TW200413406A - Peptides and drugs containing the same - Google Patents

Peptides and drugs containing the same Download PDF

Info

Publication number
TW200413406A
TW200413406A TW092122744A TW92122744A TW200413406A TW 200413406 A TW200413406 A TW 200413406A TW 092122744 A TW092122744 A TW 092122744A TW 92122744 A TW92122744 A TW 92122744A TW 200413406 A TW200413406 A TW 200413406A
Authority
TW
Taiwan
Prior art keywords
gpc3
peptide
fmoc
cell
hla
Prior art date
Application number
TW092122744A
Other languages
Chinese (zh)
Other versions
TWI333958B (en
Inventor
Yasuharu Nishimura
Tetsuya Nakatsura
Yusuke Nakamura
Original Assignee
Kirin Brewery
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery filed Critical Kirin Brewery
Publication of TW200413406A publication Critical patent/TW200413406A/en
Application granted granted Critical
Publication of TWI333958B publication Critical patent/TWI333958B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4725Proteoglycans, e.g. aggreccan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Food Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a novel and useful immunotherapy for HCC and a clinically useful diagnostic for hepatocellular carcinoma. More specifically speaking, a peptide comprising an amino acid sequence represented by any of SEQ ID NOS:5 to 16 from which an HLA-A24-restricted and HCC-reactive CTL can be prepared. It is also intended to provide a diagnostic for hepatocellular carcinoma which contains an antibody against GPC3.

Description

200413406 玖、發明說明: 【發明所屬之技術領域】 本發明係關於在做為癌疫苗上有效之新穎胜肽、包含該 胜肽之治療及預防腫瘤用之醫藥以及肝細胞癌之新穎診斷 劑。 【先前技術】 原發性肝細胞癌(HCC)為世界中最常見之惡性疾病之 一。由於B型及C型肝炎之世界流行,在亞洲及歐洲諸國中 HCC 之發生率急劇上升(Schafer, D.F·及 Sorrell, M.F·, Lancet 353,1253-1257 (1999)),若考慮從 HCC 感染至發病 之長潛在期,可以預測今後50年該傾向將持續。病況惡化 之HCC之癒後不佳,亟需新的治療戰略。 另一方面,近年隨著分子生物學及腫瘤免疫學之進展, 鑑定出多個編碼可被腫瘤回應性細胞傷害性T淋巴球(CTL) 識別之腫瘤抗原及抗原性胜肽之基因,因而提高抗原特異 性腫瘤免疫療法之可能性(Boon,T·及van der B rug gen,P.,J. Exp. Med. 183,725-729 (1996); Rosenberg, S.A., J. Natl. Cancer Inst· 88, 1635-1644 (1996))。 α-胎兒性蛋白質(AFP),雖然在正常組織中僅於胎生期表 現,但曾報告在多個HCC中表現會被再活化(Fujiyama,S. et al· Oncology 62, 57-63 (2002))。又,小鼠及人類之T細胞庫 (repertory)可以識別來自被第I類MHC分子呈現之AFP之胜 肽抗原決定部位(Butterfield,L.H. et al·,Cancer Res. 59, 3 134-3 142 ; Jr Vollmer, C.M. et al., Cancer Res. 59, 3064- 87544 200413406 3067 (1999) ; Butterfield, L.H. et al., J. Immunol. 166, 5 300- 5308 (2001))。儘管於胎兒之發育階段暴露在高血漿 濃度之癌胎兒性蛋白質下,但成熟T細胞對於AFP無法獲得 完全的免疫寬容(tolerance),在末梢血中可檢測出AFP特異 性T細胞。亦即,癌胎兒性蛋白質可以成為免疫治療之標 的。又,AFP及 PIVKA-II (Fujiyama,S. et al·,Oncology 62, 57-63 (2002))為HCC之公知腫瘤標記。 再者,研究者急速發展可以得到與基因表現模式相關之 概括性資料之cDNA微陣列技術。數個研究證明該技術在新 穎癌相關基因之鑑定以及人類癌症之分子層級分類上有用 (Golub, T. R. et al., Science 286, 531-537 (1999); Alizadeh, A. A. et al·,Nature 403, 503-511 (2000) ; Ono,K. et al·,200413406 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a novel peptide effective as a cancer vaccine, a medicine for treating and preventing tumors containing the peptide, and a novel diagnostic agent for hepatocellular carcinoma. [Prior art] Primary hepatocellular carcinoma (HCC) is one of the most common malignant diseases in the world. Due to the worldwide epidemic of hepatitis B and C, the incidence of HCC has increased sharply in Asian and European countries (Schafer, DF · and Sorrell, MF ·, Lancet 353, 1253-1257 (1999)). If HCC infection is considered To the long potential period of onset, this trend can be predicted to continue in the next 50 years. The worsening condition of HCC is worse, and new treatment strategies are urgently needed. On the other hand, with the development of molecular biology and tumor immunology in recent years, a number of genes encoding tumor antigens and antigenic peptides that can be recognized by tumor-responsive cell nociceptive T-lymphocytes (CTLs) have been identified, thus increasing The possibility of antigen-specific tumor immunotherapy (Boon, T., and van der Brugegen, P., J. Exp. Med. 183, 725-729 (1996); Rosenberg, SA, J. Natl. Cancer Inst. 88, 1635-1644 (1996)). Alpha-fetal protein (AFP), although expressed only in the fetal stage in normal tissues, has been reported to be reactivated in multiple HCCs (Fujiyama, S. et al. Oncology 62, 57-63 (2002) ). In addition, mouse and human T cell repertory (repertory) can recognize the peptide epitope from AFP presented by type I MHC molecules (Butterfield, LH et al., Cancer Res. 59, 3 134-3 142; Jr Vollmer, CM et al., Cancer Res. 59, 3064-87544 200413406 3067 (1999); Butterfield, LH et al., J. Immunol. 166, 5 300-5308 (2001)). Although exposed to high plasma concentrations of cancerous fetal proteins during fetal development, mature T cells cannot obtain complete immune tolerance to AFP, and AFP-specific T cells can be detected in peripheral blood. That is, cancer fetal proteins can be the target of immunotherapy. AFP and PIVKA-II (Fujiyama, S. et al., Oncology 62, 57-63 (2002)) are well-known tumor markers of HCC. Furthermore, researchers are rapidly developing cDNA microarray technology that can provide general information about gene expression patterns. Several studies have proven useful for the identification of novel cancer-related genes and the molecular-level classification of human cancers (Golub, TR et al., Science 286, 531-537 (1999); Alizadeh, AA et al., Nature 403, 503-511 (2000); Ono, K. et al.,

Cancer Res. 60, 5007-5011 (2000); Kitahara, O. et al., Cancer Res· 61,3544-3549 (2001) ; Kihara,C· Cancer Res. 61, 6474-6479 (2001))。本發明者首先藉由使用包含23,040 種基因之cDNA微陣列,鑑定HCC發生時表現變化之基因。 然後檢討在20種原發性HCC中此等基因之表現模式(Okabe, H. et al,Cancer Res· 61,2129-2137 (2001))。 1996年,Pilia等人報告編碼肝素蛋白聚糖(glypican)家族 成員之一之肝素蛋白聚糖-3(glypican-3,GPC3)基因在 Simpson-Golabi-Behmel症候群(SGBS)患者中變異(Pilia, G et al·,Nat. Genet· 12, 241-247 (1996))。SGBS為一種 X連鎖 基因性疾病,其以出生前後過度成長以及廣範圍臨床症狀 (從女性帶原者之非常輕度表現型至男性乳兒之致死症狀) 87544 200413406 等為特徵(Neri,G· et al·,Am. J· Med· Genet. 79, 279-283 (1998))。SGBS之6¾床特徵為特別之容貌(distinct facial appearance)、口蓋裂、合指、多指、副乳、囊胞性及異形 成腎以及先天性心臟缺陷等(Behmel,A· et al.,Hum. Genet. 67, 409-413 (1984) ; Garganta, C. L.及 Bodurtha,J. N·,Am. J. Med· Genet· 44,129-135 (1992); Golabi,M.及 Rosen,L., Am. J. Med. Genet. 17, 345-358 (1984) ; Currieri, F. et al., Am· J· Med· Genet· 44,136-137 (1992))。曾報告 GPC3 變異 之大部分為點突變或包含數個外顯子之小基因缺失 (Hughes-Benzie, R. M. et al., Am. J. Med. Genet. 66, 227-234 (1996) ; Lindsay, S. et al., J. Med. Genet. 34, 480-483 (1997) ; Veugelers. M· et al·, Hum. Mol. Genet. 9, 1321-1328 (2000); Xuan, J. Y. et al., J. Med. Genet. 36, 57-5 8 (1999))。又,患者之表現型與變異之位置無相關性, 所以SGBS可能由GPC3蛋白質之缺損及造成家族内及家族 間之表現型差異之其他遺傳要因引起(Hughes_Benzie,R. Μ· et al.,Am. J· Med. Genet. 66, 227-234 (1996)),從 GPC3 缺損小鼠之研究,可以支持該假說(Can〇 —Cauci,D F etal.,Cancer Res. 60, 5007-5011 (2000); Kitahara, O. et al., Cancer Res. 61, 3544-3549 (2001); Kihara, C. Cancer Res. 61, 6474-6479 (2001)). The present inventors first identified genes that behaved differently when HCC occurred by using a cDNA microarray containing 23,040 genes. The expression patterns of these genes in 20 primary HCCs were then reviewed (Okabe, H. et al, Cancer Res. 61, 2129-2137 (2001)). In 1996, Pilia et al. Reported that the heparin proteoglycan-3 (GPC3) gene encoding a member of the heparin proteoglycan (glypican) family was mutated in Simpson-Golabi-Behmel syndrome (SGBS) patients (Pilia, G et al., Nat. Genet. 12, 241-247 (1996)). SGBS is an X-linked genetic disease, which is characterized by excessive growth before and after birth and a wide range of clinical symptoms (from very mild phenotypes of female carriers to lethal symptoms of male infants) 87544 200413406, etc. (Neri, G. et al., Am. J. Med. Genet. 79, 279-283 (1998)). The 6¾ bed of SGBS is characterized by distinctive facial appearance, cracked lids, joint fingers, multi-fingers, paramilitary, cystic and heterogeneous kidneys, and congenital heart defects (Behmel, A. et al., Hum. Genet. 67, 409-413 (1984); Garganta, CL and Bodurtha, J. N., Am. J. Med. Genet. 44, 129-135 (1992); Golabi, M. and Rosen, L., Am J. Med. Genet. 17, 345-358 (1984); Currieri, F. et al., Am. J. Med. Genet. 44, 136-137 (1992)). It has been reported that most of the GPC3 mutations are point mutations or deletions of small genes containing several exons (Hughes-Benzie, RM et al., Am. J. Med. Genet. 66, 227-234 (1996); Lindsay, S. et al., J. Med. Genet. 34, 480-483 (1997); Veugelers. M. et al., Hum. Mol. Genet. 9, 1321-1328 (2000); Xuan, JY et al. J. Med. Genet. 36, 57-5 8 (1999)). In addition, the patient's phenotype has no correlation with the location of the mutation, so SGBS may be caused by a defect in the GPC3 protein and other genetic factors that cause phenotypic differences within and between families (Hughes_Benzie, R. M. et al., Am J. Med. Genet. 66, 227-234 (1996)), which can support this hypothesis from the study of GPC3-deficient mice (Can0-Cauci, DF etal.,

J· Cell Biol· ι46,25 5-264 (1999))。此等小鼠具有在SGBS 患者中所見到之過度成長、囊胞性及異形成腎等數個異常。 I癌中特異性過剩表現,但在各種正常組織中之表現度 可以忽視之抗原,在免疫療法中可做為理想的標的。在此 私ft /兄’可以期待CTL只對過剩表現抗原之癌顯示細胞傷 害性’對於正常組織未顯示副作用。從使用南方點潰解析 87544 200413406 之研究報告GPC3 mRNA在HCC、胎盤、胎兒肝臟、胎兒肺 及胎兒腎臟中過剩表現(Zhu, Z· W. et al·, Gut 48, 558-564 (2001) ; Hsu. H. C. et al., Cancer Res. 57, 5179-5184 (1997) ; Pellegrini,M. et al·,Dev Dyn· 213,431-439 (1998) )。 又,GPC3由於有抑制細胞增殖之作用,在某種腫瘤細胞 中可以謗導細胞凋亡(Duenas Gonzales, A· et al.,J. Cell Biol. 141, 1407-1414(1998) ; Cano-Gauci, D. F. et al., J. Cell Biol· 146, 255-264(1999)),所以GPC3表現在各種起源之腫 瘤中之表現受到抑制。Lin等人指出GPC3雖然在正常卵巢 組織中表現,但在某種卵巢癌細胞系中無法檢測出(Lin, H. et al·,Cancer Res. 59, 807-810 (1999))。在未見到 GPC3表現 之全部情況中,於編碼領域沒有變異,但GPC3啟動子被過 度甲基化,當用脫甲基化劑處理時,GPC3表現可以回復。 再者,GPC3之異所性表現在數種卵巢癌細胞系中可以抑制 群落形成活性。GPC3與癌之相關性之其他資料,可從研究 正常大鼠中皮細胞與中皮腫瘤細胞株間之a差異顯示 仔到(Murthy,S· S. et al·,Oncogene 19, 410-416 (2000))。在 该研冗中發現GPC3在腫瘤細胞中之表現一直被抑制。再 名’同樣的表現抑制在來自原發性大鼠中皮腫瘤及人類中 反腫瘤之細胞株中亦被發現。與卵巢癌同樣地,在GpC3編 碼序列中雖木見到變異,但在大部分細胞株中GpC3啟動子 領域被異常地甲基化。如所報告者(Duenas G〇nzales, A. et. amelhBiol· 141,1407_1414 (1998)),在中皮腫瘤細胞 87544 -9- 200413406 株中GPC3之異所性表現顯示會抑制群落形成活性。再者, 最近Xiang等人報告GPC3在人類乳癌中亦未表現(Xiang,Y. Y. et al.,Oncogene 20,7408-7412 (2001))。此等資料暗示 GPC3在此等癌中可做為細胞增殖之負調節因子。亦即,在 從成人之GPC3陽性組織生成之癌中,GPC3之表現於腫瘤進 行期間降低,該降低被認為在惡性之表現型之發生上扮有 某種角色。 相反地,HCC之情況,腫瘤從只在胎兒期表現GPC3之肝 臟組織中生成,在轉為惡性時,GPC3有被再度表現之傾 向。在最近數年間,已明白細胞表面硫酸乙酿肝素蛋白聚 糖(Heparan sulfate proteoglycan,HSPG)為纖維母細胞增殖 因子(FGF)及Wnt等乙醯肝素結合性成長因子表現最適活性 所必需(Yayon,A. et al.,Cell 64,841-848 (1991);J. Cell Biol 46, 25 5-264 (1999)). These mice have several abnormalities seen in patients with SGBS, including overgrowth, cysticity, and heteronephrosis. Specific overexpressive manifestations in I cancer, but antigens that can be ignored in various normal tissues can be used as ideal targets in immunotherapy. It can be expected that CTL will only show cell damage to cancers with excessive expression of antigen 'and will not show side effects on normal tissues. Excessive expression of GPC3 mRNA in HCC, placenta, fetal liver, fetal lung, and fetal kidney was reported from a study using the analysis of the southern point 87544 200413406 (Zhu, Z.W. et al., Gut 48, 558-564 (2001); Hsu. HC et al., Cancer Res. 57, 5179-5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998)). In addition, GPC3 can inhibit apoptosis in certain tumor cells due to its inhibitory effect on cell proliferation (Duenas Gonzales, A. et al., J. Cell Biol. 141, 1407-1414 (1998); Cano-Gauci , DF et al., J. Cell Biol. 146, 255-264 (1999)), so GPC3 expression was suppressed in tumors of various origins. Lin et al. Pointed out that although GPC3 is expressed in normal ovarian tissue, it cannot be detected in certain ovarian cancer cell lines (Lin, H. et al., Cancer Res. 59, 807-810 (1999)). In all cases where GPC3 performance was not seen, there was no variation in the coding domain, but the GPC3 promoter was overmethylated, and GPC3 performance could be restored when treated with a demethylating agent. Furthermore, GPC3 heterogeneity is shown to inhibit colony-forming activity in several ovarian cancer cell lines. Other data on the correlation between GPC3 and cancer can be shown by studying the differences between normal rat mesothelial cells and mesothelial tumor cell lines (Murthy, S.S. et al., Oncogene 19, 410-416 (2000 )). It was found in this study that the expression of GPC3 in tumor cells has been inhibited. The same kind of expression inhibition was also found in cell lines derived from primary rat mesothelial tumors and antitumor cells in humans. Similar to ovarian cancer, although mutations were observed in the GpC3 coding sequence, the GpC3 promoter domain was abnormally methylated in most cell lines. As reported (Duenas Gonzales, A. et. Amelh Biol. 141, 1407_1414 (1998)), heterotopic manifestations of GPC3 in mesothelial tumor cell 87544-9-200413406 strains have been shown to inhibit colony-forming activity. Furthermore, Xiang et al. Recently reported that GPC3 is not expressed in human breast cancer (Xiang, Y. Y. et al., Oncogene 20, 7408-7412 (2001)). These data suggest that GPC3 can be used as a negative regulator of cell proliferation in these cancers. That is, in cancers generated from adult GPC3-positive tissues, the expression of GPC3 decreases during tumor progression, and this decrease is considered to play a role in the occurrence of malignant phenotypes. In contrast, in the case of HCC, tumors are generated from liver tissues that only express GPC3 during the fetal period, and when they become malignant, GPC3 tends to be re-expressed. In recent years, it has been understood that Heparan sulfate proteoglycan (HSPG) on the cell surface is necessary for the optimal activity of Heparin-binding growth factors such as fibroblast proliferation factor (FGF) and Wnt (Yayon, A. et al., Cell 64, 841-848 (1991);

Schlessinger,J· et al·,Cell 83, 357-360(1995))。肝素蛋白聚 糖(Glypican,GPC)為GPI錨定型細胞表面HSPG家族。在腫 瘤形成與GPC3表現度之關係方面,其之組織特異性差異被 推測係由於GPC3在各組織中用不同的方法調節成長及生 存因子。GPC3被認為至少在此等器官中係以癌胎兒性蛋白 質之方式運作。一般而言,癌胎兒性蛋白質在腫瘤之惡化 上雖不具有重要之角色,但可做為腫瘤標記或免疫治療之 標的使用(Coggin,J. H. Jr.,CRC Critical Reviews in Oncology/Hematology 5,37-55 (1992) ; Matsuura, H.及 Hakomori S.-I., Proc. Natl. Acad. Sci. USA. 82, 6517-6521 (1985)))。GPC3之癌胎兒性行為是否可被利用於臨床之用 87544 -10- 200413406 途以及該肝素蛋白聚糖(glypican)之再表現在HCC惡化上是 否重要皆尚待研究。 HCC之治療方法儘管有各種各樣,但與其他癌相較預後 不佳,為難治性癌之一。HCC基本上具有肝硬變,其係由 於原本患者之肝機能就不佳,且縱使治療一個癌,又從另 一處產生癌。其需要緊急及新穎的治療戰略。若能開發以 在HCC中特異性高表現之抗原做為標的之免疫療法,將可 以得到對於正常器官沒有傷害,而只有效排除癌之治療 法。又,可以得到對於不論怎樣末期之患者或肝機能不佳 無法進行其他治療之患者亦可使用之治療法。再者,目前 在曰本,為HCC易罹患群之C型肝炎感染者可謂有200萬人 以上。對於此等感染者之HCC之預防,可以使用如此之免 疫療法。雖然已知AFP及PIVKA-II可做為HCC之腫瘤標記, 但有患者未被檢測出之案例,亦有為良性肝疾病之肝硬化 及慢性肝炎之患者成為偽陽性之案例,尤其HCC之早期診 斷相當困難。因此需要供早期診斷HCC用之其他有用腫瘤 標記。 【發明内容】 發明之揭示 本發明者等,依據cDNA微陣列解讀之資料,鑑定出在人 類肝細胞癌中特異性過剩表現之新穎癌胎兒性蛋白質,即 肝素蛋白聚糖3(glypican 3,GPC3),以及發現可以成為免 疫治療之潛在候選標的抗原之新穎胜肽。其次本發明者等 檢測出在HCC患者血清中之可溶性GPC3蛋白質,以及明白 87544 200413406 GPC3可以成為HCC之新穎腫瘤標記。 亦即,本發明提供以下(1)〜(18) (1) 一種胜肽,其包含序列編號5〜16之任一者所示之胺 基酸序列。 (2) —種具有細胞傷害性τ細胞謗導能力之胜肽,其為序 列編號5〜16之任一者所示之胺基酸序列中1個或2個胺基酸 被取代或附加者。 (3) 如上述(2)之胜肽,其中從N末端算起第二個胺基酸 為苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸。 (4) 如上述(2)或(3)之胜肽,其中C端之胺基酸為苯丙胺 酸、白胺酸、異白胺酸、色胺酸或甲硫胺酸。 (5) —種供腫瘤之治療及/或預防用之醫藥,其包含一種 以上(1)至(4)中任一項之胜肽。 (6) —種外來體(ex〇s〇me),其將包含⑴至⑷中任一項之 胜肽及HL A分子之複合體呈現於表面。 (Ό如上述(6)之外來體,其中Hla分子為HLA_A24。 ⑻如⑺之外來體,其中hla分子為hla_a*24〇2。 (9) 一種細胞傷害性T細胞謗導能力高之抗原呈現細胞 之謗導方法’其係使用上述⑴至⑷中任—項之胜肽進行該 机原王現細胞之誘導。 (10) -種細胞傷害性T細胞誘導能力高之抗原呈現細胞 之誘導方法’其包含將編碼肝素蛋白聚糖_3 (Gpc3)蛋白質 或其之部分胜肽之基因導人抗原呈現細胞中,纟中該部分 胜肽包含上述(1)至(4)中任一項之胜肽。 87544 -12- 200413406 (11) 一種誘導細胞傷害性T細胞之方法,其中使用(1)至 (4)中任一項之胜肤進行該誘導。 (12) —種細胞傷害性Τ細胞,其係用(1)至(4)中任一項之 胜肽謗導並單離而得。 (13) —種抗原呈現細胞,其係呈現HLA與(1)至(4)中任一 項之胜肽之複合體。 (14) 如上述(13)之抗原呈現細胞,其係藉由上述⑼或 (10)之方法誘導。 (15) — J?h細胞癌(HCC)之診斷劑,其包含針對gpc3之 抗體。 (16) —種HCC之診斷方法,其包含使檢體與針對gpc3 之抗體接觸。 (17) 如上述(16)之方法,其另包含定量檢體中之Gpc3。 (18) —種診斷HCC用之套組,其包含針對Gpc3之抗體。 冬說明書包含為本案之優先權基礎之曰本專利申請案 2002-245831號之說明書及/或圖式記載之内容。 【實施方式】 實施發明之最佳形態 本發明者使用Okabe,H.等人在(Cancer Res. 61, 2129-2137 (2001))中記載之方法,依據cDNA微陣列,鑑定 出在人類肝細胞癌中特異性過剩表現之新穎癌胎兒性蛋白 * ’即肝素蛋白聚糖-3 (GPC3)。檢測血清中之GpC3之結果 中’確認在肝細胞癌以外之癌例如胃、食道、肺、乳房、 腎臟、膽管及結腸等癌中GPC3為陰性,在肝硬變及慢性肝 87544 -13- 200413406 炎等良性肝疾病中亦為陰性。再者,本發明者確認外科治 療後之肝細胞癌患者中,術後血清中之GPC3為陰性。 人類GPC3蛋白質之胺基酸序列為公知,例如被登錄在 GenBank之蛋白質資料庫中入籍編號為NP 004475者,若為 本技藝人士將易於取得。本發明者繼而慮及在活體中各種 蛋白質被呈現在抗原呈現細胞上之情況,係於被分解成9個 胺基酸組成之肽(九肽)後被呈現,因此合成具有針對 HLA-A24(具有此型者占曰本人全體之60%)之結合基元 (binding motif)且來自GPC3之9個胺基酸或10個胺基酸組成 之部分胜肽。 具有針對HLA-A24之結合基元之胜肽之選擇,可以依據 例如在 J. Immunol., 152,3913,1994 及 J. Immunol. 155:4307,1994中記載之方法進行。對於HLA-A24以外之 HLA型,可以同樣方式選擇胜肽。或者使用最近網路上可 利用之軟體,例如在Parker K. C·,J. Immunol· 152,1994 中 記載者,可以用in silico計算各種胜肽與HLA分子(有時亦被 稱為HLA抗原)之結合親和性。與HLA分子之結合親合性, 例如可以利用上述款體BIMAS: HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ (Parker, K. C. et. al., J· Immunol.,152,1994)或者在 Nukaya,I·,Int· J. Cancer, 80, 1999中記載之方法推定。 9-聚物及10-聚物胜肽,可依據得到之GPC3蛋白質之全胺 基酸序列,從任意位置合成胜肽。胜肽之合成可以依照在 通常之胜肽化學中使用之方法進行。通常使用之合成方法 87544 -14- 200413406 例如為 Peptide Synthesis, Interscience,New York,1996 ; The Proteins, Vol 2,Academic Press Inc·,New York, 1976 ;胜肽 合成,丸善(株),1975 ;胜肽合成之基礎及實驗,丸善(株), 1985 ;醫藥品之開發續第14卷胜肽合成,廣川書店,1991 等文獻;以及國際公開WO 99/67288號等公報中記載者。 HLA分子與胜肽之實際結合,可藉由將可使HLA基因在TAP 缺損之T2或RMA-S細胞株中表現之轉形體與胜肽一起培 育,並用流式細胞光度計定量及測定在細胞表面表現之第I 類 HLA 分子(例如參照 Immunol· Lett. 2002 Aug 1, 83(1):21-30; Immunogenetics,44:233-241,1996 及 Nature 346:321-325, 1990) ° 關於HLA分子,為了得到有效之結果,以使用日本人多 數(60%)保有之A24型為較佳,以使用A$2402等亞型為更 佳。但是在臨床上,藉由預先調查需要治療之患者之HLA 分子之類型,可以適當選擇與其之結合親和性高,或者藉 由抗原呈現謗導傷害性T細胞(CTL)之能力高之胜肽。再 者,為了得到結合親和性及CTL之謗導能力高之胜肽,可 以天然存在之GPC3部分胜肽之胺基酸序列為基礎,進行1 或2個胺基酸之取代或附加。除了在天然中被呈現之胜肽之 外,由於已知與既存之HLA分子結合並被呈現之胜肽之序 歹ll 之規貝ll 4生(J. Immunol·,152,3913, 1994; Immunogenetics. 41:178, 1995; J· Immunol· 155:4307, 1994),因此對於得到 之胜肽,較佳依據該規則性進行改變。舉例言之,HLA-A24 結合親和性高者,以使用從胜肽之N末端算起第二個胺基酸 87544 -15 - 200413406 被取代成苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸,且c端之 胺基酸被取代成苯丙胺酸、白胺酸、異白胺酸、色胺酸或 甲硫胺酸之胜肽為較佳。 但是,在胜肽之序列與其他具有機能之内在性或外來性 蛋白質之胺基酸序列之一部分相同之情況,由於可能產生 自體免疫疾病等副作用,或對於特定物質引起過敏症狀, 因此使用可利用之資料庫進行類似性(homology)檢索,並 以避免與其他蛋白質之胺基酸序列一致為較佳。再者,在 類似性檢索中,若顯然亦不存在1個或2個胺基酸不同之胜 肽,則為了提高與HLA分子之結合親和性及/或謗導CTL之 能力而對上述胺基酸序列所做之改變將亦不會產生上述問 題。 如上述與HLA分子之結合親和性高之胜肽,雖然預測做 為有效癌疫苗之可能性高,但對於以具有高結合親和性做 為指標所選擇之候選胜肽而言,必須檢討實際上是否具有 CTL謗導能力。CTL謗導能力之確認,例如藉由誘導具有 HLA分子之抗原呈現細胞(β-淋巴球、巨噬細胞及樹狀細 胞),具體而言,來自末梢血單核細胞之樹狀細胞等,並於 用胜肽刺激後與CD8陽性細胞混合,然後測定對於標的細 胞之細胞傷害活性。或者依據Nakatsura, Τ.等人 (Eur. J. Immunol. 32, 826-836 (2002))記載之方法,可以從PBMC誘 導胜肽特異性CTL。再者,做為反應系者,可採用被製成 可表現人類HLA分子之轉基因動物(例如 Hum. Immunol. 2000 Aug.; 61(8):764-79 Related Articles, Books,Linkout 87544 -16- 200413406 丄nauction οί CJLL· response bv a mi”. i · · y Minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence 〇n HLA ciass II restricted T(H) response., BenMohamed L„ Krishnan R., Longmate J.,Auge C.,Low L·,Primus ;,Diam〇nd DJ等記 載者)。細胞傷害活性,例如可以藉由用MCr等將標的細胞 予以放射標識,然後從標的細胞游離出之放射活性計算。 或者,觀察於負荷胜肽之抗原呈現細胞存在下CTL之產 生。其可藉由測定在培養基上被釋出之IFN_Y及抗IFN-Y單 株抗體所造成之可目視化之點來觀察。 如上述’掠列胜肤之CTL诱導能力之結果顯示從包含以 下序列編號5〜16所示之胺基酸序列之胜肽選出之九肽或十 肽具有高CTL謗導能力。Schlessinger, J. et al., Cell 83, 357-360 (1995)). Glypican (GPC) is a GPI anchored cell surface HSPG family. In terms of the relationship between tumor formation and GPC3 expression, the tissue-specific differences are presumed to be due to the fact that GPC3 regulates growth and survival factors in different tissues in different ways. GPC3 is thought to function as a cancer-fetal protein in at least these organs. In general, cancer fetal proteins do not play an important role in tumor progression, but they can be used as tumor markers or targets for immunotherapy (Coggin, JH Jr., CRC Critical Reviews in Oncology / Hematology 5, 37- 55 (1992); Matsuura, H. and Hakomori S.-I., Proc. Natl. Acad. Sci. USA. 82, 6517-6521 (1985))). Whether GPC3 cancerous fetal sex can be used for clinical purposes 87544 -10- 200413406 and whether the re-expression of the heparin proteoglycan (glypican) is important in the deterioration of HCC remains to be studied. Although there are various treatment methods for HCC, its prognosis is poor compared with other cancers, and it is one of the refractory cancers. HCC basically has cirrhosis, which is due to poor liver function of the original patient, and even if one cancer is treated, the cancer is generated from another. It requires urgent and novel treatment strategies. If we can develop immunotherapies that target antigens that are highly specific in HCC, we will be able to obtain treatments that do no harm to normal organs and only exclude cancer. In addition, it is possible to obtain a treatment method which can be used for patients with terminal stage or patients with poor liver function who cannot perform other treatments. In addition, at present, there are more than 2 million people with hepatitis C infection in the HCC susceptible group. For the prevention of HCC in these infected persons, such immunotherapy can be used. Although AFP and PIVKA-II are known as tumor markers for HCC, there are cases where patients are not detected, and there are cases where patients with benign liver disease, cirrhosis and chronic hepatitis become false positive, especially in the early stages of HCC. The diagnosis is quite difficult. Therefore, other useful tumor markers for early diagnosis of HCC are needed. [Summary of the Invention] According to the disclosure of the invention, the inventors identified a novel cancer fetal protein, specifically heparin proteoglycan 3 (GPC3), which is specifically expressed in human hepatocellular carcinoma based on the data of cDNA microarray interpretation ), And novel peptides found to be potential candidates for immunotherapy. Secondly, the present inventors have detected soluble GPC3 protein in the serum of HCC patients, and it is understood that 87544 200413406 GPC3 can be a novel tumor marker for HCC. That is, the present invention provides the following (1) to (18) (1) a peptide comprising the amino acid sequence shown in any one of sequence numbers 5 to 16. (2) A peptide having a cytotoxic τ cell defensive ability, which is one in which one or two amino acids are substituted or added in the amino acid sequence shown in any one of sequence numbers 5 to 16. . (3) The peptide as described in (2) above, wherein the second amino acid from the N-terminus is phenylalanine, tyrosine, methionine or tryptophan. (4) The peptide according to (2) or (3) above, wherein the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan, or methionine. (5) A medicine for treating and / or preventing tumors, which comprises one or more of the peptides according to any one of (1) to (4). (6) A kind of exosomes (exosomes), which presents on the surface a complex comprising a peptide of any of ⑴ to ⑷ and an HLA molecule. (For example, the exosome (6) above, where the Hla molecule is HLA_A24. For example, the exosome, where the hla molecule is hla_a * 24〇2. (9) Presentation of an antigen with high cell-deficient T cell slander ability Cell defamation method 'uses the above-mentioned peptides of any one of the above-mentioned items to induce the original king's present cells. (10)-A method for inducing antigen-presenting cells with high cell-injurious T-cell induction ability 'It comprises a gene-leading antigen-presenting cell encoding a heparin proteoglycan-3 (Gpc3) protein or a partial peptide thereof, wherein the partial peptide comprises any one of (1) to (4) above Peptide. 87544 -12- 200413406 (11) A method for inducing cellular nociceptive T cells, wherein the inducing is performed using the epidermis of any one of (1) to (4). (12) — a kind of cellular nociceptive T Cells derived from the peptide of any one of (1) to (4) and isolated. (13) An antigen-presenting cell that exhibits HLA and any of (1) to (4) The complex of one item of peptide. (14) The antigen-presenting cell as described in (13) above, which is induced by the method of ⑼ or (10) above. (15) — A diagnostic agent for J? H cell carcinoma (HCC), which includes an antibody against gpc3. (16) — A diagnostic method for HCC, which comprises contacting a specimen with an antibody against gpc3. (17) As described above (16) The method further comprises quantifying Gpc3 in the specimen. (18) —A kit for diagnosing HCC, which includes antibodies against Gpc3. The winter specification includes the present patent application, which is the basis of priority of the present application. 2002-245831 No. of description and / or drawings. [Embodiment] The best mode for carrying out the invention The present inventor used Okabe, H. et al. (Cancer Res. 61, 2129-2137 (2001)) According to the documented method, a novel cancer fetal protein that is specifically overexpressed in human hepatocellular carcinoma is identified based on the cDNA microarray * 'that is, heparin proteoglycan-3 (GPC3). The result of detecting GpC3 in serum' was confirmed GPC3 is negative in cancers other than hepatocellular carcinoma, such as stomach, esophagus, lung, breast, kidney, bile duct, and colon. It is also negative in benign liver diseases such as cirrhosis and chronic liver 87544-13-200413406 inflammation. Furthermore, after the inventors confirmed the surgical treatment, In patients with hepatocellular carcinoma, the postoperative serum GPC3 is negative. The amino acid sequence of the human GPC3 protein is well known. For example, those registered in the protein database of GenBank with the citizenship number NP 004475 will be easily Obtained. The inventors then considered that various proteins are presented on antigen-presenting cells in the living body, which are presented after being decomposed into peptides consisting of nine amino acids (nine peptides), so the synthesis has HLA- The binding motif of A24 (having this type accounts for 60% of the whole person) and a part of the peptide composed of 9 amino acids or 10 amino acids from GPC3. The selection of a peptide having a binding motif for HLA-A24 can be performed according to the methods described in J. Immunol., 152, 3913, 1994 and J. Immunol. 155: 4307, 1994, for example. For HLA types other than HLA-A24, peptides can be selected in the same manner. Or use software available on the Internet recently, such as those described in Parker K. C., J. Immunol. 152, 1994, which can use in silico to calculate various peptides and HLA molecules (sometimes referred to as HLA antigens) Binding affinity. For binding affinity to HLA molecules, for example, the above-mentioned BIMAS: HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ (Parker, KC et. Al., J. Immunol. , 152, 1994) or the method described in Nukaya, I., Int. J. Cancer, 80, 1999. The 9-mer and 10-mer peptides can be synthesized from arbitrary positions based on the entire amino acid sequence of the GPC3 protein obtained. The synthesis of the peptide can be carried out according to a method used in ordinary peptide chemistry. The commonly used synthesis methods 87544 -14- 200413406 are, for example, Peptide Synthesis, Interscience, New York, 1996; The Proteins, Vol 2, Academic Press Inc., New York, 1976; Peptide Synthesis, Maruzen Corporation, 1975; Basics and Experiments of Peptide Synthesis, Maruzen Co., Ltd., 1985; Development of Pharmaceutical Products, Continued Volume 14, Peptide Synthesis, Hirokawa Shoten, 1991, etc .; and those described in International Publication No. WO 99/67288. The actual binding of HLA molecules and peptides can be achieved by culturing the transformants that can express the HLA gene in TAP-deficient T2 or RMA-S cell lines with peptides, and quantify and measure in cells by flow cytometry. Class I HLA molecules represented on the surface (for example, see Immunol·Let. 2002 Aug 1, 83 (1): 21-30; Immunogenetics, 44: 233-241, 1996 and Nature 346: 321-325, 1990) ° About HLA For the numerator, in order to obtain effective results, it is better to use the A24 type held by the majority of the Japanese (60%), and it is better to use the subtype such as A $ 2402. However, clinically, by investigating in advance the type of HLA molecules in patients in need of treatment, it is possible to appropriately select peptides with high binding affinity to them, or antigens capable of demonstrating noxious T cells (CTL). Furthermore, in order to obtain a peptide with high binding affinity and CTL defamatory ability, one or two amino acids may be substituted or added based on the amino acid sequence of the naturally occurring GPC3 partial peptide. In addition to the peptides that are present in nature, the sequence of the peptides is known to bind to existing HLA molecules and is presented in the 4th chapter (J. Immunol., 152, 3913, 1994; Immunogenetics 41: 178, 1995; J. Immunol. 155: 4307, 1994), so for the obtained peptide, it is preferable to change according to this regularity. For example, HLA-A24 binds to those with high affinity to use the second amino acid from the N-terminus of the peptide. 87544 -15-200413406 is replaced with phenylalanine, tyrosine, methionine or chromosome Amino acid, and the c-terminal amino acid is substituted with a peptide of phenylalanine, leucine, isoleucine, tryptophan or methionine. However, when the peptide sequence is part of the amino acid sequence of other functional intrinsic or foreign proteins, it may cause side effects such as autoimmune diseases or cause allergic symptoms for specific substances. It is better to use the database for homology search and avoid the amino acid sequence agreement with other proteins. Furthermore, in the similarity search, if it is clear that there are also no one or two peptides with different amino acids, in order to improve the binding affinity with the HLA molecule and / or the ability to defame CTL, Changes made to the acid sequence will also not cause the above problems. As described above, peptides with high binding affinity to HLA molecules, although predicted to be highly effective as cancer vaccines, must be reviewed for candidate peptides selected with high binding affinity as an indicator. Whether it has CTL slander ability. Confirmation of CTL defamatory ability, for example, by inducing antigen-presenting cells (β-lymphocytes, macrophages, and dendritic cells) with HLA molecules, specifically, dendritic cells from peripheral blood mononuclear cells, etc., and After being stimulated with peptide, it was mixed with CD8 positive cells, and then the cytotoxic activity against the target cells was measured. Alternatively, peptide-specific CTLs can be induced from PBMCs according to the method described by Nakatsura, T. et al. (Eur. J. Immunol. 32, 826-836 (2002)). Moreover, as a responder, transgenic animals made of human HLA molecules can be used (for example, Hum. Immunol. 2000 Aug .; 61 (8): 764-79 Related Articles, Books, Linkout 87544 -16- 200413406 丄 nauction οί CJLL · response bv a mi ”. I · · y Minimal epitope vaccine in HLA A * 0201 / DR1 transgenic mice: dependence 〇n HLA ciass II restricted T (H) response., BenMohamed L„ Krishnan R., (Longmate J., Auge C., Low L., Primus ;, Diamond DJ, etc.). The cytotoxic activity can be calculated, for example, by radiolabeling the target cells with MCr or the like and then releasing the radioactivity from the target cells. Alternatively, CTL production was observed in the presence of peptide-loaded antigen-presenting cells. It can be observed by measuring visualized points caused by IFN_Y and anti-IFN-Y monoclonal antibodies released on the culture medium. As described above, the results of the CTL inducing ability of the serapyrin showed that the nonapeptide or decapeptide selected from the peptides containing the amino acid sequences shown in the following sequence numbers 5 to 16 has high CTL defensive ability.

Sei:-Phe-Phe-Gln-Arg-Leu-Gln-Pr〇-Gly-Leu (序列編號5) Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序列編號6) Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (序列編號7) Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (序列編號 8) Lys-Phe-Se卜Lys-Asp-Cys-Gly-Arg-Met-Leu (序列編號9) Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (序列編號 10) Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (序列編號 11) Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (序列編號 12) Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (序列編號 13) Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (序列編號 14) Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (序列編號 15)Sei: -Phe-Phe-Gln-Arg-Leu-Gln-Pr0-Gly-Leu (SEQ ID NO: 5) Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 6) Met- Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (Serial No. 7) Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (Serial No. 8) Lys-Phe-Se and Lys- Asp-Cys-Gly-Arg-Met-Leu (SEQ ID NO: 9) Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (SEQ ID NO: 10) Lys-Tyr-Trp-Arg-Glu-Tyr- Ile-Leu-Ser-Leu (SEQ ID NO: 11) Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (SEQ ID NO: 12) Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu- Leu (serial number 13) Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (serial number 14) Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (serial number 15)

Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (序列編號 16) 87544 -17- 200413406 本發明另外提供序列編號5〜16之任一者所示之胺基齡序 列中1個或2個胺基酸被取代或附加,且具有細胞傷害性τ 細胞謗導能力之胜肽。1個或2個胺基酸之取代或附加,只 要不與其他蛋白質之胺基酸序列一致且具有CTL誘導能力 即可。尤其關於胺基酸之取代,從N末端算起第二個胺基酸 被取代成苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸,且c端之 胺基酸被取代成苯丙胺酸、白胺酸、異白胺酸、色胺酸或 甲硫胺fe為較佳之例子。 上述本發明之胜肽,可將1種或2種以上組合,並可做為 在身體内謗導CTL之癌疫苗使用。藉由投與本發明之胜 肽,该胜肽以高密度被呈現於抗原呈現細胞之A分子 上,謗導出對於被呈現之胜肽與HL A分子之複合體具特異 反應性之CTL,其對於為標的細胞之肝癌細胞之攻擊力 向。驭者藉由從被驗者取出樹狀細胞並用本發明之胜肽刺 激,可以侍到在細胞表面負荷本發明胜肽之抗原呈現細 胞,藉由將其再度投與被驗者,可以在被驗者體内誘導 CTL,而提高對於標的細胞之攻擊力。 亦、卩毛明狄供一種治療腫瘤或預防腫瘤之增殖及轉 矽π、瓦术其包含一種以上本發明之胜肽。又,在活體 及> 4自干’机原呈現細胞藉由本發明胜肽之刺激,藉著 U ^目_於細胞而言以高濃度存在,以與原先被負荷 枉邊細胞上〈胜肽交換,將可容易地進行。因&,與似 分子(結合親和性必須高達某種程度以上。 就本發明醫藥而言 雖可單獨直接投與本發明之胜肽, 87544 -18- 200413406 但以藉由通常使用之製劑學方法做成製劑化之醫藥組合物 投與為佳。在該場合,除本發明之胜肽之外,可適當包含 通常醫藥使用之載體及賦形劑,而無特殊之限定。 以本發明胜肽做為有效成分之治療及/或預防肝細胞癌 用之醫藥,可與佐劑以細胞性免疫上有效之方式一起投 與,亦可與其他抗癌劑等有效成分一起投與,或做成粒子 狀劑型投與。做為佐劑者可以採用文獻(Clin. Microbiol. Rev.,7··277-289, 1994)中記載者。又,可考慮採用微脂粒製 劑、結合於直徑數μιη之珠粒上之粒子狀製劑及結合於脂質 之製劑等。關於投與方法,可以利用經口投與、皮内投與、 皮下投與及靜脈注射等,亦可全身投與或局部投與至成為 目的之腫瘤之近旁。本發明之胜肽之投與量雖可視待治療 之疾病、患者之年齡、體重及投與方法等而適當地調整, 但通常為0.001 mg〜1000 mg,以0·001 mg〜1000 mg為較佳, 以0.1 mg〜10 mg為更佳,較佳數日至數月投與1次。若為本 技藝人士將能適當選擇適宜的投與量。 又或者本發明提供一種將本發明之胜肽與HL A分子之複 合體呈現至表面之所謂「外來體」之細胞内小胞。外來體 之調製雖可以使用詳細記載於特表平11-5 10507號及特表 2000-5 12161號中之方法,但較佳使用從為治療及/或預防對 象之受驗者所得之抗原呈現細胞來調製。本發明之外來 體,可與上述本發明之胜肽一樣地做成癌疫苗接種。 關於HL A分子,必須為與需要治療及/或預防之被驗者之 HLA分子同型者。例如在日本人之情況,做成HLA-A24, 87544 -19- 200413406 尤其是HLA-A*2402多數適當。 本發明又提供一種使用本發明之胜肽謗導抗原呈現細胞 之方法。將樹狀細胞從末梢單核球誘導後,使其在試管中 或活體中與本發明之胜肽接觸(刺激),可以誘導抗原呈現細 胞。將本發明之胜肽投與被驗者之情況,在被驗者之體内, 負荷本發明胜肽之抗原呈現細胞被謗導。或者可將本發明 之胜肽在試管中負荷於抗原呈現細胞後,做成疫苗投與被 驗者。 本發明又提供一種細胞傷害性T細胞謗導能力高之抗原 呈現細胞之謗導方法,其包含將編碼GPC3蛋白質或其之部 分胜肽(包含上述本發明之胜肽)之基因導入抗原呈現細胞 中。導入之基因可為DNA之形態或RNA之形態。關於導入 之方法可以使用通常進行之微脂粒感染法(lipofection)、電 穿孔法及磷酸鈣法等各種方法,沒有特殊限定。具體而言, 例如如在 Cancer Res·,56:5672,1996 ; J. Immunol., 161:5607,1998 ; J. Exp. Med., 184:465, 1996 及特表 2000-509281號中揭示者進行。藉由將基因導入抗原呈現細胞, 該基因在細胞中經過轉錄及轉譯等處理後,所得到之蛋白 質經第I類或第II類HLA之加工及呈現路徑,可呈現該部分 胜肽。 本發明再者提供一種使用上述本發明胜肽謗導CTL之方 法。將本發明之胜肽投與被驗者之情況,在被驗者之體内 CTL被謗導,以及以肝細胞癌細胞為標的之免疫力被增 強。或者可以使用所謂「將來自被驗者之抗原呈現細胞及 -20- 87544 200413406 C D 8陽性細胞或末梢血液單核球,在試管中與本發明之胜 肽接觸(刺激),謗導CTL後給予被驗者」之活體外治療方法。 本發明另外提供使用本發明之胜肽所謗導且被單離之細 胞傷害性T細胞。基於呈現本發明胜肽之抗原呈現細胞之刺 激所誘導之細胞傷害性T細胞,較佳來自為治療及/或預防 對象之被驗者,以抗腫瘤效果為目的時,其可單獨或與包 含本發明之胜肽或外來體等之其他醫藥一起投與。 再者,本發明提供呈現HLA分子與本發明之胜肽之複合 體之抗原呈現細胞。藉由與編碼本發明之胜肽、包含本發 明胜肽之GPC3蛋白質或其之部分胜肽之基因接觸所得到 之該抗原呈現細胞,較佳來自為治療及/或預防對象之被驗 者,其可單獨,或與包含本發明之胜肽、外來體或細胞傷 害性T細胞之其他醫藥一起做成疫苗投與。 本發明另外提供包含針對GPC3之抗體之肝細胞癌診斷 劑。針對GPC3之抗體可為多株或單株抗體之任一者,可以 藉由本技藝人士公知之方法(例如參照「新生化學實驗講座 1,蛋白質1,389-406,東京化學同人」)調製。GPC3蛋白 質,其之胺基酸序列如上述為公知,可以依據該胺基酸序 列,用通常之蛋白質表現技術製造,或者可以利用市售者 (SantaCruz,CA)。使用市售GPC3之情況,較佳於需要時使 用SDS-Out™ (十二基硫酸鈉沉澱試劑;從PIERCE, Rockford, IL購入)除去SDS後再使用。又,GPC3之部分胜 肽,可以從GPC3之胺基酸序列選擇適當的部分序列,並用 通常之胜肽合成技術製造。 87544 -21 - 200413406 關於多株抗體之調製,首先將GPC3蛋白質或其之部分胜 肽投與至兔子、土撥鼠、小鼠(mouse)、大鼠(rat)、天竺鼠、 雞及猿猴等動物中,以做為致敏抗原。其可與促進抗體產 生之佐劑(FIA及FCA)—起投與。投與通常每數週進行一 次。藉由進行複數次免疫,可以提高抗體價。最終免疫後, 籍由從免疫動物採血得到抗血清。對於該抗血清,例如可 以藉由硫酸銨沉澱及陰離子層析分成各部分,以及使用蛋 白質A及固定化抗原進行親和精製,可以調製成多株抗體。 另一方面,關於單株抗體之調製,例如將GPC3蛋白質或 其之部分胜肽與上述同樣地將動物免疫,最終免疫後,從 該免疫動物採取脾臟或淋巴結。將該脾臟或淋巴結所包含 之抗體產生細胞與骨髓瘤細胞用聚乙二醇等融合,以調製 成融合瘤。細胞融合,基本上可以依照公知之方法,例如 Kohler及 Milstein等人之方法(Kohler· G. and Milstein,C·, Methods Enzymol· (1981)73,3-46)而進行。所得到之融合 瘤,可以藉由在通常之選擇培養液,例如HAT培養液(包含 次黃嘌呤、胺喋呤(aminopterin)及胸嘗)中培養而選擇。在 上述HAT培養液中之培養,為了使為目的之融合瘤以外之 細胞(非融合細胞)夕匕滅,持續充分之時間。接下來,篩選為 目的之融合瘤,培養該融合瘤,以及從該培養上清液調製 單株抗體。 又,本發明之抗體,亦可由用包含抗體基因之表現載體 依照遺傳工程之手法轉形之宿主產生。舉例言之,單株抗 體可以使用藉由將抗體基因從融合瘤選殖,插入適當載 87544 -22- 200413406 體,將該載體導入宿主,並以基因重組技術產生之重組型 抗體(參照 Vandamme,A. M. et al·, Eur· J. Biochem. (1990) 192, 767-775, 1990)。 為了製造本發明使用之抗體,可以使用任意之表現系例 如真核細胞或原核細胞系。真核細胞例如為已構築之哺乳 類細胞系、昆蟲細胞系、真菌狀細胞及酵母細胞等動物細 胞;原核細胞例如為大腸菌細胞等細菌細胞。接下來,將 已轉形之宿主細胞在試管中或在活體中培養,產生目的抗 體。宿主細胞之培養依照公知之方法進行。 單株抗體之精製,例如藉由硫酸銨沉澱及陰離子層析分 成各部分,藉由使用蛋白質A及固定化抗原之親和層析精 製。此外可以使用蛋白質通常所用之分離及精製方法,例 如藉由適當選擇及組合上述親和層析以外之層析管柱、滤 器、超過濾、鹽析及透析等,可以分離及精製抗體。 本發明所使用之抗體,不限於抗體之全體分子,只要可 與GPC3結合,可為抗體之片段或其之修飾物,亦包含二價 抗體及一價抗體。舉例言之,抗體片段可為Fab、F (alV) 2、 Fv、具有1個Fab及完全Fc之Fab/c,或者將Η鏈或L鏈之Fv 用適當的連結子連結成之單鏈Fv(scFv)。又,為了達成本發 明之目的,抗體宜為能識別GPC3之任何抗原決定部位者。 為了診斷劑之正確性,抗體以為人型抗體或人類抗體為 較佳。舉例言之,人型抗體若為小鼠-人類嵌合抗體,可以 藉由從產生針對GPC3蛋白質之抗體之小鼠細胞單離出抗 體基因,然後將其之Η鏈恆定部重組為人類IgE Η鏈恆定部 87544 -23- 200413406 基因’並導入小鼠骨髓瘤細胞中而調製。又,人類抗體可 藉由將小鼠之免疫球蛋白基因換為人類之基因,然後用 GPC3蛋白質使該小鼠免疫而調製。 在本發明之診斷劑中,抗體之濃度沒有限定,例如可以1 pg/ml之濃度使用。在診斷劑中,除了上述針對GPC3之抗 體之外,需要時可含有藥學上容許之載體等。 本發明另外提供一種肝細胞癌之診斷方法,其包含使檢 體與針對GPC3之抗體接觸。該診斷方法可以另外包含定量 檢體中之GPC3。在本發明中,檢體為從有罹患HCC之虞之 被驗者中得到之血清、唾液及尿等,其中以血清為特佳。 檢體與上述抗體之接觸,可依據在該領域中通常所用之方 法進行。又,供診斷用之反應可在凹穴等之液相中進行, 或者可將針對GPC3之抗體固定在固相支持體上進行。在該 情況中,藉由與用未罹患HCC之正常檢體或判明為HCC之 檢體所預先製作之標準值比較,可以判定所測得之值是否 為HCC陽性。又,診斷之時,較佳測定多個HCC患者及健 康人之血清中之GPC3量並設定臨限值(cut_off index)。 本發明之診斷方法,除了可用於診斷是否罹患HCC之 外,可以在療程之各階段進行,以確認對於HCC之治療效 果。 再者,本發明提供一種診斷HCC用之套組,其包含針對 GPC3之抗體。該套組除了包含針對GPC3之抗體之外尚可包 含二次抗體、供定量用之標準檢體及缓衝液等。 以下雖列舉實施例更詳細地說明本發明,但本發明並不 87544 -24- 200413406 被此等實施例所限。 [實施例1]在HCC中特異性過剩表現之GPC3基因之鑑定 如同先前之報告藉由cDNA微陣列決定基因表現之模式 (Okabe,H. et al·,Cancer Res· 61,2129-2137(2001))。從進 行肝切除術之20名患者中,得到原發性HCC及對應之非癌 性肝臟組織。其中10例為B型肝炎表面抗原陽性,1〇例為C 型肝炎病毒(HCV)陽性,沒有感染HBV及HCV二者之病例。 在HBV陽性者及HCV陽性者中,沒有年齡、性別、分化程 度、血管浸潤及腫瘤階段方面之差異。製作包含從National Center for Biotechnology Information之 資料庫中選出之 23,040種cDNA之如「染色體組廣度」之cDNA微陣列。比 較在HCC及對應之非癌性肝臟組織間之表現模式以及探索 在HCC中特異性地過剩表現之基因,結果鑑定出為免疫治 療HCC患者之候選劑且或許為理想標的之GPC3。在20例 HCC之16例中,在癌組織中GPC3 mRNA之表現比在非癌性 組織中之表現高5倍(圖1)。亦即,GPC3在大部分HCC中會 過剩表現,且與B型肝炎病毒(HBV)或HCV感染無關。另一 方面,GPC3 mRNA在胎盤、胎兒肝臟、胎兒肺及胎兒腎臟 中高度表現,在成人之大部分組織中表現低下(圖1)。此等 GPC3相關資料與依據南方點潰研究所發表者一致(Zhu,Z· W. et al., Gut 48, 558-564 (2001) ; Hsu. H. C. et al., Cancer Res. 57, 5179-5184 (1997); Pellegrini, M. et aL, Dev Dyn. 213, 431-439 (1998))。從該結果可以明白GPC3與a -胎兒蛋 白質(AFP)同樣,在HCC中為新穎的癌胎兒性抗原。 87544 -25- 200413406 [實施例2]在人類HCC細胞系中GPC3 mRNA及HLA-A24之 表現 為了選擇供CTL測定用之標的HCC細胞系,藉由使用反 錄-PCR(RT-PCR)之GPC3 mRNA表現,使用抗第I類HLA (w6/32,IgG2a)或抗 HLA-A24 (IgG2)單株抗體(VERITAS, 東京)以及與FITC結合之山羊抗小鼠IgG (ICN/C APPEL, Aurora,OH)之免疫染色,以及流式細胞光度計,檢討HLA-第I類及-A24之表現。為HCC細胞系之Hep G2、Hep 3B、PLC/ PRF/5及HuH-7從東北大學加齡醫學研究所醫用細胞資源 中心得到。又,SK-Hep-Ι由久留米大學之K. Jtoh博士提供。 RT-PCR依照公知之方法(例如Nakatsura, T. et al·, Biochem. Biophys. Res. Commun. 281,936-944 (2001))進 行。設計增幅939 bp片段之GPC3基因特異性PCR引子。使 用該引子進行RT-PCR反應,其包含94°C/5分鐘之初期變性 以及於58°C之黏接溫度之30個增幅循環。所用之GPC3 PCR 引子序列為: 意義引子:5f-GTTACTGCAATGTGGTCATGC-3,(序列編號 1) 反義引子:5’-CTGGTGCCCAGCACATGT-3f(序歹丨J 編號 2) 俣對照實驗用之/3 -肌動蛋白PCR引子序列 意義引子:5f-CCTCGCCTTTGCCGATCC-3,(序列編號 3) 反義引子·· 5'-GGATCTTCATGAGGTAGTCAGTC-3,(序列編 號4)。Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (SEQ ID NO: 16) 87544 -17- 200413406 The present invention further provides an amino group sequence shown in any one of SEQ ID Nos. 5-16 One or two amino acids that are substituted or attached and have a cytotoxic τ cell-deficient ability. The substitution or addition of one or two amino acids is not required as long as they do not coincide with the amino acid sequences of other proteins and have the ability to induce CTL. Especially regarding amino acid substitution, the second amino acid from the N-terminus was replaced with phenylalanine, tyrosine, methionine, or tryptophan, and the c-terminal amino acid was replaced with phenylalanine , Leucine, isoleucine, tryptophan, or methionamine fe are preferred examples. The above-mentioned peptides of the present invention can be used in combination of one kind or two or more kinds, and can be used as a cancer vaccine for demonstrating CTL in the body. By administering the peptide of the present invention, the peptide is presented on the A molecule of the antigen-presenting cell at a high density, and the CTL having specific reactivity to the complex of the presented peptide and the HL A molecule is derived. Attack on the target cells of liver cancer cells. By taking out the dendritic cells from the subject and stimulating them with the peptide of the present invention, the controller can serve to load the antigen-presenting cells of the peptide of the present invention on the cell surface. The examiner induces CTL in vivo and increases the attack power on the target cells. Also, Mao Maomingdi provides a method for treating tumors or preventing tumor proliferation and transgenic silicon π, tilework, which contains more than one peptide of the present invention. In addition, in the living body and > 4 self-drying organs, the cells were stimulated by the peptides of the present invention, and the cells existed at a high concentration through the cells, so as to be compared with the cells previously loaded on the cells. Exchanges will be made easily. Because of the & molecular affinity (the binding affinity must be higher than a certain degree. Although the peptide of the present invention can be directly administered directly to the peptide of the present invention, 87544 -18- 200413406, but by the commonly used formulation The method is preferably to prepare and prepare a pharmaceutical composition for administration. In this case, in addition to the peptide of the present invention, carriers and excipients commonly used in medicine may be appropriately included without particular limitation. Peptides as medicines for the treatment and / or prevention of hepatocellular carcinoma can be administered with adjuvants in an immunologically effective manner, or with other anticancer agents and other active ingredients, or It is administered in a granular form. As an adjuvant, one described in the literature (Clin. Microbiol. Rev., 277-289, 1994) can be used. In addition, it is possible to consider the use of a microlipid preparation and the number of diameters. μιη bead-like granular preparations and lipid-bound preparations, etc. For administration methods, oral administration, intradermal administration, subcutaneous administration, and intravenous injection can be used, as well as systemic or local administration. Swell Nearly. Although the administration amount of the peptide of the present invention can be appropriately adjusted depending on the disease to be treated, the age, weight of the patient, and the administration method, etc., it is usually 0.001 mg to 1000 mg, and 0.001 mg to 1000. mg is more preferred, 0.1 mg to 10 mg is more preferred, and it is preferably administered once a few days to several months. If a person skilled in the art will be able to appropriately select an appropriate administration amount, or the present invention provides a Intracellular vesicles of so-called "exosomes" present on the surface of the complex of the peptide of the invention and the HL A molecule. Although the preparation of exosomes can be described in detail in Tables 11-5 and 10507 and Table 2000-5 The method described in No. 12161 is preferably prepared using antigen-presenting cells obtained from a subject who is a subject for treatment and / or prevention. The exosomes of the present invention can be made into a cancer vaccine in the same manner as the peptides of the present invention described above. Vaccination. The HL A molecule must be of the same type as the HLA molecule of the subject in need of treatment and / or prevention. For example, in the case of Japanese, HLA-A24, 87544 -19- 200413406, especially HLA-A * Most of 2402 is appropriate. The present invention also provides a method of using the present invention. A method for defensive peptides to induce antigen-presenting cells. After inducing dendritic cells from peripheral monocytes, they can be contacted (stimulated) with the peptides of the present invention in a test tube or in vivo to induce antigen-presenting cells. In the case where the peptide of the invention is administered to the subject, the antigen-presenting cells carrying the peptide of the present invention are defamated in the subject. Alternatively, the peptide of the present invention may be loaded on the antigen-presenting cells in a test tube. The vaccine is administered to a subject. The present invention also provides a method for defamating an antigen-presenting cell with high cytotoxic T cell defensive ability, which comprises encoding a GPC3 protein or a part of a peptide (including the above-mentioned present invention) (Peptide) is introduced into antigen-presenting cells. The introduced gene can be in the form of DNA or RNA. As the method of introduction, various methods such as a lipofection method, an electroporation method, and a calcium phosphate method, which are generally performed, can be used, and are not particularly limited. Specifically, for example, as disclosed in Cancer Res ·, 56: 5672, 1996; J. Immunol., 161: 5607, 1998; J. Exp. Med., 184: 465, 1996 and Japanese Patent Publication No. 2000-509281 get on. By introducing a gene into an antigen-presenting cell, and after the gene undergoes processing such as transcription and translation in the cell, the resulting protein undergoes the processing and presentation pathways of class I or class II HLA, and this portion of the peptide can be presented. The present invention further provides a method for inducing CTL using the peptide of the present invention. When the peptide of the present invention is administered to a subject, the CTL is defamated in the subject, and the immunity against the liver cell cancer cells is enhanced. Or you can use the so-called "expressing antigen-presenting cells and -20- 87544 200413406 CD 8 positive cells or peripheral blood mononuclear spheres from the subject, contacting (stimulating) the peptide of the present invention in a test tube, defamating CTL and giving Subject "in vitro treatment. The present invention further provides cytotoxic T cells that are deflated using the peptides of the invention and isolated. The cytotoxic T cells induced based on the stimulation of the antigen-presenting cells presenting the peptides of the present invention are preferably from subjects who are subjects for treatment and / or prevention. When the purpose of antitumor effect is achieved, they may be used alone or in combination with The peptides, exosomes, and other medicines of the present invention are administered together. Furthermore, the present invention provides an antigen-presenting cell that displays a complex of an HLA molecule and a peptide of the present invention. The antigen-presenting cells obtained by contacting with a gene encoding a peptide of the present invention, a GPC3 protein comprising the peptide of the present invention, or a part of the peptide thereof, preferably come from a subject who is a subject for treatment and / or prevention, It can be administered as a vaccine alone or in combination with other medicines containing peptides, exosomes or cytotoxic T cells of the invention. The present invention further provides a hepatocellular carcinoma diagnostic agent comprising an antibody against GPC3. The antibody against GPC3 can be any of multiple antibodies or single antibodies, and can be prepared by a method known to those skilled in the art (for example, refer to "Seminary Chemistry Experiment Lecture 1, Protein 1,389-406, Tokyo Chemical Associates"). The amino acid sequence of the GPC3 protein is known as described above, and it can be manufactured by ordinary protein expression techniques based on the amino acid sequence, or it can be used by a commercial vendor (SantaCruz, CA). When using commercially available GPC3, it is better to use SDS-Out ™ (sodium dodecyl sulfate precipitation reagent; purchased from PIERCE, Rockford, IL) before removing SDS, if necessary. Moreover, a partial peptide of GPC3 can be produced by selecting an appropriate partial sequence from the amino acid sequence of GPC3 and using conventional peptide synthesis techniques. 87544 -21-200413406 For the preparation of multiple strains of antibodies, first GPC3 protein or a part of its peptides are administered to animals such as rabbits, marmots, mice, rats, guinea pigs, chickens and simians. In the case of sensitization antigen. It can be administered with adjuvants (FIA and FCA) that promote antibody production. Administration is usually performed every few weeks. By performing multiple immunizations, the antibody price can be increased. After the final immunization, antiserum was obtained by collecting blood from the immunized animals. The antiserum can be divided into fractions by ammonium sulfate precipitation and anion chromatography, and affinity-refined using protein A and immobilized antigen to prepare multiple antibodies. On the other hand, for the preparation of a single antibody, for example, an animal is immunized with the GPC3 protein or a partial peptide thereof in the same manner as described above, and after the final immunization, the spleen or lymph node is taken from the immunized animal. The antibody-producing cells contained in the spleen or lymph node are fused with myeloma cells using polyethylene glycol or the like to prepare a fusion tumor. Cell fusion can be performed basically according to a known method, such as the method of Kohler and Milstein (Kohler G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46). The obtained fusion tumor can be selected by culturing in a conventional selection medium, such as a HAT medium (including hypoxanthine, aminopterin, and thoracic acid). The culture in the above-mentioned HAT medium is continued for a sufficient period of time in order to eliminate cells (non-fused cells) other than the intended fusion tumor. Next, a target fusion tumor is selected, the fusion tumor is cultured, and a monoclonal antibody is prepared from the culture supernatant. The antibody of the present invention can also be produced from a host transformed by a genetic engineering method using an expression vector containing the antibody gene. For example, monoclonal antibodies can be recombinant antibodies produced by genetically recombining antibodies (see Vandamme, for example, by cloning the antibody gene from a fusion tumor, inserting the appropriate 87544-22-200413406), introducing the vector into a host, and using genetic recombination technology (see Vandamme, AM et al., Eur J. Biochem. (1990) 192, 767-775, 1990). In order to produce the antibody used in the present invention, an arbitrary expression line such as a eukaryotic cell or a prokaryotic cell line can be used. Eukaryotic cells are animal cells such as mammalian cell lines, insect cell lines, fungal cells, and yeast cells, and prokaryotic cells are bacterial cells such as coliform cells. Next, the transformed host cells are cultured in a test tube or in a living body to produce an antibody of interest. The host cell is cultured according to a known method. The purification of the monoclonal antibody is performed, for example, by ammonium sulfate precipitation and anion chromatography, and then fractionated by affinity chromatography using protein A and an immobilized antigen. In addition, separation and purification methods commonly used for proteins can be used, for example, antibodies can be separated and purified by appropriately selecting and combining chromatography columns, filters, ultrafiltration, salting out, and dialysis other than the above-mentioned affinity chromatography. The antibody used in the present invention is not limited to the entire molecule of the antibody, as long as it can bind to GPC3, it may be a fragment of the antibody or a modification thereof, and also includes a bivalent antibody and a monovalent antibody. For example, the antibody fragment may be Fab, F (alV) 2, Fv, Fab / c with 1 Fab and complete Fc, or single-chain Fv formed by linking the Fv of the Η chain or L chain with an appropriate linker (scFv). Furthermore, for the purpose of the present invention, the antibody should preferably be capable of recognizing any epitope of GPC3. For the accuracy of the diagnostic agent, the antibody is preferably a human antibody or a human antibody. For example, if a human antibody is a mouse-human chimeric antibody, the antibody gene can be isolated from mouse cells that produce antibodies against GPC3 protein, and then the constant portion of the Η chain can be recombined into human IgE Η The chain constant portion 87544 -23- 200413406 gene is introduced into mouse myeloma cells and modulated. Furthermore, human antibodies can be prepared by replacing the mouse immunoglobulin gene with a human gene and then immunizing the mouse with a GPC3 protein. In the diagnostic agent of the present invention, the concentration of the antibody is not limited, and for example, it can be used at a concentration of 1 pg / ml. The diagnostic agent may contain a pharmaceutically acceptable carrier or the like in addition to the above-mentioned antibody against GPC3, if necessary. The present invention also provides a method for diagnosing hepatocellular carcinoma, which comprises contacting a specimen with an antibody against GPC3. The diagnostic method may further include quantifying GPC3 in the specimen. In the present invention, the specimen is serum, saliva, urine, etc. obtained from a subject who is at risk of suffering from HCC, and serum is particularly preferred. Contact of the specimen with the above-mentioned antibodies can be performed according to a method generally used in the field. The reaction for diagnosis can be performed in a liquid phase such as a cavity, or an antibody against GPC3 can be immobilized on a solid support. In this case, it is possible to determine whether or not the measured value is HCC positive by comparing with a standard value prepared in advance from a normal specimen that does not suffer from HCC or a specimen that is determined to be HCC. At the time of diagnosis, it is preferable to measure the amount of GPC3 in the serum of a plurality of HCC patients and healthy people and set a cut-off index. The diagnostic method of the present invention can be used at various stages of the course of treatment, in addition to being used to diagnose whether or not HCC is present, to confirm the therapeutic effect on HCC. Furthermore, the present invention provides a kit for diagnosing HCC, which comprises an antibody against GPC3. In addition to the antibodies against GPC3, the kit can also include secondary antibodies, standard samples and buffers for quantification. Although the present invention will be described in more detail with reference to the following examples, the present invention is not limited to these examples. [Example 1] Identification of the GPC3 gene with specific excess expression in HCC as previously reported by cDNA microarray to determine the pattern of gene expression (Okabe, H. et al., Cancer Res. 61, 2129-2137 (2001 )). From 20 patients undergoing hepatectomy, primary HCC and corresponding non-cancerous liver tissue were obtained. Ten of them were positive for hepatitis B surface antigen, 10 were positive for hepatitis C virus (HCV), and no cases were infected with both HBV and HCV. Among HBV-positive and HCV-positive individuals, there were no differences in age, gender, degree of differentiation, vascular invasion, and tumor stage. A cDNA microarray containing 23,040 cDNAs selected from the National Center for Biotechnology Information database, such as "genomic breadth", was prepared. Comparing the expression patterns between HCC and corresponding non-cancerous liver tissues and exploring genes that are specifically overexpressed in HCC, it was identified as a candidate agent for immunotherapy of HCC patients and may be the ideal target GPC3. In 16 of the 20 cases of HCC, the expression of GPC3 mRNA was 5 times higher in cancerous tissues than in non-cancerous tissues (Figure 1). That is, GPC3 is overexpressed in most HCCs and is not related to hepatitis B virus (HBV) or HCV infection. On the other hand, GPC3 mRNA is highly expressed in the placenta, fetal liver, fetal lung, and fetal kidney, and is poorly expressed in most tissues of adults (Figure 1). These GPC3-related data are consistent with those published by the Southern Point Research Institute (Zhu, Z.W. et al., Gut 48, 558-564 (2001); Hsu. HC et al., Cancer Res. 57, 5179- 5184 (1997); Pellegrini, M. et aL, Dev Dyn. 213, 431-439 (1998)). From these results, it is understood that GPC3, like a-fetal protein (AFP), is a novel cancer fetal antigen in HCC. 87544 -25- 200413406 [Example 2] Expression of GPC3 mRNA and HLA-A24 in human HCC cell line To select the target HCC cell line for CTL measurement, GPC3 was used by reverse recording-PCR (RT-PCR) mRNA expression using anti-type I HLA (w6 / 32, IgG2a) or anti-HLA-A24 (IgG2) monoclonal antibodies (VERITAS, Tokyo) and FITC-conjugated goat anti-mouse IgG (ICN / C APPEL, Aurora, OH) immunostaining, and flow cytometry, review the performance of HLA-Class I and -A24. Hep G2, Hep 3B, PLC / PRF / 5 and HuH-7, which are HCC cell lines, were obtained from the Medical Cell Resource Center of the Institute of Aging Medicine, Tohoku University. SK-Hep-1 was provided by Dr. K. Jtoh of Kurume University. RT-PCR is performed according to a known method (for example, Nakatsura, T. et al., Biochem. Biophys. Res. Commun. 281, 936-944 (2001)). A GPC3 gene-specific PCR primer was designed to amplify a 939 bp fragment. An RT-PCR reaction was performed using this primer, which included an initial denaturation of 94 ° C / 5 minutes and 30 amplification cycles at a bonding temperature of 58 ° C. The GPC3 PCR primer sequence used is: sense primer: 5f-GTTACTGCAATGTGGTCATGC-3, (sequence number 1) antisense primer: 5'-CTGGTGCCCAGCACATCAT-3-3 (sequence 歹 J number 2) Protein PCR primer sequence significance primer: 5f-CCTCGCCTTTGCCGATCC-3, (sequence number 3) Antisense primer · 5'-GGATCTTCATGAGGTAGTCAGTC-3, (sequence number 4).

藉由為對照之沒-肌動蛋白mRNA標準化後,比較在HCC 87544 -26- 200413406 細胞系中GPC3 mRNA之表現。 結果,在HepG2、Hep3B及HuH-7 HCC細胞系中顯示GPC3 mRNA強力表現,在PLC/PRF/5細胞系中顯示中等程度之表 現,在SK-Hep-Ι中未見到如此之表現(圖2)。又,雖然HepG2 及SK-Hep-1雖表現HLA-A24,但Hep3B及HuH-7未表現 HLA-A24。The performance of GPC3 mRNA in HCC 87544 -26- 200413406 cell line was compared by normalizing the control-actin mRNA. As a result, GPC3 mRNA was strongly expressed in HepG2, Hep3B, and HuH-7 HCC cell lines, and moderately expressed in PLC / PRF / 5 cell lines. No such performance was seen in SK-Hep-1 (Figure 2). Although HepG2 and SK-Hep-1 showed HLA-A24, Hep3B and HuH-7 did not show HLA-A24.

[實施例3]藉由末梢血單核球(PBMC)之刺激謗導腫瘤回應 性CTL 依據先行技術(反1113〇,11.1\61&1.,】.11111111111〇1.152,3913-3924 (1994)),探索被預測會與HLA-A24分子結合之來自 GPC3之胜肽,並合成及使用12種不同的胜肽(表1)。此等胜 肽為使用Fmoc/PyBOP法合成者(參照下述參考例1〜12),或 從biologica(東京)購入。胜肽之純度,用HPLC確認任一者 皆超過95%。 87544 27- 200413406 a,和斜^^2^今屮-^承襻-f棒盔elfjf (BIMAS: HLA^^f、€fr^^Dr· Ke 目 eth parker^^^:http://bi 目 s.dcrtb^b\v>邻薛穿#_i?一庠琴 HLA-A24ffEf^r^^rI3ii^^CTL^lf^&rv:;。 87544 1 GP03 s' $ 2 GP03 41-仁9 3 GPC3 129-137 仁 GPC3 148-157 5 Gpn3 247-256 6 GJP03 260-268 7 GP03 294-303 8 GPC3 298-306 9 GPC3 313-321 10 GPC3 3S-368 11 GPC3 401-409 12 GPC3 521 丨 530 SFFQRLQPGL 24 FFQRLQPGL 36 MFKN2YPSL 20 ,FTDVSLYIL 24 KFSKDCGRML 40 WYnSYnoGL 240 wYWREYILSr払00 EYPSLEEL 330 IYDMENVLL 200 AYYPEDLFI 60 FYSALPGYI 60 RFLAELAYDL Ί2 之0· β[Example 3] Peripheral blood mononuclear spheres (PBMCs) stimulated tumor-responsive CTLs based on the prior art (Anti-1113, 11.1 \ 61 & 1.,]. 11111111111〇1.152, 3913-3924 (1994) ), Exploring peptides from GPC3 predicted to bind to HLA-A24 molecules, and synthesizing and using 12 different peptides (Table 1). These peptides were synthesized using the Fmoc / PyBOP method (see Reference Examples 1 to 12 below), or purchased from Biologica (Tokyo). The purity of the peptides was confirmed to exceed 95% by HPLC. 87544 27- 200413406 a, and oblique ^^ 2 ^ 今 屮-^ 承 襻 -f 棒 helm elfjf (BIMAS: HLA ^^ f, € fr ^^ Dr · Ke eth parker ^^^: http: // bi Head s.dcrtb ^ b \ v > Lin Xuechuan #_i? 一 庠 琴 HLA-A24ffEf ^ r ^^ rI3ii ^^ CTL ^ lf ^ & rv :; 87544 1 GP03 s' $ 2 GP03 41- 仁 9 3 GPC3 129-137 Ren GPC3 148-157 5 Gpn3 247-256 6 GJP03 260-268 7 GP03 294-303 8 GPC3 298-306 9 GPC3 313-321 10 GPC3 3S-368 11 GPC3 401-409 12 GPC3 521 丨 530 SFFQRLQPGL 24 FFQRLQPGL 36 MFKN2YPSL 20, FDVVSLYIL 24 KFSKDCGRML 40 WYnSYnoGL 240 wYWREYILSr 払 00 EYPSLEEL 330 IYDMENVLL 200 AYYPEDLFI 60 FYSALPGYI 60 RFLAELAYDL Ί2 of 0 β

Gp—i 4/12 4/12 2/12 22 5/12 2/12 7/12 3/12 + + + + + + + + + + + + + 3 + + + + + + + + + + + + + + + + + + + 3/8 2/8 3/8 3/8 3/8 3/8 3/8 1/8 2/8 3/8 3/8 4/8 -28- 5 6 HLA-A24 添、H?HCpt 蜂 CTUf^— 5 CFC3痒穿窆鋒炒 HLA-A24^寐 Hcpe%炒PBMCfs:HiLA-A2_>^>lfr^澈沖 it 寐 CTL^lf _> ais 洚炒PBMC摩診CTL~棼♦ 200413406 得到知情同意書(informed consent)後,從熊本大學醫學 部外科學第二講座中正在治療之HLA-A24+ HCC患者得到 30 ml血液樣品,如先前之報告(Nakatsura,T. et al·,Eur· J. Immunol. 3 2, 826-836 (2002)),藉由 Ficoll-Conray密度梯度 離心法單離出PBMC。對於具有HLA-A24結合基元之來自肝 素蛋白聚糖-3(glypican-3)之12種胜肽(對應於表1,1〜12 號:序列編號5〜16),檢討從8名HLA-A24+HCC患者(病人 1〜8)得到之PBMC謗導HLA-A24拘束性及腫瘤回應性之 CTL之能力(圖3,表1)。由PBMC謗導胜肽特異性CTL之方 法’使用先前報告之方法(Nakatsura,T. et al., Eur. J. Immunol· 32, 826-836 (2002))。CTL之表面表現型藉由使用 FITC-結合之抗_CD3、-CD4或-CD8單株抗體(Nitirei,東京) 之直接免疫螢光染色檢討。為了決定執行細胞(effector cell)及HLA拘束性,於培養開始時,添加各20 pg/ml之抗 -HLA-第 I類(W6/32, IgG2a)、抗-HLA-A24 (0041HA, IgG2a)、抗-CD8 (Nu-Ts/c,IgG2a)、抗-HLA-DR (H-DR-1, IgG2a)及抗-CD4 (Nu-Th/I,IgGl)單株抗體。使用抗-CD13 (MCS-2,IgG2a)及抗-CD14 (JML-H14,IgGl)單株抗體做為 同型對照組。3〜4星期後,此等CTL株之數目,與PBMC培 養前之數目相較,增加至約10倍。繼而藉由6小時之51Cr釋 出測定檢討此等CTL株對於HCC細胞株之細胞傷害活性。將 結果示於圖3及表1中。96種CTL株中33種(34.4%)顯示對於 HLA-A24+ GPC3+之HepG2之細胞傷害活性,比對於 HLA-A24- GPC3 +之 Hep3B 及 HuH_7 以及 HLA-A24+ GPC3-之 -29 - 87544 200413406 SK-Hep-1之傷害活性更強。此等細胞傷害性,顯示胜肽特 異性,且由於會被抗-HLA-第I類、抗-CD8或抗-HLA-A24 單株抗體抑制,因此顯示此等T細胞回應由HLA-A24拘束性 之CD8 + CTL擔任。將各胜肽及在各患者中之CTL誘導率示 於表1中。此等結果顯示來自GPC3之12種胜肽之全部皆具 有CTL誘導能力,為HLA-A24拘束性且對來自GPC3之胜肽 具特異性之CD8 + CTL株在所有8名HCC患者中皆被謗導出。 [實施例4]在HCC中GPC3蛋白質之表現 對於從4名HCC患者中切出之肝臟組織週邊之HCC及非 癌性領域中之GPC3,進行西方點潰解析及免疫組織化學分 析。 西方點潰如下述進行。將檢體溶於適量之溶解用緩衝液 (150 mM NaCn、50 mM Tris、pH 7.4, 1% Nonidet P-40、1 mM 正釩酸鈉(和光純藥股份有限公司)、1 mM EDTA及蛋白酶 抑制劑锭劑(Amersham,Arlington Heights,IL))中。將溶解 物之上清液在SDS-PAGE凝膠上電泳,並移至硝基纖維素膜 (Bio-Rad,Hercules, CA)上。在含5%脫月日礼及〇·2% Tweeη 20 之Tris緩衝生理食鹽水中封阻後,將該膜與針對對應於 GPC3 303-464之胺基酸之重組蛋白質所製作之抗-GPC3兔 子多株抗體(Santa Cruz,California) —起培育,用PBS充分 洗淨,使用與過氧化酶結合之抗兔子1S及與西洋芥末過氧 化結合之F(ab,)2(來自驢子)(Amersham),並使用ECL套組 (Amersham)進行化學發光檢測。 免疫組織化學分析依照該領域公知之方法進行 -30- 87544 200413406 (Nakatsura, T. et al.9 Biochem. Biophys. Res. Commun. 281, 93 6-944 (2001))。將包埋在〇CT包埋用化合物中且厚度為4 μιη之組織檢體切片與稀幹成1 · 200之抗-GPC3抗體一起染 色。為了做為陽性對照’將從大腸痛產生之G P C 3 3 0 3 - 4 6 4 (Santa Cruz, CA)做成附啕45 kDa標戴之融合蛋白質’以及 抗-肝素蛋白聚糖-3兔子多株抗體用FhoReporter迷你-生物 素-XX蛋白質標識套組(F-6347) (Molecular Probes, Inc.,Gp-i 4/12 4/12 2/12 22 5/12 2/12 7/12 3/12 + + + + + + + + + + + + + + 3 + + + + + + + + + + + + + + + + + + + 3/8 2/8 3/8 3/8 3/8 3/8 3/8 1/8 2/8 3/8 3/8 4/8 -28- 5 6 HLA -A24 Tim, H? HCpt bee CTUf ^ — 5 CFC3 itching through fry HLA-A24 ^ 寐 Hcpe% fry PBMCfs: HiLA-A2_ > ^ > lfr ^ Chechong it 寐 CTL ^ lf _ > ais fry PBMC CTL ~ 棼 200413406 After obtaining informed consent, 30 ml blood samples were obtained from HLA-A24 + HCC patients being treated in the second lecture of the Department of Surgery, Kumamoto University Medical Department, as previously reported (Nakatsura, T et al., Eur. J. Immunol. 3 2, 826-836 (2002)), and isolated PBMC by Ficoll-Conray density gradient centrifugation. For the 12 peptides from glycinan-3 (corresponding to Tables 1, 1-12: sequence numbers 5-16) with HLA-A24 binding motifs, review from 8 HLA- A24 + HCC patients (Patients 1 to 8) received the ability of PBMC to defame HLA-A24 binding and tumor-responsive CTL (Figure 3, Table 1). The method for deriving peptide-specific CTL from PBMC 'uses a previously reported method (Nakatsura, T. et al., Eur. J. Immunol. 32, 826-836 (2002)). The surface phenotype of CTL was reviewed by direct immunofluorescence staining using FITC-conjugated anti-CD3, -CD4 or -CD8 monoclonal antibodies (Nitirei, Tokyo). In order to determine the effector cells and HLA restraint, at the beginning of culture, anti-HLA-type I (W6 / 32, IgG2a) and anti-HLA-A24 (0041HA, IgG2a) were added at 20 pg / ml each. , Anti-CD8 (Nu-Ts / c, IgG2a), anti-HLA-DR (H-DR-1, IgG2a) and anti-CD4 (Nu-Th / I, IgG1) monoclonal antibodies. Anti-CD13 (MCS-2, IgG2a) and anti-CD14 (JML-H14, IgG1) monoclonal antibodies were used as isotype control groups. After 3 to 4 weeks, the number of these CTL strains increased by about 10 times compared to the number before PBMC cultivation. The cytotoxic activity of these CTL strains on HCC cell lines was then reviewed by a 6-hour 51Cr release assay. The results are shown in Fig. 3 and Table 1. Thirty-three (34.4%) of the 96 CTL strains showed cellular nociceptive activity against HLA-A24 + GPC3 + and HepG2, compared with Hep3B and HuH_7 for HLA-A24- GPC3 + and -29 for HLA-A24 + GPC3--87544 200413406 SK- Hep-1 is more harmful. These cells are noxious, show peptide specificity, and because they are inhibited by anti-HLA-type I, anti-CD8 or anti-HLA-A24 monoclonal antibodies, it is shown that these T cell responses are restricted by HLA-A24 Sex of CD8 + CTL. Table 1 shows the peptides and the CTL induction rate in each patient. These results show that all of the 12 peptides from GPC3 have CTL-inducing ability, are HLA-A24 binding and are specific for the peptides from GPC3. The CD8 + CTL strain was vilified in all 8 HCC patients Export. [Example 4] Expression of GPC3 protein in HCC About Western HCC analysis and immunohistochemical analysis of HCC and GPC3 in non-cancerous areas around liver tissue excised from 4 HCC patients. The western point is as follows. Dissolve the specimen in an appropriate amount of dissolution buffer (150 mM NaCn, 50 mM Tris, pH 7.4, 1% Nonidet P-40, 1 mM sodium vanadate (Wako Pure Chemical Industries, Ltd.), 1 mM EDTA, and protease Inhibitor Lozenges (Amersham, Arlington Heights, IL)). The lysate supernatant was electrophoresed on an SDS-PAGE gel and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA). After blocking in Tris-buffered saline with 5% deprivation and 0.2% Tweeη 20, the membrane and the anti-GPC3 rabbit made against the recombinant protein corresponding to the amino acid of GPC3 303-464 Multiple strains of antibodies (Santa Cruz, California) — raised together, washed thoroughly with PBS, using anti-rabbit 1S that binds to peroxidase and F (ab,) 2 (from donkey) that binds to mustard peroxidation (Amersham) , And ECL kit (Amersham) for chemiluminescence detection. Immunohistochemical analysis was performed according to a method known in the art -30- 87544 200413406 (Nakatsura, T. et al. 9 Biochem. Biophys. Res. Commun. 281, 93 6-944 (2001)). Tissue specimens with a thickness of 4 μm embedded in the OC embedding compound were stained with an anti-GPC3 antibody diluted to 1.200. To serve as a positive control, 'GPC 3 3 0 3-4 6 4 (Santa Cruz, CA) produced from colorectal pain was made into a fusion protein with a 45 kDa label and an anti-heparin proteoglycan-3 rabbit FhoReporter Mini-Biotin-XX Protein Identification Kit (F-6347) (Molecular Probes, Inc.,

Eugene)予以生物素化。將96穴之ELISA平板(Nunc, Denmark)置於4°C 一夜,用在PBS (pH 7· 1)中之抗人類GPC3 303-464 (Santa Cruz)包覆,每穴〇· 1 Kg。接下來使用4%牛 血清白蛋白/PBS於室溫將該平板封阻1小時。將陽性對照之 標準樣品及培養上清液與生物素化之抗-GPC3抗體一起添 加’並於室溫一起培養2小時。用PB S洗淨3次後,在各穴中Eugene) was biotinylated. The 96-well ELISA plate (Nunc, Denmark) was placed at 4 ° C overnight, and coated with anti-human GPC3 303-464 (Santa Cruz) in PBS (pH 7.1) at 0.1 Kg per well. The plate was then blocked with 4% bovine serum albumin / PBS for 1 hour at room temperature. The standard sample and culture supernatant of the positive control were added with biotinylated anti-GPC3 antibody 'and incubated together at room temperature for 2 hours. After washing 3 times with PBS, in each hole

添加與HRP結合之鏈親和素(streptoavidin) (ENDOGEN, Woburn)。30分鐘之培養後,將平板用PBS洗淨3次,然後添 加TMB基質溶液(ENDOGEN)。為了解析,使用ELIS A判讀 器(550型,Bio-Rad)於 405 nm測定。 得到知情同意書(informed consent)後,從熊本大學醫學 部外科學第二講座中正在治療之HCC患者得到組織檢體。 在全部4種腫瘤中,得到所謂「GPC3蛋白質之表現在HCC 細胞中與非癌性肝細胞同等程度的低」之結果。因此,HCC 細胞中GPC3 mRNA表現與GPC3蛋白質表現間出現矛盾。曾 報告GPC3為GPI錨定型膜蛋白質以及為分泌蛋白質(Fiimus J·,Glycobiology 11,19R-23R (2001))。因此,接下來嘗試 87544 -31- 200413406 檢測被分泌之GPC3蛋白質。 [實施例5]在HCC細胞株之培養上清液及HCC患者血清中 之可溶性GPC3蛋白質之檢測 為了檢討在HepG2之培養上清液中是否存在可溶性GPC3 蛋白質,對於在所定培養期間之後回收之HepG2細胞溶解 物及培養上清液進行西方點潰分析。在無血清培養基中, 於培養6,12,24及48小時後從1 X 1〇5個HepG2細胞調製之Add streptoavidin (ENDOGEN, Woburn) that binds to HRP. After 30 minutes of incubation, the plate was washed three times with PBS, and then TMB matrix solution (ENDOGEN) was added. For analysis, an ELIS A reader (type 550, Bio-Rad) was used for measurement at 405 nm. After obtaining informed consent, tissue samples were obtained from HCC patients who were being treated in the second lecture of the Department of Surgery of Kumamoto University Medical Surgery. In all four tumors, the so-called "the expression of GPC3 protein in HCC cells was as low as that in non-cancerous liver cells" was obtained. Therefore, there is a contradiction between GPC3 mRNA expression and GPC3 protein expression in HCC cells. GPC3 has been reported as a GPI-anchored membrane protein and as a secreted protein (Fiimus J., Glycobiology 11, 19R-23R (2001)). Therefore, the next attempt was 87544 -31- 200413406 to detect the secreted GPC3 protein. [Example 5] Detection of soluble GPC3 protein in the culture supernatant of HCC cell lines and the serum of HCC patients In order to review the presence of soluble GPC3 protein in the culture supernatant of HepG2, HepG2 was recovered after a predetermined culture period. Cell lysates and culture supernatants were analyzed by Western spotting. Modified from 1 × 105 HepG2 cells in serum-free medium at 6, 12, 24, and 48 hours after culture

細胞溶解物,顯示存在同樣量之60 kDa之GPC3蛋白質(圖4 之第1,3,5及7行)。另一方面,在培養6,12,24及48小 時後之HepG2培養上清液中(1 ml/穴之20 μΐ),60 kDa之 GPC3蛋白質漸增,顯示GPC3蛋白質從HepG2被分泌至培養 上清液中。 接下來,使用抗-GPC3 303-464抗體及生物素化抗-GPC3Cell lysates showed the same amount of 60 kDa GPC3 protein (lines 1, 3, 5 and 7 of Figure 4). On the other hand, 60 kDa GPC3 protein was gradually increased in HepG2 culture supernatant (1 ml / hole 20 μΐ) after 6, 12, 24, and 48 hours of culture, showing that GPC3 protein was secreted from HepG2 to the culture Serum. Next, use anti-GPC3 303-464 antibody and biotinylated anti-GPC3

抗體並藉由酵素結合免疫吸著檢查法(ELISA)進行檢測。使 用對應於GPC3 303-464之市售重組蛋白質,並確認在ELISA 系統中GPC3之定量之精確度。使用HepG2培養上清液之連 續稀釋液,依據OD資料評價定量GPC3蛋白質之標準曲線。 將1 X 105個HepG2細胞培養24小時後之培養上清液1 mi中 之GPC3蛋白質之濃度定義為1 U/m卜在HepG2培養上清液 之GPC3蛋白質之量比在Hep3B中多,另一方面在SK-Hep-1 中無法檢測出(圖5)。 接下來,進行HCC患者血清中可溶性GPC3蛋白質之檢測 (圖6)。從28名HCC患者中採取血液檢體,從醫療記綠收集 之患者檔案並依據UICC TNM分類決定臨床階段。在患者7 87544 -32- 200413406 (pt7,圖6之第3行)之血清20 μΐ中雖檢測出60 kDa之GPC3 蛋白質之帶,但未從其他2名HCC患者及4名健康供血者之 血清中檢測出。接下來,藉由ELIS A評價28名HCC患者及54 名健康供血者(HD)之血清中GPC3蛋白質之量(圖7)。54名 HD血清中之GPC3蛋白質平均量為0.75 U/ml,標準偏差 (SD)為0.32。在男女間之表現沒有差異,因此在卵巢中GPC3 之弱表現被認為與該系之關係可以忽視。28名HCC患者之 平均值為1.98 U/ml。為了決定血清中GPC3蛋白質之正常上 限值,規定54名HD血清之GPC3蛋白質平均值+3SD,即 1.71,為正常上限值。HCC患者之35.7% (10/28)以及HD之 0% (0/54)為GPC3蛋白質陽性(> 1.71)。HCC患者血清中之 GPC3蛋白質濃度比在HD中之濃度顯著高(p< 0.0001)。在患 者4,5及7中用ELISA評價之GPC3濃度,如圖6所示分別為 0.94、1.73及69.4 U/ml (表2)。亦即用西方點潰法雖可檢測 出69.4 U/ml之GPC3蛋白質,但無法檢測出1.73 U/ml之 GPC3蛋白質。 從表2之結果可以明白,10名GPC3陽性患者中之2名(患者 6及25)在AFP及PIVKA-II兩方面皆為陰性,其中之一患者 (患者6)被分類為比較初期之UICC第II階段。亦即,有AFP 及PIVKA-II二者皆為陰性之患者中GPC3成為陽性之情 況,因此GPC3顯然可做為HCC之新穎腫瘤標記。 87544 -33- 200413406 表2 HCC患者28例之血清中之AFP, ΡϊνΚΑ-11及GPC3之測定結果Antibodies were detected by enzyme-linked immunosorbent assay (ELISA). A commercially available recombinant protein corresponding to GPC3 303-464 was used, and the accuracy of GPC3 quantification in the ELISA system was confirmed. A serial dilution of HepG2 culture supernatant was used to evaluate the standard curve for quantifying GPC3 protein based on OD data. The concentration of GPC3 protein in 1 mi of the culture supernatant of 1 X 105 HepG2 cells cultured for 24 hours was defined as 1 U / m. The amount of GPC3 protein in HepG2 culture supernatant was more than that in Hep3B. The aspect cannot be detected in SK-Hep-1 (Figure 5). Next, detection of soluble GPC3 protein in the serum of HCC patients was performed (Figure 6). Blood samples were taken from 28 HCC patients, and patient files collected from medical records were used to determine the clinical stage based on the UICC TNM classification. Although a band of 60 kDa GPC3 protein was detected in 20 μΐ of serum from patient 7 87544 -32- 200413406 (pt7, line 3 of Fig. 6), serum from other 2 HCC patients and 4 healthy blood donors was not detected. Detected. Next, the amount of GPC3 protein in the serum of 28 HCC patients and 54 healthy blood donors (HD) was evaluated by ELIS A (Figure 7). The average amount of GPC3 protein in 54 HD sera was 0.75 U / ml, and the standard deviation (SD) was 0.32. There is no difference in performance between men and women, so the weak performance of GPC3 in the ovaries is considered to be negligible in relation to this line. The average of 28 HCC patients was 1.98 U / ml. In order to determine the normal upper limit of GPC3 protein in serum, the average GPC3 protein of 54 HD sera + 3 SD, which is 1.71, is the normal upper limit. 35.7% (10/28) of HCC patients and 0% (0/54) of HD were GPC3 protein positive (> 1.71). The concentration of GPC3 protein in the serum of patients with HCC was significantly higher than that in HD (p < 0.0001). The GPC3 concentrations evaluated by ELISA in patients 4, 5, and 7 were 0.94, 1.73, and 69.4 U / ml as shown in Fig. 6, respectively (Table 2). That is to say, although the GPC3 protein of 69.4 U / ml can be detected by the Western dot crush method, the GPC3 protein of 1.73 U / ml cannot be detected. From the results in Table 2, it can be seen that 2 of the 10 GPC3-positive patients (patients 6 and 25) were negative in both AFP and PIVKA-II, and one of the patients (patient 6) was classified as a relatively early UICC. Phase II. That is, there are cases where GPC3 becomes positive in patients who are both AFP and PIVKA-II negative, so GPC3 can obviously be used as a novel tumor marker for HCC. 87544 -33- 200413406 Table 2 Measurement results of AFP, ΡννκΑ-11 and GPC3 in serum of 28 patients with HCC

衡| MMM 4 3 9 6 5 6 T1217S192426415227161420276251013212328 mmmfmmm 3 1 o MX 7 o 3 7677756 MM M 9 7 2 6 6 7 MM 2 2 6 7 ls F M 723 7 6 MM MM M 8 9 19 9 5 6 7 5 6Scale | MMM 4 3 9 6 5 6 T1217S192426415227161420276251013212328 mmmfmmm 3 1 o MX 7 o 3 7677756 MM M 9 7 2 6 6 7 MM 2 2 6 7 ls F M 723 7 6 MM MM M 8 9 19 9 5 6 7 5 6

_病毒a · HBV HCV 非B,非C HCV HCV HCV HCV HCV HBV HBV H〇V HCV H5V HCV HCV HCV HCV HCV HCV 宑B,非C HCV HCV HCV 非B,非G HCV HBV, HCV HBV HCV_Virus a

VKA P 20)cl έι m I 段 階 ICCVKA P 20) cl ιι m Stage ICC

r—II| I Gf 一I IVAiIVAT ⑴i][AIVAIVA=sIVAiIIA=l(IAlvAH =gIVA=IVBlllAIVBivAil!Alr—II | I Gf-I IVAiIVAT ⑴i] [AIVAIVA = sIVAiIIA = l (IAlvAH = gIVA = IVBlllAIVBivAil! Al

JrISS 選56!122觀 glsv "s i 252^15332124211^2832121169.6319288 3 6 2 3 1 ο o S ο 6 8 8 2.1112 12 IJ.231 J.9SI.22I.1S.49.52.3S.42.28.S7.94.83.57.39逆.90.3583J22.4S.6653.S27080 1l3i CF3 212I ιιοΰο0·0·0·0*1·5·^α°-αu2·0·1·0·1·0· 6 6 a,HCV用RT-PCR檢測。HBsAg用放射免疫測定(RIA)調查。 b, AFP用RIA定量。c,括弧内之值表示臨界指數(cut_0ffindex)。 d,PIVKA-II及GPC3用酶免疫測定法定量。e,在陽性之測定值下方劃線。 87544 34- 200413406 [參考例 1] Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序 列編號5)之合成 使用Fmoc-Leu-Wang樹脂(過100-200號篩)做為起始之樹 脂,並依照下述之程序A開始合成,藉由進行至步騾5後回 到步驟2,以反覆進行α胺基之脫保護、洗淨、偶合及洗淨, 將 Fmoc-Gly-OH、Fmoc-Pro-OH、Fmoc-Gln(Trt)-OH、 Fmoc-Leu-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Gln(Trt)-OH、 Fmoc-Phe-OH - Fmoc-Phe-OH^. Fmoc-Ser(tBu)-OH{ic ^ 之結果,得到胜肽結合樹脂。胜肽藉由與步驟6所示之試藥 反應,從樹脂切離,在冷甲基第三丁基醚(MTBE)中過滤, 並使之沉澱。將沉澱之肽用冷MTBE洗淨二次,並於氮氣下 凍結乾燥。 35- 87544 200413406JrISS chooses 56! 122 view glsv " si 252 ^ 15332124211 ^ 2832121169.6319288 3 6 2 3 1 ο o ο 6 8 8 2.1112 12 IJ.231 J.9SI.22I.1S.49.52.3S.42.28.S7.94.83. 57.39 inverse. 90.3583J22.4S.6653.S27080 1l3i CF3 212I ιιοΰο 0 · 0 · 0 · 0 * 1 · 5 · ^ α ° -αu2 · 0 · 1 · 0 · 1 · 0 · 6 6 a, HCV RT- PCR detection. HBsAg was investigated with a radioimmunoassay (RIA). b, AFP was quantified by RIA. c, the value in parentheses indicates the cutoff index. d. PIVKA-II and GPC3 were quantified by enzyme immunoassay. e. Underline the positive measurement. 87544 34- 200413406 [Reference Example 1] Synthesis of Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (Serial No. 5) using Fmoc-Leu-Wang resin (size 100-200) As the starting resin, the synthesis was started in accordance with the following procedure A. By proceeding to step 5 and returning to step 2, repeated deprotection, washing, coupling, and washing of the alpha amine group were performed. Fmoc -Gly-OH, Fmoc-Pro-OH, Fmoc-Gln (Trt) -OH, Fmoc-Leu-OH, Fmoc-Arg (Pbf) -OH, Fmoc-Gln (Trt) -OH, Fmoc-Phe-OH- Fmoc-Phe-OH ^. Fmoc-Ser (tBu) -OH {ic ^ As a result, a peptide-binding resin was obtained. The peptide was separated from the resin by reacting with the reagent shown in step 6, filtered through cold methyl tert-butyl ether (MTBE), and precipitated. The precipitated peptide was washed twice with cold MTBE and freeze-dried under nitrogen. 35- 87544 200413406

表3 程序A 步驟 1.(洗淨) 2·(脫保護) 3·(洗淨) 4.(偶合) 5·(洗淨) 6.(斷裂) 時間 X處理 (分鐘) 次數Table 3 Procedure A Step 1. (washing) 2 · (deprotection) 3 · (washing) 4. (coupling) 5 · (washing) 6. (breaking) time X treatment (minutes) times

DMF 2 20%旅口定/DMF 10 ml 5x1 20% 喊淀/DMF 10 ml 30 x 1 DMF 4 DCM 1 各α胺基保護胺基酸1 mmole/ 30 x 1 0.45 M HBTU/HOBT 2.1 ml (1 mmole), DIEA 348 μΐ (2 mmole) DMF 4 DCM 1 5% H20 120 x 1 5%酉分 3%硫代苯甲醚 3%乙二硫醇 3%三異丙基矽烷 81%TFA 7·(沉澱) MTBE 8·(洗淨) MTBE 9.(凍結乾燥) 87544 -36- 200413406 得到之粗製胜肤藉由 BioCad 60 (Perkin-Elmer,Foster City CA) 5以粒度為1 〇微米之C18管柱(Phenomenex, Torrance,CA)依照逆相HPLC法精製。於流速為20 ml/min 下,以 10% B 至 80% B(溶媒 A: 0.05% TFA/H20;溶媒 B: 0.05% TFA/乙腈)之直線濃度梯度經45分鐘溶出,並將溶出液於 A220 nm監測。用 Lasermat 2000 (Finnigan Mat,San Jose, CA)’以MALDI-TOF法進行面積比占90%以上之主峰之質量 分析,結果相對於理論值[MH+] 1109.3,得到實測值為 1109.9。 [參考例 2] Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (序列編 號6)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將 Fmoc-Gly-OH、Fmoc-Pro-OH、Fmoc-Gln(Trt)-OH、 Fmoc-Leu-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Gln(Trt)-OH、 Fmoc-Phe-OH 及 Fmoc-Phe-OH依次結合。 質量分析之結杲顯示相對於理論值[MH+] 1131.3,得到 實測值為1130.4。 [參考例 3] Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (序列編 號7)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹月旨,並將 Fmoc-Ser(tBu)-〇H 、 Fmoc-Pro-OH 、 Fmoc-Tyr(tBu)-OH、Fmoc-Asn(Trt)-OH、Fmoc-Asn (Trt)-OH、 Fmoc-Lys(Boc)-OH、Fmoc-Phe-OH及 Fmoc-Met-OH依次結合0 質量分析之結果顯示相對於理論值[MH+] 1031.2,得到 -37- 87544 200413406 實測值為1032.3。 [參考例 4] Phe-Thr- Asp-Val-Ser-Leu-Tyr-Ile-Leu (序列編號 8)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Ile-OH、Fmoc_Tyr(tBu)-OH、Fmoc-Leu-OH、 Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(Otbu)-OH、 Fmoc-Thr(tBu)-OH及Fmoc-Phe-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1121 ·3,得到實 測值為1122.1。 [參考例 5] Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg_Met-Leu (序 列編號9)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Met-OH、Fmoc_Arg(Pbf)-OH、Fmoc-Gly-OH、 Fmoc-Cys(Trt)-OH 、 Fmoc-Asp(Otbu)-OH 、DMF 2 20% Lukouding / DMF 10 ml 5x1 20% Shout Lake / DMF 10 ml 30 x 1 DMF 4 DCM 1 Each alpha amino protected amino acid 1 mmole / 30 x 1 0.45 M HBTU / HOBT 2.1 ml (1 mmole), DIEA 348 μΐ (2 mmole) DMF 4 DCM 1 5% H20 120 x 1 5% 酉 3% thioanisole 3% ethylene dithiol 3% triisopropylsilane 81% TFA 7 · ( Precipitation) MTBE 8 · (washed) MTBE 9. (freeze-dried) 87544 -36- 200413406 The crude skin was obtained by BioCad 60 (Perkin-Elmer, Foster City CA) 5 C18 column with a particle size of 10 microns (Phenomenex, Torrance, CA) Purified by reverse phase HPLC. Dissolve with a linear concentration gradient of 10% B to 80% B (solvent A: 0.05% TFA / H20; solvent B: 0.05% TFA / acetonitrile) at a flow rate of 20 ml / min over 45 minutes, and dissolve the eluate in A220 nm monitoring. Mass analysis of the main peak with an area ratio of more than 90% using Lasermat 2000 (Finnigan Mat, San Jose, CA) 'by MALDI-TOF method. The result was 1109.9 relative to the theoretical value [MH +] 1109.3. [Reference Example 2] The synthesis of Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (sequence number 6) was the same as [Reference Example 1], using Fmoc-Leu-Wang resin as the starting resin And add Fmoc-Gly-OH, Fmoc-Pro-OH, Fmoc-Gln (Trt) -OH, Fmoc-Leu-OH, Fmoc-Arg (Pbf) -OH, Fmoc-Gln (Trt) -OH, Fmoc- Phe-OH and Fmoc-Phe-OH are combined in sequence. The result of the mass analysis showed that relative to the theoretical value [MH +] 1131.3, the measured value was 1130.4. [Reference Example 3] The synthesis of Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (SEQ ID NO: 7) was the same as that in [Reference Example 1], and Fmoc-Leu-Wang resin was used as the starting tree. The purpose of the month, and Fmoc-Ser (tBu) -〇H, Fmoc-Pro-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Asn (Trt) -OH, Fmoc- Lys (Boc) -OH, Fmoc-Phe-OH, and Fmoc-Met-OH were sequentially combined with 0. The results of mass analysis showed that relative to the theoretical value [MH +] 1031.2, -37- 87544 200413406 was found to be 1032.3. [Reference Example 4] The synthesis of Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (Serial Number 8) was the same as [Reference Example 1], using Fmoc-Leu-Wang resin as the starting resin And add Fmoc-Ile-OH, Fmoc_Tyr (tBu) -OH, Fmoc-Leu-OH, Fmoc-Ser (tBu) -OH, Fmoc-Val-OH, Fmoc-Asp (Otbu) -OH, Fmoc-Thr ( tBu) -OH and Fmoc-Phe-OH are sequentially combined. The result of mass analysis showed that the measured value was 1122.1 relative to the theoretical value [MH-] 1121 · 3. [Reference Example 5] The synthesis of Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg_Met-Leu (SEQ ID NO. 9) was the same as [Reference Example 1], and Fmoc-Leu-Wang resin was used as the starting resin. And add Fmoc-Met-OH, Fmoc_Arg (Pbf) -OH, Fmoc-Gly-OH, Fmoc-Cys (Trt) -OH, Fmoc-Asp (Otbu) -OH,

Fmoc~Lys(Boc)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Phe-OH 及 Fmoc-Lys(Boc)-〇H依次結合。 質量分析之結果顯示相對於理論值[MH-] 1108.3,得到實 測值為1111.4。 [參考例 6] Trp-Tyr-Cys-Ser-Ty卜Cys-Gln-Gly-Leu (序列編號 10)之合成Fmoc ~ Lys (Boc) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Phe-OH, and Fmoc-Lys (Boc) -OH are sequentially combined. The result of mass analysis showed that the measured value was 1111.4 relative to the theoretical value [MH-] 1108.3. [Reference Example 6] Synthesis of Trp-Tyr-Cys-Ser-Ty and Cys-Gln-Gly-Leu (SEQ ID NO: 10)

與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹月旨,並將 Fmoc-Gly-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Cys(Trt)-OH ^ Fmoc-Tyr(tBu)-OH ^ Fmoc-Ser(tBu)-OH ^ Fmoc、Cys(Trt)-OH、Fmoc-Tyr(tBu)-OH 及 Fmoc-Trp(Boc)-〇H -38- 87544 200413406 依次結合。〜 質量分析之結果顯示相對於理論值[MH+] 1114.3,得到 實測值為1115.7。 [參考例 7] Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (序列 編號11)之合成As in [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting tree, and Fmoc-Gly-OH, Fmoc-Gln (Trt) -OH, Fmoc-Cys (Trt) -OH ^ Fmoc-Tyr (tBu) -OH ^ Fmoc-Ser (tBu) -OH ^ Fmoc, Cys (Trt) -OH, Fmoc-Tyr (tBu) -OH and Fmoc-Trp (Boc) -〇H -38- 87544 200413406 Combine in turn. ~ The result of mass analysis shows that the measured value is 1115.7 relative to the theoretical value [MH +] 1114.3. [Reference Example 7] Synthesis of Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (SEQ ID NO: 11)

與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將Fmoc-Ser(tBu)-OH、Fmoc-Leu-OH、Fmoc_Ile-OH、 Fmoc-Tyr(tBu)-OH、Fmoc-Glu(Otbu)-OH、Fmoc-Arg(Pbf)-OH、 Fmoc-Trp(Boc)-OH、Fmoc-Tyr(tBU)-OH及Fmoc-Lys (Boc)-OH 依次結合” 質量分析之結果顯示相對於理論值[MH-] 1104.3,得到實 測值為1105.3。 [參考例 8] Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (序列編號 12)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹月旨,並將 Fmoc-Glu(Otbu)-OH、Fmoc-Glu(Otbu)-OH、 Fmoc-Leu-OH 、 Fmoc-Ser(tBu)-OH 、 Fmoc-Leu-OH 、 Fmoc-Ile-OH、Fmoc-Tyr(tBu)-OH 與 Fmoc-Glu(Otbu)-OH依次 結合。 質量分析之結果顯示相對於理論值[MH+] 1371.6,得到 實測值為1370.7。 [參考例 9] Ile-Tyr-Asp-Met-Glu-Asn_Val-Leu-Leu (序列編 號13)之合成 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 87544 -39- 200413406 樹月旨,並將 Fmoc-Leu-OH、Fmoc-Val-OH、Fmoc-Asn(Trt)-OH、 Fmoc-Glu(Otbu)-OH、Fmoc-Met-OH、Fmoc-Asp(Otbu)-OH、 Fmoc-Tyr(tBu)-OH及Fmoc-Ile-OH依次結合。 質量分析之結果顯示相對於理論值[MH+] 1211.4,得到 實測值為1213.4。 [參考例 10] Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (序列編 號14)之合成 使用Fmoc-Ile-Wang樹脂做為起始之樹脂,將 Fmoc-Phe-OH 、Fmoc-Leu-OH 、Fmoc-Asp(Otbu)-OH 、 Fmoc-Glu(Otbu)-OH、Fmoc-Pro-OH、Fmoc_Tyr(tBu)-OH、 Fmoc-Tyr(tBu)-OH與 Fmoc-Ala-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1216.4,得到實 測值為1217.4。 [參考例 11] Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (序列編號 15)之合成 與[參考例10]同樣,使用Fmoc-Ile-Wang樹脂(過100-200 號篩)做為起始之樹脂,並將Fmoc-Tyr(tBu)-OH、 Fmoc-Gly-OH、Fmoc-Pro-OH、Fmoc-Leu-OH、Fmoc-Ala -OH、 Fmoc-Ser(tBu)-OH、Fmoc-Tyr(tBu)-OH與 Fmoc-Phe-OH依次結 合。 質量分析之結果顯示相對於理論值[MH + ] 1193.4,得到 實測值為1196.8。 [參考例 12] Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (序 列編號16)之合成 87544 -40- 200413406 與[參考例1]同樣,使用Fmoc-Leu-Wang樹脂做為起始之 樹脂,並將 Fmoc-Asp(Otbu)-OH、Fmoc-Tyr(tBu)-OH、 Fmoc-Ala-OH 、 Fmoc-Leu-OH - Fmoc-Glu(Otbu)-OH Fmoc-Ala-OH 、 Fmoc-Leu-OH 、 Fmoc-Phe-OH 及 Fmoc-Arg(Pbf)-OH依次結合。 質量分析之結果顯示相對於理論值[MH-] 1183.5,得到實 測值為1186.7。 產業上利用之可能性 發明者鑑定出來自為癌胎兒性蛋白質之GPC3之12種 胜肽可做為ΉίΑ-Α24+ HCC患者之免疫療法之候選標的。 儘管在HCC患者中GPC3過剩表現,但在成人之正常器官 中,除胎盤外,GPC3之表現顯著低下,因此判明GPC3為 HCC之免疫療法之理想標的。又,證明本發明之方法為診 斷是否罹患HCC上非常有用之方法。本發明者等更鑑定出 可以調製為HLA-A24拘束性且HCC反應性之CTL之來自 GPC3之胜肽。HLA-A24等位基因,在全體曰本人中占60%, 其之95%基因型為八*2402。在高加索人中則占20%,在非洲 人中占 12% (Tokunaga, K. et al., Immunogenetics 46, 199-205 (1997); Imanishi, I. Et al., Proceedings of the 11th International Histocompatibility Workshop and Conference (Tsuji,K. et al·編)1065-1220 (Oxford University Press, Oxford, 1992))。從此等結果可以明白GPC3對於世界中多數 HCC患者,在特異之免疫治療或癌之診斷及預防上非常有 用。 87544 -41 - 200413406 在本說明書> 所引用之全部刊物、專利及專利申請書係 以參考文獻之方式納入本說明書中。 【圖式之簡單說明】 圖1顯示在成人組織中GPC3 mRNA之HCC特異性表現。 其顯示在20例之HCC及各種正常組織中人類GPC3 mRNA 之表現之相對比(RR)。HCC之RR為在各病症中腫瘤與非腫 瘤之強度比。正常組織之RR為正常各組織與正常肝臟之強 度比。 圖2顯示在人類HCC細胞株中藉由RT-PCR檢測出之GPC3 及β-肌動蛋治(對照組)之mRNA之表現。 第 1行:HepG2 ;第 2行:Hep3B ;第 3行:PLC/PRF/5 ; 第 4行:SK-Hep-Ι ;第 5行:HuH-7。 圖3(a)〜(z)及(af)〜(g’)顯示用6小時之51Cr釋出測定調查用 GPC3胜肽(胜肽(pep) 序列編號5〜16)刺激而增殖之 PBMC焉於CTL·活性之影響之一邵分結果。縱軸之值表示依 據三次測定之平均值所計算得之特異性細胞溶解率。 HCC細胞株係採用 HLA-A24+ GPC3+++HepG2、HLA-A24 + GPC3_之 SK-Hep-l、HLA-A24 GPC3+++之 Hep3B及 HuH-7, 以及對於患者1使用胜肽1、3、7或12謗導之CTL,對於患 者2使用胜肽5、6、10或11謗導之CTL,對於患者3使用胜 肽2或12誘導之CTL,對於患者4使用胜肽1、2、3、4、7或 10誘導之CTL,對於患者5使用胜肽1、3、4、11或12謗導 之CTL,對於患者6使用胜肽6或9謗導之CTL,對於患者7 使用胜肽4、5、6、8、9、11或12謗導之CTL,對於患者8 87544 -42- 200413406 使用胜肽5、7或10誘導之CTL。又,橫軸表示執行細胞/標 革巴比(E/T比),亦即CTL數與癌細胞數之比。 圖4顯示用西方點潰法測定時,HepG2之培養上清液中存 在GPC3蛋白質。 第1,3,5及7行為培養6、12、24及48小時後之HepG2細胞 1 X 105個溶解物, 第2,4,6及8行為培養6、12、24及48小時後之HepG2培養 上清液20 μΐ。 圖5顯示3種HCC細胞株(Hep G2、Hep 3Β及SK-Hep-Ι)之 被分泌至培養上清液中之GPC3蛋白質藉由ELIS A定量之結 果。、將培養HepG2細胞lxlO5個24小時後之培養上清液1 ml 中GPC3蛋白質之濃度定義為1 U/ml。 圖6顯示藉由西方點潰檢測HCC患者血清中之可溶性 GPC3蛋白質。 圖7顯示在28名HCC患者及54名健康供血者(HD)之血清 中之GPC3蛋白質藉由ELISA定量之結果。1.71,為來自54 名HD之血清中GPC3蛋白質之平均值+3SD (標準偏差)所規 定之血清中可溶性GPC3蛋白質之正常上限值。 87544 43- 200413406 序列表 <110〉日商麒麟麥酒股份有限公司 <120>胜肽及含其之醫藥As in [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting resin, and Fmoc-Ser (tBu) -OH, Fmoc-Leu-OH, Fmoc_Ile-OH, Fmoc-Tyr (tBu)- OH, Fmoc-Glu (Otbu) -OH, Fmoc-Arg (Pbf) -OH, Fmoc-Trp (Boc) -OH, Fmoc-Tyr (tBU) -OH, and Fmoc-Lys (Boc) -OH are sequentially combined "Mass The analysis results show that the measured value is 1105.3 relative to the theoretical value [MH-] 1104.3. [Reference Example 8] Synthesis and synthesis of Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (SEQ ID NO: 12) [Reference Example 1] Similarly, Fmoc-Leu-Wang resin was used as the starting tree, and Fmoc-Glu (Otbu) -OH, Fmoc-Glu (Otbu) -OH, Fmoc-Leu-OH, Fmoc -Ser (tBu) -OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Tyr (tBu) -OH and Fmoc-Glu (Otbu) -OH are sequentially combined. The results of mass analysis show that relative to the theoretical value [ MH +] 1371.6, and the measured value is 1370.7. [Reference Example 9] The synthesis of Ile-Tyr-Asp-Met-Glu-Asn_Val-Leu-Leu (SEQ ID NO: 13) was the same as that in [Reference Example 1], using Fmoc-Leu- Wang resin is the starting point of 87544 -39- 200413406, and Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Asn (Trt) -OH, Fmoc-Glu ( Otbu) -OH, Fmoc-Met-OH, Fmoc-Asp (Otbu) -OH, Fmoc-Tyr (tBu) -OH, and Fmoc-Ile-OH are combined in sequence. The results of mass analysis show that relative to the theoretical value [MH +] 1211.4 The measured value is 1213.4. [Reference Example 10] The synthesis of Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-Ile (SEQ ID NO: 14) uses Fmoc-Ile-Wang resin as the starting resin. Fmoc-Phe-OH, Fmoc-Leu-OH, Fmoc-Asp (Otbu) -OH, Fmoc-Glu (Otbu) -OH, Fmoc-Pro-OH, Fmoc_Tyr (tBu) -OH, Fmoc-Tyr (tBu) -OH is sequentially combined with Fmoc-Ala-OH. The result of the mass analysis showed that the measured value was 1217.4 relative to the theoretical value [MH-] 1216.4. [Reference Example 11] The synthesis of Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (SEQ ID NO: 15) was the same as that in [Reference Example 10], using Fmoc-Ile-Wang resin (over 100-200 (Sieve) as the starting resin, and Fmoc-Tyr (tBu) -OH, Fmoc-Gly-OH, Fmoc-Pro-OH, Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Ser (tBu) -OH, Fmoc-Tyr (tBu) -OH and Fmoc-Phe-OH are sequentially combined. The result of mass analysis showed that the measured value was 1196.8 relative to the theoretical value [MH +] 1193.4. [Reference Example 12] Synthesis of Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (SEQ ID NO: 16) 87544 -40- 200413406 As in [Reference Example 1], Fmoc-Leu-Wang was used The resin was used as the starting resin, and Fmoc-Asp (Otbu) -OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ala-OH, Fmoc-Leu-OH-Fmoc-Glu (Otbu) -OH Fmoc- Ala-OH, Fmoc-Leu-OH, Fmoc-Phe-OH, and Fmoc-Arg (Pbf) -OH are sequentially combined. The result of mass analysis showed that the measured value was 1186.7 relative to the theoretical value [MH-] 1183.5. Possibility of Industrial Utilization The inventors identified 12 peptides derived from GPC3, which is a cancer-fetal protein, as candidate targets for immunotherapy in patients with ΑΑ-Α24 + HCC. Although GPC3 is overexpressed in HCC patients, GPC3's performance is significantly lower in the normal organs of adults, except for the placenta. Therefore, GPC3 has been identified as an ideal target for HCC immunotherapy. In addition, the method of the present invention has proven to be very useful for diagnosing the presence or absence of HCC. The present inventors have further identified GPC3-derived peptides that can be regulated as HLA-A24 binding and HCC-reactive CTLs. The HLA-A24 allele accounted for 60% of all individuals, and 95% of its genotype was eight * 2402. 20% of Caucasians and 12% of Africans (Tokunaga, K. et al., Immunogenetics 46, 199-205 (1997); Imanishi, I. Et al., Proceedings of the 11th International Histocompatibility Workshop and Conference (Tsuji, K. et al.) 1065-1220 (Oxford University Press, Oxford, 1992)). From these results, it can be understood that GPC3 is very useful in the diagnosis and prevention of specific immunotherapy or cancer for most HCC patients in the world. 87544 -41-200413406 All publications, patents and patent applications cited in this specification > are incorporated herein by reference. [Brief description of the figure] Figure 1 shows the HCC-specific expression of GPC3 mRNA in adult tissues. It shows the relative ratio (RR) of human GPC3 mRNA performance in 20 cases of HCC and various normal tissues. The RR of HCC is the intensity ratio of tumor to non-tumor in each condition. The RR of normal tissue is the intensity ratio of normal tissues to normal liver. Figure 2 shows the performance of mRNAs of GPC3 and β-actinin (control group) detected by RT-PCR in human HCC cell lines. Line 1: HepG2; Line 2: Hep3B; Line 3: PLC / PRF / 5; Line 4: SK-Hep-1; Line 5: HuH-7. Figures 3 (a) ~ (z) and (af) ~ (g ') show PBMCs stimulated and proliferated with GPC3 peptides (peptide sequence numbers 5-16) stimulated with 51Cr release measurement survey for 6 hours. The result is one of the effects of CTL · activity. The values on the vertical axis represent specific cell lysis rates calculated based on the average of three measurements. HCC cell lines used HLA-A24 + GPC3 +++ HepG2, HLA-A24 + GPC3_ of SK-Hep-1, HLA-A24 GPC3 +++ of Hep3B and HuH-7, and peptide 1, 3, 7 for patient 1 Or 12 CTLs, PTL 5, 6, 10, or 11 for patient 2; CTLs induced by Peptide 2 or 12 for patient 3; Peptides 1, 2, 3, and 4 for patient 4. CTL induced by 4, 7, or 10, CTL induced by peptide 1, 3, 4, 11, or 12 for patient 5, CTL induced by peptide 6 or 9 for patient 6, and peptide 4 for patient 7 , 5, 6, 8, 9, 11 or 12 CTLs, for patients 8 87544 -42- 200413406 CTLs induced using peptides 5, 7 or 10. In addition, the horizontal axis represents the execution cell / standard Babi (E / T ratio), that is, the ratio of the number of CTLs to the number of cancer cells. Fig. 4 shows the presence of GPC3 protein in the culture supernatant of HepG2 when measured by the Western dot crush method. Lines 1, 3, 5 and 7 of HepG2 cells after 6, 12, 24, and 48 hours of culture 1 X 105 lysates, Lines 2, 4, 6, and 8 of HepG2 after 6, 12, 24, and 48 hours of culture The culture supernatant was 20 μΐ. Figure 5 shows the results of quantification of GPC3 protein secreted into the culture supernatant by three HCC cell lines (Hep G2, Hep 3B, and SK-Hep-1) by ELIS A. 1. Define the concentration of GPC3 protein in 1 ml of the culture supernatant of HexG2 cells 1 × lO5 24 hours later as 1 U / ml. Figure 6 shows the detection of soluble GPC3 protein in the serum of HCC patients by Western spot ulceration. Figure 7 shows the results of quantification of GPC3 protein in the serum of 28 HCC patients and 54 healthy blood donors (HD) by ELISA. 1.71 is the normal upper limit of soluble GPC3 protein in serum as specified by the average of GPC3 protein in serum from 54 HDs + 3SD (standard deviation). 87544 43- 200413406 Sequence Listing < 110> Nissho Kirin Barley Co., Ltd. < 120 > Peptide and Medicine Containing the Same

<130> PH-1870-PCT <140〉092122744 <141> 2003-08-19 <150〉 JP 2002-245831 <151> 2002-08-26 <160〉 16 <170> Patentln Ver. 2. 0< 130 > PH-1870-PCT < 140〉 092122744 < 141 > 2003-08-19 < 150〉 JP 2002-245831 < 151 > 2002-08-26 < 160> 16 < 170 > Patentln Ver. 2. 0

<210〉 1 <211〉 21 <212〉 DMA <213> Homo sapiens <400> 1 gttactgcaa tgtggtcatg c 21< 210〉 1 < 211〉 21 < 212〉 DMA < 213 > Homo sapiens < 400 > 1 gttactgcaa tgtggtcatg c 21

<210> 2 <211〉 18 <212> DNA <213> Homo sapiens <400> 2 87544 200413406 18 ctggtgccca gcacatgt <210〉 3 <211> 18 <212> DNA <213〉人類 <400> 3 cctcgccttt gccgatcc 18 <210〉 4 <211〉 23 <212> DNA <213〉人類 <400〉 4 ggatcttcat gaggtagtca gtc 23 <210〉 5 <211〉 10 <212> PRT <213〉人類 <400〉 5< 210 > 2 < 211〉 18 < 212 > DNA < 213 > Homo sapiens < 400 > 2 87544 200413406 18 ctggtgccca gcacatgt < 210〉 3 < 211 > 18 < 212 > DNA < 213〉 Human < 400 > 3 cctcgccttt gccgatcc 18 < 210〉 4 < 211〉 23 < 212 > DNA < 213〉 human &400; 4 ggatcttcat gaggtagtca gtc 23 < 210〉 5 < 211> 10 < 212 > PRT < 213〉 Human &400; 5

Ser Phe Phe Gin Arg leu Gin Pro Gly Leu 1 5 10 <210〉 6 2- 87544 200413406 <211> 9 <212> PRT <213〉人類 <4〇〇> 6Ser Phe Phe Gin Arg leu Gin Pro Gly Leu 1 5 10 < 210〉 6 2- 87544 200413406 < 211 > 9 < 212 > PRT < 213> human < 4〇〇 > 6

Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 <210〉 7 <211〉 9 <212> PRT <213〉人類 <400> 7Phe Phe Gin Arg Leu Gin Pro Gly Leu 1 5 < 210〉 7 < 211〉 9 < 212 > PRT < 213〉 human < 400 > 7

Met Phe Lys Asn Asn Tyr Pro Ser Lou 1 5 <210〉 8 <211〉 9 <212> PRT <213〉人類 <40〇> 8Met Phe Lys Asn Asn Tyr Pro Ser Lou 1 5 < 210〉 8 < 211〉 9 < 212 > PRT < 213〉 human < 40〇 > 8

Phe Thr Asp Val Ser Leu Tyr lie Leu 1 5 87544 200413406 <210> 9 -<211〉 10 <212> PRT <213〉人類 <400> 9Phe Thr Asp Val Ser Leu Tyr lie Leu 1 5 87544 200413406 < 210 > 9-< 211〉 10 < 212 > PRT < 213〉 human < 400 > 9

Lys Phe Ser Lys Asp Cys Gly Arg Met Leu 1 5 10 <210〉 10 <211〉 9 <212> PRT <213〉人類 <400〉 10Lys Phe Ser Lys Asp Cys Gly Arg Met Leu 1 5 10 < 210〉 10 < 211〉 9 < 212 > PRT < 213〉 Human < 400〉 10

Trp Tyr Cys Ser Tyr Cys Gin Gly Leu 1 5 <210〉 11 <211〉 10 <212〉 PRT <213〉人類 <4〇〇> 11Trp Tyr Cys Ser Tyr Cys Gin Gly Leu 1 5 < 210〉 11 < 211〉 10 < 212〉 PRT < 213〉 Human < 4〇〇 > 11

Lys Tyr Trp Arg Glu Tyr lie Leu Ser Leu 1 5 10 -4 - 87544 200413406 <210> 12 <211〉 9 <212〉 PRT <213〉人類 <400> 12Lys Tyr Trp Arg Glu Tyr lie Leu Ser Leu 1 5 10 -4-87544 200413406 < 210 > 12 < 211〉 9 < 212〉 PRT < 213〉 human < 400 > 12

Glu Tyr lie Leu Ser Leu Glu Glu Leu 1 5 <210> 13 <211〉 9 <212> PRT <213〉人類 <400> 13 lie Tyr Asp Met Glu Asn Val Leu Leu 1 5 <210> 14 <211> 9 <212〉 PRT <213〉人類 <400> 14Glu Tyr lie Leu Ser Leu Glu Glu Leu 1 5 < 210 > 13 < 211〉 9 < 212 > PRT < 213〉 human < 400 > 13 lie Tyr Asp Met Glu Asn Val Leu Leu 1 5 < 210 > 14 < 211 > 9 < 212〉 PRT < 213〉 human < 400 > 14

Ala Tyr Tyr Pro Glu Asp Leu Phe lie 1 5 87544 200413406 <210〉 15 <211> 9 <212〉 PRT <213〉人類 <400> 15Ala Tyr Tyr Pro Glu Asp Leu Phe lie 1 5 87544 200413406 < 210〉 15 < 211 > 9 < 212〉 PRT < 213〉 human < 400 > 15

Phe Tyr Ser Ala Leu Pro Gly Tyr lie 1 5 <210〉 16 <211〉 10 <212> PRT <213〉人類 <400> 16Phe Tyr Ser Ala Leu Pro Gly Tyr lie 1 5 < 210〉 16 < 211〉 10 < 212 > PRT < 213〉 human < 400 > 16

Arg Phe Leu Ala Glu Leu Ala Tyr Asp Leu 1 5 10 87544Arg Phe Leu Ala Glu Leu Ala Tyr Asp Leu 1 5 10 87544

Claims (1)

200413406 拾、申請專利範園: 1· 一種胜肽’其包含序列編號5〜16之任一者所示之胺基酸 序列。 2· —種具有細胞傷害性τ細胞謗導能力之胜肽,其為序列編 號5〜16之任一者所示之胺基酸序列中1個或2個胺基酸被 取代或附加者。 3·如申請專利範圍第2項之胜肽,其中從n末端算起第二個 胺基酸為苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸。 4 ·如申请專利範圍第2或3項之胜肽,其中C端之胺基酸為苯 丙胺酸、白胺酸、異白胺酸、色胺酸或甲硫胺酸。 5· —種供腫瘤之治療及/或預防用之醫藥,其包含一種以上 申請專利範圍第1至4項中任一項之胜肽。 6_ —種外來體(exosome),其將包含申請專利範圍第1至4項 中任一項之胜肽及HLA分子之複合體呈現於表面。 7·如申請專利範圍第6項之外來體,其中HLA分子為 HLA-A24。 8. 如申請專利範圍第7項之外來體,其中HLA分子為 HLA-A*2402。 9. 一種細胞傷害性T細胞謗導能力高之抗原呈現細胞之謗 導方法,其中使用申請專利範圍第1至4項中任一項之胜 肽進行該抗原呈現細胞之誘導。 1 〇. —種細胞傷害性T細胞謗導能力高之抗原呈現細胞之謗 導方法,其包含將編碼肝素蛋白聚糖3(glypican-3,GPC3) 或包含申請專利範圍第1至4項中任一項之胜肽之部分胜 87544 200413406 肽之基因4入抗原呈現細胞中。 11 · 一種誘導細胞傷害性τ細胞之方法,其係使用申請專利範 圍第1至4項中任一項之胜肽者。 12. —種細胞傷害性T細胞,其係用申請專利範圍第i至4項中 任一項之胜肽誘導及單離而得。 13· —種抗原呈現細胞,其係呈現HLA與申請專利範圍第1至 4項中任一項之胜肽之複合體。 14·如申請專利範圍第13項之抗原呈現細胞,其係藉由申請 專利範圍第9或10項之方法謗導。 15· —種肝細胞癌(HCC)之診斷劑,其包含針對GPC3之抗體。 16· —種HCC之診斷方法’其包含使檢體與針對GPC3之抗體 接觸。 17·如申請專利範圍第16項之方法,其另包含定量檢體中之 GPC3 〇 18· —種診斷HCC用之套組,其包含針對GPC3之抗體。 87544200413406 Patent application patent park: 1. A peptide 'comprising an amino acid sequence shown in any one of sequence numbers 5 to 16. 2. A peptide having cytotoxic τ cell-deficient ability, which is one in which one or two amino acids are substituted or added in the amino acid sequence shown in any one of sequence numbers 5 to 16. 3. The peptide according to item 2 of the patent application range, wherein the second amino acid from the n-terminus is phenylalanine, tyrosine, methionine or tryptophan. 4. The peptide according to item 2 or 3 of the scope of patent application, wherein the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan or methionine. 5. A medicine for the treatment and / or prevention of tumors, which comprises one or more of the peptides of any one of claims 1 to 4. 6_ — an exosome, which presents on the surface a complex comprising the peptide and any of the HLA molecules in any of claims 1 to 4 of the scope of patent application. 7. The exosome according to item 6 of the patent application, wherein the HLA molecule is HLA-A24. 8. As for the exosomes in the 7th scope of the patent application, the HLA molecule is HLA-A * 2402. 9. A method for defamating an antigen-presenting cell having a high cytotoxic T-cell defensive ability, wherein the antigen-presenting cell is induced using a peptide of any one of claims 1 to 4 of the patent application. 1 〇. — A method for deflecting antigen-presenting cells with high cytotoxic T cell defensive ability, which includes encoding heparin proteoglycan 3 (GPC3) or including in the first to fourth items of the patent application scope Part of the peptide of any one is 87544 200413406 The gene 4 of the peptide is incorporated into the antigen-presenting cell. 11 · A method for inducing a nociceptive τ cell, which uses a peptide of any one of claims 1 to 4 in the patent application. 12. A kind of cell-harmful T cell, which is obtained by inducing and isolating with a peptide of any one of claims i to 4 of the scope of patent application. 13. · An antigen-presenting cell, which is a complex that presents HLA and a peptide according to any one of claims 1 to 4. 14. If the antigen-presenting cells in the scope of the application for item 13 are applied, they are defamated by the method in the scope of the application for item 9 or 10. 15. A diagnostic agent for hepatocellular carcinoma (HCC) comprising an antibody against GPC3. 16. A method of diagnosing HCC ', which comprises contacting a specimen with an antibody against GPC3. 17. The method according to item 16 of the scope of patent application, which further comprises quantifying GPC3 in the specimen. ○ 18 · A kit for diagnosing HCC, which includes antibodies against GPC3. 87544
TW092122744A 2002-08-26 2003-08-19 Peptides and drugs containing the same TW200413406A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245831 2002-08-26

Publications (2)

Publication Number Publication Date
TW200413406A true TW200413406A (en) 2004-08-01
TWI333958B TWI333958B (en) 2010-12-01

Family

ID=31944202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092122744A TW200413406A (en) 2002-08-26 2003-08-19 Peptides and drugs containing the same

Country Status (4)

Country Link
JP (1) JP4406607B2 (en)
AU (1) AU2003254950A1 (en)
TW (1) TW200413406A (en)
WO (1) WO2004018667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001414A (en) * 2014-12-23 2017-08-01 伊玛提克斯生物技术有限公司 For hepatocellular carcinoma (HCC) and the new type of peptides and peptide combinations of other cancer immunotherapies
TWI754892B (en) * 2014-12-23 2022-02-11 德商英麥提克生物技術股份有限公司 Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE491021T1 (en) 2002-03-25 2010-12-15 Takara Bio Inc METHOD FOR PRODUCING A CYTOTOXIC LYMPHOCYTE
EP1666589B1 (en) 2003-08-22 2010-02-17 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US7691586B2 (en) 2004-04-28 2010-04-06 Perseus Proteomics Inc. Method for predicting and judging the recurrence of liver cancer after treating liver cancer
EP2314317A3 (en) 2004-07-09 2011-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
CN102698267B (en) * 2004-08-24 2017-07-21 中外制药株式会社 Use the complementary therapy of anti-Anti-glypican-3 antibody
BRPI0518279A2 (en) 2004-10-26 2008-11-11 Chugai Pharmaceutical Co Ltd antiglipicam antibody 3 having modified sugar chain
ES2442294T3 (en) 2005-02-28 2014-02-11 Oncotherapy Science, Inc. Epitopes peptides derived from vascular endothelial growth factor 1 receptor and vaccines containing these peptides
HUE027330T2 (en) * 2005-07-27 2016-09-28 Oncotherapy Science Inc Colon cancer related gene tom34
KR101304243B1 (en) * 2005-08-09 2013-09-05 온코세라피 사이언스 가부시키가이샤 Cancer-Rejection Antigen Peptide Derived from Glypican-3(GPC-3) for Use in HAL-A2 Positive Patient and Pharmaceutical Comprising the Same
KR101279172B1 (en) 2005-08-17 2013-06-27 다카라 바이오 가부시키가이샤 Method of producing lymphocytes
KR101408565B1 (en) * 2005-09-30 2014-06-17 다카라 바이오 가부시키가이샤 Method for production of t cell population
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
DK2476436T3 (en) 2006-08-11 2018-02-05 Life Sciences Res Partners Vzw Immunogenic peptides and their use in immune disorders
EP2111412A2 (en) 2007-02-02 2009-10-28 Amgen, Inc Hepcidin and hepcidin antibodies
WO2009043049A2 (en) 2007-09-27 2009-04-02 Amgen Inc. Pharmaceutical formulations
ES2962777T3 (en) 2007-11-15 2024-03-21 Amgen Inc Antioxidant-stabilized aqueous antibody formulation for parenteral administration
TW200932260A (en) * 2007-11-28 2009-08-01 Oncotherapy Science Inc STAT3 epitope peptides
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
CA2715611C (en) 2008-02-14 2018-03-13 Life Sciences Research Partners Vzw Immunotherapy targeting intracellular pathogens
AU2009214039B2 (en) 2008-02-14 2013-09-19 Katholieke Universiteit Leuven Immunogenic control of tumours and tumour cells
AU2009214038B2 (en) 2008-02-14 2013-08-22 Katholieke Universiteit Leuven Elimination of immune responses to viral vectors
ES2650236T3 (en) 2008-02-14 2018-01-17 Life Sciences Research Partners Vzw CD4 + T lymphocytes with cytolytic properties
JP2011519279A (en) 2008-05-01 2011-07-07 アムジエン・インコーポレーテツド Anti-hepcidin antibodies and methods of use
TW201000119A (en) * 2008-06-10 2010-01-01 Oncotherapy Science Inc MYBL2 epitope peptides and vaccines containing the same
EP3693014A1 (en) 2008-11-13 2020-08-12 The General Hospital Corporation Methods and compositions for regulating iron homeostasis by modulation bmp-6
AU2010310457B2 (en) 2009-10-23 2015-07-02 Amgen Inc. Vial adapter and system
AU2011265005B2 (en) 2010-06-07 2015-04-09 Amgen Inc. Drug delivery device
BR112013005448A2 (en) * 2010-09-07 2019-09-24 Oncotherapy Science Inc tt114 peptides and vaccines containing them.
TW201300423A (en) * 2010-10-21 2013-01-01 Oncotherapy Science Inc C18orf54 peptides and vaccines including the same
TW201216982A (en) 2010-10-21 2012-05-01 Oncotherapy Science Inc WDHD1 peptides and vaccines including the same
DK2643345T5 (en) 2010-11-25 2021-05-17 Imnate Sarl IMMUNOGENIC PEPTIDES FOR USE FOR PREVENTION AND / OR TREATMENT OF INFECTIOUS DISEASES, AUTOIMMUNE DISEASES, immune responses to ALLOFAKTORER, ALLERGY DISEASES, TUMORS, transplant rejection and immune responses to viral vectors USED FOR GENE THERAPY OR gene vaccination
US9125849B2 (en) 2010-12-02 2015-09-08 Oncotherapy Science, Inc. TOMM34 peptides and vaccines including the same
CA2831100C (en) 2011-03-31 2020-02-18 Mark Dominis Holt Vial adapter and system
PL2699293T3 (en) 2011-04-20 2019-08-30 Amgen Inc. Autoinjector apparatus
CA3080331C (en) 2011-10-14 2023-06-06 Amgen Inc. Injector and method of assembly
GB201201511D0 (en) 2012-01-30 2012-03-14 Univ Leuven Kath Modified epitopes for boosting CD4+ T-cell responses
WO2013133405A1 (en) 2012-03-09 2013-09-12 オンコセラピー・サイエンス株式会社 Pharmaceutical composition containing peptide
EP4234694A3 (en) 2012-11-21 2023-09-06 Amgen Inc. Drug delivery device
CN103961697A (en) * 2013-02-05 2014-08-06 日东电工株式会社 Vaccine composition for mucosal administration
US20140220056A1 (en) * 2013-02-05 2014-08-07 Nitto Denko Corporation Vaccine composition for transdermal administration
EP2968736A4 (en) 2013-03-15 2016-11-09 Amgen Inc Body contour adaptable autoinjector device
JP6463331B2 (en) 2013-03-15 2019-01-30 イントリンシック ライフサイエンシズ リミテッド ライアビリティ カンパニー Anti-hepcidin antibodies and uses thereof
US10092703B2 (en) 2013-03-15 2018-10-09 Amgen Inc. Drug cassette, autoinjector, and autoinjector system
EP3593839A1 (en) 2013-03-15 2020-01-15 Amgen Inc. Drug cassette
ES2853748T3 (en) 2013-03-22 2021-09-17 Amgen Inc Injector and mounting method
GB201309469D0 (en) 2013-05-28 2013-07-10 Imcyse Sa Detection of CD4+ T lymphocytes
US11097055B2 (en) 2013-10-24 2021-08-24 Amgen Inc. Injector and method of assembly
MX2016005315A (en) 2013-10-24 2016-08-11 Amgen Inc Drug delivery system with temperature-sensitive control.
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
SG10201811702TA (en) 2014-05-07 2019-01-30 Amgen Inc Autoinjector with shock reducing elements
JP6822843B2 (en) 2014-06-03 2021-01-27 アムジエン・インコーポレーテツド Systems and methods for remotely processing data collected by drug delivery devices
EP3197915A4 (en) 2014-09-22 2018-12-19 Intrinsic Lifesciences LLC Humanized anti-hepcidin antibodies and uses thereof
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
CA2963909C (en) 2014-10-07 2021-06-15 Cytlimic Inc. Hsp70-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immunity inducer, and method for producing antigen-presenting cell
JP6766040B2 (en) 2014-10-14 2020-10-07 アムジエン・インコーポレーテツド Lethal injection device with visual and audible indicators
TW201636358A (en) * 2014-12-09 2016-10-16 腫瘤療法 科學股份有限公司 GPC3 epitope peptides for TH1 cells and vaccines containing the same
WO2016100055A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with live button or user interface field
JP6716566B2 (en) 2014-12-19 2020-07-01 アムジエン・インコーポレーテツド Drug delivery device with proximity sensor
JP6484345B2 (en) 2015-02-17 2019-03-20 アムジエン・インコーポレーテツド Drug delivery device with fixation and / or return assisted by vacuum
JP2018512184A (en) 2015-02-27 2018-05-17 アムジエン・インコーポレーテツド Drug delivery device having needle guard mechanism capable of adjusting threshold of resistance to movement of needle guard
WO2016143816A1 (en) 2015-03-09 2016-09-15 日本電気株式会社 Peptide derived from gpc3, pharmaceutical composition for treatment or prevention of cancer using same, immunity inducer, and method for producing antigen-presenting cells
WO2016163489A1 (en) 2015-04-07 2016-10-13 日本電気株式会社 Medicine
US10729791B2 (en) 2015-05-18 2020-08-04 Imcyse Sa Animal models for evaluating pharmaceutical compounds
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
JP7090335B2 (en) 2015-09-25 2022-06-24 イムサイス エスエー Improved methods and compounds for eliminating the immune response to therapeutic agents
US11351308B2 (en) 2015-12-09 2022-06-07 Amgen Inc. Auto-injector with signaling cap
US11154661B2 (en) 2016-01-06 2021-10-26 Amgen Inc. Auto-injector with signaling electronics
EP3721922B1 (en) 2016-03-15 2022-05-04 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
WO2017182528A1 (en) 2016-04-19 2017-10-26 Imcyse Sa Novel immunogenic cd1d binding peptides
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
US11389588B2 (en) 2016-05-02 2022-07-19 Amgen Inc. Syringe adapter and guide for filling an on-body injector
ES2959783T3 (en) 2016-05-13 2024-02-28 Amgen Inc Vial Protective Cover Assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
US11541176B2 (en) 2016-06-03 2023-01-03 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
US11285266B2 (en) 2016-07-01 2022-03-29 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
WO2018034784A1 (en) 2016-08-17 2018-02-22 Amgen Inc. Drug delivery device with placement detection
ES2972560T3 (en) 2016-10-11 2024-06-13 Nec Corp Medication comprising a Toll-like receptor agonist, LAG-3 protein, a peptide derived from HSP70 and a peptide derived from GPC3
EP3532127A1 (en) 2016-10-25 2019-09-04 Amgen Inc. On-body injector
JP2018093823A (en) 2016-12-15 2018-06-21 Heartseed株式会社 Undifferentiated stem cell removing agent and method of removing undifferentiated stem cells
CA3049780A1 (en) 2017-01-17 2018-07-26 Amgen Inc. Injection devices and related methods of use and assembly
US11603519B2 (en) 2017-02-06 2023-03-14 National Cancer Center Japan T-cell receptor
EP3582825A1 (en) 2017-02-17 2019-12-25 Amgen Inc. Drug delivery device with sterile fluid flowpath and related method of assembly
WO2018152073A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Insertion mechanism for drug delivery device
CA3050927A1 (en) 2017-03-06 2018-09-13 Brian Stonecipher Drug delivery device with activation prevention feature
US11571511B2 (en) 2017-03-07 2023-02-07 Amgen Inc. Insertion mechanism and method of inserting a needle of a drug delivery device
AU2018230486B2 (en) 2017-03-09 2023-05-11 Amgen Inc. Insertion mechanism for drug delivery device
JP2020511499A (en) 2017-03-20 2020-04-16 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for in vitro glycosylation of erythropoiesis stimulating proteins
PT3600491T (en) 2017-03-28 2023-10-18 Amgen Inc Plunger rod and syringe assembly system and method
EP3634539A1 (en) 2017-06-08 2020-04-15 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
CA3066399A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Torque driven drug delivery device
US11541183B2 (en) 2017-06-22 2023-01-03 Amgen Inc. Device activation impact/shock reduction
CA3063921A1 (en) 2017-06-23 2018-12-27 Amgen Inc. Electronic drug delivery device comprising a cap activated by a switch assembly
MA49562A (en) 2017-07-14 2020-05-20 Amgen Inc NEEDLE INSERTION-RETRACTION SYSTEM FEATURING A DOUBLE-TORSION SPRING SYSTEM
IL271173B2 (en) 2017-07-21 2024-04-01 Amgen Inc Gas permeable sealing member for drug container and methods of assembly
EP4085942A1 (en) 2017-07-25 2022-11-09 Amgen Inc. Drug delivery device with gear module and related method of assembly
JP7242562B2 (en) 2017-07-25 2023-03-20 アムジエン・インコーポレーテツド Drug delivery device with container access system and associated method of assembly
WO2019032482A2 (en) 2017-08-09 2019-02-14 Amgen Inc. Hydraulic-pneumatic pressurized chamber drug delivery system
WO2019036181A1 (en) 2017-08-18 2019-02-21 Amgen Inc. Wearable injector with sterile adhesive patch
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
MA50611A (en) 2017-10-04 2020-08-12 Amgen Inc FLOW ADAPTER FOR A DRUG DELIVERY DEVICE
US11813426B2 (en) 2017-10-06 2023-11-14 Amgen Inc. Drug delivery device including seal member for needle of syringe
EP3694578A1 (en) 2017-10-09 2020-08-19 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
US11826480B2 (en) 2017-11-03 2023-11-28 Amgen Inc. Systems and approaches for sterilizing a drug delivery device
AU2018358749B2 (en) 2017-11-06 2024-02-29 Amgen Inc. Drug delivery device with placement and flow sensing
EP3707075A1 (en) 2017-11-06 2020-09-16 Amgen Inc. Fill-finish assemblies and related methods
US11191904B2 (en) 2017-11-10 2021-12-07 Amgen Inc. Plungers for drug delivery devices
AU2018368338B2 (en) 2017-11-16 2024-07-25 Amgen Inc. Autoinjector with stall and end point detection
MX2020004996A (en) 2017-11-16 2020-08-27 Amgen Inc Door latch mechanism for drug delivery device.
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
CA3103682A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
MX2021000748A (en) 2018-07-24 2021-03-26 Amgen Inc Delivery devices for administering drugs.
US20210260279A1 (en) 2018-07-24 2021-08-26 Amgen Inc. Hybrid drug delivery devices with optional grip portion and related method of preparation
WO2020023336A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with grip portion
US20210228797A1 (en) 2018-07-31 2021-07-29 Amgen Inc. Fluid path assembly for a drug delivery device
MA53724A (en) 2018-09-24 2021-12-29 Amgen Inc INTERVENTIONAL DOSING SYSTEMS AND METHODS
MA53718A (en) 2018-09-28 2022-01-05 Amgen Inc MUSCLE WIRE ESCAPE ACTIVATOR SET FOR DRUG DELIVERY DEVICE
MA53815A (en) 2018-10-02 2022-01-05 Amgen Inc INJECTION SYSTEMS FOR DRUG DELIVERY WITH INTERNAL FORCE TRANSMISSION
AU2019355979A1 (en) 2018-10-05 2021-03-18 Amgen Inc. Drug delivery device having dose indicator
JP2022504805A (en) 2018-10-15 2022-01-13 アムジエン・インコーポレーテツド Platform-based assembly process for drug delivery devices
US12053617B2 (en) 2018-10-15 2024-08-06 Amgen Inc. Drug delivery device having damping mechanism
MA54057A (en) 2018-11-01 2022-02-09 Amgen Inc DRUG DELIVERY ELEMENT PARTIAL RETRACTION DRUG DELIVERY DEVICES
TWI831847B (en) 2018-11-01 2024-02-11 美商安進公司 Drug delivery devices with partial needle retraction and methods for operating the same
WO2020091956A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
MX2021012557A (en) 2019-04-24 2021-11-12 Amgen Inc Syringe sterilization verification assemblies and methods.
WO2021041067A2 (en) 2019-08-23 2021-03-04 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
AU2022279223A1 (en) 2021-05-21 2023-10-19 Amgen Inc. Method of optimizing a filling recipe for a drug container
WO2024094457A1 (en) 2022-11-02 2024-05-10 F. Hoffmann-La Roche Ag Method for producing glycoprotein compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001414A (en) * 2014-12-23 2017-08-01 伊玛提克斯生物技术有限公司 For hepatocellular carcinoma (HCC) and the new type of peptides and peptide combinations of other cancer immunotherapies
TWI687436B (en) * 2014-12-23 2020-03-11 德商英麥提克生物技術股份有限公司 Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
TWI754892B (en) * 2014-12-23 2022-02-11 德商英麥提克生物技術股份有限公司 Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
US11786583B2 (en) 2014-12-23 2023-10-17 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against Hepatocellular carcinoma (HCC) and other cancers

Also Published As

Publication number Publication date
JPWO2004018667A1 (en) 2005-12-08
TWI333958B (en) 2010-12-01
JP4406607B2 (en) 2010-02-03
AU2003254950A1 (en) 2004-03-11
WO2004018667A1 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
TW200413406A (en) Peptides and drugs containing the same
AU2020250313B2 (en) Immunogenic WT-1 peptides and methods of use thereof
JP7146399B2 (en) Novel peptides and peptide and scaffold combinations for use in immunotherapy against renal cell carcinoma (RCC) and other cancers
JP6435286B2 (en) Cancer vaccine composition
EP3626731B1 (en) Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
TWI417103B (en) HLA-A*1101 restricted WT1 peptide and pharmaceutical composition containing the same
JP7272667B2 (en) Novel peptides and peptide and scaffold combinations for use in immunotherapy against renal cell carcinoma (RCC) and other cancers
TW201200525A (en) MYBL2 peptides and vaccines containing the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent