl. Cancer Inst. 88, 1635-1644 (1996)) « 〇c-胎兒性蛋白質(AFP),雖然在正常組織中僅於胎生期表 現’但冒報告在多個HCC中表現會被再活化(Fujiyama, S. et al. Oncology 62, 57-63 (2002))。又,小鼠及人類之T細胞庫 (repertory)可以識別來自被第I類MHC分子呈現之AFP之胜 肽抗原決定部位(Butterfield,L.H. et al.,Cancer Res. 59, 3134-3142 , Jr Vollmer, C.M. et al., Cancer Res. 59, 3064- 87544 『1333958 株中GPC3之異所性表現顯示會抑制群落形成活性。再者, 最近Xiang等人報告GPC3在人類乳癌中亦未表現(Xiang,Y. Y_ et al., Oncogene 20,7408-7412 (2001))。此等資料暗示 GPC3在此等癌中可做為細胞增殖之負調節因子。亦即,在 從成人之GPC3陽性組織生成之癌中,GPC3之表現於腫瘤進 行期間降低,該降低被認為在惡性之表現型之發生上扮有 某種角色。 相反地,HCC之情況,腫瘤從只在胎兒期表現GPC3之肝 臟組織中生成,在轉為惡性時,GPC3有被再度表現之傾 向。在最近數年間,已明白細胞表面硫酸乙醯肝素蛋白聚 糖(Heparan sulfate proteoglycan,HSPG)為纖維母細胞增殖 因子(FGF)及Wnt等乙醯肝素結合性成長因子表現最適活性 所必需(Yayon,A. et al.,Cell 64,841-848 (1991);Exp. Med. 183, 725-729 (1996); Rosenberg, SA, J. Natl. Cancer Inst. 88, 1635-1644 (1996)) « 〇c-fetal protein (AFP), although only in normal tissues In the fetal life performance 'but the report will be reactivated in multiple HCC (Fujiyama, S. et al. Oncology 62, 57-63 (2002)). In addition, mouse and human T cell repertorys can recognize peptide epitopes from AFPs presented by MHC class I molecules (Butterfield, LH et al., Cancer Res. 59, 3134-3142, Jr Vollmer) , CM et al., Cancer Res. 59, 3064- 87544 『1333958 The heterogeneous performance of GPC3 in plants showed inhibition of community formation activity. Furthermore, Xiang et al. recently reported that GPC3 was not expressed in human breast cancer (Xiang, Y. Y_ et al., Oncogene 20, 7408-7412 (2001). These data suggest that GPC3 can be used as a negative regulator of cell proliferation in these cancers, that is, from GPC3-positive tissues in adults. In cancer, the expression of GPC3 is reduced during tumor progression, which is thought to play a role in the occurrence of malignant phenotypes. Conversely, in the case of HCC, tumors are generated from liver tissue that only expresses GPC3 in the fetal period. GPC3 has a tendency to be re-expressed when it is converted to malignant. In recent years, it has been known that Heparan sulfate proteoglycan (HSPG) is a fibroblast growth factor (FGF) and Wnt. B The heparin-binding growth factor is required for optimal activity (Yayon, A. et al., Cell 64, 841-848 (1991);

Schlessinger,J. et al.,Cell 83, 357-360(1995))。肝素蛋白聚 糖(Glypican,GPC)為GPI錨定型細胞表面HSPG家族。在腫 瘤形成與GPC3表現度之關係方面,其之組織特異性差異被 推測係由於GPC3在各組織中用不同的方法調節成長及生 存因子。GPC3被認為至少在此等器官中係以癌胎兒性蛋白 質之方式運作。一般而言,癌胎兒性蛋白質在腫瘤之惡化 上雖不具有重要之角色,但可做為腫瘤標記或免疫治療之 標的使用(Coggin,J. H. Jr., CRC Critical Reviews in Oncology/Hematology 5, 37-55 (1992) ; Matsuura, H.及 Hakomori S.-I., Proc. Natl. Acad. Sci. USA. 82, 6517-6521 (1985)))。GPC3之癌胎兒性行為是否可被利用於臨床之用 87544 -10- 『1333958 途以及該肝素蛋白聚糖(glypican)之再表現在HCC惡化上是 否重要皆尚待研究。 HCC之治療方法儘管有各種各樣,但與其他癌相較預後 不佳,為難治性癌之一。HCC基本上具有肝硬變,其係由 於原本患者之肝機能就不佳,且縱使治療一個癌,又從另 一處產生癌。其需要緊急及新穎的治療戰略。若能開發以 在HCC中特異性高表現之抗原做為標的之免疫療法,將可 以得到對於正常器官沒有傷害,而只有效排除癌之治療 法。又,可以得到對於不論怎樣末期之患者或肝機能不佳 無法進行其他治療之患者亦可使用之治療法。再者,目前 在曰本,為HCC易罹患群之C型肝炎感染者可謂有200萬人 以上。對於此等感染者之HCC之預防,可以使用如此之免 疫療法。雖然已知AFP及PIVKA-II可做為HCC之腫瘤標記, 但有患者未被檢測出之案例,亦有為良性肝疾病之肝硬化 及慢性肝炎之患者成為偽陽性之案例,尤其HCC之早期診 斷相當困難。因此需要供早期診斷HCC用之其他有用腫瘤 標記。 【發明内容】 發明之揭示 本發明者等,依據cDNA微陣列解讀之資料,鑑定出在人 類肝細胞癌中特異性過剩表現之新穎癌胎兒性蛋白質,即 肝素蛋白聚糖3(glypican 3,GPC3),以及發現可以成為免 疫治療之潛在候選標的抗原之新穎胜肽。其次本發明者等 檢測出在HCC患者血清中之可溶性GPC3蛋白質,以及明白Schlessinger, J. et al., Cell 83, 357-360 (1995)). Heparin glycoside (GPC) is a GPI-anchored cell surface HSPG family. In terms of the relationship between tumor formation and GPC3 expression, the tissue-specific differences were presumed to be due to GPC3's different methods of regulating growth and survival factors in each tissue. GPC3 is thought to operate at least in such organs as cancerous fetal proteins. In general, cancerous fetal proteins do not play an important role in tumor progression, but they can be used as targets for tumor markers or immunotherapy (Coggin, JH Jr., CRC Critical Reviews in Oncology/Hematology 5, 37- 55 (1992); Matsuura, H. and Hakomori S.-I., Proc. Natl. Acad. Sci. USA. 82, 6517-6521 (1985))). Whether the cancerous behavior of GPC3 can be used for clinical use 87544 -10- 『1333958 and the re-expression of this heparin (glypican) in HCC deterioration is still important to study. Although there are various treatments for HCC, it has a poor prognosis compared with other cancers and is one of refractory cancers. HCC basically has cirrhosis, which is due to the poor liver function of the original patient, and even if it treats one cancer, it produces cancer from another. It requires an urgent and innovative treatment strategy. If immunotherapy with specific high-performance antigens in HCC can be developed, it will be possible to obtain a treatment that does not harm normal organs and only effectively excludes cancer. Further, it is possible to obtain a treatment method which can be used for patients who are unable to perform other treatments regardless of the end stage patient or liver function. Furthermore, there are currently more than 2 million people infected with hepatitis C in the HCC population. Such immunotherapy can be used for the prevention of HCC in such infected persons. Although AFP and PIVKA-II are known to be used as tumor markers for HCC, there are cases in which patients have not been detected, and cases in which patients with liver cirrhosis and chronic hepatitis of benign liver disease become false positives, especially early in HCC. Diagnosis is quite difficult. Therefore, other useful tumor markers for early diagnosis of HCC are needed. Disclosure of the Invention The present inventors have identified a novel cancer-preferred protein, glypican 3 (GPC3), which is specifically expressed in human hepatocellular carcinoma based on the data of cDNA microarray interpretation. ), and discover novel peptides that can be potential candidates for immunotherapy. Next, the inventors and the like detected soluble GPC3 protein in the serum of HCC patients, and understood

87544 -11 - 1333958 GPC3可以成為HCC之新穎腫瘤標記。 亦即,本發明提供以下(1)~(18) (1) 一種胜肽,其包含序列編號5〜16之任一者所示之胺 基酸序列。 (2) —種具有細胞傷害性T細胞誘導能力之胜肽,其為序 列編號5〜16之任一者所示之胺基酸序列中1個或2個胺基酸 被取代或附加者。 (3) 如上述(2)之胜肽,其中從N末端算起第二個胺基酸 為苯丙胺酸、酷胺酸、甲硫胺酸或色胺酸。 (4) 如上述(2)或(3)之胜肽,其中C端之胺基酸為苯丙胺 酸、白胺酸、異白胺酸、色胺酸或曱硫胺酸。 (5) —種供腫瘤之治療及/或預防用之醫藥,其包含一種 以上(1)至(4)中任一項之胜肽。 (6) —種外來體(exosome),其將包含(1)至(4)中任一項之 胜肽及HLA分子之複合體呈現於表面。 (7) 如上述(6)之外來體,其中HLA分子為HLA-A24。 (8) 如(7)之外來體,其中HLA分子為HLA-A*2402。 (9) 一種細胞傷害性T細胞誘導能力高之抗原呈現細胞 之誘導方法,其係使用上述(1)至(4)中任一項之胜肽進行該 抗原呈現細胞之誘導。 (10) —種細胞傷害性T細胞誘導能力高之抗原呈現細胞 之誘導方法,其包含將編碼肝素蛋白聚糖-3 (GPC3)蛋白質 或其之部分胜肽之基因導入抗原呈現細胞中,其中該部分 胜肽包含上述(1)至(4)中任一項之胜肽。 87544 -12- 1333958 (π) —種誘導細胞傷害性τ細胞之方法,其中使用(1)至 (4)中任一項之胜肽進行該誘導。 (12) —種細胞傷害性τ細胞,其係用(1)至(4)中任一項之 胜肽誘導並單離而得。 (13) —種抗原呈現細胞,其係呈現HLA與(1)至(4)中任一 項之胜肽之複合體。 (14) 如上述(13)之抗原呈現細胞,其係藉由上述(9)或 (10)之方法誘導。 (15) —種肝細胞癌(HCC)之診斷劑,其包含針對gPC32 抗體。 (16) —種HCC之診斷方法’其包含使檢體與針對ope] 之抗體接觸。 (17) 如上述(16)之方法’其另包含定量檢體中之gpC3。 (18) —種診斷HCC用之套組,其包含針對GPC3之抗體。 本說明書包含為本案之優先權基礎之曰本專利申請案 2002·245 831號之說明書及/或圖式記載之内容。 【實施方式】 實施發明之最佳形態 本發明名使用Okabe,Η.等人在(Cancer Res. 61, 2129-2137 (2001))中記載之方法,依據cDna微陣列,鑑定 出在人類肝細胞癌中特異性過剩表現之新穎癌胎兒性蛋白 質’即肝素蛋白聚糖-3 (GPC3)。檢測血清中之GPC3之結果 中,確認在肝細胞癌以外之癌例如胃、食道、肺、乳房、 %臟、膽管及結腸等癌中GPC3為陰性,在肝硬變及慢性肝 87544 -13- 1333958 炎等良性肝疾病中亦為陰性。再者,本發明者確認外科治 療後之肝細胞癌患者中,術後血清中之GPC3為陰性。 人類GPC3蛋白質之胺基酸序列為公知,例如被登錄在 GenBank之蛋白質資料庫中入籍編號為NP 004475者,若為 本技藝人士將易於取得。本發明者繼而慮及在活體中各種 蛋白質被呈現在抗原呈現細胞上之情況,係於被分解成9個 胺基酸組成之肽(九肽)後被呈現,因此合成具有針對 HLA-A24(具有此型者占日本人全體之60%)之結合基元 (binding motif)且來自GPC3之9個胺基酸或10個胺基酸組成 之部分胜肽。 具有針對HLA-A24之結合基元之胜肽之選擇,可以依據 例如在 J. Immunol., 152,3913, 1994 及 J· Immunol. 155:4307, 1994中記載之方法進行。對於HLA-A24以外之 HLA型,可以同樣方式選擇胜肽。或者使用最近網路上可 利用之軟體,例如在 Parker K. C., J. Immunol. 152, 1994 中 記載者,可以用in silico計算各種胜肽與HLA分子(有時亦被 稱為HLA抗原)之結合親和性。與HLA分子之結合親合性, 例如可以利用上述軟體BIMAS: HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ (Parker, K. C. et. al.,J. Immunol.,152,1994)或者在 Nukaya,I·,Int‘ J. Cancer, 80, 1999中記載之方法推定。 9-聚物及10-聚物胜肽,可依據得到之GPC3蛋白質之全胺 基酸序列,從任意位置合成胜肽。胜肽之合成可以依照在 通常之胜肽化學中使用之方法進行。通常使用之合成方法 87544 -14- 1333958 ^'J Peptide Synthesis, Interscience, New York, 1996; The Proteins, Vol 2, Academic Press Inc.,New York, 1976 ;胜肽 合成,丸善(株),1975 ;胜肽合成之基礎及實驗,丸善(株), 1985 ;醫藥品之開發續第14卷胜肽合成,廣川書店,1991 等文獻;以及國際公開W0 99/67288號等公報中記載者。 HLA分子與胜肽之實際結合,可藉由將可使HLA基因在TAP 缺損之T2或RMA-S細胞株中表現之轉形體與胜肽一起培 育,並用流式細胞光度計定量及測定在細胞表面表現之第I 類 HLA 分子(例如參照 Immunol. Lett. 2002 Aug 1, 83(1):21-30; Immunogenetics, 44:233-241, 1996 及 Nature 346:321-325, 1990) ° 關於HLA分子,為了得到有效之結果,以使用日本人多 數(60%)保有之A24型為較佳,以使用等亞型為更 佳。但是在臨床上,藉由預先調查需要治療之患者之HLA 分子之類型,可以適當選擇與其之結合親和性高,或者藉 由抗原呈現誘導傷害性T細胞(CTL)之能力高之胜肽。再 者,為了得到結合親和性及CTL之謗導能力高之胜肽,可 以天然存在之GPC 3部分胜肽之胺基酸序列為基礎,進行1 或2個胺基酸之取代或附加。除了在天然中被呈現之胜肽之 外,由於已知與既存之HLA分子結合並被呈現之胜肽之序 列之規則性(J. Immunol., 152, 3913,1994; Immunogenetics. 41:178, 1995; J. Immunol. 155:4307, 1994),因此對於得到 之胜肽,較佳依據該規則性進行改變。舉例言之,HLA-A24 結合親和性高者,以使用從胜肽之N末端算起第二個胺基酸 87544 -15 - 1333958 被取代成苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸,且c端之 胺基酸被取代成苯丙胺酸、白胺酸、異白胺酸、色胺酸或 甲硫胺酸之胜肽為較佳。 但是,在胜肽之序列與其他具有機能之内在性或外來性 蛋白質之胺基酸序列之一部分相同之情況,由於可能產生 自體免疫疾病等副作用,或對於特定物質引起過敏症狀, 因此使用可利用之資料庫進行類似性(homology)檢索,並 以避免與其他蛋白質之胺基酸序列一致為較佳。再者,在 類似性檢索中,若顯然亦不存在1個或2個胺基酸不同之胜 肽,則為了提高與HLA分子之結合親和性及/或謗導CTL之 能力而對上述胺基酸序列所做之改變將亦不會產生上述問 題。 如上述與HL A分子之結合親和性高之胜肽,雖然預測做 為有效癌疫苗之可能性高,但對於以具有高結合親和性做 為指標所選擇之候選胜肽而言,必須檢討實際上是否具有 CTL誘導能力。CTL謗導能力之確認,例如藉由謗導具有 HLA分子之抗原呈現細胞(β-淋巴球、巨嗤細胞及樹狀細 胞),具體而言,來自末梢血單核細胞之樹狀細胞等,並於 用胜肽刺激後與CD8陽性細胞混合,然後測定對於標的細 胞之細胞傷害活性。或者依據Nakatsura, Τ.等人 (Eur. J. Immunol. 32, 826-836 (2002))記載之方法,可以從PBMC誘 導胜肽特異性CTL。再者,做為反應系者,可採用被製成 可表現人類HLA分子之轉基因動物(例如 Hum. Immunol. 2000 Aug.; 61(8):764-79 Related Articles, Books, Linkout 87544 -16- 133395887544 -11 - 1333958 GPC3 can be a novel tumor marker for HCC. That is, the present invention provides the following (1) to (18) (1), a peptide comprising the amino acid sequence shown by any one of SEQ ID NOs: 5 to 16. (2) A peptide having cytotoxic T cell inducing ability, wherein one or two amino acids in the amino acid sequence shown in any one of the sequence numbers 5 to 16 are substituted or added. (3) The peptide of (2) above, wherein the second amino acid from the N-terminus is phenylalanine, valine, methionine or tryptophan. (4) The peptide of (2) or (3) above, wherein the amino acid at the C-terminus is amphetamine, leucine, isoleucine, tryptophan or guanidine. (5) A medicine for the treatment and/or prevention of a tumor, which comprises the peptide of any one of the above (1) to (4). (6) An exosomes which exhibit a complex comprising a peptide of any one of (1) to (4) and an HLA molecule on a surface. (7) The exosome of (6) above, wherein the HLA molecule is HLA-A24. (8) Ex vivo according to (7), wherein the HLA molecule is HLA-A*2402. (9) A method for inducing an antigen-presenting cell having a high cytotoxic T cell-inducing ability, which comprises using the peptide of any one of the above (1) to (4) for induction of the antigen-presenting cell. (10) A method for inducing an antigen-presenting cell having a high cytotoxic T cell inducing ability, comprising introducing a gene encoding a heparin proteoglycan-3 (GPC3) protein or a part of the peptide thereof into an antigen-presenting cell, wherein The partial peptide comprises the peptide of any one of the above (1) to (4). 87544 -12- 1333958 (π) A method for inducing cytotoxic tau cells, wherein the induction is carried out using the peptide of any one of (1) to (4). (12) A cytotoxic tau cell which is induced and isolated by the peptide of any one of (1) to (4). (13) An antigen-presenting cell which exhibits a complex of HLA and a peptide of any one of (1) to (4). (14) The antigen-presenting cell of the above (13), which is induced by the method of the above (9) or (10). (15) A diagnostic agent for hepatocellular carcinoma (HCC) comprising an antibody against gPC32. (16) A diagnostic method for HCC, which comprises contacting a sample with an antibody against ope]. (17) The method according to (16) above, which further comprises gpC3 in the quantitative sample. (18) A kit for diagnosing HCC comprising an antibody against GPC3. The present specification contains the contents of the specification and/or drawings of the patent application No. 2002-245 831, which is based on the priority of the present application. [Embodiment] The best mode for carrying out the invention The present invention uses the method described in Okabe, Η. et al. (Cancer Res. 61, 2129-2137 (2001)) to identify human hepatocytes according to the cDna microarray. A novel cancer-preferred protein called heparin proteoglycan-3 (GPC3) that is overexpressed in cancer. In the results of detecting GPC3 in serum, it was confirmed that GPC3 was negative in cancers other than hepatocellular carcinoma such as stomach, esophagus, lung, breast, % visceral, bile duct, and colon, in cirrhosis and chronic liver 87544 -13- 1333958 Also negative in benign liver diseases such as inflammation. Furthermore, the inventors confirmed that GPC3 in the serum of the postoperative patients was negative in hepatocellular carcinoma patients after surgical treatment. The amino acid sequence of the human GPC3 protein is well known, for example, it is registered in GenBank's protein database with a naturalization number of NP 004475, which will be readily available to those skilled in the art. The inventors then take into consideration the fact that various proteins are present on the antigen-presenting cells in the living body, and are present after being decomposed into peptides composed of nine amino acids (nonapeptides), and thus the synthesis has an effect against HLA-A24 ( A binding motif of this type, which accounts for 60% of the total population of Japan, and a partial peptide consisting of 9 amino acids or 10 amino acids of GPC3. The selection of a peptide having a binding motif for HLA-A24 can be carried out according to, for example, the method described in J. Immunol., 152, 3913, 1994 and J. Immunol. 155: 4307, 1994. For HLA types other than HLA-A24, the peptide can be selected in the same manner. Or use the software available on the Internet recently, for example, as described in Parker KC, J. Immunol. 152, 1994, in silico can be used to calculate the binding affinity of various peptides to HLA molecules (sometimes referred to as HLA antigens). Sex. Binding affinity to HLA molecules, for example, the above-mentioned software BIMAS: HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ (Parker, KC et. al., J. Immunol., 152, 1994) or the method described in Nukaya, I., Int' J. Cancer, 80, 1999. The 9-mer and 10-mer peptide can be synthesized from any position depending on the total amino acid sequence of the obtained GPC3 protein. The synthesis of the peptide can be carried out according to the method used in the usual peptide chemistry. Synthetic method commonly used 87574 -14- 1333958 ^'J Peptide Synthesis, Interscience, New York, 1996; The Proteins, Vol 2, Academic Press Inc., New York, 1976; peptide synthesis, Maruzen Co., Ltd., 1975; The basis and experiment of peptide synthesis, Maruzen Co., Ltd., 1985; Development of pharmaceutical products, continued in Volume 14, Winning Peptide Synthesis, Hirokawa Shoten, 1991, etc.; and International Publication WO 99/67288. The actual binding of the HLA molecule to the peptide can be incubated with the peptide by a transformant that can express the HLA gene in the TAP-deficient T2 or RMA-S cell line, and quantified and assayed in the cell by flow cytometry. Surface type I HLA molecules (see, for example, Immunol. Lett. 2002 Aug 1, 83(1): 21-30; Immunogenetics, 44:233-241, 1996 and Nature 346:321-325, 1990) ° About HLA For the numerator, in order to obtain an effective result, it is preferable to use the A24 type which is mostly owned by the Japanese (60%), and it is preferable to use the isotype. However, clinically, by investigating the type of HLA molecule of a patient to be treated in advance, it is possible to appropriately select a peptide having high binding affinity with the antigen or exhibiting a high ability to induce noxious T cells (CTL) by the antigen. Further, in order to obtain a peptide having high binding affinity and high conductivity of CTL, one or two amino acid substitutions or additions may be carried out based on the amino acid sequence of the naturally occurring GPC 3 partial peptide. In addition to the peptides presented in nature, the sequence of the peptides known to bind to and present in the existing HLA molecules is known (J. Immunol., 152, 3913, 1994; Immunogenetics. 41:178, 1995; J. Immunol. 155:4307, 1994), and therefore for the peptide obtained, it is preferred to vary according to the regularity. For example, HLA-A24 binds to a higher affinity to replace the second amino acid 87544 -15 - 1333958 from the N-terminus of the peptide to amphetamine, tyrosine, methionine or color Amino acids, and the c-terminal amino acid is substituted with a peptide of phenylalanine, leucine, isoleucine, tryptophan or methionine. However, in the case where the sequence of the peptide is identical to one of the other amino acid sequences of the functional intrinsic or foreign protein, since it may cause side effects such as autoimmune diseases or cause allergic symptoms to specific substances, the use may be It is preferred to use a database for homology searches and to avoid alignment with amino acid sequences of other proteins. Furthermore, in the similarity search, if it is apparent that one or two amino acid different peptides are not present, the above amine group is used in order to improve the binding affinity to the HLA molecule and/or the ability to induce CTL. Changes in the acid sequence will not cause the above problems. As the above-mentioned peptide with high binding affinity to HL A molecule, although it is predicted that it is highly likely to be an effective cancer vaccine, it is necessary to review the actual candidate peptide selected with high binding affinity as an index. Whether it has CTL induction ability. Confirmation of CTL conductivity, for example, by antigen-presenting cells (β-lymphocytes, giant sputum cells, and dendritic cells) having HLA molecules, specifically, dendritic cells derived from peripheral blood mononuclear cells, And after being stimulated with the peptide, it was mixed with CD8-positive cells, and then the cytotoxic activity against the target cells was determined. Alternatively, peptide-specific CTLs can be induced from PBMCs according to the method described by Nakatsura, Τ. et al. (Eur. J. Immunol. 32, 826-836 (2002)). Further, as a reaction, a transgenic animal which can be expressed as a human HLA molecule can be used (for example, Hum. Immunol. 2000 Aug.; 61(8): 764-79 Related Articles, Books, Linkout 87544 -16- 1333958

Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response., BenMohamed L., Krishnan R., Longmate J.,Auge C·,Low L.,Primus J.,Diamond DJ等記 載者)。細胞傷害活性,例如可以藉由用5iCr等將標的細胞 予以放射標識’然後從標的細胞游離出之放射活性計算。 或者,觀察於負荷胜肽之抗原呈現細胞存在下CTL之產 生。其可藉由測定在培養基上被釋出之IFN-γ及抗IFN-γ單 株抗體所造成之可目視化之點來觀察。 如上述’檢討胜肽之CTL誘導能力之結果顯示從包含以 下序列編號5~ 16所示之胺基酸序列之胜肽選出之九肽或十 肽具有高CTL誘導能力。Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response., BenMohamed L., Krishnan R., Longmate J., Auge C·, Low L ., Primus J., Diamond DJ, etc.). The cytotoxic activity can be calculated, for example, by radiolabeling the target cells with 5iCr or the like and then liberating the radioactivity from the target cells. Alternatively, it is observed that the antigen of the load peptide exhibits the production of CTL in the presence of cells. It can be observed by measuring the visual point of the IFN-γ and anti-IFN-γ monoclonal antibodies released on the medium. As a result of the above-mentioned review of the CTL inducing ability of the peptide, the nonapeptide or decapeptide selected from the peptide containing the amino acid sequence shown in the following SEQ ID NO: 5 to 16 has high CTL inducing ability.

Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序列編號5) Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序列編號6) Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (序列編號7) Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (序列編號 8) Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (序列編號9) Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (序列編號 10) Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (序列編號 11) Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (序列編號 12) Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (序列編號 13) Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (序列編號 14) Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (序列編號 15) Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (序列編號 16) -17- 87544 1333958 本發明另外提供序列編號5~ 16之任一者所示之胺基酸序 列中1個或2個胺基酸被取代或附加,且具有細胞傷害性τ 細胞誘導能力之胜肽。1個或2個胺基酸之取代或附加,只 要不與其他蛋白質之胺基酸序列一致且具有CTL誘導能力 即可。尤其關於胺基酸之取代,從N末端算起第二個胺基酸 被取代成苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸,且c端之 胺基酸被取代成苯丙胺酸、白胺酸、異白胺酸、色胺酸或 曱硫胺酸為較佳之例子。 上述本發明之胜肽’可將1種或2種以上組合,並可做為 在身體内誘導CTL之癌疫苗使用。藉由投與本發明之胜 肽’該胜肽以高密度被呈現於抗原呈現細胞之HLa分子 上’绣導出對於被呈現之胜肽與HL A分子之複合體具特異 反應性之CTL,其對於為標的細胞之肝癌細胞之攻擊力 高。或者藉由從被驗者取出樹狀細胞並用本發明之胜肽刺 激,可以得到在細胞表面負荷本發明胜肽之抗原呈現細 胞,藉由將其再度投與被驗者,可以在被驗者體内誘導 CTL ’而提南對於標的細胞之攻擊力。 亦即,本發明提供一種治療腫瘤或預防腫瘤之增殖及轉 移等之醫藥,其包含-種以上本發明之胜月太。又,在活體 及在试f中,柷原呈現細胞藉由本發明胜肽之刺激,藉著 使該胜肽相對於細胞而言以高濃度存在,以與原先被負荷 在該細胞上之胜肽交換,將可容易地進行。因此,與 分子之結合親和性必須高達某種程度以上。 就本發明醫藥而言,I隹·g從士 r 隹了早獨直接投與本發明之胜肽, 87544 ,〇 1333958 但以藉由通常使用之製劑學方法做成製劑化之醫藥組合物 投與為佳。在該場合,除本發明之胜肽之外,可適當包含 通常醫藥使用之載體及賦形劑,而無特殊之限定。Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 5) Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 6) Met-Phe- Lys-Asn-Asn-Tyr-Pro-Ser-Leu (SEQ ID NO: 7) Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (SEQ ID NO: 8) Lys-Phe-Ser-Lys-Asp- Cys-Gly-Arg-Met-Leu (SEQ ID NO: 9) Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (SEQ ID NO: 10) Lys-Tyr-Trp-Arg-Glu-Tyr-Ile- Leu-Ser-Leu (SEQ ID NO: 11) Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (SEQ ID NO: 12) Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu ( SEQ ID NO: 13) Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (SEQ ID NO: 14) Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (SEQ ID NO: 15) Arg- Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (SEQ ID NO: 16) -17- 87544 1333958 The present invention further provides one of the amino acid sequences shown in any one of SEQ ID NOs: 5 to 16. Or 2 amino acids are substituted or added, and have a peptide that induces cytotoxic tau cells. The substitution or addition of one or two amino acids is not consistent with the amino acid sequence of other proteins and has CTL inducing ability. Particularly with regard to the substitution of an amino acid, the second amino acid is substituted with phenylalanine, tyrosine, methionine or tryptophan from the N-terminus, and the amino acid at the c-terminus is substituted with phenylalanine. A preferred example is leucine, isoleucine, tryptophan or guanidine thioglycolic acid. The above-described peptides of the present invention may be used alone or in combination of two or more, and may be used as a cancer vaccine for inducing CTL in the body. By administering the peptide of the present invention, the peptide is present at a high density on the HLa molecule of the antigen-presenting cell, embedding a CTL which is specifically reactive with the complex of the presented peptide and the HL A molecule, It has a high attack power for liver cancer cells that are the target cells. Alternatively, by extracting the dendritic cells from the subject and stimulating with the peptide of the present invention, an antigen-presenting cell which loads the peptide of the present invention on the cell surface can be obtained, and by re-administering it to the subject, the subject can be Inducing CTL in vivo and mentioning the attack power of the target cells. That is, the present invention provides a medicine for treating a tumor or preventing proliferation and metastasis of a tumor, and the like, which comprises the above-mentioned ones of the present invention. Further, in the living body and in the test f, the sputum-producing cells are stimulated by the peptide of the present invention, and the peptide is present in a high concentration relative to the cells to compete with the peptide originally loaded on the cell. Exchange will be easy to carry out. Therefore, the binding affinity to molecules must be above a certain level. In the case of the medicament of the present invention, I隹·g is directly administered to the peptide of the present invention, 87544, 〇1333958, but is formulated into a pharmaceutical composition formulated by a commonly used formulation method. And as well. In this case, in addition to the peptide of the present invention, a carrier and an excipient which are usually used in medicine may be appropriately contained, and are not particularly limited.

以本發明胜肽做為有效成分之治療及/或預防肝細胞癌 用之醫藥,可與佐劑以細胞性免疫上有效之方式一起投 與,亦可與其他抗癌劑等有效成分一起投與,或做成粒子 狀劑型投與。做為佐劑者可以採用文獻(Clin. Microbiol. Rev·, 7:277-289, 1994)中記載者。又,可考慮採用微脂粒製 劑、結合於直徑數μιη之珠粒上之粒子狀製劑及結合於脂質 之製劑等。關於投與方法,可以利用經口投與、皮内投與、 皮下投與及靜脈注射等,亦可全身投與或局部投與至成為 目的之腫瘤之近旁。本發明之胜肽之投與量雖可視待治療 之疾病、患者之年齡、體重及投與方法等而適當地調整, 但通常.為0.001 mg〜1000 mg,以0.001 mg〜1000 mg為較佳, 以0.1 mg〜10 mg為更佳,較佳數日至數月投與1次。若為本 技藝人士將能適當選擇適宜的投與量。 又或者本發明提供一種將本發明之胜肽與HL A分子之複 合體呈現至表面之所謂「外來體」之細胞内小胞。外來體 之調製雖可以使用詳細記載於特表平1卜5 10507號及特表 2000-512161號中之方法,但較佳使用從為治療及/或預防對 象之受驗者所得之抗原呈現細胞來調製。本發明之外來 體,可與上述本發明之胜肽一樣地做成癌疫苗接種。 關於HLA分子,必須為與需要治療及/或預防之被驗者之 HLA分子同型者。例如在日本人之情況,做成HLA-A24, 87544 -19- 1333958 尤其是HLA-A*2402多數適當。 本發明又提供一種使用本發明之胜肽誘導抗原呈現細胞 之方法。將樹狀細胞從末梢單核球誘導後,使其在試管中 或活體中與本發明之胜肽接觸(刺激),可以誘導抗原呈現細 胞。將本發明之胜肽投與被驗者之情況,在被驗者之體内, 負荷本發明胜肤之抗原呈現細胞被誘導。或者可將本發明 之胜肽在試管中負荷於抗原呈現細胞後,做成疫苗投與被 驗者。 本發明又提供一種細胞傷害性T細胞誘導能力高之抗原 呈現細胞之誘導方法,其包含將編碼GPC3蛋白質或其之部 分胜肽(包含上述本發明之胜肽)之基因導入抗原呈現細胞 中。導入之基因可為DNA之形態或RNA之形態。關於導入 之方法可以使用通常進行之微脂粒感染法(lip〇fecti〇n)、電 穿孔法及磷酸鈣法等各種方法,沒有特殊限定。具體而言, 例如如在 Cancer Res_, 56:5672,1996 ; J. Immunol·, 161:5607’ 1998; J. Exp. Med.,184:465,1996 及特表 2000- 509281號中揭示者進行。藉由將基因導入抗原呈現細胞, 該基因在細胞中經過轉錄及轉譯等處理後,所得到之蛋白 質經第I類或第II類HLA之加工及呈現路徑,可呈現該部分 胜肽。 本發明再者提供一種使用上述本發明胜肽誘導CTL之方 法。將本發明之胜肽投與被驗者之情況,在被驗者之體内 CTL被誘導,以及以肝細胞癌細胞為標的之免疫力被增 強。或者可以使用所謂「將來自被驗者之抗原呈現細胞及 •20-The medicine for treating and/or preventing hepatocellular carcinoma using the peptide of the present invention as an active ingredient can be administered together with an adjuvant in a manner effective for cellular immunity, and can also be administered together with other active ingredients such as an anticancer agent. And, or into a granular dosage form. As an adjuvant, those described in the literature (Clin. Microbiol. Rev., 7:277-289, 1994) can be used. Further, a liposome preparation, a particulate preparation which is bound to beads having a diameter of several μη, a preparation which is bound to a lipid, and the like can be considered. The administration method can be carried out by oral administration, intradermal administration, subcutaneous administration, intravenous injection, etc., or can be administered systemically or locally to the target tumor. The dosage of the peptide of the present invention may be appropriately adjusted depending on the disease to be treated, the age, body weight, and administration method of the patient, but usually it is 0.001 mg to 1000 mg, preferably 0.001 mg to 1000 mg. It is preferably 0.1 mg to 10 mg, preferably 1 day to several months. If the skilled person is to be able to properly select the appropriate amount of investment. Still alternatively, the present invention provides an intracellular small cell which is a so-called "exosome" which presents a complex of the peptide of the present invention and an HL A molecule to the surface. For the preparation of the foreign body, the method described in detail in JP-A No. 5, 10,507 and JP-A No. 2000-512161 can be used, but it is preferred to use an antigen-presenting cell obtained from a subject for treatment and/or prevention. To modulate. The exosome of the present invention can be made into a cancer vaccination in the same manner as the above-described peptide of the present invention. Regarding the HLA molecule, it must be the same type as the HLA molecule of the subject in need of treatment and/or prevention. For example, in the case of the Japanese, it is appropriate to make HLA-A24, 87544 -19- 1333958, especially HLA-A*2402. The present invention further provides a method of inducing antigen-presenting cells using the peptide of the present invention. After the dendritic cells are induced from the peripheral mononuclear cells, they are contacted (stimulated) with the peptide of the present invention in a test tube or in a living body, and the antigen-presenting cells can be induced. In the case where the peptide of the present invention is administered to a subject, in the subject, the antigen-presenting cells loaded with the skin of the present invention are induced. Alternatively, the peptide of the present invention may be loaded into an antigen-presenting cell in a test tube, and then a vaccine is administered to the subject. Further, the present invention provides a method for inducing antigen-presenting cells having high cytotoxic T cell inducing ability, which comprises introducing a gene encoding a GPC3 protein or a partial peptide thereof (including the above-described peptide of the present invention) into an antigen-presenting cell. The introduced gene may be in the form of DNA or in the form of RNA. The method of introduction can be carried out by various methods such as a lipofective method (lip 〇 〇 。), an electroporation method, and a calcium phosphate method which are usually carried out, and is not particularly limited. Specifically, for example, as disclosed in Cancer Res_, 56: 5672, 1996; J. Immunol., 161: 5607' 1998; J. Exp. Med., 184: 465, 1996 and Special Table 2000-509281 . By introducing a gene into an antigen-presenting cell, the gene is subjected to transcription, translation, and the like in the cell, and the obtained protein is subjected to processing and presentation of the class I or class II HLA to present the peptide. The present invention further provides a method for inducing CTL using the above-described peptide of the present invention. When the peptide of the present invention is administered to a subject, CTL is induced in the subject, and immunity against hepatocyte cancer cells is enhanced. Or you can use the so-called "presentation of antigens from the subject and cells."

87544 1333958 CD8陽性細胞或末梢血液單核球,在試管中與本發明之胜 肽接觸(刺激),誘導CTL後給予被驗者」之活體外治療方法。 本發明另外提供使用本發明之胜肽所誘導且被單離之細 胞傷害性T細胞。基於呈現本發明胜肽之抗原呈現細胞之刺 激所誘導之細胞傷害性T細胞,較佳來自為治療及/或預防 對象之被驗者,以抗腫瘤效果為目的時,其可單獨或與包 含本發明之胜肽或外來體等之其他醫藥一起投與。87544 1333958 CD8-positive cells or peripheral blood mononuclear spheres are contacted with a peptide of the present invention in a test tube (stimulation), and an in vitro treatment method is administered to a subject after induction of CTL. The present invention further provides cytotoxic T cells induced by the peptide of the present invention and isolated. The cytotoxic T cells induced by the stimulation of the antigen presenting the peptide of the present invention, preferably from a subject who is a subject for treatment and/or prevention, may be used alone or in combination for the purpose of antitumor effect. The other peptides such as the peptide or the exosome of the present invention are administered together.

再者,本發明提供呈現HLA分子與本發明之胜肽之複合 體之抗原呈現細胞。藉由與編碼本發明之胜肽、包含本發 明胜肽之GPC3蛋白質或其之部分胜肽之基因接觸所得到 之該抗原呈現細胞,較佳來自為治療及/或預防對象之被驗 者,其可單獨,或與包含本發明之胜肽、外來體或細胞傷 害性T細胞之其他醫藥一起做成疫苗投與。Further, the present invention provides an antigen-presenting cell which exhibits a complex of an HLA molecule and a peptide of the present invention. The antigen-presenting cell obtained by contacting the gene encoding the peptide of the present invention, the GPC3 protein comprising the peptide of the present invention or a partial peptide thereof, preferably from a subject for treatment and/or prevention, It can be administered as a vaccine either alone or in combination with other pharmaceuticals comprising the peptide, exosomes or cytotoxic T cells of the invention.

本發明另外提供包含針對GPC3之抗體之肝細胞癌診斷 劑。針對GPC3之抗體可為多株或單株抗體之任一者,可以 藉由本技藝人士公知之方法(例如參照「新生化學實驗講座 1,蛋白質1,389-406,東京化學同人」)調製。GPC3蛋白 質,其之胺基酸序列如上述為公知,可以依據該胺基酸序 列,用通常之蛋白質表現技術製造,或者可以利用市售者 (Santa Cruz, CA)。使用市售GPC3之情況,較佳於需要時使 用SDS-OutTM (十二基硫酸鈉沉澱試劑;從PIERCE,The present invention further provides a hepatocellular carcinoma diagnostic agent comprising an antibody against GPC3. The antibody against GPC3 may be any of a plurality of strains or a single antibody, and can be prepared by a method known to those skilled in the art (for example, refer to "New Chemistry Experiment Lecture 1, Protein 1, 389-406, Tokyo Chemical Co., Ltd."). The GPC3 protein, whose amino acid sequence is known as described above, can be produced by a usual protein expression technique depending on the amino acid sequence, or can be used by a commercially available person (Santa Cruz, CA). In the case of commercially available GPC3, it is preferred to use SDS-OutTM (sodium dodecyl sulfate precipitation reagent; from PIERCE, if necessary)

Rockford,IL購入)除去SDS後再使用。又,GPC3之部分胜 肽,可以從GPC3之胺基酸序列選擇適當的部分序列,並用 通常之胜肽合成技術製造。 87544 -21 - 1333958 基因’並導入小氣骨髓瘤細胞中而調製。又,人類抗體可 藉由將小鼠之免疫球蛋白基因換為人類之基因,然後用 GPC3蛋白質使該小鼠免疫而調製。 在本發明之診斷劑中,抗體之濃度沒有限定,例如可以1 pg/ml之濃度使用。在診斷劑中,除了上述針對GPC3之抗 體之外,需要時可含有藥學上容許之載體等。Rockford, IL purchased) used after removing SDS. Further, a partial peptide of GPC3 can be selected from an amino acid sequence of GPC3 and prepared by a conventional peptide synthesis technique. 87544 -21 - 1333958 Gene' was introduced into small air myeloma cells and modulated. Further, human antibodies can be prepared by replacing the mouse immunoglobulin gene with a human gene and then immunizing the mouse with GPC3 protein. In the diagnostic agent of the present invention, the concentration of the antibody is not limited, and for example, it can be used at a concentration of 1 pg/ml. In the diagnostic agent, in addition to the above-mentioned antibody against GPC3, a pharmaceutically acceptable carrier or the like may be contained as needed.

本發明另外提供一種肝細胞癌之診斷方法,其包含使檢 體與針對GPC3之抗體接觸。該診斷方法可以另外包含定量 檢體中之GPC3。在本發明中,檢體為從有罹患HCC之虞之 被驗者中得到之血清、唾液及尿等,其中以血清為特佳。 檢體與上述抗體之接觸,可依據在該領域中通常所用之方 法進行。又,供診斷用之反應可在凹穴等之液相中進行, 或者可將針對GPC3之抗體固定在固相支持體上進行。在該 情況中,藉由與用未罹患HCC之正常檢體或判明為HCC之 檢體所預先製作之標準值比較,可以判定所測得之值是否 為HCC陽性。又,診斷之時,較佳測定多個HCC患者及健 康人之血清中之GPC3量並設定臨限值(cut-off index)。 本發明之診斷方法,除了可用於診斷是否罹患HCC之 外,可以在療程之各階段進行,以確認對於HCC之治療效 果。 再者,本發明提供一種診斷HCC用之套组,其包含針對 GPC3之抗體。該套組除了包含針對GPC3之抗體之外尚可包 含二次抗體、供定量用之標準檢體及緩衝液等。 以下雖列舉實施例更詳細地說明本發明,但本發明並不 87544 -24- 1333958 被此等實施例所限。 [實施例1]在HCC中特異性過剩表現之GPC3基因之鑑定 如同先前之報告藉由cDNA微陣列決定基因表現之模式 (Okabe,H. et al·, Cancer Res. 61,2129-2137(2001))。從進 行肝切除術之20名患者中,得到原發性HCC及對應之非癌 性肝臟組織。其中10例為B型肝炎表面抗原陽性,10例為C 型肝炎病毒(HCV)陽性,沒有感染HBV及HCV二者之病例。 在HBV陽性者及HCV陽性者中,沒有年齡、性別、分化程 度、血管浸潤及腫瘤階段方面之差異。製作包含從National Center for Biotechnology Information之資料庫中選出之 23,040種cE)NA之如「染色體組廣度」之cDNA微陣列。比 較在HCC及對應之非癌性肝臟組織間之表現模式以及探索 在HCC中特異性地過剩表現之基因,結果鑑定出為免疫治 療HCC患者之候選劑且或許為理想標的之GPC3。在20例 HCC之16例中,在癌組織中GPC3 mRNA之表現比在非癌性 組織中之表現高5倍(圖1)。亦即,GPC3在大部分HCC中會 過剩表現,且與B型肝炎病毒(HBV)或HCV感染無關。另一 方面,GPC3 mRNA在胎盤、胎兒肝臟、胎兒肺及胎兒腎臟 中高度表現,在成人之大部分組織中表現低下(圖1)。此等 GPC3相關資料與依據南方點潰研究所發表者一致(21111,2· W. et al., Gut 48, 558-564 (2001) ; Hsu. H. C. et al., Cancer Res. 57, 5179-5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998))。從該結果可以明白GPC3與a -胎兒蛋 白質(AFP)同樣,在HCC中為新穎的癌胎兒性抗原。 87544 -25 - 1333958 [實施例2]在人類HCC細胞系中GPC3 mRNA及HLA-A24之 表現The invention further provides a method of diagnosing hepatocellular carcinoma comprising contacting a sample with an antibody against GPC3. The diagnostic method may additionally comprise GPC3 in a quantitative sample. In the present invention, the sample is serum, saliva, urine, and the like obtained from a subject suffering from HCC, and serum is particularly preferable. The contact of the sample with the above antibody can be carried out according to the methods generally used in the field. Further, the reaction for diagnosis may be carried out in a liquid phase such as a cavity, or the antibody against GPC3 may be immobilized on a solid support. In this case, it is possible to determine whether or not the measured value is HCC positive by comparison with a standard value pre-produced with a normal specimen that does not have HCC or a specimen that is judged to be HCC. Further, at the time of diagnosis, it is preferred to measure the amount of GPC3 in the serum of a plurality of HCC patients and healthy persons and set a cut-off index. The diagnostic method of the present invention, in addition to being useful for diagnosing whether or not suffering from HCC, can be performed at various stages of the course of treatment to confirm the therapeutic effect on HCC. Furthermore, the present invention provides a kit for diagnosing HCC comprising an antibody against GPC3. The kit may contain, in addition to the antibody against GPC3, a secondary antibody, a standard sample for quantification, a buffer, and the like. The invention will now be described in more detail by way of examples, but the invention is not limited by the examples. [Example 1] Identification of GPC3 gene with specific excess expression in HCC As previously reported, the pattern of gene expression was determined by cDNA microarray (Okabe, H. et al., Cancer Res. 61, 2129-2137 (2001) )). Primary HCC and corresponding non-cancerous liver tissue were obtained from 20 patients undergoing hepatectomy. Among them, 10 cases were positive for hepatitis B surface antigen, 10 cases were positive for hepatitis C virus (HCV), and there were no cases of HBV and HCV infection. Among HBV-positive and HCV-positive individuals, there were no differences in age, gender, degree of differentiation, vascular invasion, and tumor stage. A cDNA microarray containing "radionomic diversity" of 23,040 cE)NAs selected from a database of the National Center for Biotechnology Information was produced. Comparing the performance patterns between HCC and corresponding non-cancerous liver tissues and exploring genes that are specifically overexpressed in HCC, the results identified GPC3, which is a candidate for immunotherapy for HCC patients and perhaps the ideal target. In 16 of 20 HCC cases, GPC3 mRNA expression was 5 times higher in cancer tissues than in non-cancerous tissues (Fig. 1). That is, GPC3 is excessively expressed in most HCCs and is not associated with hepatitis B virus (HBV) or HCV infection. On the other hand, GPC3 mRNA is highly expressed in the placenta, fetal liver, fetal lung, and fetal kidney, and is low in most tissues of adults (Fig. 1). These GPC3-related data are consistent with those published by the Southern Point Institute (21111, 2·W. et al., Gut 48, 558-564 (2001); Hsu. HC et al., Cancer Res. 57, 5179- 5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998)). From this result, it is understood that GPC3 is a novel cancer fetal antigen in HCC, similarly to a-fetal protein (AFP). 87544 -25 - 1333958 [Example 2] Expression of GPC3 mRNA and HLA-A24 in human HCC cell line

為了選擇供CTL測定用之標的HCC細胞系,藉由使用反 錄-PCR(RT-PCR)之GPC3 mRNA表現,使用抗第I類HLA (w6/32,IgG2a)或抗 HLA-A24 (IgG2)單株抗體(VERITAS,In order to select the target HCC cell line for CTL assay, anti-class I HLA (w6/32, IgG2a) or anti-HLA-A24 (IgG2) was used by using GPC3 mRNA expression by reverse transcription-PCR (RT-PCR). Individual antibody (VERITAS,

東京)以及與FITC結合之山羊抗小鼠IgG (ICN/C APPEL, Aurora,OH)之免疫染色,以及流式細胞光度計,檢討HLA-第I類及-A24之表現。為HCC細胞系之Hep G2、Hep 3B、PLC/ PRF/5及HuH-7從東北大學加齡醫學研究所醫用細胞資源 中心得到。又,SK-Hep-Ι由久留米大學之K. Jtoh博士提供。 RT-PCR依照公知之方法(例如Nakatsura, T. et al·,The immunostaining of goat anti-mouse IgG (ICN/C APPEL, Aurora, OH) combined with FITC, and flow cytometry, review the performance of HLA-Class I and -A24. Hep G2, Hep 3B, PLC/PRF/5 and HuH-7, which are HCC cell lines, were obtained from the Medical Cell Resource Center of the Institute of Ageing Medicine, Tohoku University. Also, SK-Hep-Ι was provided by Dr. K. Jtoh of the University of Kurume. RT-PCR is according to well-known methods (eg Nakatsura, T. et al.,

Biochem. Biophys. Res. Commun. 281, 936-944 (2001))進 行。設計增幅939 bp片段之GPC3基因特異性PCR引子。使 用該引子進行RT-PCR反應,其包含94°C/5分鐘之初期變性 以及於58°C之黏接溫度之30個增幅循環。所用之GPC3 PCRBiochem. Biophys. Res. Commun. 281, 936-944 (2001)). A GPC3 gene-specific PCR primer for the 939 bp fragment was designed. This primer was used for the RT-PCR reaction, which contained an initial denaturation at 94 ° C / 5 minutes and 30 amplification cycles at a bonding temperature of 58 ° C. GPC3 PCR used

引子序列為: 意義引子:5’-GTTACTGCAATGTGGTCATGC-3'(序列編號 1) 反義引子:5,-CTGGTGCCCAGCACATGT-3'(序歹 J 編號 2) 供對照實驗用之/3 -肌動蛋白PCR引子序列 意義引子:S'-CCTCGCCTTTGCCGATCC-S1 (序列編號 3) 反義引子:5,-GGATCTTCATGAGGTAGTCAGTC-3,(序列編 號4) 〇The primer sequence is: Meaning primer: 5'-GTTACTGCAATGTGGTCATGC-3' (SEQ ID NO: 1) Antisense primer: 5,-CTGGTGCCCAGCACATGT-3' (Sequence 歹J No. 2) /3 - Actin PCR primer for control experiments Sequence Meaning Primer: S'-CCTCGCCTTTGCCGATCC-S1 (SEQ ID NO: 3) Antisense primer: 5, -GGATCTTCATGAGGTAGTCAGTC-3, (SEQ ID NO: 4) 〇

藉由為對照之/3 -肌動蛋白mRNA標準化後,比較在HCC 87544 -26- 1333958 細胞系中GPC3 mRNA之表現。 結果,在HepG2、Hep3B及HuH-7 HCC細胞系中顯示GPC3 mRNA強力表現,在PLC/PRF/5細胞系中顯示中等程度之表 現,在SK-Hep-Ι中未見到如此之表現(圖2)。又,雖然HepG2 及SK-Hep-1雖表現HLA-A24,但Hep3B及HuH-7未表現 HLA-A24。The performance of GPC3 mRNA in the HCC 87544 -26- 1333958 cell line was compared by normalization to the control /3 -actin mRNA. As a result, GPC3 mRNA was strongly expressed in HepG2, Hep3B, and HuH-7 HCC cell lines, and moderately expressed in the PLC/PRF/5 cell line, and no such expression was observed in SK-Hep-Ι (Fig. 2). Further, although HepG2 and SK-Hep-1 exhibited HLA-A24, Hep3B and HuH-7 did not exhibit HLA-A24.

[實施例3]藉由末梢血單核球(PBMC)之刺激誘導腫瘤回應 性CTL 依據先行技術(Kubo, R.T. et al·,J. Immunol. 152,3913-3924 (1994)),探索被預測會與HLA-A24分子結合之來自 GPC3之胜肽,並合成及使用12種不同的胜肽(表1)。此等胜 肽為使用Fmoc/PyBOP法合成者(參照下述參考例1〜12),或 從biologica(東京)購入。胜肽之純度,用HPLC確認任一者 皆超過95%。 87544 27- a,和斜龄如-"今屮"-醤卡_盔~牮翕b-v"^薛泽恭驷薛il庠琢111^^241^551&斜远溆谇~011^蹀噼奔忽。 87544 ^^%^CTUf^— 4/12 4/12 2/12 6α2 5/12 2/12 7/12 3/12 1 OPC3 έ- 49 2 GPC3 41-49 3 GPC3 129-137 私 GPC3 1400-157 5 GPC3 247-256 6 GPC3 260-268 7 G^C3 294-303 8 GPC3 298-306 9 GPC3 313-321 10 GPC3 360-3600 UoPG4ori 12 GPC3 521—530 SFFSSPQL 24 FFORLOPGL 36 MFKNNYPSL 20 FrDVSLYP 24 KFSKDCGRML 40 WYOSYOoGr240 ICYWREYPSr 400 EYILSLEEL 330 IYDMENVLL 200 AYYPEDLFI 60 FYSALPGYI 60 HFLAELAYDL 72 + + + ?· 入s GPC3薛斧 + + + + + + + + 3 十 + + + + + + + + + + + + + + + + + + 3/S ,2/8 3/S 3/8 3/S 3/8 3/S 1/8 2/8 3/S 3/8 4/8 -28- 5 6 HLA-A24It^Hcpt 蜂 CTUf·^^ ^au_S^PBMCf^fcTL~#^ ¾GPC3 薛斧坌绛衿HLA->24l%^HCpe 蜂~PBMC 庠芩 HLA-A24^i?>}f 溆沖;ti^CTLif 朵-# 1333958 得到知情同意書(informed consent)後,從熊本大學醫學 部外科學第二講座中正在治療之HLA-A24+ HCC患者得到 30 ml血液樣品,如先前之報告(Nakatsura,T. et al·,Eur. J. Immunol. 32, 826-836 (2002)),藉由 Ficoll-Conray密度梯度 離心法單離出PBMC。對於具有HLA-A24結合基元之來自肝 素蛋白聚糖-3(glypican-3)之12種胜肽(對應於表1,1~12 號:序列編號5~16),檢討從8名HLA-A24+HCC患者(病人 1~8)得到之PBMC誘導HLA-A24拘束性及腫瘤回應性之 CTL之能力(圖3,表1)。由PBMC誘導胜肽特異性CTL之方 法,使用先前報告之方法(Nakatsura,T. et al.,Eur. J. Immunol. 3 2, 826-836 (2002))。CTL之表面表現型藉由使用 FITC-結合之抗-CD3、-CD4或-CD8單株抗體(Nitirei,東京) 之直接免疫螢光染色檢討。為了決定執行細胞(effector cell)及HLA拘束性,於培養開始時,添加各20 pg/ml之抗 -HLA-第 I類(W6/32, IgG2a)、抗-HLA-A24 (0041HA, IgG2a)、抗-CD8 (Nu-Ts/c,IgG2a) ' 抗-HLA-DR (H-DR-1, IgG2a)及抗-CD4 (Nu-Th/I,IgGl)單株抗體。使用抗-CD13 (MCS-2,IgG2a)及抗-CD14 (JML-H14,IgGl)單株抗體做為 同型對照組。3〜4星期後,此等CTL株之數目,與PBMC培 養前之數目相較,增加至約10倍。繼而藉由6小時之51Cr釋 出測定檢討此等CTL株對於HCC細胞株之細胞傷害活性》將 結果示於圖3及表1中。96種CTL株中33種(34.4%)顯示對於 HLA-A24+ GPC3+之HepG2之細胞傷害活性,it對於 HLA-A24· GPC3 +之 Hep3B 及 HuH-7 以及 HLA-A24+ GPC3·之 87544 -29- 1333958 SK-Hep-l之傷害活性更強。此等細胞傷害性,顯示胜肽特 異性,且由於會被抗-HLA-第I類、抗-CD8或抗-HLA-A24 單株抗體抑制,因此顯示此等T細胞回應由HLA-A24拘束性 之CD8+CTL擔任。將各胜肽及在各患者中之CTL誘導率示 於表1中。此等結果顯示來自GPC3之12種胜肽之全部皆具 有CTL誘導能力,為HLA-A24拘束性且對來自GPC3之胜肽 具特異性之CD8+CTL株在所有8名HCC患者中皆被誘導出。 [實施例4]在HCC中GPC3蛋白質之表現[Example 3] Tumor-responsive CTL induced by stimulation of peripheral blood mononuclear sphere (PBMC) Based on prior art (Kubo, RT et al., J. Immunol. 152, 3913-3924 (1994)), exploration was predicted The peptide derived from GPC3 was bound to the HLA-A24 molecule, and 12 different peptides were synthesized and used (Table 1). These peptides were synthesized using the Fmoc/PyBOP method (see Reference Examples 1 to 12 below) or purchased from biologica (Tokyo). The purity of the peptide was confirmed by HPLC to be more than 95%. 87544 27- a, and the age of the slope as -"今屮"-醤卡_helmet~牮翕b-v"^薛泽恭驷薛il庠琢111^^241^551& oblique 溆谇~011^蹀I am rushing. 87544 ^^%^CTUf^— 4/12 4/12 2/12 6α2 5/12 2/12 7/12 3/12 1 OPC3 έ- 49 2 GPC3 41-49 3 GPC3 129-137 Private GPC3 1400-157 5 GPC3 247-256 6 GPC3 260-268 7 G^C3 294-303 8 GPC3 298-306 9 GPC3 313-321 10 GPC3 360-3600 UoPG4ori 12 GPC3 521-530 SFFSSPQL 24 FFORLOPGL 36 MFKNNYPSL 20 FrDVSLYP 24 KFSKDCGRML 40 WYOSYOoGr240 ICYWREYPSr 400 EYILSLEEL 330 IYDMENVLL 200 AYYPEDLFI 60 FYSALPGYI 60 HFLAELAYDL 72 + + + ?· s GPC3 Xue Axe + + + + + + + + 3 10 + + + + + + + + + + + + + + + + + + 3 /S ,2/8 3/S 3/8 3/S 3/8 3/S 1/8 2/8 3/S 3/8 4/8 -28- 5 6 HLA-A24It^Hcpt Bee CTUf·^ ^ ^au_S^PBMCf^fcTL~#^ 3⁄4GPC3 Xuexu坌绛衿HLA->24l%^HCpe Bee~PBMC 庠芩HLA-A24^i?>}f 溆冲;ti^CTLif朵-# 1333958 After informed consent, 30 ml blood samples were obtained from HLA-A24+ HCC patients being treated in the second lecture of the Department of Surgery at Kumamoto University, as previously reported (Nakatsura, T. et al., Eur. J) Immunol. 32, 826-836 (2002)), PBMC were isolated by Ficoll-Conray density gradient centrifugation. For 12 peptides derived from heparin-3 (glypican-3) with HLA-A24 binding motif (corresponding to Table 1, No. 1~12: SEQ ID NO: 5-16), review from 8 HLA- The ability of PBMCs from A24+HCC patients (patients 1-8) to induce HLA-A24 binding and tumor-responsive CTLs (Fig. 3, Table 1). A method for inducing a peptide-specific CTL by PBMC using the previously reported method (Nakatsura, T. et al., Eur. J. Immunol. 3 2, 826-836 (2002)). The surface phenotype of CTL was reviewed by direct immunofluorescence staining using FITC-conjugated anti-CD3, -CD4 or -CD8 monoclonal antibodies (Nitirei, Tokyo). In order to determine the effector cell and HLA binding, 20 pg/ml of each anti-HLA-class I (W6/32, IgG2a), anti-HLA-A24 (0041HA, IgG2a) was added at the beginning of the culture. , anti-CD8 (Nu-Ts/c, IgG2a) 'anti-HLA-DR (H-DR-1, IgG2a) and anti-CD4 (Nu-Th/I, IgGl) monoclonal antibodies. Anti-CD13 (MCS-2, IgG2a) and anti-CD14 (JML-H14, IgGl) monoclonal antibodies were used as isotype control groups. After 3 to 4 weeks, the number of such CTL strains increased to about 10 times compared with the number of PBMCs before culture. The cytotoxic activity of these CTL strains against HCC cell lines was then examined by a 6 hour 51Cr release assay. The results are shown in Figure 3 and Table 1. 33 of the 96 CTL strains (34.4%) showed cytotoxic activity against HLA-A24+ GPC3+ HepG2, which was for Hep3B and HuH-7 of HLA-A24· GPC3 + and 87544 -29- 1333958 of HLA-A24+ GPC3· SK-Hep-l is more active. These cytotoxicity, showing peptide specificity, and due to inhibition by anti-HLA-class I, anti-CD8 or anti-HLA-A24 monoclonal antibodies, indicates that these T cell responses are constrained by HLA-A24 The sex CD8+CTL served. The peptides and CTL induction rates in each patient are shown in Table 1. These results show that all of the 12 peptides from GPC3 have CTL-inducing ability, are HLA-A24 binding and are specific for CD8+ CTL strains specific for GPC3 peptides in all 8 HCC patients. Out. [Example 4] Expression of GPC3 protein in HCC

對於從4名HCC患者中切出之肝臟組織週邊之HCC及非 癌性領域中之GPC3,進行西方點潰解析及免疫組織化學分 析。Western blot analysis and immunohistochemical analysis were performed on HCC around the liver tissue excised from 4 HCC patients and GPC3 in the non-cancerous field.

西方點潰如下述進行。將檢體溶於適量之溶解用緩衝液 (150 mM NaCl' 50 mM Tris' pH 7.4» 1% Nonidet P-40' 1 mM 正釩酸鈉(和光純藥股份有限公司)、1 mM EDTA及蛋白酶 抑制劑錠劑(Amersham,Arlington Heights, IL))中。將溶解 物之上清液在SDS-PAGE凝膠上電泳,並移至硝基纖維素膜 (Bio-Rad, Hercules, CA)上。在含 5%脫脂乳及0.2% Tween 20 之Tris緩衝生理食鹽水中封阻後,將該膜與針對對應於 GPC3 303-464之胺基酸之重組蛋白質所製作之抗-GPC3兔 子多株抗體(Santa Cruz,California) —起培育,用PBS充分 洗淨,使用與過氧化酶結合之抗兔子Ig及與西洋芥末過氧 化 結合之F(ab')2(來自驢子)(Amersham),並使用ECL套組 (Amersham)進行化學發光檢測。 免疫組織化學分析依照該領域公知之方法進行 87544 -30- 1333958 (Nakatsura, T: et al., Biochem. Biophys. Res. Commun. 281, 936-944 (2001))。將包埋在〇CT包埋用化合物中且厚度為4 μπι之組織檢體切片與稀釋成1 : 200之抗-GPC3抗體一起染 色。為了做為陽性對照’將從大腸菌產生之GPC3 303-464 (Santa Cruz,CA)做成附有45 kDa標籤之融合蛋白質,以及 抗-肝素蛋白聚糖-3兔子多株抗體用FluoReporter迷你-生物 素-XX蛋白質標識# 組(F-6347) (Molecular Probes, Inc., Eugene)予以生物素化。將96穴之ELISA平板(Nunc, Denmark)置於4°C 一夜’用在PBS (pH 7.1)中之抗人類GPC3 303-464 (Santa Cruz)包覆,每穴0.1 pg。接下來使用4%牛 血清白蛋白/PBS於室溫將該平板封阻1小時。將陽性對照之 標準樣品及培養上清液與生物素化之抗-GPC3抗體一起添 加,並於室溫一起培養2小時。用PBS洗淨3次後,在各穴中 添加與HRP結合之鏈親和素(streptoavidin) (ENDOGEN, Woburn)。30分鐘之培養後,將平板用PBS洗淨3次,然後添 加TMB基質溶液(ENDOGEN) »為了解析,使用ELISA判讀 器(550型,Bio-Rad)於405 nm測定。 得到知情同意書(informed consent)後’從熊本大學醫學 部外科學第二講座中正在治療之HCC患者得到組織檢體。 在全部4種腫瘤中,得到所謂「GPC3蛋白質之表現在HCC 細胞中與非癌性肝細胞同等程度的低」之結果。因此’ HCC 細胞中GPC3 mRNA表現與GPC3蛋白質表現間出現矛盾。曾 報告GPC3為GPI錨定型膜蛋白質以及為分泌蛋白質(Fnmus J.,Glycobiology 11,19R-23R (2001))。因此’接下來嘗試 87544 -31 - 1333958 檢測被分泌之GPC3蛋白質。 [實施例5]在HCC細胞株之培養上清液及HCC患者血清中 之可溶性GPC3蛋白質之檢測 為了檢討在HepG2之培養上清液中是否存在可溶性GPC3 蛋白質,對於在所定培養期間之後回收之HepG2細胞溶解 物及培養上清液進行西方點潰分析。在無血清培養基中, 於培養6,12,24及48小時後從1 X 105個HepG2細胞調製之The western point collapses as follows. Dissolve the sample in an appropriate amount of dissolution buffer (150 mM NaCl' 50 mM Tris' pH 7.4» 1% Nonidet P-40' 1 mM sodium orthovanadate (Wako Pure Chemical Co., Ltd.), 1 mM EDTA and protease Inhibitor Lozenge (Amersham, Arlington Heights, IL)). The supernatant of the lysate was electrophoresed on an SDS-PAGE gel and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA). After blocking in 5% skim milk and 0.2% Tween 20 in Tris buffered physiological saline, the membrane was incubated with an anti-GPC3 rabbit polyclonal antibody against a recombinant protein corresponding to amino acid of GPC3 303-464 ( Santa Cruz, California) - incubated, washed thoroughly with PBS, using anti-rabbit Ig in combination with peroxidase and F(ab')2 (from scorpion) (Amersham) combined with mustard peroxidation, and using ECL The kit (Amersham) was tested for chemiluminescence. Immunohistochemical analysis was performed according to methods well known in the art 87544 -30- 1333958 (Nakatsura, T: et al., Biochem. Biophys. Res. Commun. 281, 936-944 (2001)). Tissue sections embedded in the 〇CT-embedded compound and having a thickness of 4 μm were stained with an anti-GPC3 antibody diluted to 1:200. In order to serve as a positive control, GPC3 303-464 (Santa Cruz, CA) produced from Escherichia coli was made into a fusion protein with a 45 kDa tag, and anti-heparin proteoglycan-3 rabbit polyclonal antibody was used with FluoReporter mini-bio The prime-XX protein marker # group (F-6347) (Molecular Probes, Inc., Eugene) was biotinylated. A 96-well ELISA plate (Nunc, Denmark) was placed at 4 ° C overnight and coated with anti-human GPC3 303-464 (Santa Cruz) in PBS (pH 7.1) at 0.1 pg per well. The plate was then blocked with 4% bovine serum albumin/PBS for 1 hour at room temperature. The positive control standard sample and the culture supernatant were added together with the biotinylated anti-GPC3 antibody, and cultured together at room temperature for 2 hours. After washing three times with PBS, streptavidin (ENDOGEN, Woburn) which binds to HRP was added to each well. After 30 minutes of incubation, the plate was washed 3 times with PBS, and then TMB substrate solution (ENDOGEN) was added. For analysis, it was measured at 405 nm using an ELISA reader (Model 550, Bio-Rad). After receiving the informed consent, the tissue samples were obtained from HCC patients being treated in the second lecture of the Department of Surgery, Kumamoto University. In all four tumors, the result that the "GPC3 protein is expressed as low as that of non-cancerous hepatocytes in HCC cells" is obtained. Therefore, there is a contradiction between GPC3 mRNA expression and GPC3 protein expression in HCC cells. GPC3 has been reported to be a GPI-anchored membrane protein as well as a secreted protein (Fnmus J., Glycobiology 11, 19R-23R (2001)). Therefore, the next attempt to detect the secreted GPC3 protein was 87544 -31 - 1333958. [Example 5] Detection of soluble GPC3 protein in culture supernatant of HCC cell line and serum of HCC patient In order to examine whether or not soluble GPC3 protein was present in the culture supernatant of HepG2, HepG2 was recovered after the predetermined culture period. Cell lysates and culture supernatants were subjected to Western point collapse analysis. Modulated from 1 X 105 HepG2 cells in serum-free medium after 6, 12, 24 and 48 hours of culture.

細胞溶解物,顯示存在同樣量之60 kDa之GPC3蛋白質(圖4 之第1,3,5及7行)。另一方面,在培養6,12,24及48小 時後之Hep‘G2培養上清液中(1 ml/穴之20 μΐ),60 kDa之 GPC3蛋白質漸增,顯示GPC3蛋白質從HepG2被分泌至培養 上清液中。Cell lysate, showing the same amount of 60 kDa of GPC3 protein (lines 1, 3, 5 and 7 of Figure 4). On the other hand, in the Hep'G2 culture supernatant (1 ml/well 20 μΐ) after 6, 12, 24 and 48 hours of culture, the 60 kDa GPC3 protein was gradually increased, indicating that the GPC3 protein was secreted from HepG2 to Culture the supernatant.

接下來,使用抗-GPC3 303-464抗體及生物素化抗-GPC3 抗體並藉由酵素結合免疫吸著檢查法(ELIS A)進行檢測。使 用對應於GPC3 303-464之市售重組蛋白質,並確認在ELIS A 系統中GPC3之定量之精確度。使用HepG2培養上清液之連 續稀釋液,依據OD資料評價定量GPC3蛋白質之標準曲線。 將1 X 105個HepG2細胞培養24小時後之培養上清液1 ml中 之GPC3蛋白質之濃度定義為1 U/ml。在HepG2培養上清液 之GPC3蛋白質之量比在Hep3B中多,另一方面在SK-Hep-1 中無法檢測出(圖5)。 接下來,進行HCC患者血清中可溶性GPC3蛋白質之檢測 (圖6)。從28名HCC患者中採取血液檢體,從醫療記錄收集 之患者檔案並依據UICC TNM分類決定臨床階段。在患者7 87544 -32- 1333958 (pt7,圖6之第3行)之血清20 μΐ中雖檢測出60 kDa之GPC3 蛋白質之帶,但未從其他2名HCC患者及4名健康供血者之 血清中檢測出。接下來,藉由ELIS A評價28名HCC患者及54 名健康供血者(HD)之血清中GPC3蛋白質之量(圖7)。54名 HD血清中之GPC3蛋白質平均量為0.75 U/ml,標準偏差 (SD)為0.32。在男女間之表現沒有差異,因此在卵巢中GPC3 之弱表現被認為與該系之關係可以忽視。28名HCC患者之 平均值為1.98 U/m卜為了決定血清中GPC3蛋白質之正常上 限值,規定54名HD血清之GPC3蛋白質平均值+3SD,即 1.71,為正常上限值。HCC患者之35.7% (10/28)以及HD之 0% (0/54)為GPC3蛋白質陽性(> 1.71)。HCC患者血清中之 GPC3蛋白質濃度比在HD中之濃度顯著高(p< 0.0001)。在患 者4,5及7中用ELIS A評價之GPC3濃度,如圖6所示分別為 0.94、1.73及69.4 U/ml (表2)。亦即用西方點潰法雖可檢測 出69_4 U/ml之GPC3蛋白質,但無法檢測出1.73 U/ml之 GPC3蛋白質。 從表2之結果可以明白,10名GPC3陽性患者中之2名(患者 6及25)在AFP及PIVKA-II兩方面皆為陰性,其中之一患者 (患者6)被分類為比較初期之UICC第II階段。亦即,有AFP 及PIVKA-II二者皆為陰性之患者中GPC3成為陽性之情 況,因此GPC3顯然可做為HCC之新穎腫瘤標記。 87544 -33 - 1333958 HCC患者28例之血清中之AFP,PIVKA-Π及GPC3之測定結果 2^3mm?m⑽5MMJMMM1FMMMMM M MMM5FM M MM MM M <^56716964536973617071775063696772627262757172635869715969 5X1128 91217181924-26415227161420276251013212328Next, detection was carried out by an enzyme-binding immunosorbent assay (ELIS A) using an anti-GPC3 303-464 antibody and a biotinylated anti-GPC3 antibody. The commercially available recombinant protein corresponding to GPC3 303-464 was used and the quantitative accuracy of GPC3 in the ELIS A system was confirmed. A serial dilution of the supernatant of HepG2 culture was used to evaluate the standard curve of quantitative GPC3 protein based on OD data. The concentration of GPC3 protein in 1 ml of the culture supernatant after incubation of 1 X 105 HepG2 cells for 24 hours was defined as 1 U/ml. The amount of GPC3 protein in the HepG2 culture supernatant was higher than in Hep3B, and on the other hand, it was not detected in SK-Hep-1 (Fig. 5). Next, detection of soluble GPC3 protein in serum of HCC patients was performed (Fig. 6). Blood samples were taken from 28 HCC patients, patient records collected from medical records and clinical stages determined according to the UICC TNM classification. In the patient's 7 87544 -32- 1333958 (pt7, line 3 of Figure 6) serum 60 μΐ detected a 60 kDa GPC3 protein band, but not from the other 2 HCC patients and 4 healthy donors serum Detected in. Next, the amount of GPC3 protein in the serum of 28 HCC patients and 54 healthy donors (HD) was evaluated by ELIS A (Fig. 7). The average amount of GPC3 protein in 54 HD serum was 0.75 U/ml with a standard deviation (SD) of 0.32. There is no difference in performance between men and women, so the weak performance of GPC3 in the ovary is considered to be negligible in relation to the department. The mean value of the 28 HCC patients was 1.98 U/m. In order to determine the normal upper limit of the GPC3 protein in the serum, the mean value of the GPC3 protein of the 54 HD serum was +3 SD, i.e., 1.71, which was the normal upper limit. 35.7% (10/28) of HCC patients and 0% (0/54) of HD were positive for GPC3 protein (> 1.71). The concentration of GPC3 protein in the serum of HCC patients was significantly higher than that in HD (p < 0.0001). The GPC3 concentrations evaluated by ELIS A in patients 4, 5 and 7 were 0.94, 1.73 and 69.4 U/ml as shown in Fig. 6, respectively (Table 2). Even though the GPC3 protein of 69_4 U/ml was detected by Western blotting, the GPC3 protein of 1.73 U/ml could not be detected. As can be seen from the results in Table 2, 2 of the 10 GPC3-positive patients (patients 6 and 25) were negative in both AFP and PIVKA-II, and one of the patients (patient 6) was classified as the initial UICC. Phase II. That is, GPC3 is positive in patients with negative AFP and PIVKA-II, so GPC3 is clearly a novel tumor marker for HCC. 87544 -33 - 1333958 AFP of 28 patients with HCC, PIVKA-Π and GPC3 determination results 2^3mm?m(10)5MMJMMM1FMMMMM M MMM5FM M MM MM M <^56716964536973617071775063696772627262757172635869715969 5X1128 91217181924-26415227161420276251013212328

病毒3 · HBV HCV 卯B,非C HCV HCV HCV HCV HCV HBV HBV HCV HCV H8V HCV HCV HCV HCV HCV HCVmt no HCV HCV HCV 非B,非C HCV HBV, MCV HBV HCV 段 c lc ul IVAllleIVAIIIAulil AAA A ru o. ^ { I - I V V i I 丨lv IA—IA ]n ( VA= =]iava=b illIV,ΠIV111^1^111.111. AFP(ng/ml)D(<20)c PIVKA-IICmAU/min<40) GPC3(U/ml)u(<1.71) 54" 25Z 8900 .^1577 1.73 MP.Q 313. 3,23 504512125119301^29232^1510-7 37109<1—23<1 5ι81 2 一 ciil34i 6 一118 2 2 91 οι 9* 318 1322416113.幽94JJ423123184166928 ^812j S 9 282 87 4 3 7 9 A 9 2 14 5 3 4 2 8 9 8 6 3 a2121 1 1 ο ο ο ο ο ο ο 1 9Virus 3 · HBV HCV 卯B, non-C HCV HCV HCV HCV HCV HBV HBV HCV HCV H8V HCV HCV HCV HCV HCV HCVmt no HCV HCV HCV Non-B, non-C HCV HBV, MCV HBV HCV segment c lc ul IVAllleIVAIIIAulil AAA A ru o ^ { I - IVV i I 丨lv IA-IA ]n ( VA= =]iava=b illIV, ΠIV111^1^111.111. AFP(ng/ml)D(<20)c PIVKA-IICmAU/min< 40) GPC3(U/ml)u(<1.71) 54" 25Z 8900 .^1577 1.73 MP.Q 313. 3,23 504512125119301^29232^1510-7 37109<1-23<1 5ι81 2 a ciil34i 6 118 2 2 91 οι 9* 318 1322416113. 幽94JJ423123184166928 ^812j S 9 282 87 4 3 7 9 A 9 2 14 5 3 4 2 8 9 8 6 3 a2121 1 1 ο ο ο ο ο ο ο 1 9

ο ο 8 0 6 8 8 21 11212 < V 3 0 5 3 2r. ·9·3·8cj·4 °·0·0·3^62· 6 3 2 0 0 ·6·5·5·7·8 0-1·0·1·0· a, HCV用RT-PCR檢測。HBsAg用放射免疫測定(RIA)調查。 b, AFP用RIA定量。 c, 括弧内之值表示臨界指數(cut-〇ffindex)。 d, PIVKA-Π及GPC3用酶免疫測定法定量。 e, 在陽性之測定值下方劃線。 34- 87544 1333958 [參考例 1] S.er-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序 列編號5)之合成 使用Fmoc-Leu-Wang樹脂(過100-200號篩)做為起始之樹 脂,並依照下述之程序A開始合成,藉由進行至步驟5後回 到步驟2,以反覆進行α胺基之脫保護、洗淨、偶合及洗淨, 將 Fmoc-Gly-OH、Fmoc-Pro-OH、Fmoc-Gln(Trt)-OH、 Fmoc-Leu-OH ' Fmoc-Arg(Pbf)-OH ' Fmoc-Gln(Trt)-OH ' 尸111〇(:-?116-01'1、?111〇。-?116-011及?111〇(:-861'(1811)-01'1依次偶合 之結果,得到胜肽結合樹脂。胜肽藉由與步驟6所示之試藥 反應,從樹脂切離,在冷甲基第三丁基醚(MTBE)中過濾, 並使之沉澱。將沉澱之肽用冷MTBE洗淨二次,並於氮氣下 凍結乾燥。 87544 35- 1333958ο ο 8 0 6 8 8 21 11212 < V 3 0 5 3 2r. ·9·3·8cj·4 °·0·0·3^62· 6 3 2 0 0 ·6·5·5·7· 8 0-1·0·1·0· a, HCV was detected by RT-PCR. HBsAg was investigated by radioimmunoassay (RIA). b, AFP is quantified by RIA. c, the value in parentheses indicates the critical index (cut-〇ffindex). d, PIVKA-Π and GPC3 were quantified by enzyme immunoassay. e, underline the positive measurement. 34- 87544 1333958 [Reference Example 1] Synthesis of S.er-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 5) Using Fmoc-Leu-Wang resin (over 100-200) The sieve is used as the starting resin, and the synthesis is started according to the following procedure A. After proceeding to step 5, the process returns to step 2 to repeatedly perform deprotection, washing, coupling and washing of the α-amino group. Fmoc-Gly-OH, Fmoc-Pro-OH, Fmoc-Gln(Trt)-OH, Fmoc-Leu-OH 'Fmoc-Arg(Pbf)-OH 'Fmoc-Gln(Trt)-OH ' corpse 111〇(: -?116-01'1, ?111〇.-?116-011 and ?111〇(:-861'(1811)-01'1 are sequentially coupled to obtain a peptide-binding resin. The reagent reaction shown in Figure 6 was excised from the resin, filtered in cold methyl tert-butyl ether (MTBE), and precipitated. The precipitated peptide was washed twice with cold MTBE and frozen under nitrogen. Dry. 87544 35- 1333958

表3 程序A 步驟 1. (洗淨) 2. (脫保護) 3. (洗淨) 4. (偶合)1 5. (洗淨) 6. (斷裂) 7. (沉澱) 8. (洗淨) 9. (凍結乾燥) 時間 X處理 (分鐘) 次數 DMF 2 20%p底咬/DMF 10 ml 5x1 20% 喊淀/DMF 10 ml 30 x 1 DMF 4 DCM 1 各OC胺基保護胺基酸1 mmole/ 30 x 1 0.45 M HBTU/HOBT 2.1 ml (1 mmole), DIEA 348 μΐ (2 mmole) DMF 4Table 3 Procedure A Step 1. (washing) 2. (deprotection) 3. (washing) 4. (coupling) 1 5. (washing) 6. (breaking) 7. (precipitation) 8. (Washing) 9. (Freeze drying) Time X treatment (minutes) Number of times DMF 2 20% p bottom biting / DMF 10 ml 5x1 20% Shouting / DMF 10 ml 30 x 1 DMF 4 DCM 1 Each OC amine protecting amino acid 1 Mmmole / 30 x 1 0.45 M HBTU/HOBT 2.1 ml (1 mmole), DIEA 348 μΐ (2 mmole) DMF 4

DCM 5% H20 5%酚 3%硫代苯甲醚 3%乙二硫醇 3%三異丙基矽烷DCM 5% H20 5% phenol 3% thioanisole 3% ethanedithiol 3% triisopropyl decane

81%TFA MTBE MTBE 120 x 1 87544 -36- 1333958 實測值為1032‘.3。 [參考例 4] Phe-Thr- Asp-Val-Ser-Leu-Tyr-Ile-Leu (序列編號 8)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Ile-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Leu-OH、 Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(Otbu)-OH、81% TFA MTBE MTBE 120 x 1 87544 -36- 1333958 The measured value is 1032 ‘.3. [Reference Example 4] Synthesis of Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (SEQ ID NO: 8) Similarly to [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting resin. And Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Leu-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(Otbu)-OH,

Fmoc-Thr(tBu)-OH及 Fmoc-Phe-OH依次結合。 麯 質量分析之結果顯示相對於理論值[MH-] 1121.3,得到實 測值為1122.1。 [參考例 5] !Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (序 列編號9)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Met-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Gly-OH、Fmoc-Thr(tBu)-OH and Fmoc-Phe-OH are sequentially combined. The results of the mass analysis showed that the measured value was 1122.1 with respect to the theoretical value [MH-] 1121.3. [Reference Example 5] Synthesis of !Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (SEQ ID NO: 9) Similarly to [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting point. The original resin, and Fmoc-Met-OH, Fmoc-Arg (Pbf)-OH, Fmoc-Gly-OH,

Fmoc-Cys(Trt)-OH 、 Fmoc-Asp(Otbu)-OH 、Fmoc-Cys(Trt)-OH, Fmoc-Asp(Otbu)-OH,

Fmoc-Lys(Boc)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Phe-OH 及 Fmoc-Lys(Boc)-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1108.3,得到實 測值為1111.4。 [參考例 6] Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (序列編號 10)之合成Fmoc-Lys(Boc)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Phe-OH and Fmoc-Lys(Boc)-OH are sequentially combined. The results of the mass analysis showed an actual value of 1111.4 relative to the theoretical value [MH-] 1108.3. [Reference Example 6] Synthesis of Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (SEQ ID NO: 10)

與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將 Fmoc-Gly-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Cys(Trt)-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、 Fmoc-Cys(Trt)-OH、Fmoc-Tyr(tBu)-OH 及 Fmoc-Trp(Boc)-〇H 87544 -38- 1333958 依次結合。-· 質量分析之結果顯示相對於理論值[MH + ] 1114.3,得到 實測值為1115.7。 [參考例 7] Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (序列 編號11)之合成As in [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting resin, and Fmoc-Gly-OH, Fmoc-Gln(Trt)-OH, Fmoc-Cys(Trt)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Trp(Boc)-〇H 87544 -38- 1333958 . - The results of the mass analysis showed a measured value of 1115.7 relative to the theoretical value [MH + ] 1114.3. [Reference Example 7] Synthesis of Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (SEQ ID NO: 11)

與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Ser(tBu)-OH、Fmoc-Leu-OH、Fmoc-Ile-OH、 Fmoc-Tyr(tBu)-OH、Fmoc-Glu(Otbu)-OH、Fmoc-Arg(Pbf)-OH、 Fmoc-Trp(Boc)-OH、Fmoc-Tyr(tBU)-OH及Fmoc-Lys (Boc)-OH 依次結合。 質量分析之結果顯示相對於理論值[MH-] 1104.3,得到實 測值為1105.3。 [參考例8] Glu-Tyr-Ile-Leu-Ser-Leu-Glu-GIu-Leu (序列編號 12)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹月旨’並將 Fmoc-Glu(Otbu)-OH、Fmoc-Glu(Otbu)-OH、As in [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting resin, and Fmoc-Ser(tBu)-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Tyr (tBu) was used. )-OH, Fmoc-Glu(Otbu)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBU)-OH and Fmoc-Lys(Boc)-OH . The results of the mass analysis showed an actual value of 1105.3 with respect to the theoretical value [MH-] 1104.3. [Reference Example 8] Synthesis of Glu-Tyr-Ile-Leu-Ser-Leu-Glu-GIu-Leu (SEQ ID NO: 12) Similarly to [Reference Example 1], Fmoc-Leu-Wang resin was used as a starting tree. Moon' and Fmoc-Glu(Otbu)-OH, Fmoc-Glu(Otbu)-OH,

Fmoc-Leu-OH 、 Fmoc-Ser(tBu)-OH 、 Fm〇c-Leu-OH 、Fmoc-Leu-OH, Fmoc-Ser(tBu)-OH, Fm〇c-Leu-OH,

Fmoc-Ile-OH、Fmoc-Tyr(tBu)-OH 與 Fmoc-Glu(〇tbu)-OH依次 結合。 質量分析之結果顯示相對於理論值[MH+] 1371.6,得到 實測值為1370.7。 [參奇例 9] Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (序列編 號13)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 87544 -39- 1333958 樹脂,並將 Fmoc-Leu-OH、Fmoc-Val-OH、Fmoc-Asn(Trt)-OH、 Fmoc-Glu(Otbii)-OH、Fmoc-Met-OH、Fmoc-Asp(Otbu)-OH、 Fmoc-Tyr(tBu)-OH及Fmoc-Ile-OH依次結合。 質量分析之結果顯示相對於理論值[MH + ] 1211.4,得到 實測值為1213.4。 [參考例 10] Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (序列編 號14)之合成 — 使用Fmoc-Ile-Wang樹脂做為起始之樹脂,將 Fmoc-Phe-OH 、Fmoc-Leu-OH 、Fmoc-Asp(Otbu)-OH 、 Fmoc-Glu(Otbu)-OH ' Fmoc-Pro-OH ' Fmoc-Tyr(tBu)-OH ' Fmoc-Tyr(tBu)-OH與Fmoc-Ala-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1216.4,得到實 測值為1217.4。 [參考例 11] Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (序列編號 15)之合成Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Glu(〇tbu)-OH are sequentially combined. The results of the mass analysis showed a measured value of 1370.7 relative to the theoretical value [MH+] 1371.6. [Scheme 9] Synthesis of Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (SEQ ID NO: 13) is the same as [Reference Example 1], using Fmoc-Leu-Wang resin as a starting point. 87544 -39- 1333958 Resin, and Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Asn(Trt)-OH, Fmoc-Glu(Otbii)-OH, Fmoc-Met-OH, Fmoc-Asp(Otbu -OH, Fmoc-Tyr(tBu)-OH and Fmoc-Ile-OH are sequentially combined. The results of the mass analysis showed a measured value of 1213.4 relative to the theoretical value [MH + ] 1211.4. [Reference Example 10] Synthesis of Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (SEQ ID NO: 14) - Using Fmoc-Ile-Wang resin as a starting resin, Fmoc-Phe-OH , Fmoc-Leu-OH, Fmoc-Asp(Otbu)-OH, Fmoc-Glu(Otbu)-OH 'Fmoc-Pro-OH 'Fmoc-Tyr(tBu)-OH 'Fmoc-Tyr(tBu)-OH and Fmoc -Ala-OH is combined in sequence. The results of the mass analysis showed an actual value of 1217.4 with respect to the theoretical value [MH-] 1216.4. [Reference Example 11] Synthesis of Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (SEQ ID NO: 15)

與[參考例10]同樣,使用Fmoc-Ile-Wang樹脂(過100-200 號篩)做為起始之樹脂,並將Fmoc-Tyr(tBu)-OH、 Fmoc-Gly-OH、Fmoc-Pro-OH、Fmoc-Leu-OH、Fmoc-Ala -OH、 Fmoc-Ser(tBu)-OH、Fmoc-Tyr(tBu)-OH與 Fmoc-Phe-OH依次結 合。 質量分析之結果顯示相對於理論值[MH+] 1193.4,得到 實測值為1196.8。 [參考例 12] Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (序 列編號16)之合成 87544 -40- 1333958 與[參考例ΐΊ同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將 Fmoc-Asp(Otbu)-OH、Fmoc-Tyr(tBu)-OH ' Fmoc-Ala-OH 、Fmoc-Leu-OH 、Fmoc-Glu(Otbu)-OH 、 Fmoc-Ala-OH 、 Fmoc-Leu-OH 、 Fmoc-Phe-OH 及 Fmoc-Arg(Pbf)-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1183.5 ’得到實 測值為1186.7 » 產業上利用之可能性 發明者鑑定出來自為癌胎兒性蛋白質之GPC3之12種 胜肽可做為HLA-A24+ HCC患者之免疫療法之候選標的。 儘管在HCC患者中GPC3過剩表現,但在成人之正常器官 中,除胎盤外,GPC3之表現顯著低下,因此判明GPC3為 HCC之免疫療法之理想標的。又’證明本發明之方法為診 斷是否罹患HCC上非常有用之方法。本發明者等更鑑定出 可以調製為HLA-A24拘束性且HCC反應性之CTL之來自 GPC3之胜肽。HLA-A24等位基因,在全體日本人中占60% , 其之95%基因型為八*2402。在高加索人中則占20%,在非洲 人中占 12% (Tokunaga, K. et al., Immunogenetics 46, 199-205 (1997); Imanishi, I. Et al., Proceedings of the llth International Histocompatibility Workshop and Conference (Tsuji, K. et al.編)1065-1220 (Oxford University Press,As in [Reference Example 10], Fmoc-Ile-Wang resin (over 100-200 sieve) was used as the starting resin, and Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Pro were used. -OH, Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Ser(tBu)-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Phe-OH are sequentially bonded. The results of the mass analysis showed a measured value of 1196.8 relative to the theoretical value [MH+] 1193.4. [Reference Example 12] Synthesis of Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (SEQ ID NO: 16) 87544 - 40 - 1333958 Same as [Reference Example, using Fmoc-Leu-Wang resin As the starting resin, and Fmoc-Asp(Otbu)-OH, Fmoc-Tyr(tBu)-OH 'Fmoc-Ala-OH, Fmoc-Leu-OH, Fmoc-Glu(Otbu)-OH, Fmoc- Ala-OH, Fmoc-Leu-OH, Fmoc-Phe-OH and Fmoc-Arg(Pbf)-OH are sequentially combined. The results of the mass analysis showed that the measured value was 1186.7 with respect to the theoretical value [MH-] 1183.5 '. The possibility of industrial use. The inventors identified 12 peptides derived from GPC3, which are cancerous fetal proteins, as HLA-A24+. Candidates for immunotherapy of HCC patients. Despite the excess performance of GPC3 in HCC patients, in normal organs of adults, the performance of GPC3 was significantly lower than that of placenta, so GPC3 was identified as an ideal target for immunotherapy of HCC. Further, it has been demonstrated that the method of the present invention is a very useful method for diagnosing whether or not suffering from HCC. The present inventors have further identified a peptide derived from GPC3 which can be prepared as a HLA-A24 binding and HCC reactive CTL. The HLA-A24 allele is 60% of all Japanese, and 95% of its genotype is eight*2402. 20% of Caucasians and 12% of Africans (Tokunaga, K. et al., Immunogenetics 46, 199-205 (1997); Imanishi, I. Et al., Proceedings of the llth International Histocompatibility Workshop And Conference (edited by Tsui, K. et al.) 1065-1220 (Oxford University Press,

Oxford,1992))。從此等結果可以明白GPC3對於世界中多數 HCC患者’在特異之免疫治療或癌之診斷及預防上非常有 用。 87544 -41 - 1333958 使用胜肽5、7或10誘導之CTL。又,橫軸表示執行細胞/標 靶比(E/T比),亦即CTL數與癌細胞數之比。 圖4顯示用西方點潰法測定時,HepG2之培養上清液中存 在GPC3蛋白質。 第1,3, 5及7行為培養6、12、24及48小時後之HepG2細胞 1 X 105個溶解物, 第2,4,6及8行為培養6、12、24及48小時後之HepG2培養 上清液20 μΐ。 圖5顯示3種HCC細胞株(Hep G2、Hep 3Β及SK-Hep-Ι)之 被分泌至培養上清液中之GPC3蛋白質藉由ELISA定量之結 果。.將培養HepG2細胞lxlO5個24小時後之培養上清液1 ml 中GPC3蛋白質之濃度定義為1 U/ml。 圖6顯示藉由西方點潰檢測HCC患者血清中之可溶性 GPC3蛋白質。 圖7顯示在28名HCC患者及54名健康供血者(HD)之血清 中之GPC3蛋白質藉由ELISA定量之結果。1.71,為來自54 名HD之血清中GPC3蛋白質之平均值+3SD (標準偏差)所規 定之血清中可溶性GPC3蛋白質之正常上限值。 87544 43- 1333958 序列表 <110〉日商麒麟麥酒股份有限公司 <120>胜肽及含其之醫藥 <130> PH-1870-PCT <140〉092122744 <141> 2003-08-19 9· <150〉 JP 2002-245831 <151〉 2002-08-26 <160> 16 <170> Patentln Ver. 2. 0Oxford, 1992)). From these results, it can be understood that GPC3 is very useful for the diagnosis and prevention of specific immunotherapy or cancer in most HCC patients in the world. 87544 -41 - 1333958 CTL induced with peptide 5, 7 or 10. Further, the horizontal axis represents the ratio of the execution cell/target ratio (E/T ratio), that is, the ratio of the number of CTLs to the number of cancer cells. Figure 4 shows the presence of GPC3 protein in the culture supernatant of HepG2 when measured by Western blotting. 1, 3, 5 and 7 behaviors, 1 X 105 lysates of HepG2 cells after 6, 12, 24 and 48 hours of culture, and 2, 4, 6 and 8 behaviors of HepG2 after 6, 12, 24 and 48 hours of culture. The supernatant was cultured for 20 μM. Fig. 5 shows the results of quantification of GPC3 protein secreted into the culture supernatant of three HCC cell lines (Hep G2, Hep 3Β and SK-Hep-Ι) by ELISA. The concentration of GPC3 protein in 1 ml of the culture supernatant after culturing HexG2 cells for 1 hour was defined as 1 U/ml. Figure 6 shows the detection of soluble GPC3 protein in the serum of HCC patients by Western blotting. Figure 7 shows the results of quantification of GPC3 protein in serum of 28 HCC patients and 54 healthy blood donors (HD) by ELISA. 1.71, the normal upper limit of the soluble GPC3 protein in serum as defined by the mean + 3 SD (standard deviation) of GPC3 protein in serum from 54 HD. 87544 43- 1333958 SEQUENCE LISTING <110〉日商麒麟麦酒股份有限公司<120> peptide and medicine containing same<130> PH-1870-PCT <140>092122744 <141> 2003-08- 19 9· <150> JP 2002-245831 <151> 2002-08-26 <160> 16 <170> Patentln Ver. 2. 0

<210〉 1 <211〉 21 <212> DNA <213〉 Homo sapiens <400> 1 gttactgcaa tRtggtcatg c 21<210〉 1 <211> 21 <212> DNA <213> Homo sapiens <400> 1 gttactgcaa tRtggtcatg c 21

<210> 2 <211> 18 <212> DNA <213> Homo sapiens <400> 2 87544 1333958 ctggtgccca gcacatgt <210〉 3 <211〉 18 <212> DNA <213〉人類 <400> 3 cctcgocttt gccgatcc <210〉 4 <211〉 23 ' <212> DNA <213〉人類 <400> 4 ggatettcat gaggtagtca gtc <210〉 5 <211〉 10 <212〉 PRT <213〉人類 <400〉 5<210> 2 <211> 18 <212> DNA <213> Homo sapiens <400> 2 87544 1333958 ctggtgccca gcacatgt <210> 3 <211> 18 <212> DNA <213><400> 3 cctcgocttt gccgatcc <210> 4 <211> 23 ' <212> DNA <213>human <400> 4 ggatettcat gaggtagtca gtc <210> 5 <211> 10 <212〉 PRT <213>human <400> 5

Ser Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 10 <210> 6 87544 1333958 <2Π> 9 <212> PRT <213〉人類 <4〇〇> 6Ser Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 10 <210> 6 87544 1333958 <2Π> 9 <212> PRT <213>human <4〇〇> 6

Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 <210〉 7 <211> 9 <212> PRT <213〉人類 <400〉 7Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 <210〉 7 <211> 9 <212> PRT <213>human <400〉 7

Met Phe Lys Asn Asn Ty.r Pro Ser Leu 1 5 &lt;210〉 8 &lt;211&gt; 9 〈212〉 PRT &lt;213〉人類 &lt;400&gt; 8Met Phe Lys Asn Asn Ty.r Pro Ser Leu 1 5 &lt;210〉 8 &lt;211&gt; 9 <212> PRT &lt;213>human &lt;400&gt; 8

Phe Thr Asp Val Ser Leu Tyr lie Leu 1 5 87544 1333958 &lt;210&gt; 9 &lt;211〉 10 &lt;212〉 PRT &lt;213〉人類 &lt;400&gt; 9Phe Thr Asp Val Ser Leu Tyr lie Leu 1 5 87544 1333958 &lt;210&gt; 9 &lt;211> 10 &lt;212> PRT &lt;213>human &lt;400&gt;

Lys Phe Ser Lys Asp Cys Gly Arg Met Leu 1 5 10 &lt;210〉 10 &lt;211&gt; 9 &lt;212〉 PRT &lt;213〉人類 &lt;400&gt; 10Lys Phe Ser Lys Asp Cys Gly Arg Met Leu 1 5 10 &lt;210> 10 &lt;211&gt; 9 &lt;212> PRT &lt;213>human &lt;400&gt;

Trp Tyr Cys Ser Tyr Cys Gin Gly Leu 1 5 &lt;21〇&gt; 11 &lt;211〉 10 &lt;212&gt; PRT &lt;213〉人類 &lt;4〇〇&gt; 11Trp Tyr Cys Ser Tyr Cys Gin Gly Leu 1 5 &lt;21〇&gt; 11 &lt;211> 10 &lt;212&gt; PRT &lt;213>human &lt;4〇〇&gt; 11

Lys Tyr Trp Arg Glu Tyr lie Leu Ser Leu 1 5 10 -4 - 87544 1333958 &lt;210&gt; 12 &lt;211&gt; 9 &lt;212〉 PRT &lt;213〉人類 &lt;400&gt; 12Lys Tyr Trp Arg Glu Tyr lie Leu Ser Leu 1 5 10 -4 - 87544 1333958 &lt;210&gt; 12 &lt;211&gt; 9 &lt;212> PRT &lt;213>human &lt;400&gt;

Glu Tyr lie Leu Ser Leu Glu Glu Leu 1 5 #· &lt;210&gt; 13 &lt;211&gt; 9 &lt;212〉 PRT &lt;213〉人類 &lt;400&gt; 13Glu Tyr lie Leu Ser Leu Glu Glu Leu 1 5 #· &lt;210&gt; 13 &lt;211&gt; 9 &lt;212> PRT &lt;213>human &lt;400&gt; 13

He Tyr Asp Met Glu Asti Val Leu Leu 1 5He Tyr Asp Met Glu Asti Val Leu Leu 1 5

&lt;210&gt; 14 &lt;211〉 9 &lt;212〉 PRT &lt;213〉人類 &lt;400〉 14&lt;210&gt; 14 &lt;211> 9 &lt;212> PRT &lt;213>human &lt;400> 14

Ala Tyr Tyr Pro Glu Asp Leu Phe lie 1 5 87544 1333958 &lt;210〉 15 &lt;211&gt; 9 &lt;212〉 PRT &lt;213〉人類 &lt;400〉 15Ala Tyr Tyr Pro Glu Asp Leu Phe lie 1 5 87544 1333958 &lt;210> 15 &lt;211&gt; 9 &lt;212> PRT &lt;213>human &lt;400> 15

Phe Tyr Ser Ala Leu Pro Gly Tyr lie 1 5 &lt;210〉 16 &lt;211&gt; 10 &lt;212&gt; PRT &lt;213〉人類 &lt;400〉 16Phe Tyr Ser Ala Leu Pro Gly Tyr lie 1 5 &lt;210> 16 &lt;211&gt; 10 &lt;212&gt; PRT &lt;213>human &lt;400> 16

Arg Phe Leu Ala Glu Leu Ala Tyr Asp Leu 1 5 10 87544Arg Phe Leu Ala Glu Leu Ala Tyr Asp Leu 1 5 10 87544

Claims (1)

1333958 ___ ___ 第09212274如|寻利势讀案女:ί 中文申請專彳^|^涵替月) ----------------------1 拾、申請範園&quot; 丨?0曰修(更)正本I ;-—-------------i 1. 一種具有細胞傷害性τ細胞誘導能力之經單離之胜肽,其 包含序列編號5〜16之任一者所示之胺基酸序列。 2· —種具有細胞傷害性Τ細胞誘導能力之經單離之胜肽,其 包含:於序列編號5〜16之任一者所示之胺基酸序列中, 從Ν末端算起第二個胺基酸為苯丙胺酸、酪胺酸、甲硫胺 酸或色胺酸、及/或C末端之胺基酸為苯丙胺酸、白胺酸、 異白胺酸、色胺酸或甲硫胺酸之胺基酸序列。 3. 一種供腫瘤之治療及/或預防用之醫藥組合物,其包含一 種以上之如申請專利範圍第1或2項之經單離之胜肽。 4. 一種經單離之外來體(exosome),其將包含如申請專利範 圍第1或2項之經單離之胜肽及HLA分子之複合體呈現於 表面。 5.如申請專利範圍第4項之經單離之外來體,其中HLA分子 為 HLA-A24 » 6.如申請專利範圍第5項之經單離之外來體,其中HLA分子 為 HLA-A*2402。 7. —種於活體外誘導細胞傷害性T細胞誘導能力高之抗原 呈現細胞之方法,其中使用如申請專利範圍第1或2項之 經單離之胜肽進行該抗原呈現細胞之誘導。 8. 一種於活體外誘導細胞傷害性T細胞誘導能力高之抗原 呈現細胞之方法’其包含將編碼人類肝素蛋白聚糖 3(glypican-3,GPC3)或包含如申請專利範圍第1或2項之 經單離之胜肽之部分胜肽之基因導入抗原呈現細胞中。 87544.990817.doc 1333958 9. 一種於活體外誘導細胞傷害性T細胞之方法,其係使用如 申請專利範圍第1或2項之經單離之胜肤者。 10- —種經單離之細胞傷害性τ細胞,其係使用如申請專利範 圍第1或2項之經單離之胜肽誘導者。 11. 一 =經單離之抗原呈現細胞,其係呈現HLA與如申請專 利範圍第1或2項之經單離之胜肤之複合體。1333958 ___ ___ No. 09212274 such as | seeking interest to read the case female: ί Chinese application for special ^ ^ ^ Han for the month) ---------------------- 1 pick up , apply for Fan Park &quot; 丨? 0曰修(more)本本 I ;---------------i 1. An isolated peptide with cytotoxic tau cell-inducing ability, comprising sequence number 5~ The amino acid sequence shown in any of 16. 2. An isolated peptide having cytotoxic sputum cell inducing ability, comprising: in the amino acid sequence shown in any one of SEQ ID NOs: 5 to 16, the second from the Ν end The amino acid is phenylalanine, tyrosine, methionine or tryptophan, and/or the C-terminal amino acid is phenylalanine, leucine, isoleucine, tryptophan or methionine. Amino acid sequence. A pharmaceutical composition for the treatment and/or prevention of a tumor comprising one or more isolated peptides as claimed in claim 1 or 2. 4. An exosome which exhibits a complex comprising an isolated peptide and an HLA molecule as disclosed in claim 1 or 2 of the patent application. 5. The isolated exosome of claim 4, wherein the HLA molecule is HLA-A24. 6. 6. The exogenous exosome of claim 5, wherein the HLA molecule is HLA-A* 2402. 7. An antigen-presenting method for inducing cytotoxic T cell inducing ability in vitro, wherein the antigen-presenting cell is induced using the isolated peptide as claimed in claim 1 or 2. A method for inducing an antigen-presenting cell having high cytotoxic T cell inducing ability in vitro, which comprises encoding human heparin 3 (glypican-3, GPC3) or containing the first or second item as claimed in the patent application. The gene of the partial peptide of the isolated peptide is introduced into the antigen-presenting cell. 87544.990817.doc 1333958 9. A method of inducing cytotoxic T cells in vitro using an isolated individual of the singularity of claim 1 or 2. 10--Isolated cytotoxic tau cells using an isolated peptide inducer as in claim 1 or 2 of the patent application. 11. A = cells presented by isolated antigens, which are a complex of HLA and the isolated skin of the patent application of claim 1 or 2. 12· =申請專利範圍第11項之經單離之抗原呈現細胞,其係 猎由如中請專利範圍第7或8項之方法誘導者。12· = The patented antigen presenting cells of claim 11 of the patent scope, which is induced by the method of claim 7 or 8 of the patent application. 87544-990817.doc 1333958 公告本 拾壹k貫式&quot;:-87544-990817.doc 1333958 Announcement Book 壹 壹 贯&quot;:- 第092122744號專利申請案 中文圖式替換頁(98年6月^ . _ — •日沢更)正替杈^ HCC20病例. 肝臟· 腦 肺_ 心臟· 腎臟-胰臟· 脾臟· 甲狀腺. 胸腺* 田 小腸· 結腸11 骨格筋· 乳腺-骨髓· 卵巢· 子宮_ 前立腺· 精巢· 胎盤· 胎兒肝臟· 胎兒腦' 胎兒肺' 胎兒腎臟·Chinese translation of the patent application No. 092122744 (June 98 ^. _ — • 沢 沢)) 正 H ^ HCC20 cases. Liver · Brain and lung _ Heart · Kidney - Pancreas · Spleen · Thyroid. Thymus * Tian small intestine · colon 11 bones · breast - bone marrow · ovary · uterus _ anterior gland · testis · placenta · fetal liver · fetal brain 'fetal lung ' fetal kidney · 8754487544 1333958 第092122744號專利申請案1333958 Patent application No. 092122744 60kDa ι_ι酬丨額 培養液 第8行(上清) 第7行(細胞) 第6行(上清) 第5行(細胞) 第4行 &lt;上清) 第3行(細胞》 第2行(上清) 第1行(細胞) 圖 4 87544 Ϊ333958 ^ t^mi27J4號專利,請案60kDa ι_ι reward 培养 culture medium line 8 (supernatant) line 7 (cell) line 6 (supernatant) line 5 (cell) line 4 &lt;superscript) line 3 (cell) line 2 (Upper) Line 1 (cell) Figure 4 87544 Ϊ333958 ^ t^mi27J4 patent, please [HD 54[HD 54 6 87544 -11 -6 87544 -11 -
TW092122744A 2002-08-26 2003-08-19 Peptides and drugs containing the same TW200413406A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245831 2002-08-26

Publications (2)

Publication Number Publication Date
TW200413406A TW200413406A (en) 2004-08-01
TWI333958B true TWI333958B (en) 2010-12-01

Family

ID=31944202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092122744A TW200413406A (en) 2002-08-26 2003-08-19 Peptides and drugs containing the same

Country Status (4)

Country Link
JP (1) JP4406607B2 (en)
AU (1) AU2003254950A1 (en)
TW (1) TW200413406A (en)
WO (1) WO2004018667A1 (en)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2479288C (en) 2002-03-25 2015-02-24 Takara Bio Inc. Process for producing cytotoxic lymphocyte
AU2004267313B2 (en) 2003-08-22 2009-09-24 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US7691586B2 (en) 2004-04-28 2010-04-06 Perseus Proteomics Inc. Method for predicting and judging the recurrence of liver cancer after treating liver cancer
PL1674111T3 (en) 2004-07-09 2011-04-29 Chugai Pharmaceutical Co Ltd Anti-glypican 3 antibody
JP4733042B2 (en) 2004-08-24 2011-07-27 中外製薬株式会社 Adjuvant therapy using anti-glypican 3 antibody
CN101068836B (en) 2004-10-26 2013-08-14 中外制药株式会社 Anti-glypican 3 antibody having modified sugar chain
SI2289533T1 (en) 2005-02-28 2013-11-29 Oncotherapy Science, Inc. Epitope peptides derived from vascular endothelial growth factor receptor 1 and vaccines containing these peptides
HUE027330T2 (en) 2005-07-27 2016-09-28 Oncotherapy Science Inc Colon cancer related gene tom34
AU2006277295B2 (en) * 2005-08-09 2011-08-11 Oncotherapy Science, Inc. Glypican-3 (GPC3)-derived tumor rejection antigenic peptides useful for HLA-A2-positive patients and pharmaceutical comprising the same
WO2007020880A1 (en) 2005-08-17 2007-02-22 Takara Bio Inc. Method of producing lymphocytes
WO2007040105A1 (en) * 2005-09-30 2007-04-12 Takara Bio Inc. Method for production of t cell population
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
ES2709176T3 (en) 2006-08-11 2019-04-15 Life Sciences Res Partners Vzw Immunogenic peptides and their use in immune disorders
MX2009008104A (en) 2007-02-02 2009-08-07 Amgen Inc Hepcidin, hepcidin antagonists and methods of use.
WO2009043049A2 (en) 2007-09-27 2009-04-02 Amgen Inc. Pharmaceutical formulations
EP2219602A1 (en) 2007-11-15 2010-08-25 Amgen, Inc Aqueous formulation of erythropoiesis stimulating protein stablised by antioxidants for parenteral administration
TW200932260A (en) * 2007-11-28 2009-08-01 Oncotherapy Science Inc STAT3 epitope peptides
JP5701064B2 (en) 2008-01-25 2015-04-15 アムジエン・インコーポレーテツド Ferroportin antibody and method of use thereof
ES2650236T3 (en) 2008-02-14 2018-01-17 Life Sciences Research Partners Vzw CD4 + T lymphocytes with cytolytic properties
CA2715488C (en) 2008-02-14 2019-09-24 Life Sciences Research Partners Vzw Immunogenic control of tumours and tumour cells
WO2009101208A2 (en) 2008-02-14 2009-08-20 Life Sciences Research Partners Vzw Immunotherapy targeting intracellular pathogens
AU2009214038B2 (en) 2008-02-14 2013-08-22 Katholieke Universiteit Leuven Elimination of immune responses to viral vectors
ES2487846T3 (en) 2008-05-01 2014-08-25 Amgen, Inc. Anti-hepcindin antibodies and methods of use
TW201000119A (en) * 2008-06-10 2010-01-01 Oncotherapy Science Inc MYBL2 epitope peptides and vaccines containing the same
CA2742871C (en) 2008-11-13 2018-10-23 Herb Lin Methods and compositions for regulating iron homeostasis by modulation of bmp-6
US9662271B2 (en) 2009-10-23 2017-05-30 Amgen Inc. Vial adapter and system
WO2011156373A1 (en) 2010-06-07 2011-12-15 Amgen Inc. Drug delivery device
AU2011300253B2 (en) * 2010-09-07 2015-01-15 Oncotherapy Science, Inc. TTLL4 peptides and vaccines containing the same
TW201216982A (en) 2010-10-21 2012-05-01 Oncotherapy Science Inc WDHD1 peptides and vaccines including the same
BR112013009276A2 (en) * 2010-10-21 2019-09-24 Oncotherapy Science Inc c18orf54 peptides and vaccines including the same
RU2615460C2 (en) 2010-11-25 2017-04-04 Имнейт Сарл Immunogenic peptides for application for prevention and/or treatment of infectious diseases, autoimmune diseases, the immune responses to allogeneic factors, allergic diseases, tumour, transplant rejection and immune responses against viral vectors used for genetic therapy or genetic vaccination
MY166516A (en) 2010-12-02 2018-07-05 Oncotherapy Science Inc Tomm34 peptides and vaccines including the same
MX341790B (en) 2011-03-31 2016-09-02 Amgen Inc Vial adapter and system.
PT2699293T (en) 2011-04-20 2019-05-21 Amgen Inc Autoinjector apparatus
IL308846A (en) 2011-10-14 2024-01-01 Amgen Inc Injector and method of assembly
GB201201511D0 (en) 2012-01-30 2012-03-14 Univ Leuven Kath Modified epitopes for boosting CD4+ T-cell responses
CN104168917A (en) 2012-03-09 2014-11-26 肿瘤疗法科学股份有限公司 Pharmaceutical composition containing peptide
AU2013348071B2 (en) 2012-11-21 2018-05-24 Amgen Inc. Drug delivery device
RU2014102939A (en) * 2013-02-05 2015-08-10 Нитто Денко Корпорейшн Vaccine composition for transdermal administration
RU2014102941A (en) * 2013-02-05 2015-08-10 Нитто Денко Корпорейшн Vaccine composition for administration through the mucous membrane
WO2014144096A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Drug cassette, autoinjector, and autoinjector system
KR102218494B1 (en) 2013-03-15 2021-02-19 인트린식 라이프사이언시스, 엘엘씨 Anti-hepcidin antibodies and uses thereof
TWI580452B (en) 2013-03-15 2017-05-01 安美基公司 Cassette for an injector, injector, and method of using an apparatus comprising an autoinjector and a cassette
ES2853748T3 (en) 2013-03-22 2021-09-17 Amgen Inc Injector and mounting method
GB201309469D0 (en) 2013-05-28 2013-07-10 Imcyse Sa Detection of CD4+ T lymphocytes
AU2014340174B2 (en) 2013-10-24 2019-09-12 Amgen Inc. Drug delivery system with temperature-sensitive control
ES2744837T3 (en) 2013-10-24 2020-02-26 Amgen Inc Injector and assembly procedure
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
KR102496507B1 (en) 2014-05-07 2023-02-03 암겐 인코포레이티드 Autoinjector with shock reducing elements
IL297356A (en) 2014-06-03 2022-12-01 Amgen Inc Controllable drug delivery system and method of use
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
US10537626B2 (en) 2014-10-07 2020-01-21 Cytlimic Inc. HSP70-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immunity inducer, and method for producing antigen presenting cell
CA2957960C (en) 2014-10-14 2023-08-22 Amgen, Inc. Drug injection device with visual and audible indicators
TW201636358A (en) * 2014-12-09 2016-10-16 腫瘤療法 科學股份有限公司 GPC3 epitope peptides for TH1 cells and vaccines containing the same
ES2785311T3 (en) 2014-12-19 2020-10-06 Amgen Inc Mobile button drug delivery device or user interface field
US10799630B2 (en) 2014-12-19 2020-10-13 Amgen Inc. Drug delivery device with proximity sensor
PT3616706T (en) 2014-12-23 2021-11-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
GB201501017D0 (en) 2014-12-23 2015-03-04 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers
CA2976935C (en) 2015-02-17 2020-03-10 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
EP3981450A1 (en) 2015-02-27 2022-04-13 Amgen, Inc Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement
US10526388B2 (en) * 2015-03-09 2020-01-07 Cytlimic Inc. Peptide derived from GPC3, pharmaceutical composition for treatment or prevention of cancer using the same, immunity inducer, and method for producing antigen-presenting cells
EP3281641B1 (en) 2015-04-07 2020-12-16 Cytlimic Inc. Adjuvant for cancer vaccines
US10729791B2 (en) 2015-05-18 2020-08-04 Imcyse Sa Animal models for evaluating pharmaceutical compounds
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
JP7090335B2 (en) 2015-09-25 2022-06-24 イムサイス エスエー Improved methods and compounds for eliminating the immune response to therapeutic agents
WO2017100501A1 (en) 2015-12-09 2017-06-15 Amgen Inc. Auto-injector with signaling cap
US11154661B2 (en) 2016-01-06 2021-10-26 Amgen Inc. Auto-injector with signaling electronics
ES2814287T3 (en) 2016-03-15 2021-03-26 Amgen Inc Reduce the likelihood of glass breakage in drug delivery devices
SG11201808710UA (en) 2016-04-19 2018-11-29 Imcyse Sa Novel immunogenic cd1d binding peptides
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
WO2017192287A1 (en) 2016-05-02 2017-11-09 Amgen Inc. Syringe adapter and guide for filling an on-body injector
CA3018426A1 (en) 2016-05-13 2017-11-16 Amgen Inc. Vial sleeve assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
US11541176B2 (en) 2016-06-03 2023-01-03 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
US11285266B2 (en) 2016-07-01 2022-03-29 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
US20190328965A1 (en) 2016-08-17 2019-10-31 Amgen Inc. Drug delivery device with placement detection
WO2018070069A1 (en) 2016-10-11 2018-04-19 サイトリミック株式会社 Medicine
US20200261643A1 (en) 2016-10-25 2020-08-20 Amgen Inc. On-body injector
JP2018093823A (en) 2016-12-15 2018-06-21 Heartseed株式会社 Undifferentiated stem cell removing agent and method of removing undifferentiated stem cells
WO2018136398A1 (en) 2017-01-17 2018-07-26 Amgen Inc. Injection devices and related methods of use and assembly
TW201835100A (en) * 2017-02-06 2018-10-01 國立研究開發法人國立癌症研究中心 Novel t-cell receptor
WO2018151890A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Drug delivery device with sterile fluid flowpath and related method of assembly
AU2018221351B2 (en) 2017-02-17 2023-02-23 Amgen Inc. Insertion mechanism for drug delivery device
CA3050927A1 (en) 2017-03-06 2018-09-13 Brian Stonecipher Drug delivery device with activation prevention feature
US11571511B2 (en) 2017-03-07 2023-02-07 Amgen Inc. Insertion mechanism and method of inserting a needle of a drug delivery device
IL268386B2 (en) 2017-03-09 2023-11-01 Amgen Inc Insertion mechanism for drug delivery device
EP3570871B1 (en) 2017-03-20 2020-11-18 H. Hoffnabb-La Roche Ag Method for in vitro glycoengineering of an erythropoiesis stimulating protein
FI3600491T3 (en) 2017-03-28 2023-10-20 Amgen Inc Plunger rod and syringe assembly system and method
AU2018280054B2 (en) 2017-06-08 2023-07-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
CA3066399A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Torque driven drug delivery device
MX2019015472A (en) 2017-06-22 2020-02-19 Amgen Inc Device activation impact/shock reduction.
MA49461A (en) 2017-06-23 2020-04-29 Amgen Inc ELECTRONIC DRUG DELIVERY DEVICE INCLUDING A CAP ACTIVATED BY A SWITCH ASSEMBLY
WO2019014014A1 (en) 2017-07-14 2019-01-17 Amgen Inc. Needle insertion-retraction system having dual torsion spring system
JP2020527376A (en) 2017-07-21 2020-09-10 アムジエン・インコーポレーテツド Gas permeable sealing material and assembly method for drug containers
EP3658203B1 (en) 2017-07-25 2022-08-31 Amgen Inc. Drug delivery device with gear module and related method of assembly
MA49676A (en) 2017-07-25 2020-06-03 Amgen Inc DRUG ADMINISTRATION DEVICE EQUIPPED WITH A CONTAINER ACCESS SYSTEM AND ASSOCIATED ASSEMBLY PROCEDURE
WO2019032482A2 (en) 2017-08-09 2019-02-14 Amgen Inc. Hydraulic-pneumatic pressurized chamber drug delivery system
EP3668567A1 (en) 2017-08-18 2020-06-24 Amgen Inc. Wearable injector with sterile adhesive patch
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
EP3691717B1 (en) 2017-10-04 2023-02-08 Amgen Inc. Flow adapter for drug delivery device
WO2019070552A1 (en) 2017-10-06 2019-04-11 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
MA50348A (en) 2017-10-09 2020-08-19 Amgen Inc DRUG ADMINISTRATION DEVICE INCLUDING A TRAINING ASSEMBLY AND ASSOCIATED ASSEMBLY PROCEDURE
MA50528A (en) 2017-11-03 2020-09-09 Amgen Inc SYSTEMS AND APPROACHES TO STERILIZE A DRUG DELIVERY DEVICE
CA3079197A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Drug delivery device with placement and flow sensing
MA50569A (en) 2017-11-06 2020-09-16 Amgen Inc FILLING-FINISHING UNITS AND ASSOCIATED PROCESSES
WO2019094138A1 (en) 2017-11-10 2019-05-16 Amgen Inc. Plungers for drug delivery devices
CN111278487B (en) 2017-11-16 2022-06-24 安进公司 Door latch mechanism for a drug delivery device
MA50903A (en) 2017-11-16 2021-05-12 Amgen Inc SELF-INJECTOR WITH STALL AND END POINT DETECTION
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
US20210228815A1 (en) 2018-07-24 2021-07-29 Amgen Inc. Hybrid drug delivery devices with grip portion
CA3103681A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
CN112351804A (en) 2018-07-24 2021-02-09 安进公司 Delivery device for administering a drug
CA3103105A1 (en) 2018-07-31 2020-02-06 Amgen Inc. Fluid path assembly for a drug delivery device
CA3106452A1 (en) 2018-09-24 2020-04-02 Amgen Inc. Interventional dosing systems and methods
AU2019350660A1 (en) 2018-09-28 2021-03-18 Amgen Inc. Muscle wire escapement activation assembly for a drug delivery device
WO2020072577A1 (en) 2018-10-02 2020-04-09 Amgen Inc. Injection systems for drug delivery with internal force transmission
CA3112214A1 (en) 2018-10-05 2020-04-09 Amgen Inc. Drug delivery device having dose indicator
CN112689523A (en) 2018-10-15 2021-04-20 安进公司 Platform assembly method for drug delivery device
EA202191037A1 (en) 2018-10-15 2021-08-05 Эмджен Инк. A DRUG DELIVERY DEVICE WITH A DAMPER MECHANISM
US20220031953A1 (en) 2018-11-01 2022-02-03 Amgen Inc. Drug delivery devices with partial needle retraction
EP3873566A1 (en) 2018-11-01 2021-09-08 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
MA54057A (en) 2018-11-01 2022-02-09 Amgen Inc DRUG DELIVERY ELEMENT PARTIAL RETRACTION DRUG DELIVERY DEVICES
JP2022529319A (en) 2019-04-24 2022-06-21 アムジエン・インコーポレーテツド Syringe sterility confirmation assembly and method
AU2020337250A1 (en) 2019-08-23 2022-03-03 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
WO2022246055A1 (en) 2021-05-21 2022-11-24 Amgen Inc. Method of optimizing a filling recipe for a drug container

Also Published As

Publication number Publication date
AU2003254950A1 (en) 2004-03-11
WO2004018667A1 (en) 2004-03-04
TW200413406A (en) 2004-08-01
JPWO2004018667A1 (en) 2005-12-08
JP4406607B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
TWI333958B (en)
US10426822B2 (en) Cancer vaccine composition
JP6853842B2 (en) Immunogenic WT-1 peptide and its usage
TWI417103B (en) HLA-A*1101 restricted WT1 peptide and pharmaceutical composition containing the same
ES2373055T3 (en) ANTIQUE PENCIL OF CANCER REJECTION DERIVED FROM GLIPICAN-3 (GPC3) FOR USE IN PATIENTS POSITIVE TO HLA-A2 AND PHARMACEUTICAL PRODUCT THAT INCLUDES THE ANTIGEN.
ES2402184T3 (en) Synthesis of synthetic HLA binding peptides and their uses
TW201043240A (en) NEIL3 peptides and vaccines including the same
JP4035845B2 (en) Tumor antigen
TW201138806A (en) CDCA5 peptides and vaccines including the same
TW201130972A (en) Modified MELK peptides and vaccines containing the same
TW201225973A (en) Tomm34 peptides and vaccines including the same
TW201043244A (en) VANGL1 peptides and vaccines including the same
TW201102081A (en) TTK peptides and vaccines including the same
MX2011000116A (en) Immunity-inducing agent and method for detection of cancer.
TW201138803A (en) ECT2 peptides and vaccines including the same
TW201210608A (en) TTLL4 peptides and vaccines containing the same
TW201200525A (en) MYBL2 peptides and vaccines containing the same
TW201134480A (en) CLUAP1 peptides and vaccines including the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent