TWI328873B - Thin film fuse phase change cell with thermal isolation layer and manufacturing method - Google Patents

Thin film fuse phase change cell with thermal isolation layer and manufacturing method Download PDF

Info

Publication number
TWI328873B
TWI328873B TW96113723A TW96113723A TWI328873B TW I328873 B TWI328873 B TW I328873B TW 96113723 A TW96113723 A TW 96113723A TW 96113723 A TW96113723 A TW 96113723A TW I328873 B TWI328873 B TW I328873B
Authority
TW
Taiwan
Prior art keywords
electrode
layer
memory
thickness
insulating member
Prior art date
Application number
TW96113723A
Other languages
Chinese (zh)
Other versions
TW200812073A (en
Inventor
Shih Hung Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/466,421 external-priority patent/US7598512B2/en
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200812073A publication Critical patent/TW200812073A/en
Application granted granted Critical
Publication of TWI328873B publication Critical patent/TWI328873B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

1328873 九、發明說明: 【相關申請案資料】 本案係與於2005年6月17日申請之美國部份延續申 請案相關,該申請案之申請案號為11/155,067,發明名稱 為,’ THIN FILM FUSE PHASE CHANGE RAM AND MANUFACTURING METHOD” 。 【聯合研究合約之當事人】 國際商業機械公司紐約公司、旺宏國際股份有限公司 台灣公司及英飛凌技術公司(Infineon Technologies A.G.)德 國公司係為聯合研究合約之當事人。 【發明所屬之技術領域】 本發明係有關於使用相變化記憶材料的高密度記憶元 件,包括以硫屬化物為基礎的材料與其他材料,並有關於 用以製造此等元件的方法。 【先前技術】 以相5化為基礎之記憶材料係被廣泛地運用於讀寫光 碟片中。这些材料包括有至少兩種固態相,包括如一大部 分為非晶態之固態相,以及-大體上為結晶態之固態相。 雷射脈衝係用於讀寫絲片+,以在二種相中切換,並讀 取此種材料於相變化之後的光學性質。 如硫屬化物及類似材料之此等相變化記憶材料,可藉 5 1328873 也^二幅度適用於積體電路中之電流,而致使晶相變 σ° 一般而言非晶態之特徵係其電阻高於結晶態,此電阻 易測量得到而用以作為指示。這種特性則引發使用 可程式化電阻材料以形成非揮發性記憶體電路此 電路可用於隨機存取讀寫。 曰α從非晶態轉變至結晶態一般係為一低電流步驟。從結 晶態轉變至非晶態(以下指稱為重置(reset))—般係為一高 電流步驟,其包括一短暫的高電流密度脈衝以融化或破壞 結晶結構,其後此相變化材料會快速冷卻,抑制相變化的 過程,使得至少部份相變化結構得以維持在非晶態。理想 狀態下’致使相變化材料從結晶態轉變至非晶態之重置電 "»·幅度應越低越好。欲降低重置所需的重置電流幅度,可 藉由減低在記憶體中的相變化材料元件的尺寸、以及減少 電極與此相變化材料之接觸面積而達成,因此可針對此相 變化材料元件施加較小的絕對電流值而達成較高的電流密 度。 此領域發展的一種方法係致力於在一積體電路結構上 形成微小孔洞,並使用微量可程式化之電阻材料填充這些 微小孔洞。致力於此等微小孔洞的專利包括:於1997年 11月11曰公告之美國專利第5,687,112號”Multibit Single Cell Memory Element Having Tapered Contact”、發明人為 Ovshinky;於1998年8月4曰公告之美國專利第5,789,277 號”Method of Making Chalogenide [sic] Memory Device”、 發明人為Zahorik等;於2000年11月21日公告之美國專 利第 6,150,253 號” Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same”、發明人為Doan等。 6 1328873 尺寸呓产梦f度衣以這些裝置、以及欲滿足生產大 寸”所需求的嚴格製程變數時,則會遭遇到問 4。,、中一個與較小尺寸之相變化細胞^目關的H if 繞於主動區域的材m,,胞相關的問4疋由壞 發生,在主靜數所造成。為了導致相變化 。然而,由通過相變化材料之電流所產生的敎會 =ΪΪΓ傳導走。此將熱由此主動區域内的相變化 ; 走k降低電流的加熱效應,也同時會干擾此相變1328873 IX. Invention Description: [Related application materials] This case is related to the US continuation application filed on June 17, 2005. The application number of the application is 11/155,067, and the invention name is 'THIN. FILM FUSE PHASE CHANGE RAM AND MANUFACTURING METHOD" [Partners of Joint Research Contracts] International Business Machines Corporation New York Company, Wanghong International Co., Ltd. Taiwan Company and Infineon Technologies AG (Germany) are joint research contracts [Technical Field] The present invention relates to high-density memory elements using phase change memory materials, including chalcogenide-based materials and other materials, and methods for fabricating such elements [Prior Art] Memory materials based on phase 5 are widely used in reading and writing optical discs. These materials include at least two solid phases, including a solid phase such as a mostly amorphous state, and - The solid phase is generally crystalline. The laser pulse is used to read and write the wire + in two phases. Switching and reading the optical properties of the material after phase change. Such phase change memory materials such as chalcogenide and similar materials can be applied to the current in the integrated circuit by means of 5 1328873 and 2 amplitudes. Crystal phase transition σ° Generally, the amorphous state is characterized by its higher electrical resistance than the crystalline state. This resistance is easily measured and used as an indication. This property causes the use of a programmable resistive material to form a non-volatile memory. Circuit This circuit can be used for random access reading and writing. 曰α transition from amorphous to crystalline is generally a low current step. From crystalline to amorphous (hereinafter referred to as reset) A high current step comprising a brief high current density pulse to melt or destroy the crystalline structure, after which the phase change material rapidly cools, inhibiting the phase change process, so that at least a portion of the phase change structure is maintained amorphous In the ideal state, the reset voltage that causes the phase change material to change from a crystalline state to an amorphous state should be as low as possible. To reduce the magnitude of the reset current required for resetting, This is achieved by reducing the size of the phase change material element in the memory and reducing the contact area of the electrode with the phase change material, so that a lower absolute current value can be applied to the phase change material element to achieve a higher current density. One method developed in this field is to create tiny holes in an integrated circuit structure and fill these tiny holes with a trace of programmable resistance material. The patents dedicated to such tiny holes include: November 1997 U.S. Patent No. 5,687,112, "Multibit Single Cell Memory Element Having Tapered Contact", inventor Ovshinky; U.S. Patent No. 5,789,277, entitled "Method of Making Chalogenide [sic] Memory Device", published on August 4, 1998, The inventor is Zahorik et al.; US Patent No. 6,150,253, "Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same", published on November 21, 2000, the inventor is Doan et al. 6 1328873 Size 呓 f f 以 以 以 以 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些The H if is around the material m of the active region, and the cell-related problem occurs due to the failure of the main static number. In order to cause the phase change, however, the enthalpy generated by the current passing through the phase change material will be ΪΪΓ Conduction away. This will heat the phase change in the active region; the heating effect of k decreasing the current will also interfere with this phase change.

化材料的運作。 因此希望此提供一種記憶細胞(memory cell)結構其 包括有t尺寸以及隻重異電流’以及用以製造此等結構i 方法其可滿足生產大尺寸記憶裝置時的嚴格製程變數規 4各。更佳地’係提供一種製造程序與結構,其係相容於用 以在同一積體電路上製造周邊電路。 【發明内容】 本發明係描述一種相變化隨機存取記憶(PCRAM)元 件’其係適用於一大尺寸積體電路中。在此所描述的技術, 包括一記憶元件,其包括具有一頂侧之第一電極、具有一 項側之第二電極、以及位於第一V電極與第二電極之間的絕 緣構件°絕緣構件在第一與第二電極之間、接近第一電極 之頂側與第二電極之頂側處,具有一厚度。一薄膜導橋橫 跨了絕緣構件,並定義了一電極間路徑於第一與第二電極 之間、横跨絕緣構件處^此薄膜導橋包括一相變化材料的 主動層,以及一提供此主動層與其下結構之間的熱隔離毯 子材料層。此提供熱隔離的毯子材料可以包含與主動層的 相變化材料相同之物質。此提供熱隔離的毯子材料可以包 7 1^/8873 第二 =複合結構,其具有-第-隔離層,以及1 其中隔離層係隔離主動層與熱絕緣層料,及/或做^層 阻障層防止物質在主動層與熱絕緣層料之間遷移:二擴敢 緣構件的電極間路徑,具有_路徑長度,其係^跨絕 的寬度所定義。為了說明方便,此導橋可視為义構件 的結構。然而對於相變化記憶體而言,其並不類似’、險絲 而是包括了具有至少二固態相的硫屬化物材料呆『絲, 料,此二固態相可藉由施加一電流於其間或施加一 ^材 第一與第二電極之間而可逆地誘發。一電絕緣材料屛连於 於該熱絕緣材料毯子之上,其中該熱絕緣材料毯子I古位 導熱性低於該電絕緣材料層。 ’、有一 受到相變化的記憶材料的體積可以非常微小, 絕緣構件的厚度(X軸的路徑長度)、用以形成導橋的^由 厚度(y軸)、以及導橋中垂直於路徑長度的寬度(z 所定義。在實施例中,絕緣構件的寬度、以及用以形 橋之薄膜記憶材料的厚度,係由薄膜厚度所定義,作 受限於用以形成此記憶細胞之二圖案製程。導橋的&声= 小於一最小特徵尺寸F,此特徵尺寸F係為在圖案化 明實施例之材料層時所使用的微影製程所特有。在一= 例中,導橋的寬度係利用光阻修臂技術所定義,其中二= 罩圖案係用以定義一微影光阻結構於此晶片上、其具二 f小特徵尺寸F,且此光阻結構係利用等向性钱亥彳^二 Ϊ = 。經修剪的光阻結構接著二 轉移此較乍圖案至讀材料上的絕緣材料層 可使用其他技術以在積體電路中的-層中形㈣料^亦 具有間早構相相變化記憶 可 ^ 重置電流與低耗能的目的,並且易於製造。Μ微小 8 1328873 在本發明所述技術的實施例中,係提供一記憶細胞陣 列。在此陣列中,複數個電極構件以及位於電極構件之間 的絕緣構件,係在一積體電路上形成一電極層。此電極層 具有一上表面,其在本發明某些實施例中係為實質上平坦 的表面。在成對電極構件之間、橫跨絕緣構件的相對應複 數個薄膜導橋,其具有熱絕緣毯子。從電極層中之一第一 電極、穿越電極層上表面之薄膜導橋、而到達電極層中之 第二電極的一電流路徑,係形成於此陣列中的每一記憶細 胞之中。 在本發明中,積體電路中之電極層之下的電路,係利 用習知用以形成邏輯電路與記憶陣列電路的技術而形成, 例如一互補金氧半導體(CMOS)技術。 此外,在此處所描述之一陣列實施例中,在此電極層 之上的電路以及具有熱絕緣毯子的導橋陣列包括複數個位 元線。在此處所描述之一位元線於電極層之上的實施例 中,位於電極層中的電極構件係作為一記憶細胞的一第一 電極被分享,可造成一單一電極構件提供作為陣列一行中 的兩記憶細胞的一第一電極。此外,在此處所描述之實施 例中,複數條位元線中的位元線可以被安排成沿著一陣列 中的對應行,且一對應行中的兩’啼目鄰記憶細胞分享一接觸 結構以與第一電極接觸。 本發明亦描述一種製造記憶元件的方法。此方法包括 形成一電極層於一已完成前段製程生成電路之基板上。此 電極層具有一上表面,該電極層包括一第一電極和一第二 電極,以及一絕緣構件於該第一電極和該第二電極之間為 了每一即將形成之相變化記憶細胞。此第一電極、第二電 極和絕緣構件延伸在此電極層的上表面,且此絕緣構件具 9 1328873 之二第一電極和第二電極上表面之間的-寬戶,並盘 記憶細胞結構連接。此方法ΐ包括形 t面為了每-即將形成之相變化記憶細胞, jrr:此導橋依包含一記憶材料薄膜 =於橫跨該絕緣構件的該第-電極與 所第電極間路徑具有—由該絕緣構件寬度 上的—户而佐又。在此方法的實施例中,於此電極層 上來ϋ 構係利用形成—圖案化的導電層於此導橋之 電is。’以及形成一接觸於此第一電極與此圖案化的導 專利其他目的錢優料將可透過下舰明申請 导利乾圍及所附圖式獲得充分瞭解。 【實施方式】 •所之薄膜保險絲相變化記憶細胞、此等記憶細胞 ® / n以及用以製造此記憶細胞的方法,係對照 至弟1 -16圖而做詳細的敘述。 第1圖係繪示一記憶細胞1G‘的基本結構,包括位於電 極層之上的記憶材料導橋U,其包括一第一電極12、一第 一電極13、以及位於第一電極12與第二電極13之間的絕 緣構件14。如圖所示,第一與第二電極1213具有上表面 12a與13a。相同地,亦具有一上表面14a。在此實施例中, 在電極層中的6亥些結構的上表面丨2a,i3a, 14a,係定義了電 極層一實質上平坦的上表面。在其他的實施例中,上表面 12a,13a,14a並不在同一平面上,例如可以絕緣構件14延伸 1328873 以在電極之間形成一絕緣的牆。記憶材料導橋11包括一記 憶材料的主動層15位於電極層的平坦上表面之上,使得在 第一電極與導橋11之間、以及位於第二電極13與導橋11 之間的接觸,係由導橋11之主動層15底側所達成。此導 橋11包括一熱絕緣的毯子,其包含有阻障層16和17的熱 絕緣材料覆蓋於記憶材料的主動層15之上,以將主動層 15所產生的熱限制在此記憶細胞的一主動區域内。此阻障 層16包含如氧化矽或氮化矽等材料,其可提供介於主動層 15與層17之間的電絕緣。而此阻障層16亦可作為介於熱 絕緣材料層17與記憶細胞主動層15之間的一擴散阻障層 之用。在所顯示的實施例中,此毯子僅覆蓋主動層15之上 方。在其他的實施例中,此毯子亦可包覆主動層15之側 面。此外,阻障層16和熱絕緣材料層17也可以包含各自 的多層複合物結構。 存取電路的實施方式可以多種組態接觸至第一電極12 與第二電極13,以控制記憶細胞的操作,使得其可被程式 化而將導橋11之主動層15被設定於二固態相之一,此二 固態相可利用記憶材料而可逆地實施。舉例而言,使用一 含硫屬化物之相變化記憶材料,此記憶細胞可被設定至一 相對高的電阻態,其中此導橋在》電流路徑中的至少一部份 係為非晶態,而在電流路徑中的導橋的大部分係處於相當 低電阻的結晶態中。 此主動層15中的主動區域係為一相變化記憶細胞 中、材料被誘發以在至少二固態相中切換的區域。在所顯 示的實施例中,此位於主動層15中的主動區域係大致於絕 緣構件14之上。可以理解的是,此主動區域可以製造得非 常微小,減少用以誘發相變化所需要的電流幅度。 11 1328873 此主動區域的長度L (χ軸)係由絕緣構件14 (圖中 稱為通道介電質)介於第一電極12與第二電極13之間的 厚度所定義。此長度L可藉由控制記憶細胞實施例中的絕 緣壁14的寬度而控制。(在代表實施例中,我們並未使用薄 膜定義絕緣壁14的長度·_·) 相似地,在記憶細胞實施例中的導橋厚度T (y軸)可 以非常微小。導橋厚度T可藉由使用一薄膜沈積技術而形 成於第一電極12、絕緣壁14、以及第二電極13的上表面 上。因此,記憶細胞實施例中,導橋厚度T係為50 nm以 下。其他記憶細胞的實施例中,導橋厚度係為20nm以下。 在其他實施例中導橋厚度T係為10nm以下。可以瞭解的 是,導橋厚度T甚至可以利用如原子層沈積技術等而小於 10nm,視特定應用的需求而定,只要此厚度可令導橋執行 其記憶元素的目的即可,亦即具有至少二固態相、且可逆 地由一電流或施加至第一與第二電極之間的電壓所誘發。 導橋寬度W(z軸)亦非常微小。在較佳實施例中,此導 橋寬度W係少於100 nm。在某些實施例中,導橋寬度係為 40 nm以下。 記憶細胞的實施例係包括以相變化為基礎的記憶材料 所構成的導橋11,相變化材料可:包括硫屬化物為基礎的材 料以及其他材料。硫屬化物包括下列四元素之任一者:氧 (〇)、硫(S)、硒(Se)、以及碲(Te),形成元素週期表 上第VI族的部分。硫屬化物包括將一硫屬元素與一更為正 電性之元素或自由基結合而得。硫屬化合物合金包括將硫 屬化合物與其他物質如過渡金屬等結合。一硫屬化合物合 金通常包括一個以上選自元素週期表第六攔的元素,例如 鍺(Ge)以及錫(Sn)。通常,硫屬化合物合金包括下列 12 凡素中一個以上的複合 以及銀(Ag)。許多u 、)、鎵(Ga)、銦(In)、 述於技術文件中,包括^ ϋ基礎之記憶材料已經被描 I:鍺鍺I:⑼ 成分。此成分可以下列特徵式表示:圍的合金 一位研究員描述了最有用的合金係 1二=b) 所包含之平约硫、奠谇总^ V ’、為’在沈積材料中 ^ 十均碲展度係錢於70%,典型地係低於60%, 、在一般型態合金中的碲含量範圍從最低23 58%,且最佳係介於48%至观之碲含量。鍺的濃度^ 於約5% ’且其在材料中的平均範圍係從最低8%至最高 30/。,一般係低於5〇%。最佳地,鍺的濃度範圍係介於8% 至40%。在此成分中所剩下的主要成分則為銻。上述百分 比係為原子百分比,其為所有組成元素加總為1〇〇%。 (Ovshinky ‘112專利,欄1〇〜η)由另一研究者所評估的 特殊合金包括 Ge2Sb2Te5、GeSb2Te4、以及 GeSb4Te7。 (Noboru Yamada,’’Potential of Ge-Sb-Te Phase-changeThe operation of materials. It is therefore desirable to provide a memory cell structure including t-size and only divergence current' and a method for fabricating such structures that meet the stringent process variables of a large size memory device. More preferably, a manufacturing process and structure is provided that is compatible for use in fabricating peripheral circuits on the same integrated circuit. SUMMARY OF THE INVENTION The present invention describes a phase change random access memory (PCRAM) device that is suitable for use in a large size integrated circuit. The technique described herein includes a memory element including a first electrode having a top side, a second electrode having a side, and an insulating member located between the first V electrode and the second electrode There is a thickness between the first and second electrodes, near the top side of the first electrode and the top side of the second electrode. a thin film via bridge spans the insulating member and defines an inter-electrode path between the first and second electrodes, across the insulating member, the thin film viaduct includes an active layer of phase change material, and one provides A layer of thermal insulation blanket material between the active layer and its underlying structure. The blanket material providing thermal insulation may comprise the same material as the phase change material of the active layer. The thermal insulation blanket material may comprise 7 1 / 8873 second = composite structure having a - first isolation layer, and 1 wherein the isolation layer is an isolation active layer and a thermal insulation layer, and / or The barrier layer prevents the substance from migrating between the active layer and the thermal insulation layer: the inter-electrode path of the second expansion member has a length of _ path defined by the width of the bridge. For ease of explanation, this guide bridge can be regarded as the structure of the sense component. However, for phase change memory, it is not similar to ', the dangerous wire includes a chalcogenide material having at least two solid phases, and the two solid phases can be applied by applying a current therebetween or A material is applied between the first and second electrodes to reversibly induce. An electrically insulating material is attached to the blanket of thermal insulation material, wherein the thermal insulation blanket I has a lower thermal conductivity than the electrically insulating material layer. 'The volume of a memory material subject to phase change can be very small, the thickness of the insulating member (path length of the X-axis), the thickness (y-axis) used to form the viaduct, and the length of the guide bridge perpendicular to the path length. The width (defined by z.) In the embodiment, the width of the insulating member, and the thickness of the film memory material to be bridged, are defined by the thickness of the film and are limited by the two-pattern process for forming the memory cell. The & sound of the bridge is less than a minimum feature size F, which is unique to the lithography process used to pattern the material layers of the embodiment. In one example, the width of the bridge is Defined by the photoresist arm technology, wherein the second mask pattern is used to define a lithography photoresist structure on the wafer, which has a small f-feature size F, and the photoresist structure utilizes an isotropic property.彳^二Ϊ =. The trimmed photoresist structure and then the transfer of the lower germanium pattern to the insulating material layer on the read material may use other techniques to form the (four) material in the integrated layer of the integrated circuit. Phase change memory can be reset ^ Flow and low energy consumption, and easy to manufacture. Μ tiny 8 1328873 In an embodiment of the technology of the present invention, a memory cell array is provided. In this array, a plurality of electrode members and between the electrode members are located The insulating member is formed on an integrated circuit to form an electrode layer. The electrode layer has an upper surface which is a substantially flat surface in some embodiments of the invention. Between the pair of electrode members, across a plurality of film guides of the insulating member having a thermal insulating blanket. A current path from the first electrode of the electrode layer, the film via bridge passing through the upper surface of the electrode layer, and reaching the second electrode of the electrode layer Formed in each memory cell in the array. In the present invention, the circuit under the electrode layer in the integrated circuit is formed by a technique conventionally used to form a logic circuit and a memory array circuit. For example, a complementary metal oxide semiconductor (CMOS) technology. Further, in one of the array embodiments described herein, circuitry over the electrode layer and a via array with a thermally insulating blanket The column includes a plurality of bit lines. In the embodiment in which one of the bit lines described above is above the electrode layer, the electrode members located in the electrode layer are shared as a first electrode of a memory cell, which may result in a A single electrode member provides a first electrode as two memory cells in a row of the array. Further, in the embodiments described herein, the bit lines in the plurality of bit lines can be arranged to correspond along an array And a pair of adjacent memory cells in a corresponding row share a contact structure to contact the first electrode. The present invention also describes a method of fabricating a memory device. The method includes forming an electrode layer in a completed front-end process Forming a circuit on the substrate. The electrode layer has an upper surface, the electrode layer includes a first electrode and a second electrode, and an insulating member is formed between the first electrode and the second electrode for each Phase change memory cells. The first electrode, the second electrode and the insulating member extend on an upper surface of the electrode layer, and the insulating member has a wide-width between the first electrode of the second electrode and the second electrode of the second electrode, and the memory cell structure connection. The method includes a shape t-plane for each phase-to-form phase change memory cell, jrr: the bridge includes a memory material film = a path between the first electrode and the inter-electrode across the insulating member - The width of the insulating member is the same as that of the household. In an embodiment of the method, the structure is formed on the electrode layer by the formation of a patterned conductive layer for the conduction of the bridge. And the formation of a contact with the first electrode and the patterning of the patent for other purposes, the money will be fully understood through the application of the ship to the guide and the drawings. [Embodiment] The thin film fuse phase change memory cells, the memory cells ® / n, and the method for manufacturing the memory cells are described in detail in the drawings 1 to 16. Figure 1 is a diagram showing the basic structure of a memory cell 1G', comprising a memory material via U on the electrode layer, comprising a first electrode 12, a first electrode 13, and a first electrode 12 and The insulating member 14 between the two electrodes 13. As shown, the first and second electrodes 1213 have upper surfaces 12a and 13a. Similarly, it also has an upper surface 14a. In this embodiment, the upper surface 丨 2a, i3a, 14a of the 6-well structure in the electrode layer defines a substantially flat upper surface of the electrode layer. In other embodiments, the upper surfaces 12a, 13a, 14a are not in the same plane, for example, the insulating member 14 may be extended 1328873 to form an insulating wall between the electrodes. The memory material vial 11 includes an active layer 15 of memory material over the flat upper surface of the electrode layer such that contact between the first electrode and the via 11 and between the second electrode 13 and the via 11 This is achieved by the underside of the active layer 15 of the vial 11. The guide bridge 11 includes a thermally insulating blanket covering the active layer 15 of the memory material with a thermal insulating material comprising barrier layers 16 and 17 to limit the heat generated by the active layer 15 to the memory cells. Within an active area. This barrier layer 16 comprises a material such as hafnium oxide or tantalum nitride which provides electrical insulation between the active layer 15 and layer 17. The barrier layer 16 can also serve as a diffusion barrier layer between the thermal insulating material layer 17 and the memory cell active layer 15. In the embodiment shown, the blanket covers only the top of the active layer 15. In other embodiments, the blanket may also cover the side of the active layer 15. Further, the barrier layer 16 and the layer of thermal insulating material 17 may also comprise respective multilayer composite structures. Embodiments of the access circuit can contact the first electrode 12 and the second electrode 13 in a variety of configurations to control the operation of the memory cells such that they can be programmed to set the active layer 15 of the via 11 to the two solid phase In one of these, the two solid phases can be reversibly implemented using a memory material. For example, using a chalcogenide-containing phase change memory material, the memory cell can be set to a relatively high resistance state, wherein at least a portion of the bridge in the current path is amorphous. Most of the vias in the current path are in a relatively low resistance crystalline state. The active region in the active layer 15 is a region of a phase change memory cell in which the material is induced to switch in at least two solid phases. In the illustrated embodiment, the active area in the active layer 15 is generally above the insulating member 14. It will be appreciated that this active region can be made very small, reducing the magnitude of the current required to induce a phase change. 11 1328873 The length L (χ axis) of this active region is defined by the thickness of the insulating member 14 (referred to as channel dielectric in the drawing) between the first electrode 12 and the second electrode 13. This length L can be controlled by controlling the width of the insulating wall 14 in the memory cell embodiment. (In the representative embodiment, we have not defined the length of the insulating wall 14 using a film.) Similarly, the thickness T (y-axis) of the bridge in the memory cell embodiment can be very small. The bridge thickness T can be formed on the upper surfaces of the first electrode 12, the insulating wall 14, and the second electrode 13 by using a thin film deposition technique. Thus, in the memory cell embodiment, the via T thickness is below 50 nm. In other embodiments of memory cells, the thickness of the viaduct is 20 nm or less. In other embodiments, the via thickness T is 10 nm or less. It can be understood that the thickness T of the bridge can be even less than 10 nm, such as atomic layer deposition technology, depending on the needs of the particular application, as long as the thickness allows the bridge to perform its memory element, that is, at least The two solid phases are reversibly induced by a current or a voltage applied between the first and second electrodes. The width of the guide bridge W (z axis) is also very small. In the preferred embodiment, the bridge width W is less than 100 nm. In some embodiments, the bridge width is below 40 nm. Embodiments of memory cells include a guide bridge 11 constructed of a phase change based memory material, which may include: chalcogenide-based materials and other materials. The chalcogenide includes any of the following four elements: oxygen (〇), sulfur (S), selenium (Se), and tellurium (Te), forming part of the group VI of the periodic table. Chalcogenides include the combination of a chalcogen element with a more positive element or radical. The chalcogen compound alloy includes a combination of a chalcogen compound with other substances such as a transition metal or the like. The monochalcogenide alloy typically includes more than one element selected from the sixth block of the periodic table, such as germanium (Ge) and tin (Sn). Generally, the chalcogenide alloy includes one or more of the following 12 compounds and silver (Ag). Many u, ), gallium (Ga), indium (In), which are described in the technical documents, including the basic memory materials have been described I: 锗锗I: (9) components. This component can be represented by the following characteristic formula: One of the alloys of the surrounding alloy describes the most useful alloy system. 1 = b) contains the sulphur, the total enthalpy of the enthalpy, and is 'in the deposited material. The spread is 70%, typically less than 60%, and the bismuth content in the general type alloy ranges from a minimum of 23 58%, and the best system is between 48% and the guanidine content. The concentration of ruthenium is about 5%' and its average range in the material ranges from a minimum of 8% to a maximum of 30/. , generally less than 5%. Optimally, the concentration range of lanthanum is between 8% and 40%. The main component remaining in this ingredient is hydrazine. The above percentage is an atomic percentage which is a total of 1% by weight of all constituent elements. (Ovshinky '112 patent, column 1 〇 ~ η) Special alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4, and GeSb4Te7. (Noboru Yamada,’’Potential of Ge-Sb-Te Phase-change

Optical Disks for High-Data-Rate Recording55, SPIE v.3109^ PP. 28-37(1997))更一般地,過渡金屬如鉻(Cr)、鐵(Fe)、 鎳(Ni)、鈮(Nb)、鈀(Pd)、鉑(Pt)、以及上述之混合物或合 金,可與鍺/銻/碲結合以形成一相變化合金其包括有可程式 化的電阻性質。可使用的記憶材料的特殊範例,係如 Ovshinsky ‘112專利中欄11-13所述,其範例在此係列入參 考。 相變化合金能在此細胞主動通道區域内依其位置順序 於材料為一般非晶狀態之第一結構狀態與為一般結晶固體 13 1328873 狀態之第二結構狀態之間切換。這些合金至少為雙穩定 態。此詞彙「非晶」係用以指稱一相對較無次序之結構, 其較之一單晶更無次序性,而帶有可偵測之特徵如較之結 晶態更高之電阻值。此詞彙「結晶態」係用以指稱一相對 較有次序之結構,其較之非晶態更有次序,因此包括有可 偵測的特徵例如比非晶態更低的電阻值。典型地,相變化 材料可電切換至完全結晶態與完全非晶態之間所有可偵測 的不同狀態。其他受到非晶態與結晶態之改變而影響之材 料特中包括,原子次序、自由電子密度、以及活化能。此 材料可切換成為不同的固態、或可切換成為由兩種以上固 態所形成之混合物,提供從非晶態至結晶態之間的灰階部 分。此材料中的電性質亦可能隨之改變。 相變化合金可藉由施加一電脈衝而從一種相態切換至 另一相態。先前觀察指出,一較短、較大幅度的脈衝傾向 於將相變化材料的相態改變成大體為非晶態。一較長、較 低幅度的脈衝傾向於將相變化材料的相態改變成大體為結 晶態。在較短、較大幅度脈衝中的能量夠大,因此足以破 壞結晶結構的鍵結,同時夠短因此可以防止原子再次排列 成結晶態。在沒有不適當實驗的情形下,可決定特別適用 於一特定相變化合金的適當脈衝看變曲線。在本文的後續 部分,此相變化材料係以GST代稱,同時吾人亦需瞭解, 亦可使用其他類型之相變化材料。在本文中所描述之一種 適用於PCRAM中之材料,係為Ge2Sb2Te5。 可用於本發明其他實施例中之其他可程式化之記憶材 料包括,摻雜N2之GST、GexSby、或其他以不同結晶態轉 換來決定電阻之物質;PrxCayMn03、PrSrMnO、ZrOx、TiOx、 NiOx、W0X、經摻雜的SrTi03或其他利用電脈衝以改變電 14 1328873 • 阻狀態的材料;或其他使用一電脈衝以改變電阻狀態之物Optical Disks for High-Data-Rate Recording 55, SPIE v. 3109^ PP. 28-37 (1997)) More generally, transition metals such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb) Palladium (Pd), platinum (Pt), and mixtures or alloys thereof, may be combined with ruthenium / osmium / iridium to form a phase change alloy which includes programmable resistance properties. A special example of a memory material that can be used is described in columns 11-13 of the Ovshinsky '112 patent, examples of which are incorporated herein by reference. The phase change alloy can be switched between the first structural state in which the material is in a generally amorphous state and the second structural state in a state of a general crystalline solid 13 1328873 in the active channel region of the cell. These alloys are at least bistable. The term "amorphous" is used to refer to a relatively unordered structure that is more unordered than one of the single crystals, with detectable features such as higher resistance values than the crystalline state. The term "crystalline" is used to refer to a relatively ordered structure that is more ordered than amorphous and therefore includes detectable features such as lower resistance than amorphous. Typically, the phase change material can be electrically switched to all detectable different states between the fully crystalline state and the fully amorphous state. Other materials that are affected by changes in amorphous and crystalline states include atomic order, free electron density, and activation energy. The material can be switched to a different solid state, or can be switched to a mixture of two or more solid states, providing a gray-scale portion from amorphous to crystalline. The electrical properties of this material may also change. The phase change alloy can be switched from one phase to another by applying an electrical pulse. Previous observations indicate that a shorter, larger amplitude pulse tends to change the phase of the phase change material to a substantially amorphous state. A longer, lower amplitude pulse tends to change the phase of the phase change material to a substantially crystalline state. The energy in the shorter, larger amplitude pulses is large enough to break the bond of the crystalline structure while being short enough to prevent the atoms from re-arranging into a crystalline state. In the absence of undue experimentation, an appropriate pulse viewing curve that is particularly suitable for a particular phase change alloy can be determined. In the subsequent part of this article, this phase change material is referred to as GST, and we also need to understand that other types of phase change materials can be used. One of the materials described in this document for use in PCRAM is Ge2Sb2Te5. Other programmable memory materials that can be used in other embodiments of the invention include GST doped with N2, GexSby, or other materials that are converted by different crystalline states to determine electrical resistance; PrxCayMn03, PrSrMnO, ZrOx, TiOx, NiOx, W0X Doped SrTi03 or other material that utilizes electrical pulses to alter the electrical state of the body; or other material that uses an electrical pulse to change the state of resistance

質; TCNQ(7,7,8,8-tetracyanoquinodimethane)、PCBM (methanofullerene 6,6-phenyl C61-butyric acid methyl ester)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、 以其他物質摻雜之TCNQ、或任何其他聚合物材料其包括 有以一電脈衝而控制之雙穩定或多穩定電阻態。 熱絕緣材料層17的材料可以使用與記憶材料相同的 物質,如在此細胞一實施例中的GST。在其他的實施例中, φ 此熱絕緣材料Π包含聚乙烯胺或是其他具有較此導橋上 之介電層為低的導熱係數的物質。熱絕緣材料層的代表性 材料,包括下列元素組舍而層的材料:石夕、碳、氧、氟、 與氫。適合用做為熱絕緣蓋層的熱絕緣材料,包括二氧化 矽、氫氧碳化矽、聚亞醯胺、聚醯胺、以及氟碳聚合物。 其他適合用做為熱絕緣覆蓋層的材料,包括氟化二氧化 矽、倍半氧矽烷(silsesquioxane)、聚環烯醚(p〇iyaryiene ether)、對二甲苯聚體(paryiene)、氟聚合物、氟化非晶碳、 類鑽石碳、多孔性氧化秒、介多孔(mes〇p〇r〇us)氧化石夕、多 # 孔性倍半氧矽烧、多孔性聚亞醯胺及多孔性環稀醚。單層 或多層結構可以提供熱絕緣及電絕緣效果。 第2圖描繪了 PCRAM細胞V的結構。這些細胞係形成 於一半導體基板21之上。例如淺溝槽絕緣介電質(STI)(未 示)等的絕緣結構,係隔離了成對的記憶細胞存取電晶體 列。此存取電晶體係在一 p型基板21之中,以一 n型終端 26作用為一共同源極區域、以及n型終端25,27作用為汲 極終端。多晶矽字元線23,24係做為存取電晶體的閘極。 介電填充層(未示)係形成於多晶矽字元線之上。此層係 為圖案化的導電結構,包括共同源極線28以及栓塞結構 15 1328873 29,30被形成。這些導電材料可以是鎢或是其他材料及組合 適合做為栓塞以及導線結構之用。共同源極線28其係接觸 至源極區域26,並沿著陣列中的一列而作用為共同源極 線。此栓塞結構29,30係分別接觸至汲極終端25,26。填充 層(未示)、共同源極線28、以及栓塞結構29,30均具有一 大致平坦之上表面,或者適合用做為形成一電極層31之基 板。 此電極層31包括了電極構件32,33,34、其係由如絕緣 柵35a,35b等絕緣構件而與彼此分隔,以及基底構件39, 其中絕緣柵係由如下所述之一侧壁製程所形成。在本實施 例的結構中,基底構件可厚於絕緣栅35a,35b,並將電極構 件33與共同源極線28隔離。舉例而言,基底構件的厚度 可以介於80到140nm之間,而絕緣栅則遠窄於此,因為 必須減少在源極線28與電極構件33之間的電容耦合。在 本實施例中,絕緣柵35a,35b在電極構件32,34的侧壁上包 括了薄膜介電材料,其在電極層31表面的厚度係由側壁上 的薄膜厚度所決定。 一複合材料之記憶導橋36a (例如GST)係位於一毯 子之上,其包括一阻障層36a和一熱絕緣材料層36c,其位 於電極層31之上的一側、橫跨絕緣側壁35a而形成一第一 記憶細胞,同時一薄膜記憶材料導橋37 (例如GST)係位 於一毯子之上,其包括一阻障層37a和一熱絕緣材料層 37c,係位於電極層31之上的另一侧、橫跨絕緣柵35b而 形成一第二記憶細胞。 一介電填充層(未示)係位於薄膜導橋之上。介電填 充層包括二氧化矽、聚亞醯胺、氮化矽、或其他介電填充 材料。此熱絕緣材料層毯子37c具有較此之填充介電層為 16 1328873 低的一導熱係數。鎢栓塞38接觸至電極構件33。包括有 金屬或其他導電材料(包括在陣列結構中的位元線)的圖 案化導電層40,係位於介電填充層之上,並接觸至栓塞38 以建立對於對應至薄膜導橋左方的主動層36a與薄膜導橋 右方的主動層37a之記憶細胞的存取。 第3圖係顯示在第2圖中之半導體基板21上的結構, 以佈局的方式呈現。因此,字元線23,24的排列係實質上 平行於共同源極線28,沿著一記憶細胞陣列中的共同源極 線而排列。栓塞29,30係分別接觸至半導體基板内的存取 電晶體的終端、以及電極構件32,34的底側。薄膜記憶材 料導橋36,37係位於電極構件32,33/34之上,且絕緣柵 35a,35b係分隔這些電極構件。栓塞38係接觸至位於導橋 35與37之間的電極構件33、以及在圖案化導電層40之下 的金屬位元線41 (在第3圖中為透明)的底側。金屬位元 線42 (非透明)亦繪示於第3圖中,以強調此結構的陣列 佈局。 在操作中,對應至導橋36的記憶細胞的存取,係藉由 施加一控制信號至字元線23而達成,字元線23係將共同 源極線28經由終端25、栓塞29、以及電極構件32而耦接 至薄膜導橋36。電極構件33係絚由接觸栓塞38而耦接至 在圖案化導電層中的一條位元線。相似地,對應至導橋37 的記憶細胞的存取,係藉由施加一控制信號至字元線24而 達成。 可以瞭解的是,在第2與3圖的結構中可以使用多種 不同材料。舉例而言,可使用銅金屬化。其他類型的金屬 化如鋁、氮化鈦、以及含鎢材料等,亦可被使用。同時, 亦可使用如經摻雜的多晶矽等非金屬導電材料。在所述實 17 1328873 施例中所使用的電極材料,較佳係為氮化鈦或氮化鋁。或 者,此電極可為氮化鋁鈦或氮化鋁钽、或可包括一個以上 選自下列群組中的元素:鈦(Ti)、鎢(W)、鉬(Mo)、鋁(A1)、 姐(Ta)、銅(Cu)、銘(pt)、銥⑻鑭(La)、鎳㈣、以及釘 (Ru)以及由上述元素所構成之合金。電極間絕緣柵 35a,35b可為二氧化;g夕、說氧化石夕、氮化石夕、氧化紹、或其 他低介電常數之介電質。或者,電極間絕緣層可包括一個 以上選自下列群組之元素:矽、鈦、鋁、钽、氮、氧、以TCNQ(7,7,8,8-tetracyanoquinodimethane), PCBM (methanofullerene 6,6-phenyl C61-butyric acid methyl ester), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, other substances The doped TCNQ, or any other polymeric material, includes a bistable or multi-stable resistance state controlled by an electrical pulse. The material of the layer of thermal insulating material 17 may be the same as the memory material, such as GST in an embodiment of the cell. In other embodiments, φ the thermal insulating material Π comprises polyvinylamine or other material having a lower thermal conductivity than the dielectric layer on the viaduct. A representative material of the layer of thermal insulation material, including the following elements: the stone, carbon, oxygen, fluorine, and hydrogen. A thermal insulating material suitable for use as a thermal insulating cap layer, including cerium oxide, cerium hydroxide, polytheneamine, polyamine, and fluorocarbon polymer. Other materials suitable for use as thermal insulation coatings, including fluorinated cerium oxide, silsesquioxane, p〇iyaryiene ether, parylene, fluoropolymer , fluorinated amorphous carbon, diamond-like carbon, porous oxidized second, mesoporous (mes〇p〇r〇us) oxidized oxide eve, poly #porous sesquioxide, porous polyimide and porosity Halogen ether. Single or multi-layer structures provide thermal and electrical insulation. Figure 2 depicts the structure of the PCRAM cell V. These cell lines are formed on a semiconductor substrate 21. For example, an insulating structure such as a shallow trench insulating dielectric (STI) (not shown) isolates pairs of memory cell access transistor columns. The access transistor system is in a p-type substrate 21, with an n-type terminal 26 acting as a common source region, and an n-type terminal 25, 27 acting as a terminal. The polysilicon word lines 23, 24 are used as gates for accessing the transistors. A dielectric fill layer (not shown) is formed over the polysilicon character line. This layer is a patterned conductive structure comprising a common source line 28 and a plug structure 15 1328873 29, 30 being formed. These conductive materials may be tungsten or other materials and combinations suitable for use as plugs and wire structures. The common source line 28 contacts the source region 26 and acts as a common source line along a column in the array. The plug structures 29, 30 are in contact with the drain terminals 25, 26, respectively. The fill layer (not shown), the common source line 28, and the plug structures 29, 30 each have a substantially flat upper surface or are suitable for use as a substrate for forming an electrode layer 31. This electrode layer 31 includes electrode members 32, 33, 34 which are separated from each other by insulating members such as insulated gates 35a, 35b, and a base member 39, wherein the insulated gate is formed by a side wall process as described below form. In the structure of this embodiment, the base member can be thicker than the insulated gates 35a, 35b and isolate the electrode member 33 from the common source line 28. For example, the thickness of the base member may be between 80 and 140 nm, and the insulated grid is much narrower because the capacitive coupling between the source line 28 and the electrode member 33 must be reduced. In the present embodiment, the insulating gates 35a, 35b include a thin film dielectric material on the sidewalls of the electrode members 32, 34, and the thickness of the surface of the electrode layer 31 is determined by the thickness of the film on the side walls. A composite memory guide 36a (e.g., GST) is placed over a blanket and includes a barrier layer 36a and a layer of thermally insulating material 36c on one side of the electrode layer 31 across the insulating sidewall 35a. A first memory cell is formed, and a thin film memory material guide 37 (for example, GST) is placed on a blanket, and includes a barrier layer 37a and a thermal insulating material layer 37c, which are located above the electrode layer 31. On the other side, a second memory cell is formed across the insulated gate 35b. A dielectric fill layer (not shown) is placed over the film viaduct. The dielectric fill layer includes hafnium oxide, polymethyleneamine, tantalum nitride, or other dielectric fill material. The thermal insulation layer blanket 37c has a lower thermal conductivity than the filled dielectric layer 16 1328873. The tungsten plug 38 contacts the electrode member 33. A patterned conductive layer 40 comprising a metal or other conductive material, including bit lines in the array structure, overlying the dielectric fill layer and contacting the plug 38 to establish for the left side corresponding to the film bridge Access to memory cells of active layer 36a and active layer 37a to the right of the film bridge. Fig. 3 is a view showing the structure on the semiconductor substrate 21 in Fig. 2, which is presented in a layout manner. Thus, the arrangement of word lines 23, 24 is substantially parallel to the common source line 28, along a common source line in a memory cell array. The plugs 29, 30 are in contact with the terminals of the access transistors in the semiconductor substrate and the bottom sides of the electrode members 32, 34, respectively. The thin film memory material guides 36, 37 are located above the electrode members 32, 33/34, and the insulated gates 35a, 35b separate the electrode members. The plug 38 is in contact with the electrode member 33 located between the bridges 35 and 37, and the bottom side of the metal bit line 41 (transparent in Fig. 3) below the patterned conductive layer 40. Metal bit line 42 (non-transparent) is also shown in Figure 3 to emphasize the array layout of this structure. In operation, access to memory cells corresponding to the via 36 is achieved by applying a control signal to the word line 23, which is the common source line 28 via the terminal 25, the plug 29, and The electrode member 32 is coupled to the film guide 36. The electrode member 33 is coupled by a contact plug 38 to a bit line in the patterned conductive layer. Similarly, access to memory cells corresponding to the via 37 is achieved by applying a control signal to the word line 24. It will be appreciated that a variety of different materials can be used in the structures of Figures 2 and 3. For example, copper metallization can be used. Other types of metallization such as aluminum, titanium nitride, and tungsten-containing materials can also be used. At the same time, non-metallic conductive materials such as doped polysilicon can also be used. The electrode material used in the embodiment of the invention is preferably titanium nitride or aluminum nitride. Alternatively, the electrode may be aluminum titanium nitride or aluminum nitride, or may include more than one element selected from the group consisting of titanium (Ti), tungsten (W), molybdenum (Mo), aluminum (A1), Sister (Ta), copper (Cu), 铭 (pt), 铱 (8) 镧 (La), nickel (four), and nail (Ru) and an alloy composed of the above elements. The inter-electrode insulated gates 35a, 35b may be di-oxidized; a thin dielectric, a oxidized oxide, a nitride, an oxide, or another dielectric having a low dielectric constant. Alternatively, the interelectrode insulating layer may include one or more elements selected from the group consisting of ruthenium, titanium, aluminum, ruthenium, nitrogen, oxygen,

第4圖係綠示—記憶陣列的示意圖,其可參2盘 3第圖2戶述而實施。因此’ “圖中的標號係靡 列標唬。可以瞭解的是,第4圖中所示的陣 上=8其他字 =\實,f第4圖的說明中, 於致上平行 方塊45中的γ解碼;致t千仃於X轴。因此’在Figure 4 is a schematic diagram of a green-memory array, which can be implemented by referring to Figure 2 of Figure 2. Therefore, 'the label in the figure is the standard label. It can be understood that the array shown in Figure 4 = 8 other words = \ real, f in the description of Figure 4, in the upper parallel square 45 γ decoding; to t thousand on the X axis. Therefore 'in

線23 24。在方地子兀線驅動器,係耦接至字元 在方塊46中的X解碼器 則係耦接至位元線41,42 =及組感測放大器, 晶體50,51,52 53的、原極線係耦接至存取電 接至字元線Β。存取電晶存取電晶體5 0之間極係耦 存取電晶體52之間極^接^閘極频接至字元線24。 之閘極係輕接至字元線24。存23。存取電晶體53 至電極構件32以連接導橋36 ^曰體50的沒極絲接 構件34。相似地,存取電曰 间、、彳接著耦接至電極 件33以連接導橋37,導橋1則接^極係耦接至 電極構 電極構件34係耦接至位元線4 :耦接至電極構件34。 件34係與位元線41位於不同位置:=解方便,電極構 理解的是,在其 18 1328873 他實施例中,不同記憶細胞導橋可使用不同的 存取電晶體52與53亦於位元線42上耦接至 庙+。 細胞。圖中可見,共同源極線28係由二列产:略§己憶 用,其中的列係沿著γ轴而排列。相似地丨::二所共 係被陣列中一行的二記憶細胞所共用,而在 是沿著X軸排列。 j中的仃則 第5圖係為根據本發明-實施例的積體電路 塊圖。積體電路Μ包括-記憶陣列6(),其係利用薄 險絲相變化§己憶細胞而建立於 '半導體基板上 、’、 器61係耦接至複數條字元線62,並沿著記化。—列解瑪 各列而排列。一行解碼器63係耦接至複數條位_ 甲的 這些位元線係沿著記憶陣列00中的各行而排兀—64, 陣列60中的多閘極記憶細胞讀取並程式化次並用以從 匯流排上供應至行解碼器63以及列解碼器】 。位址係在 的感測放大器以及資料輸入結構係經由匯。二塊66中 至行解碼H 63。位址係從匯流排65提 輕接 及列解碼器61。/·十地《 丄 芏订解碼盗63以 入(data-in)線踗f鬼之中的感測放大器以及資料讀 體電iit體電路基板75上_人/輸料、或從積 η而提供部或Γ部資料來源,經由資料輪入線路 此積體電路負料輸人結構。在所述實施例中, 目的應其t電路74,如泛用目的處理11或特定 Γ / 、或以薄膜保險相變化記憶細胞陣列所支持 料系統單晶片(SyStem0naChiP)功能之整合模組。資 1,方塊66中的感測放大器經由資料輸出線路72 ,而值 =至積體電路75之輸人/輸出埠,或至積 部或外部之其他資料目的。 % 75内 19 1328873 在本實施例中使用狀態機器69之一控制器,係控制偏 壓安排供應電壓68之應用,例如讀取、程式化、抹除、抹 除確認與程式化確認電壓等。此控制器可使用習知之特定 目的邏輯電路。在替代實施例中,此控制器包括一泛用目 的處理器,其可應用於同一積體電路中,此積體電路係執 行一電腦程式而控制此元件之操作。在又一實施例中,此 控制器係使用了特定目的邏輯電路以及一泛用目的處理器 之組合。Line 23 24. In the square sub-wire driver, the X decoder coupled to the character block in block 46 is coupled to the bit line 41, 42 = and the group sense amplifier, the crystal 50, 51, 52 53 The pole line is coupled to the access wire to the word line Β. The access between the transistor access transistor 50 and the gate transistor 52 is connected to the word line 24. The gate is lightly connected to the word line 24. Save 23. The transistor 53 is accessed to the electrode member 32 to connect the non-wire connector 34 of the via 36 曰 body 50. Similarly, the access port is connected to the electrode member 33 to connect the bridge 37, and the bridge 1 is coupled to the electrode electrode member 34 and coupled to the bit line 4: Connected to the electrode member 34. The piece 34 is located at a different position from the bit line 41: = convenient solution, the electrode structure understands that in its embodiment 18 1328873, different memory cell guides can be used with different access transistors 52 and 53 The line 42 is coupled to the temple +. cell. As can be seen, the common source line 28 is produced by two columns: a few of which are recalled, with the columns arranged along the gamma axis. Similarly, the two systems are shared by two memory cells in a row in the array and are arranged along the X axis. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 5 is a block diagram of an integrated circuit according to the present invention. The integrated circuit Μ includes a memory array 6() which is formed on the 'semiconductor substrate by using a thin-risk phase change § cells, and the device 61 is coupled to the plurality of word lines 62 and along Record. - Columns are arranged in columns. A row of decoders 63 are coupled to the plurality of bits of the bit line _ A along the rows in the memory array 00 - 64, the multi-gate memory cells in the array 60 are read and programmed and used Supply from the bus bar to the row decoder 63 and the column decoder]. The sense amplifiers and data input structures in which the addresses are located are via sinks. The two blocks 66 to the line decode H 63. The address is extracted from the bus bar 65 and the column decoder 61. /· 十地" 丄芏 解码 解码 63 63 以 以 以 以 以 以 data data data data data data data data data data data data data data 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感Provide the source of the department or the internal data, and input the structure of the integrated circuit through the data round-trip. In the described embodiment, the purpose is to have its t-circuit 74, such as a general purpose processing 11 or a specific Γ / , or an integrated module of a single-chip (SyStem0naChiP) function supported by a thin film fuse phase change memory cell array. The sense amplifier in block 1, block 66, passes through data output line 72, and the value = to the input/output port of integrated circuit 75, or to other sources of information for the product or external. In the present embodiment, a controller of the state machine 69 is used to control the application of the bias voltage to supply the voltage 68, such as reading, programming, erasing, erasing confirmation, and stylizing confirmation voltage. This controller can use a conventional purpose specific logic circuit. In an alternate embodiment, the controller includes a general purpose processor that can be applied to the same integrated circuit that executes a computer program to control the operation of the component. In yet another embodiment, the controller uses a combination of a specific purpose logic circuit and a general purpose purpose processor.

第6-16圖顯示一結構以及一雙嵌鑲電極結構的製程。 在一雙嵌鑲結構中,一介電層於一兩階層(即雙層)圖案中 形成,其中第一階層圖案定義導線的溝渠,而第二階層圖 案疋義連接底層結構的介層孔。一單一金屬沈積步驟可以 被用來同時形成導線,以及填入連接底層結構的介層孔以 形成導電連線。此介層孔和溝渠可以使用兩階段微影步驟 定義:溝渠通常是㈣至—第—深度,而介層孔是飯刻至 一第二深度以形成連接底層結構的介層孔開口。當介層孔 和溝渠被蝕刻之後,一沈積步驟可以被用來同時在介層孔 和溝渠填人金屬或其他導電物質^在填充之後,溝渠^ 所沈積的多餘物質則利用一化學機械研磨製程除去,一 面、填有導電物質之雙嵌鑲結構,於是完成。 第6,示:雙嵌鑲結構的製程圖,一電絕緣材料 層 通吊疋一介電層,形成於前段製程結構之上,孫 作為之後的雙嵌鑲結構會形成於其中之用。利程 形成,準CMOS元件在繪示的實施例中,其對應 = =陣.列中的字元線 '源極線、以及存取電晶體圖 線106係覆蓋半導體基板中的經掺雜區域二 其中經摻雜區域103係對應至圖中左側之第一存取二 20 1328873 f二及Ltf側之第二存取電晶體的源極終端。在此實 施例中,此源極線並不完全延伸至表面。一ί摻雜t域二 此第一存取電晶體的汲極。包含一多晶矽1〇7之 -子兀線’係作為此第一存取電晶體之 示於圖中)109俜仿於屮炙曰功1iV7 — ’丨电禮(禾 繊$ 矽之上。一栓塞110係接Figures 6-16 show the fabrication of a structure and a dual array of electrode structures. In a double damascene structure, a dielectric layer is formed in a two-level (i.e., two-layer) pattern, wherein the first level pattern defines the trenches of the wires, and the second level pattern is connected to the via holes of the underlying structure. A single metal deposition step can be used to simultaneously form the wires and fill the via holes connecting the underlying structures to form conductive traces. The vias and trenches can be defined using a two-stage lithography step: the trench is typically (d) to - the depth, and the via is from the ground to a second depth to form a via opening that connects the underlying structure. After the via holes and trenches are etched, a deposition step can be used to simultaneously fill the vias and trenches with metal or other conductive material. After filling, the excess material deposited in the trenches utilizes a chemical mechanical polishing process. The double-inserted structure, which is filled with a conductive material on one side, is completed. No. 6, showing: a process diagram of a double-inserted structure, an electrically insulating material layer is suspended from a dielectric layer, formed on the front-end process structure, and the double-embedded structure after Sun is formed therein. The process of forming a quasi-CMOS device, in the illustrated embodiment, corresponds to the == matrix. The word line in the column, the source line, and the access transistor line 106 cover the doped region in the semiconductor substrate. The doped region 103 corresponds to the source terminal of the second access transistor on the first access side 20 1328873 f2 and the Ltf side on the left side of the figure. In this embodiment, the source line does not extend completely to the surface. One yt-doped t-domain two the first access transistor's drain. The sub-twist line containing a polycrystalline 矽1〇7 is shown in the figure as the first access transistor. 109俜Imitated in the 1iV7 of the 屮炙曰 — — 繊 繊 繊 繊 繊 繊 ( 一 一 一Embolization 110

,至此經摻雜區域刚,並提供一導電路徑至此結構99之 :面二以後述方式連接至一記憶細胞電極。摻雜區域105 係做^苐二存取電晶體的汲極終端。包括有一多晶矽線m 之子元線係作為此弟二存取電晶體之閘極。一栓塞1 1 2 係接觸至經摻雜區域105並提供一導電路徑至結構99之上 表面而以後述之方式連接至一記憶細胞電極。電絕緣材 料層651形成於前段製程結構之上,如圖中所示。 此雙肷鑲製程包括一第一圖案化光阻層652其覆蓋於 層651之上,如第7圖中所示。此第一圖案化光阻層652 定義出層651中會被蝕刻成為溝渠的區域653、654和655, 其對應於此雙嵌鑲電極結構中的電極構件。 使用圖案化光阻層652做為幕罩,層651被蝕刻至並 沒有完全穿透層651的第一深度,以形成較淺的溝渠區域 656、657和658 ’如第8圖中戶斤:示。之後,如第9圖中所 示’ 一第二圖案化光阻層659被形成於層651之上。此第 二圖案化光阻層659定義出與栓塞11〇、112接觸的區域 660、661之電極構件。使用圖案化光阻層659做為幕罩, 層651被蝕刻至完全穿透至與栓塞11〇、112接觸的第二深 度’以於溝渠區域656、657和658中形成更深的溝渠區域 662、663,如第1〇圖中所示。 此元成之雙溝渠層651然後填入金屬,如銅或是銅合 21 1.328873 金,具有熟習此技藝人士所熟知之合適的附著及阻障層以 形成層664,如第11圖中所示。如第圖中所示,化學 機械研磨或是其他類似的技術被用來除去一部分的金屬層 664直到介電層651為止’形成一具有雙嵌鑲電極665、666 和667結構之電極層。此電極665和6667結構與栓塞11〇、 112接觸,而電極結構666則與源極線1〇6隔離。 在F —個步驟,如第13圖中所示,一層記憶材料 668a、一阻障層668b和一熱絕緣層668c形成於嵌鑲介電 _ 層651之上,在此稱為此元件的電極層。一圖案化的光阻 層,包含幕罩670和671如第14圖中所示,然後形成於層 668c之上。此幕罩670和671第一出此記憶細胞中記憶材 料橋的位置。之後,進行一蝕刻步驟以除去層669和668 未被幕罩670和671覆蓋的部份,保留一先前所描述的包 含一記憶材料主動層、一阻障層以及一熱絕緣層的複層結 構所構成之5己憶橋672和673。此橋672的主動層自電極 結構665通過一絕緣構件674向電極結構666延伸。此絕 ,構件674的寬度定一此擴越記憶材料橋672之電極間路 _ 把的長度。此橋673的主動層自電極結構667通過一絕緣 構件675向電極結構666延伸。此絕緣構件675的寬度定 此擴越記憶材料橋673之電極:間路徑的長度。 ^ 如第16圖於中所示,於定義出記憶橋672和673之 後’介電填充層(未示於圖中)被形成且加以平坦化。然後, 介層窗被蝕刻於填入電極構件666之介電填充層中。這些 介層窗被填入如鎢的栓塞,以形成導電栓塞676。一金屬 層然後被圖案化以定義位元線677,其與栓塞接觸,且安 排如第16圖於中所示沿著記憶細胞對的各行所排列。此介 電填充的材料或許不具有一良好熱絕緣的阻障層。因此, 22 1.328873 .使用於記憶橋672和673的熱絕緣材料具有較其下的介電 填充材料更低的導熱性。 第2圖顯示此雙嵌鑲電極結構製程所產生的最終結 構’將第16圖電極層651中移去的介電材料。 其他與實施相變化隨機存取記憶元件之製造及材料有 關的内容’係揭露於本申請人之另一美國專利申請案號第Thus, the doped region is just the same, and a conductive path is provided to the structure 99: the second surface is connected to a memory cell electrode in a manner to be described later. The doped region 105 is used as a drain terminal for the access transistor. A sub-line system including a polysilicon line m is used as the gate of the second access transistor. A plug 1 1 2 contacts the doped region 105 and provides a conductive path to the upper surface of the structure 99 to be connected to a memory cell electrode in a manner to be described later. An electrically insulating material layer 651 is formed over the front stage process structure as shown. The double damascene process includes a first patterned photoresist layer 652 overlying layer 651, as shown in FIG. This first patterned photoresist layer 652 defines regions 651, 654, and 655 in layer 651 that are etched into trenches that correspond to the electrode features in the dual damascene electrode structure. Using the patterned photoresist layer 652 as a mask, layer 651 is etched to a first depth that does not completely penetrate layer 651 to form shallower trench regions 656, 657, and 658' as shown in Figure 8: Show. Thereafter, a second patterned photoresist layer 659 is formed over layer 651 as shown in FIG. This second patterned photoresist layer 659 defines the electrode members of the regions 660, 661 that are in contact with the plugs 11A, 112. Using the patterned photoresist layer 659 as a mask, the layer 651 is etched to fully penetrate to a second depth 'in contact with the plugs 11A, 112 to form a deeper trench region 662 in the trench regions 656, 657 and 658, 663, as shown in Figure 1. The dual-ditch layer 651 of the elementary layer is then filled with a metal such as copper or copper 21.328873 gold, having suitable adhesion and barrier layers well known to those skilled in the art to form layer 664, as shown in FIG. . As shown in the figure, chemical mechanical polishing or other similar technique is used to remove a portion of the metal layer 664 up to the dielectric layer 651 to form an electrode layer having dual embedded electrodes 665, 666, and 667 structures. The electrodes 665 and 6667 are in contact with the plugs 11A, 112, and the electrode structure 666 is isolated from the source line 1A6. In a F step, as shown in FIG. 13, a layer of memory material 668a, a barrier layer 668b, and a thermal insulating layer 668c are formed over the embedded dielectric layer 651, referred to herein as the electrode of the element. Floor. A patterned photoresist layer, including masks 670 and 671, as shown in Figure 14, is then formed over layer 668c. This mask 670 and 671 first out the location of the memory material bridge in this memory cell. Thereafter, an etching step is performed to remove portions of layers 669 and 668 that are not covered by masks 670 and 671, retaining a previously described multi-layer structure comprising a memory material active layer, a barrier layer, and a thermal insulating layer. The five built-up bridges 672 and 673. The active layer of the bridge 672 extends from the electrode structure 665 to the electrode structure 666 through an insulating member 674. Thus, the width of the member 674 is such that the length of the inter-electrode path of the memory material bridge 672 is increased. The active layer of the bridge 673 extends from the electrode structure 667 through an insulating member 675 toward the electrode structure 666. The width of this insulating member 675 is such that the electrode of the memory material bridge 673 is expanded: the length of the path. ^ As shown in Fig. 16, after the memory bridges 672 and 673 are defined, a dielectric fill layer (not shown) is formed and planarized. Then, the via is etched into the dielectric fill layer of the electrode member 666. These vias are filled with a plug such as tungsten to form a conductive plug 676. A metal layer is then patterned to define a bit line 677 that is in contact with the plug and arranged along the rows of memory cell pairs as shown in Figure 16. This dielectric filled material may not have a barrier layer with good thermal insulation. Thus, 22 1.328873. The thermal insulation materials used in memory bridges 672 and 673 have lower thermal conductivity than the dielectric filler material underneath. Fig. 2 shows the final structure produced by the process of the double-embedded electrode structure. The dielectric material removed from the electrode layer 651 of Fig. 16. Other content relating to the manufacture and material of a phase change random access memory device is disclosed in another U.S. Patent Application Serial No.

11/155,067 號”THIN FILM FUSE PHASE CHANGE RAM AND MANUFACTURING METHOD” 中,其申請曰為 200511/155,067 "THIN FILM FUSE PHASE CHANGE RAM AND MANUFACTURING METHOD", the application number is 2005

年6月17日(律師檔案編號MXIC1621-1),該申請案係列 為本案的參考’而且此技術可以輕易地延伸至此處所描述 之複合橋結構以在此橋中形成十分祓窄的主動層。 申請人所知的相變化記憶細胞種類中,大部分係藉由 形成一微小孔洞並填入相變化記憶細胞、接著形成接觸至 此相變化材料之頂與底電極而形成。此微小孔洞結構係用 以減少程式化電流。本發明減少了程式化電流而不需形成 微小孔洞,因此可達到較好的製程控制。此外,在細胞上 並無頂電極,避免相變化材料受到用以形成頂電極 的潛在損害。 表狂 在此所描述的細胞,包括二底電極以及其間的介電 質,以及位於電極之上、橫跨介》電質的相變化材料導橋。 此底電極與介電質係形成於前段製程CMQS邏輯^立 他功能電路結構之上的電極層中,提供可以輕易二 心,體與魏電路於單晶片上的結構,此晶片可舉例 統單晶片(system on chip,SOC)元件。 、 本發明所述實施例的優點,包括相變化現象發生 電填充層上的導橋中央,而非發生於導橋與—電極之門 接面,因此提供了較佳的可靠度。同時,用在重置與= 23 1328873 化操作中的電流係侷限於一微小體積中,允許了高電流密 度及其所產生的局部加熱效果,而僅需較小的重置電流以 及較低的重置電能消耗。 雖然本發明係已參照較佳實施例來加以描述,將為吾 人所瞭解的是,本發明創作並未受限於其詳細描述内容。 替換方式及修改樣式係已於先前描述中所建議,並且其他 替換方式及修改樣式將為熟習此項技藝之人士所思及。特 別是,根據本發明之結構與方法,所有具有實質上相同於 本發明之構件結合而達成與本發明實質上相同結果者皆不 脫離本發明之精神範疇。因此,所有此等替換方式及修改 樣式係意欲落在本發明於隨附申請專利範圍及其均等物所 界定的範疇之中。任何在前文中提及之專利申請案以及印 刷文本,均係列為本案之參考。 【圖式簡單說明】 第1圖係繪示一相變化記憶元素薄膜導橋的實施例。 第2圖係繪示一組相變化記憶元素其具有存取電路於 一電極層之下以及位元線於此電極層之上結構的立體示意 圖。 第3圖係繪示第2圖中結構:的平面示意圖。 第4圖係繪示一包含相變化記憶元素之一記憶陣列。 第5圖係包括有薄膜保險絲相變化記憶陣列與其他電 路的積體電路元件方塊圖。 第6圖係用以形成一記憶元件電極層的雙嵌鑲製程的 一第一步驟剖面圖。 第7圖係用以形成一記憶元件電極層的雙嵌鑲製程的 一第二步驟剖面圖。 24 1328873 第8圖係用以形成一記憶元件電極層的雙嵌鑲製程的 一第三步驟剖面圖。 第9圖係用以形成一記憶元件電極層的雙嵌鑲製程的 —第四步驟剖面圖。 第10圖係用以形成一記憶元件電極層的雙嵌鑲製程 的一第五步驟剖面圖。June 17 (Attorney Docket No. MXIC1621-1), the application series is a reference for this case' and this technique can be easily extended to the composite bridge structure described herein to form a very narrow active layer in this bridge. Most of the phase change memory cell species known to the applicant are formed by forming a micropore and filling in phase change memory cells, followed by formation of a top and bottom electrode contacting the phase change material. This tiny hole structure is used to reduce the stylized current. The present invention reduces the stylized current without the need to form tiny holes, thereby achieving better process control. In addition, there is no top electrode on the cell to avoid potential damage to the phase change material used to form the top electrode. Episodes The cells described herein include a bottom electrode and a dielectric therebetween, as well as a phase change material bridge over the electrode that spans the dielectric. The bottom electrode and the dielectric system are formed in the electrode layer above the CMQS logic function circuit structure of the front-end process, and the structure of the two-core, body and Wei circuit on the single wafer can be easily provided. System on chip (SOC) component. The advantages of the embodiments of the present invention include phase change phenomena occurring at the center of the vias on the electrically filled layer, rather than at the junctions of the vias and the electrodes, thus providing better reliability. At the same time, the current used in the reset and = 23 1328873 operation is limited to a small volume, allowing high current density and the local heating effect it produces, while requiring less reset current and lower Reset power consumption. Although the present invention has been described with reference to the preferred embodiments, it is understood that the invention is not limited by the detailed description. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, the structures and methods of the present invention, all of which are substantially identical to the components of the present invention and which achieve substantially the same results as the present invention, do not depart from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents. Any patent application and printed text mentioned in the foregoing are a reference for this case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an embodiment of a phase change memory element film guide. Figure 2 is a perspective view showing a set of phase change memory elements having an access circuit under an electrode layer and a bit line above the electrode layer. Figure 3 is a plan view showing the structure of Figure 2: Figure 4 is a diagram showing a memory array containing phase change memory elements. Figure 5 is a block diagram of an integrated circuit component including a thin film fuse phase change memory array and other circuits. Figure 6 is a first step cross-sectional view of a double damascene process for forming a memory element electrode layer. Figure 7 is a second step cross-sectional view of a double damascene process for forming a memory element electrode layer. 24 1328873 Figure 8 is a cross-sectional view of a third step of a dual damascene process for forming a memory element electrode layer. Figure 9 is a cross-sectional view showing a fourth step of a double damascene process for forming a memory element electrode layer. Fig. 10 is a fifth step sectional view showing a double damascene process for forming a memory element electrode layer.

第11圖係用以形成一記憶元件電極層的雙嵌鑲製程 的一第六步驟剖面圖。 第12圖係用以形成一記憶元件電極層的雙嵌鑲製程 的一第七步驟剖面圖。 以形成一記憶元件電極層的雙嵌鑲製程 圖。 第13圖係用 的一第八步驟剖面 第14圖係用 的一第九步驟剖面 第圖係用 的一第十步驟剖面 圖乂形成-記憶元件龍層的雙嵌鎮製程 以形成一記憶元件電極層 圖。 哭莰鑲 製程 第16圖係用以形成一記憶元件電極層 的一第十一步驟剖 面圖 的 雙嵌鑲製 程 記憶細胞 記憶材料導橋 第一電極 上表面 第二電極 絕緣構件 主動層 【主要元件符號說明】 10 11 12 12a,13a,14a 13 14 15 25 1328873Figure 11 is a sixth step cross-sectional view of a double damascene process for forming a memory element electrode layer. Figure 12 is a seventh step sectional view of a double damascene process for forming a memory element electrode layer. A dual damascene process diagram for forming a memory element electrode layer. Figure 13 is an eighth step section. Figure 14 is a ninth step section. The figure is a tenth step sectional view. The double-insertion process of the memory element layer is formed to form a memory element. Electrode layer map. Figure 16 is a double-inserted process memory cell memory material guide bridge for forming an eleventh step sectional view of a memory element electrode layer. The first electrode upper surface of the second electrode insulating member active layer [main components Explanation of symbols] 10 11 12 12a, 13a, 14a 13 14 15 25 1328873

16 阻障層 17 熱絕緣材料層 21 半導體基板 23,24 字元線 25,27 η型終端汲極 26,28 共同源極線 29,30 检塞結構 31 電極層 32,33,34 電極構件 35a,35b 絕緣栅 36a、37a 記憶材料 36b > 37b 阻障層 36c、37c 熱絕緣材料層 38 鎢栓塞 40 導電層 41,42 位元線 45 Υ解碼器以及字元線驅動器 46 X解碼器以及一組感測放大器 50 〜53 存取電晶體 60 記憶陣列 Ί 61 列解碼器 62 字元線 63 行解碼器 64 位元線 65,67 匯流排 68 供應電壓 69 偏壓安排狀態機器 26 1328873 71 72 74 75 99 103〜105 貧料輸入線路 資料輸出線路 其他電路 積體電路 結構 經摻雜區域 106 107,111 110〜112 源極線 多晶矽 栓塞 651 652 653,654,655 656,657,658 659 660,661 662,663 664 665,666,667 668a 668b 668c 670,671 672,673 674,675 676 677 電絕緣材料層 第一圖案化光阻層 溝渠 淺溝渠 第二圖案化光阻層 栓塞位置 深溝渠 金屬層 電極結構 記憶材料 阻障層 ') 熱絕緣材料層 幕罩 導橋 絕緣構件 導電栓塞 位元線 2716 barrier layer 17 thermal insulating material layer 21 semiconductor substrate 23, 24 word line 25, 27 n-type terminal drain 26, 28 common source line 29, 30 plug structure 31 electrode layer 32, 33, 34 electrode member 35a 35b insulated gate 36a, 37a memory material 36b > 37b barrier layer 36c, 37c thermal insulating material layer 38 tungsten plug 40 conductive layer 41, 42 bit line 45 Υ decoder and word line driver 46 X decoder and one Group sense amplifiers 50 to 53 access transistor 60 memory array Ί 61 column decoder 62 word line 63 line decoder 64 bit line 65, 67 bus 68 supply voltage 69 bias arrangement state machine 26 1328873 71 72 74 75 99 103~105 poor input line data output line other circuit integrated circuit structure doped region 106 107,111 110~112 source line polysilicon plug 651 652 653,654,655 656,657,658 659 660,661 662,663 664 666,667 668a 668b 668c 670,671 672,674 674,675 676 677 Insulating material layer first patterned photoresist layer trench shallow trench second patterned photoresist layer embedding position deep trench metal layer electrode structure memory Material Barrier Layer ') Thermal Insulation Material Layer Curtain Guide Bridge Insulation Member Conductive Plug Position Bit 27

Claims (1)

1328873 十、申請專利範圍 1. 一種記憶元件,包括: 一第一電極其具有一上表面; 一第二電極其具有一上表面; 一絕緣構件,其位於該第一電極與該第二電極之間, 該絕緣構件具有一厚度位於該第一電極與該第二電極之 間靠近該第一電極的該上表面與該第二電極的該上表面; 一導橋,其橫跨該絕緣構件,該導橋具有一第一側以 及一第二側,並以該第一側接觸至該第一與第二電極之該 上表面,且定義一電極間路徑於橫跨該絕緣構件的該第一 電極與該第二電極之間,該電極間路徑具有一由該絕緣構 件寬度所第一之一路徑長度,其中該導橋在該第一側包含 一記憶材料的主動層其具有至少二固態相,以及一熱絕緣 材料毯子覆蓋於該記憶材料之上;以及 一電絕緣材料層,位於該熱絕緣材料毯子之上,其中 該熱絕緣材料毯子具有一導熱性低於該電絕緣材料層。 2. 如申請專利範圍第1項所述之元件,其中該電絕緣材 料層包括二氧化石夕。 3. 如申請專利範圍第1項所述之元件,其中該絕緣構件 之厚度係為約50奈米或以下,且該記憶材料的該主動層 包括一薄膜其厚度係為約50奈米或以下。 4. 如申請專利範圍第1項所述之元件,其中該絕緣構件 之厚度係為約20奈米或以下,且該記憶材料的該主動層包 括一薄膜其厚度係為約20奈米或以下。 28 1328873 5.如申請專利範圍第1項所述之元件,其令該記憶材料 的該主動層包括一薄膜其厚度係為約10奈米或以下。 6·如申6奢專利範圍第1項所述之元件,其中該毯子包括 2絕緣材料阻障層位於該記憶材料的該絲層與該熱絕 緣材料毯子之間。 7·如申請專利範圍第1項所述之元件,其中該毯子包括 障層位於該記憶材料的該主動層與該熱= 8.如申請專利範圍第1項所述之元件,並中兮埶 料包含硫屬化物。 T /、中6玄熱絕緣材 二包3 =範圍第1項所述之元件,其中該熱絕緣材 態相包項:述之元件,其中該至少二固 、书為非日日相以及一通常為結晶相。 如申請專利範圍第〗項 之該厚度係小於用於形成該元件之件 影特徵尺寸。 微〜製私的一最小微 如申請專利範圍第丨項所述之元 的該主動層具有一厚产 &quot;中该s己憶材料 度位於5亥第一側與該第二側之間,係 29 1328873 小於用於形成該元件之一微影製程的一最小微影特徵尺 寸P 13. 如申請專利範圍第1項所述之元件,其中該記憶材料 包括由鍺、錄、與碲所形成之組合物。 14. 如申請專利範圍第1項所述之元件,其中該記憶材料 包括二個或以上選自下列群組之材料所組成之組合物:鍺 (Ge)、銻(Sb)、碲(Te)、銦(In)、鈦(Ti)、鎵(Ga)、鉍(Bi)、 錫(Sn)、銅(Cu)、鈀(Pd)、鉛(Pb)、銀(Ag)、硫(S)、以及金 (Au)。 15. —種記憶元件,包括: 一基板; 一電極層於該基板之上,該電極層包括一電極對陣列 具有一第一電極有著一上表面、一第二電極有著一上表面 與一絕緣構件於該第一電極和該第二電極之間; 一導橋陣列,其橫跨其個別電極對的該絕緣構件,該 導橋具有各自的一第一側以及一第二側,並以該第一側揍 觸至其各自的電極對該第一與第士電極之該上表面,其中 該導橋各自的在該第一側包含一記憶材料的主動層其具有 至少二固態相,以及一熱絕緣材料毯子覆蓋於該記憶材料 之上; 一電絕緣材料層,位於該導橋陣列之上,其中該熱絕 緣材料具有一導熱性低於該電絕緣材料層;以及 位元線於該電絕緣材料層之上,透過該電絕緣材料層 中的介層窗與該導橋陣列中的該橋接觸。 30 丄汐厶〇〇/J 之·厚度係圍第15項所述之元件,其中該絕緣構件 括一薄腺奈米或以下,且該記憶材料的該主動層包 w、厚度係為約50奈米或以下。 17 之厚ΐ lit利範圍第15項所述之元件,其中該絕緣構件 扭嘴〆2〇奈米或以下’且§亥記憶材料的該主動#包 括一薄膜其厚度係為約2G奈米或町。 勤廣匕1328873 X. Patent Application Area 1. A memory element comprising: a first electrode having an upper surface; a second electrode having an upper surface; and an insulating member located at the first electrode and the second electrode The insulating member has a thickness between the first electrode and the second electrode adjacent to the upper surface of the first electrode and the upper surface of the second electrode; a guiding bridge spanning the insulating member, The viaduct has a first side and a second side, and the first side contacts the upper surface of the first and second electrodes, and defines an inter-electrode path to the first across the insulating member Between the electrode and the second electrode, the inter-electrode path has a first path length from the width of the insulating member, wherein the guiding bridge comprises an active layer of a memory material on the first side and has at least two solid phases And a blanket of thermal insulation covering the memory material; and a layer of electrically insulating material over the blanket of thermal insulation, wherein the blanket of thermal insulation has a lower thermal conductivity than the electrical Edge of the material layer. 2. The component of claim 1, wherein the electrically insulating material layer comprises a dioxide dioxide. 3. The component of claim 1, wherein the insulating member has a thickness of about 50 nm or less, and the active layer of the memory material comprises a film having a thickness of about 50 nm or less. . 4. The component of claim 1, wherein the insulating member has a thickness of about 20 nm or less, and the active layer of the memory material comprises a film having a thickness of about 20 nm or less. . The object of claim 1, wherein the active layer of the memory material comprises a film having a thickness of about 10 nm or less. 6. The element of claim 1, wherein the blanket comprises a barrier layer of insulating material between the layer of filaments of the memory material and the blanket of thermal insulation material. The component of claim 1, wherein the blanket comprises a barrier layer located on the active layer of the memory material and the heat=8, as described in claim 1 of the scope of the patent application, and The material contains chalcogenide. T /, 中6玄热绝缘材二包3 = The component described in the first item, wherein the thermal insulation material phase includes: the component, wherein the at least two solids, the book is a non-Japanese phase and one It is usually a crystalline phase. The thickness of the application range is less than the size of the feature used to form the component. The micro-manufacture is as small as the element described in the scope of the patent application, and the active layer has a thicker texture. The material is located between the first side and the second side of the 5H. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Composition. 14. The component of claim 1, wherein the memory material comprises two or more compositions selected from the group consisting of germanium (Ge), germanium (Sb), and germanium (Te). , indium (In), titanium (Ti), gallium (Ga), bismuth (Bi), tin (Sn), copper (Cu), palladium (Pd), lead (Pb), silver (Ag), sulfur (S) And gold (Au). 15. A memory element, comprising: a substrate; an electrode layer on the substrate, the electrode layer comprising an electrode pair array having a first electrode having an upper surface and a second electrode having an upper surface and an insulating layer a member between the first electrode and the second electrode; an array of vias spanning the insulating member of the respective pair of electrodes, the via having a respective first side and a second side, and The first side touches the respective electrodes to the upper surface of the first and the first electrodes, wherein the respective active layers of the guide bridge comprising a memory material on the first side have at least two solid phases, and a blanket of thermal insulation material overlying the memory material; a layer of electrically insulating material over the array of vias, wherein the thermal insulation material has a lower thermal conductivity than the layer of electrically insulating material; and a bit line is Above the layer of insulating material, the via in the layer of electrically insulating material is in contact with the bridge in the array of vias. The thickness of the 丄汐厶〇〇/J. The component of item 15, wherein the insulating member comprises a thin adenes or below, and the active layer of the memory material has a thickness of about 50 Nano or below. 17的厚ΐ The object of claim 15, wherein the insulating member has a twisted nozzle of 2 nanometers or less and the active material of the memory material comprises a film having a thickness of about 2G nanometer or Town. Qin Guangyu 申請專利範圍第15項所述之元件,其中該記憶材料 、μ主動層包括—薄膜其厚度係為約10奈米或以下。 19. 如申凊專利範圍第15項所述之元件,其中該毯子包括 電絕緣材料阻障層位於該記憶材料的該主動層與該熱絕 緣材料毯子之間。 20. 如申請專利範圍第15項所述之元件,其中該毯子包括 一擴散阻障層位於該記憶材料的該主動層與該熱絕緣材料 毯子之間。 21. 如申請專利範圍第15項所述之元件,其中該熱絕緣材 料包含硫屬化物。 22. 如申請專利範圍第15項所述之元件,其中該熱絕緣材 料包含聚亞醯胺。 23. 如申請專利範圍第15項所述之元件,其中該至少二固 31 1328873 態相包含一通常為非晶相以及一通常為結晶相。 24. 如申請專利範圍第15項所述之元件,其中該絕緣構件 之該厚度係小於用於形成該元件之一微影製程的一最小微 影特徵尺寸。 25. 如申請專利範圍第15項所述之元件,其中該記憶材料 的該主動層具有一厚度位於該第一側與該第二侧之間,係 小於用於形成該元件之一微影製程的一最小微影特徵尺 寸。 26. 如申請專利範圍第15項所述之元件,其中該記憶材料 包括由錯、録、與碲所形成之組合物。 27. 如申請專利範圍第15項所述之元件,其中該記憶材料 包括二個或以上選自下列群組之材料所組成之組合物:鍺 (Ge)、銻(Sb)、碲(Te)、銦(In)、鈦(Ti)、鎵(Ga)、錢(Bi)、 錫(Sn)、銅(Cu)、鈀(Pd)、鉛(Pb)、銀(Ag)、硫(S)、以及金 (An)。 Ί 28. —種製造一記憶元件的方法,包括·· 形成一電極層,該電極層包括一第一電極有著一上表 面、一第二電極有著一上表面與一絕緣構件於該第一電極 和該第二電極之間的該電極層的一上表面,該絕緣構件延 伸至以形成絕緣牆於該電極層的該上表面,且該絕緣構件 具有介於該第一電極與該第二電極在該上表面之間的一寬 度; 32 丄⑽873 層的Ξί::橋於橫跨該絕緣構件的該電極 該ί=Ϊ接觸’以及一熱絕緣毯子於該主動層;i且 Μ哼;4電極間路徑於橫跨該絕緣構件的該第一電極 二第=Γ::路徑具有—由該絕以 相;以及 L長度,其十該記憶材料具有至少二固態 形成—介電材料層於該 包含—熱絕崎《具有-導触低於緣毯子 以其中該絕緣構件 括一薄臈其厚度係為約50奈米或^意材㈣該主動層包 =方法’其中該絕緣構件 括-薄膜其厚度材料的該主動層包 ^包::?專利範圍第28項所述之方法,1中今形成 成-補丁其厚度係為約V1G奈米或以中下柯成1 該複數對中的一對與該複數上另電極對且隔離構件分隔 。申請專利範圍第28項所述之方法,其中該形成1 33 1328873 形成一記憶材料層於該電極層的該上表面之上; 形成一熱絕緣材料層於該記憶材料層之上; 圖案化該記憶材料層與該熱絕緣材料層以定義該導 橋。 34.如申請專利範圍第28項所述之方法,其中該形成該第 一和第二電極包含一雙嵌鑲製程。The element of claim 15 wherein the memory material, the μ active layer comprises a film having a thickness of about 10 nm or less. 19. The element of claim 15 wherein the blanket comprises an electrically insulating material barrier between the active layer of the memory material and the blanket of thermal insulation material. 20. The element of claim 15 wherein the blanket comprises a diffusion barrier layer between the active layer of the memory material and the thermal insulation blanket. 21. The element of claim 15 wherein the thermally insulating material comprises a chalcogenide. 22. The element of claim 15 wherein the thermally insulating material comprises polyamidamine. 23. The element of claim 15 wherein the at least two solid 31 1328873 phase comprises a generally amorphous phase and a generally crystalline phase. 24. The component of claim 15 wherein the thickness of the insulating member is less than a minimum lithographic feature size used to form a lithography process of the component. 25. The component of claim 15 wherein the active layer of the memory material has a thickness between the first side and the second side that is less than a lithography process for forming the component. A minimum lithography feature size. 26. The element of claim 15 wherein the memory material comprises a composition formed by a fault, a record, and a flaw. 27. The element of claim 15 wherein the memory material comprises two or more compositions selected from the group consisting of germanium (Ge), germanium (Sb), and germanium (Te). , indium (In), titanium (Ti), gallium (Ga), money (Bi), tin (Sn), copper (Cu), palladium (Pd), lead (Pb), silver (Ag), sulfur (S) And gold (An). Ί 28. A method of fabricating a memory device, comprising: forming an electrode layer, the electrode layer comprising a first electrode having an upper surface, a second electrode having an upper surface and an insulating member on the first electrode And an upper surface of the electrode layer between the second electrode, the insulating member extends to form an insulating wall on the upper surface of the electrode layer, and the insulating member has the first electrode and the second electrode a width between the upper surfaces; 32 丄 (10) 873 layers of Ξί:: bridges across the electrode of the insulating member, the ί=Ϊ contact' and a thermal insulating blanket on the active layer; i and Μ哼; The inter-electrode path has a path through the first electrode 横跨:: across the insulating member - from the absolute phase; and an L length, wherein the memory material has at least two solid-formed-dielectric material layers thereon Including - a thermal blanket "having a guide-less contact with a blanket, wherein the insulating member comprises a thin crucible having a thickness of about 50 nm or a material (four) of the active layer package = method" wherein the insulating member comprises a film The active layer package of its thickness material ^Package::? The method of claim 28, wherein the thickness of the patch is about V1G nanometer or the middle and the lower is a pair of the plurality of pairs and the other electrode pair and the isolation member are separated . The method of claim 28, wherein the forming 1 33 1328873 forms a memory material layer over the upper surface of the electrode layer; forming a layer of thermal insulating material over the memory material layer; patterning the A layer of memory material and the layer of thermal insulation material define the bridge. The method of claim 28, wherein the forming the first and second electrodes comprises a double damascene process. 3434
TW96113723A 2006-08-22 2007-04-18 Thin film fuse phase change cell with thermal isolation layer and manufacturing method TWI328873B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/466,421 US7598512B2 (en) 2005-06-17 2006-08-22 Thin film fuse phase change cell with thermal isolation layer and manufacturing method

Publications (2)

Publication Number Publication Date
TW200812073A TW200812073A (en) 2008-03-01
TWI328873B true TWI328873B (en) 2010-08-11

Family

ID=39129217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96113723A TWI328873B (en) 2006-08-22 2007-04-18 Thin film fuse phase change cell with thermal isolation layer and manufacturing method

Country Status (2)

Country Link
CN (1) CN100502084C (en)
TW (1) TWI328873B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897954B2 (en) * 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
CN103839919B (en) * 2012-11-23 2018-09-14 中芯国际集成电路制造(上海)有限公司 Manufacturing method, fuse equipment and its manufacturing method of electrode

Also Published As

Publication number Publication date
TW200812073A (en) 2008-03-01
CN100502084C (en) 2009-06-17
CN101132050A (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US7598512B2 (en) Thin film fuse phase change cell with thermal isolation layer and manufacturing method
CN100573898C (en) The bottom electrode Ovonics unified memory and the manufacture method thereof of autoregistration and planarization
US8129706B2 (en) Structures and methods of a bistable resistive random access memory
US7956358B2 (en) I-shaped phase change memory cell with thermal isolation
TWI309454B (en) Process in the manufacturing of a resistor random access memory and memory device
CN100481555C (en) I-shaped phase change memory cell, manufacturing method thereof, and array including the same
TWI321355B (en) Vacuum jacket for phase change memory element
CN100573952C (en) Use the bridge resistance, random access memory device and the method for single contact structures
US7423300B2 (en) Single-mask phase change memory element
TWI400796B (en) Phase change memory with dual word lines and source lines and method of operating same
US7964468B2 (en) Multi-level memory cell having phase change element and asymmetrical thermal boundary
TWI376788B (en) Phase change memry cell and manufacturing method
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US7646631B2 (en) Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
TWI409942B (en) Thermally stabilized electrode structure
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
TWI328873B (en) Thin film fuse phase change cell with thermal isolation layer and manufacturing method
TWI305044B (en) Bridge resistance random access memory device and method with a singular contact structure
TWI305043B (en) Structures and methods of a bistable resistive random access memory
TWI297543B (en) I-shaped phase change memory cell with thermal isolation