TWI305043B - Structures and methods of a bistable resistive random access memory - Google Patents

Structures and methods of a bistable resistive random access memory Download PDF

Info

Publication number
TWI305043B
TWI305043B TW95117738A TW95117738A TWI305043B TW I305043 B TWI305043 B TW I305043B TW 95117738 A TW95117738 A TW 95117738A TW 95117738 A TW95117738 A TW 95117738A TW I305043 B TWI305043 B TW I305043B
Authority
TW
Taiwan
Prior art keywords
memory
programmable
plug
resistive memory
electrode
Prior art date
Application number
TW95117738A
Other languages
Chinese (zh)
Inventor
Chia Hua Ho
Erh Kun Lai
Kuang Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95117738A priority Critical patent/TWI305043B/en
Application granted granted Critical
Publication of TWI305043B publication Critical patent/TWI305043B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

1305043 • 九、發明說明: 【發明所屬之技術領域】 本發明係有關於基於以相轉換為基礎之記憶材料(包括 ,以硫屬化物為基礎的材料與其他材料)之高密度記憶元 件,以及用以製造此等元件的方法。 【先前技術】 以相轉換為基礎之記憶材料係被廣泛地運用於讀寫光 • 碟片中。這些材料包括有至少兩種固態相,包括如一大部 分為非晶態之固態相,以及一大體上為結晶態之固態相。 雷射脈衝係用於讀寫光碟片中,以在二種相中切換,並讀 取此種材料於相轉換之後的光學性質。 如硫屬化物及類似材料之此等相轉換記憶材料,可藉由 施加其大小適用於積體電路中之電流,而致使晶相轉換。 一般而言非晶態之特徵係其電阻高於結晶態,此電阻值可 輕易測量得到而用以作為指示。這種特性則引發使用可程 式化電阻材料以形成非揮發性記憶體電路等關注,此電路 • 可用於隨機存取讀寫。 從非晶態轉變至結晶態一般係為一低電流步驟。從結晶 態轉變至非晶態(以下指稱為重置(reset))—般係為一高電 流步驟,其包括一短暫的高電流密度脈衝以融化或破壞結 晶結構,其後此相轉換材料會快速冷卻,抑制相轉換的過 程,使得至少部份相轉換結構得以維持在非晶態。理想狀 態下,致使相轉換材料從結晶態轉變至非晶態之重置電流 幅度應越低越好。欲降低重置所需的重置電流幅度,可藉 由減低在記憶體中的相轉換材料元件的尺寸、以及減少電 極與此相轉換材料之接觸面積而達成,因此可針對此相轉1305043 • IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to high-density memory elements based on phase-converted memory materials (including chalcogenide-based materials and other materials), and The method used to make these components. [Prior Art] Memory materials based on phase conversion are widely used in reading and writing light discs. These materials include at least two solid phases, including, for example, a solid phase that is largely amorphous, and a solid phase that is substantially crystalline. Laser pulses are used to read and write optical discs to switch between the two phases and to read the optical properties of the material after phase inversion. Such phase-converting memory materials, such as chalcogenides and the like, can be converted by crystal phase by applying a current suitable for the current in the integrated circuit. In general, the amorphous state is characterized by a higher electrical resistance than the crystalline state, and this resistance value can be easily measured and used as an indication. This feature raises concerns about the use of programmable resistive materials to form non-volatile memory circuits that can be used for random access. The transition from amorphous to crystalline is generally a low current step. Transition from a crystalline state to an amorphous state (hereinafter referred to as a reset) is generally a high current step that includes a brief high current density pulse to melt or destroy the crystalline structure, after which the phase transition material will Rapid cooling suppresses the phase transition process so that at least a portion of the phase inversion structure is maintained in an amorphous state. In an ideal state, the magnitude of the reset current that causes the phase change material to transition from a crystalline state to an amorphous state should be as low as possible. To reduce the magnitude of the reset current required for resetting, this can be achieved by reducing the size of the phase change material components in the memory and reducing the contact area of the electrodes with the phase change material, so that this can be reversed.

Chinese snec -MacrnnixP940?.ri^ final 5 1305043 換材料元件施加較小的絕對電流值而達成較高的電流密 度。 此領域發展的一種方法係致力於在一積體電路結構上 形成微小孔洞,並使用微量可程式化之電阻材料填充這些 微小孔洞。致力於此等微小孔洞的專利包括:於1997年 11月11曰公告之美國專利第5,687,112號’’Multibit Single Cell Memory Element Having Tapered Contact”、發明人為 Ovshinky;於1998年8月4日公告之美國專利第5,789,277 號”Method of Making Chalogenide [sic] Memory Device”、 發明人為Zahorik等;於2000年11月21日公告之美國專 利第 6,150,253 號 ’’Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same”、發明人為Doan等。 習知相轉換記憶體與結構會產生的一特殊問題在於其 所產生的散熱效應。一般而言,先前技術係教示如何使用 金屬電極於相轉換記憶元素的兩侧,而電極的尺寸係大約 等於相轉換構件。這些電極會做為散熱裝置,金屬的高導 熱性會快速地將熱量導離相轉換材料。由於相轉換現象係 為加熱的結果,因此散熱效應會導致需要更大的電流以產 生理想的相轉換現象。 此外,在以非常小的尺度製造這些裝置、以及欲滿足生 產大尺寸記憶裝置時所需求的嚴格製程變數時,則會遭遇 到問題。較佳地係提供一種記憶細胞(memory cell)結構其 包括有小尺寸以及低重置電流,以及用以製造此等結構之 方法其可滿足生產大尺寸記憶装置時的嚴格製程變數規 格。此外,較佳係提供一種製稃與結構其係相容於製造同 一積體電路之周邊電路。 1305043 【發明内容】 本發明描述了用以形成雙穩態電阻隨機存取記憶體之 結構與方法,其藉由在記憶細胞元件中介定一加熱區域, 而減少了從電極所散失的熱量。此加熱區域係界定於一包 括有可程式化電阻記憶材料之核心構件中,此可程式化電 阻記憶材料係接觸至一上可程式化電阻記憶構件與一下可 程式化電阻記憶構件。此下可程式化電阻記憶構件之側邊 係對準至一包括有鎢栓塞之底電極的側邊。此下可程式化 電阻構件與底電極係作用為一第一導體,使得從第一導體 所散失的熱量可減少。在核心構件中的可程式化電阻記憶 材料係接觸至一上可程式化電阻記憶材料。此上可程式化 電阻記憶材料與一頂電極係作用為一第二導體,使得從第 二導體所散失的熱量可減少。 在本發明第一目的中,係揭露一種記憶元件包括有:一 頂電極結構其垂直地與一底電極分離,該底電極包括一栓 塞;一上可程式化電阻記憶構件其具有一與該頂電極結構 電接觸之接觸表面;一下可程式化電阻記憶構件其具有一 與該底電極電接觸之接觸表面,該可程式化下電阻構件之 側邊係與該栓塞之側邊對準;以及一核心構件其包括一可 程式化電阻記憶材料,該可程式化電阻記憶材料係設置於 一侧壁子之内以界定一加熱區域、並設置於該上與下可程 式化電阻記憶構件之間,該核心構件係電接觸至該上與下 可程式化電阻構件。 在本發明之第二目的中,係揭露一種記憶元件其包括: 一第一電極其係垂直地與一第二電極分離,該第二電極包 括一栓塞;一上可程式化電阻記憶構件,其具有一電接觸Chinese snec -MacrnnixP940?.ri^ final 5 1305043 The material change component applies a small absolute current value to achieve a higher current density. One method developed in this field is to create tiny holes in an integrated circuit structure and fill these tiny holes with a trace of programmable resistance material. The patents dedicated to such microscopic holes include: 'Multibit Single Cell Memory Element Having Tapered Contact', published on November 11, 1997, 'Multibit Single Cell Memory Element Having Tapered Contact', inventor Ovshinky; USA announced on August 4, 1998 Patent No. 5,789,277, "Method of Making Chalogenide [sic] Memory Device", inventor Zahorik et al., US Patent No. 6,150,253, issued November 21, 2000, ''Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same", the inventor is Doan et al. A particular problem with conventional phase-converted memories and structures is the heat dissipation effect they produce. In general, the prior art teaches how to use metal electrodes on both sides of a phase change memory element, and the size of the electrodes is approximately equal to the phase change member. These electrodes act as heat sinks, and the high thermal conductivity of the metal quickly diverts heat away from the phase change material. Since the phase transition phenomenon is the result of heating, the heat dissipation effect causes a larger current to be required to produce an ideal phase transition phenomenon. In addition, problems arise when manufacturing these devices on very small scales and the stringent process variables required to produce large-size memory devices. Preferably, a memory cell structure is provided which includes a small size and a low reset current, and a method for fabricating such a structure which satisfies a strict process variable specification for producing a large-sized memory device. Moreover, it is preferred to provide a peripheral circuit that is compatible with the structure and that is compatible with the fabrication of the same integrated circuit. 1305043 SUMMARY OF THE INVENTION The present invention describes a structure and method for forming a bistable resistive random access memory that reduces the amount of heat dissipated from the electrode by mediating a heated region in the memory cell component. The heated region is defined in a core member including a programmable resistive memory material that contacts an upper programmable resistive memory member and a lower programmable resistive memory member. The sides of the programmable resistive memory member are aligned to the sides of the bottom electrode including the tungsten plug. The programmable resistance member and the bottom electrode act as a first conductor such that heat lost from the first conductor can be reduced. The programmable resistive memory material in the core component is in contact with an upper programmable resistive memory material. The upper programmable resistive memory material interacts with a top electrode as a second conductor such that heat lost from the second conductor can be reduced. In a first object of the present invention, a memory device includes: a top electrode structure vertically separated from a bottom electrode, the bottom electrode including a plug; and an upper programmable resistance memory member having a top and a top a contact surface electrically contacting the electrode structure; the lower programmable resistance memory member has a contact surface in electrical contact with the bottom electrode, the side of the programmable lower resistance member being aligned with a side of the plug; and The core component includes a programmable resistive memory material disposed within a sidewall to define a heating region and disposed between the upper and lower programmable resistive memory members. The core member is in electrical contact with the upper and lower programmable resistance members. In a second object of the present invention, a memory device includes: a first electrode vertically separated from a second electrode, the second electrode including a plug; and an upper programmable resistance memory member Have an electrical contact

Chinese soec.-MacronixP940202 final 7 1305043 至该第一電極之接觸表 — 其具有—電接 面^下可程式化電阻記憶構件, 電阻構件之側接觸表面’該下可程式化 設置:-=::=以電阻_料係 間’該-構件係電氣接觸至該 在’丨電側壁子或介厚窗φChinese soec.-MacronixP940202 final 7 1305043 Contact table to the first electrode - it has - electrical junction ^ can be programmed resistor memory member, the side contact surface of the resistance member ' can be programmed: -=:: = in the resistance _ system between the 'the member is electrically connected to the 'electrical wall or thick window φ

# ^ ^ ;,V,^ ^ t, ^ Γΰ LJU 即係為一加熱區域。在此加埶 3的周圍所造成的低散熱效果,減少了從 & 政失的熱量’此加孰區域 ; 其金屬位元線或鶴检塞, 頂電極(例如-全屬位亓m f化“此外,從一 下電阻纪憶材料)所散失的熱 ^ 。一可程式化電阻記憶材料係設置於頂電極之 、…、了」t鞋式化電阻記憶材料具有一低導熱性,因此 :散失的熱量。一可程式化電阻記憶材料 料且有」彻基之一頂部,由於此可程式化電阻記憶材 ,減少了從鎢栓塞所散失的熱量。此外, 鶴检塞之頂部的電阻記憶材料係自我對準至鎢栓 基的寬度。 jfe、陣列係包括複數個此等記憶元件與存取電晶 八係安排為高密度陣列的列與行。此存取電晶體在一 半導體基㈣包括源極與汲極區域,以及減至字元線的 閘極,此字元線係沿著記憶細胞的各列所設置。這些記憶 細胞係形成於位於積體電路之存取電晶體之上的二層之# ^ ^ ;,V,^ ^ t, ^ Γΰ LJU is a heating zone. In this case, the low heat dissipation effect caused by the twisting of the 埶3 reduces the heat from the & loss of the 'reinforced area'; its metal bit line or crane check plug, the top electrode (for example - all 属 mf "In addition, from the resistance of the material recall material" lost heat ^. A programmable resistance memory material is placed in the top electrode, ..., "t shoe-type resistance memory material has a low thermal conductivity, therefore: lost The heat. A programmable resistive memory material has a top portion of the base, which reduces the amount of heat lost from the tungsten plug due to the programmable resistive memory. In addition, the resistive memory material at the top of the crane plug self-aligns to the width of the tungsten plug. The jfe, array includes a plurality of such memory elements and access cells, arranged in columns and rows of a high density array. The access transistor is included in the semiconductor base (4) including the source and drain regions, and the gate reduced to the word line, the word line being disposed along the columns of the memory cells. These memory cell lines are formed on the second layer above the access transistor of the integrated circuit.

Chinese SDec.-MacronixP940202 final 8 !3〇5〇43 件之S=從對應存取電晶體之汲極延伸至在斜庵 :卜成,且具有從對應記;元::於記憶細胞之上 在:歹…㈣記憶細胞之腳位的位電極、延伸至 至 極線 7b:中,二列記憶細胞係共用點, 線極接點、且大致上平行沿著陣列中字元線的Chinese SDec.-MacronixP940202 final 8 !3〇5〇43 S= extends from the base of the corresponding access transistor to the slant: 成, and has the corresponding record; element:: above the memory cell :歹...(4) The electrode of the memory cell's foot, extending to the epipolar line 7b: in the middle, the two columns of memory cell lines share the point, the line is connected, and is substantially parallel along the word line in the array.

^佳地,本發明減少了熱量散失 i的記憶構件減少散失從核心構件之二加可程 生的熱置。本發明亦減低了程式化 旦力‘』域所產 以下係詳細說明本發明之結構、1 :節目的並非在於定義本發明*本、 所定義。舉凡本發明之實_ 專利範固 透過下列說对請專·所解等將可 【實施方式】 本發明之具體實施例與方法的敘 解本發明所揭露之特定實施 :疋士發明之叙嘴’且本發明之實施可利用其他特徵、元 牛、方法與實施«而進行。在各實補巾之相似元 以相似的數字指定之。 卞你 請參照第1 ®,其係顯示一記憶陣列1〇〇之示意圖其 係依照本發明之方法所實施。在圖!中,共同源極線H 字兀線123與124係大致上沿著γ轴平行而排列。位元線 141與142係大致上沿著X軸平行排列。因此,在方塊145 中的一 Υ解碼器與一字元線驅動器,係耦接至字元線 123,124。在方塊146中的-X解碼器與—組感測放大器,Preferably, the memory member of the present invention that reduces heat dissipation reduces the amount of heat that can be dissipated from the core component. The present invention also reduces the structure of the program. The following is a detailed description of the structure of the present invention. The program is not defined by the definition of the present invention.实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施'And the implementation of the invention can be carried out using other features, the bulls, the method and the implementation«. Similar elements in each patch are specified by similar numbers.卞 Refer to Section 1 for a schematic diagram of a memory array, which is implemented in accordance with the method of the present invention. In the picture! The common source line H-shaped turns 123 and 124 are arranged substantially parallel to the γ-axis. The bit lines 141 and 142 are arranged substantially in parallel along the X axis. Thus, a Υ decoder and a word line driver in block 145 are coupled to word lines 123, 124. The -X decoder and the set of sense amplifiers in block 146,

Chinese soec.-MaCT〇nixP940202 final 9 1305043 係耦接至位元線141與142。共同源極線128係耦接至存 取電晶體150,151,152,153的源極終端。存取電晶體15〇子Chinese soec.-MaCT〇nixP940202 final 9 1305043 is coupled to bit lines 141 and 142. A common source line 128 is coupled to the source terminals of the access transistors 150, 151, 152, 153. Access transistor 15 dice

閘極係耦接至字元線丨23。存取電晶體151之閘極係耦^ 至子元線124。存取電晶體152之閘極係耦接至字元線 123。存取電晶體153之閘極係耦接至字元線124。存取電 晶體150之汲極係耦接至記憶細胞135之底電極構件 的侧壁腳位,此記憶細胞具有頂電極構件134。頂電極構 件134係耦接至位元線141。相似地,存取電晶體1 $ j之 汲極係耦接至記憶細胞之底電極構件133的側壁腳位,此 記憶細胞也具有頂電極構件137。此頂電極構件係耦接至 位元線141。存取電晶體152與153也是耦接至相對應的 側壁腳位記憶細胞的位元線142。從圖中可見,共同源極 線128係被二列記憶細胞所共用,在此圖中一列係排列於 Y軸方向。在其他實施例中,這些存取電晶體可被二極體、 或其他結構所取代,這些結構可控制電流以在記憶陣列 選定用以讀取與寫入資料。 " 如,2圖所不,其根據本發明一實施例,顯示一積體電 路的簡化方塊圖200 〇此積體電路275係在一半導體基板 上包括一記憶陣列,其係利用側壁活性腳位雙穩離 ,存取記憶細胞而實施。一列解碼器261係織^數個 予το線262’字元線係沿著記憶陣列26〇中 :行解碼請係輕接至複數個位元線 J線又二: ^己憶陣列細中的各行而設置,以從 情= 化資Γ陣列26°中的位址係經由-= 而獒供至一仃解碼器263與一 =中的感測放大器與資料輸人結構,係經由—資料匯产 267而耦接至腳位解瑪器263。資料係從積體電路^The gate is coupled to the word line 丨23. The gate of the access transistor 151 is coupled to the sub-line 124. The gate of the access transistor 152 is coupled to the word line 123. The gate of the access transistor 153 is coupled to the word line 124. The drain of the access transistor 150 is coupled to the sidewall of the bottom electrode member of the memory cell 135, which has a top electrode member 134. The top electrode member 134 is coupled to the bit line 141. Similarly, the drain of the access transistor 1 $ j is coupled to the sidewall of the bottom electrode member 133 of the memory cell, which also has the top electrode member 137. The top electrode member is coupled to the bit line 141. Access transistors 152 and 153 are also coupled to bit line 142 of the corresponding sidewall memory cells. As can be seen from the figure, the common source line 128 is shared by the two columns of memory cells, and in this figure, one column is arranged in the Y-axis direction. In other embodiments, these access transistors can be replaced by diodes, or other structures that control the current to be selected for reading and writing data in the memory array. " As shown in Fig. 2, in accordance with an embodiment of the invention, a simplified block diagram of an integrated circuit is shown. The integrated circuit 275 includes a memory array on a semiconductor substrate that utilizes sidewall active legs. The bistable separation is performed by accessing memory cells. A column of decoders 261 is woven into a number of το lines 262' word line lines along the memory array 26 :: line decoding, please lightly connect to a plurality of bit lines J line and two: ^ Recall the array fine Each line is set to pass from the address in the 26° frame of the = 化 经由 经由 经由 - - - - - - 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 The product 267 is coupled to the foot damper 263. Data from the integrated circuit ^

Chinese spec.-MacronixP940202 final 10 1305043 的源輸入/輸出埠、或積體電路内部與外部之1他資料來 ί:=經由資料輪入線271以將資料傳輸至方塊施中的 賀厂〕入結構。在所繪示的實施例中,其他電路274係包 括於此積體電路上,例如 'rc ffl a ώΛ 吩工例如—泛用目的處理器或特定目的應 用電、或可提供單晶片系統功能之模(组合其係由薄膜 保險絲雙穩態電阻隨機存取記憶細胞陣列所支援。資料係 從方塊266中的感測放大器、經由資料輸出線272、'而傳 輸至積體電路275之輸入/輸出埠或其他位於積體電路275 内部或外部之資料目的地。 在本實施例中,使用偏壓安排狀態器269的一控制器, 係控制所施加的偏壓供應電壓268,例如讀取、程式化、 抹除、抹除確認、與程式化確認電壓。此控制器可使用在 此領域中所週知的特定目的邏輯電路而實施。在一替代實 施例中,此控制器包括一泛用目的處理器,此泛用目的處 理器可安排於同一積體電路上’而此積體電路係執行一電 腦程式以控制此元件的操作。在另一實施例中,可使用特 定目的邏輯電路與泛用目的處理器的結合,以實施此控制 器。 如第3圖所繪示’其係根據本發明一第一實施例,而顯 示一具有I型可程式化電阻記憶材料之雙穩態電阻隨機存 取記憶體300的剔面圖。此雙穩態電阻隨機存取記憶體3〇〇 係形成於一半導體基板310上。存取電晶體之包括在p型 基板310内作用為共同源極區域之一 η型終端312、與作 用為汲極區域之η型終端314與316。多晶石夕字元(閘極) 線320,322係形成了存取電晶體的閘極。—層間介電層330 係包括了介電瑱充330a,330b,330c,其中介電填充330b係 形成於多晶石夕字元線320,322之上。此層係經圖案化,並Chinese spec.-MacronixP940202 final 10 1305043 source input / output 埠, or the internal and external data of the integrated circuit to ί: = via the data wheel 271 to transfer data to the box into the structure. In the illustrated embodiment, other circuitry 274 is included on the integrated circuitry, such as 'rc ffl a 吩 guzzled, for example, a general purpose processor or a special purpose application, or can provide a single wafer system function. The mode is combined by a thin film fuse bistable resist random access memory cell array. The data is transmitted from the sense amplifier in block 266 to the integrated circuit 275 via the data output line 272, '埠 or other data destination located inside or outside of the integrated circuit 275. In the present embodiment, a controller of the biasing arrangement state 269 is used to control the applied bias supply voltage 268, such as reading, programming. The voltage is erased, erased, erased, and stylized. The controller can be implemented using a specific purpose logic circuit well known in the art. In an alternate embodiment, the controller includes a general purpose The processor, the general purpose processor can be arranged on the same integrated circuit' and the integrated circuit executes a computer program to control the operation of the component. In another embodiment, The controller is implemented by combining a specific purpose logic circuit with a general purpose processor. As shown in FIG. 3, it shows a type I programmable resistance memory according to a first embodiment of the present invention. A bistable resistive random access memory 300 of the material is formed on a semiconductor substrate 310. The access transistor is included in the p-type substrate 310. The inner action is an n-type terminal 312 of one of the common source regions and n-type terminals 314 and 316 acting as a drain region. The polycrystalline stone (gate) lines 320, 322 form a gate for accessing the transistor. The interlayer dielectric layer 330 includes dielectric buffers 330a, 330b, 330c, wherein the dielectric fill 330b is formed over the polycrystalline stone lines 320, 322. This layer is patterned and

Chinese snec.*MacronixP940202 final 11 1305043 形成導電結構,包括一共同源極線與栓塞結構326,328。此 導電材料可為鶴或其他適合做為栓塞與導線結構之材料與 複合材料。共同源極線係接觸至源極區域,並沿著陣列中 的一列而作用為一共同源極線。栓塞結構326,328係分別 接觸至汲極終端314與316。栓塞結構326係在頂部被蝕 刻’並以一可程式化電阻記憶材料340所填充。此可程式 化電阻記憶材料340之侧邊係對準至栓塞結構326之侧 邊。检基結構328係在其頂部被姓刻,並以一可程式化電 阻記憶材料342填充。此可程式化電阻記憶材料342的側 邊係對準至栓塞結構328的侧邊。 一介電填充層350係位於介電填充33〇a、電極構件 340、介電填充330b、電極構件342、與介電填充330c之 上。在某些實施例中,此介電填充層包括了 一相當優良的 熱絕緣體與電絕緣體’提供此I型結構中之加熱區域365 熱與電的絕緣效果。此介電填充層35〇係被蝕刻、並以介 電側壁子360,362所填充。介電側壁子36〇係位於一第一 介電填充區段350a與一第二介電填充區段35〇b之間,而 • 介電侧壁子362則是位於第二介電填充區段350b與第三介 電填充區段350c之間。位於侧壁子36〇,362中的可程式化 電阻記憶材料370係接觸至可程式化電阻記憶材料 340,342。-金屬位元線38G係位於可程式化電㈣憶材料 37〇之上。雙穩態電阻隨機存取記憶體3〇〇具有一加熱區 域365,其係位於介電侧壁子36〇之開口内。雙穩態電阻 隨機存取記憶體300之!型結構,係指稱至可程式化電阻 記憶材料370的成分(上可程式化電極構件)、一包括有可 程式化電阻記憶材料之加熱區域365、以及可程式化電阻 材料(下可程式化電阻記憶構件)34〇dEnglish snec.*Macronix P940202 final 11 1305043 Forms a conductive structure comprising a common source line and plug structures 326, 328. The electrically conductive material can be a crane or other material and composite material suitable for use as a plug and wire structure. The common source line contacts the source region and acts as a common source line along a column in the array. The plug structures 326, 328 are in contact with the drain terminals 314 and 316, respectively. The plug structure 326 is etched at the top' and is filled with a programmable resistive memory material 340. The sides of the programmable resistive memory material 340 are aligned to the sides of the plug structure 326. The base structure 328 is engraved on top of it and filled with a programmable resistive memory material 342. The sides of the programmable resistive memory material 342 are aligned to the sides of the plug structure 328. A dielectric fill layer 350 is disposed over the dielectric fill 33A, the electrode member 340, the dielectric fill 330b, the electrode member 342, and the dielectric fill 330c. In some embodiments, the dielectric fill layer includes a relatively good thermal insulator and electrical insulator to provide a thermal and electrical insulating effect on the heated region 365 of the I-type structure. The dielectric fill layer 35 is etched and filled with dielectric sidewalls 360, 362. The dielectric sidewalls 36 are located between a first dielectric fill section 350a and a second dielectric fill section 35A, and the dielectric sidewalls 362 are located in the second dielectric fill section. Between 350b and the third dielectric fill section 350c. The programmable resistive memory material 370 located in the sidewalls 36, 362 is in contact with the programmable resistive memory material 340, 342. - The metal bit line 38G is located above the programmable electric (four) memory material 37〇. The bistable resistor random access memory 3 has a heating region 365 which is located in the opening of the dielectric sidewall 36. Bistable Resistor Random Access Memory 300! The structure is referred to as a component of the programmable resistive memory material 370 (upper programmable electrode member), a heating region 365 including a programmable resistive memory material, and a programmable resistive material (lower programmable resistor) Memory component) 34〇d

Chinese soec.-MacronuP940202 final 12 1305043 * 用以製造雙穩態電阻隨機存取記憶體300的方法,係參 照第4-11圖而詳述之。第4圖係根據本發明第一實施例, 繪示用以製造雙穩態電阻隨機存取記憶體之方法的第一步 驟,其形成了一簡化電晶體結構4〇〇。此電晶體結構4〇〇 係包括作用為共同源極區域之η型終端312、以及在p型 基板310之上作用為汲择區域之η型終端314與316。雖 然所示的電晶體結構400係為—共同源極結構,本發明可 使用於其他類型之電晶體設計。多晶矽閘極線32〇,322形 成了存取電晶體的閘極。層間介電質33〇包括介電填充 330a,330b,330c,其中介電填充330b係形成於多晶矽字元 線320,322之上。某些適合用在層間介電質33〇的物質包 括磷硼矽玻璃(BPSG)氧化物與電漿增強正矽酸乙酯 (PETEOS)氧化物。此層係被圖案化,並形成包括栓塞結 構326與328之導電結構。此導電材料可與栓塞或其他適 合用做為栓塞與導線結構之材料及複合物共同使用。栓塞 結構326,328係分別接觸至沒極終端314,316。 在第5圖中,係根據本發明之第一實施例,綠示用以製 φ 造雙穩態電阻隨機存取記憶體500之方法的第二步驟,包 括鑛#刻、形成一電阻記憶材料、以及研磨。栓塞的 一頂部係被直接蝕刻以移除鎢而從栓塞326生成一接觸孔 510,#刻的深寬比大約為1:1。相似地,栓塞328的頂部 係被直接蝕刻以移除鎢而從栓塞328生成一接觸孔512, 蝕刻的深寬比大約為1:1。層間介電層33〇的選擇性係夠 高,而可保護層間介電層33〇不受蝕刻損傷。適合鎢蝕刻 的化學物質係為六氟化硫(SF6)。鎢蝕刻的深度選擇係相對 於一接觸孔的尺寸。在一實施例中,以一 〇2μπ1的接觸孔 而言’栓塞326的鎢蝕刻深度係約2〇〇nm。English soec.-Macronu P940202 final 12 1305043 * The method for fabricating the bistable resistive random access memory 300 is described in detail with reference to Figures 4-11. Figure 4 is a first step of a method for fabricating a bistable resistive random access memory according to a first embodiment of the present invention, which forms a simplified transistor structure. The transistor structure 4 includes an n-type terminal 312 functioning as a common source region, and n-type terminals 314 and 316 acting as a selection region over the p-type substrate 310. Although the illustrated crystal structure 400 is a common source structure, the present invention can be used in other types of transistor designs. The polysilicon gate line 32, 322 forms the gate of the access transistor. The interlayer dielectric 33 includes dielectric fills 330a, 330b, 330c, wherein a dielectric fill 330b is formed over the polysilicon lines 320, 322. Some materials suitable for use in the interlaminar dielectric 33 Å include a boron borosilicate glass (BPSG) oxide and a plasma enhanced ethyl phthalate (PETEOS) oxide. This layer is patterned and forms a conductive structure comprising embolic structures 326 and 328. The electrically conductive material can be used in conjunction with embolization or other materials and composites suitable for use as a plug and wire structure. The plug structures 326, 328 are in contact with the poleless terminals 314, 316, respectively. In Fig. 5, in accordance with a first embodiment of the present invention, a second step of a method for fabricating a bistable resistive random access memory 500 is shown in green, including depositing a resistive memory material. And grinding. A top portion of the plug is directly etched to remove tungsten to create a contact hole 510 from the plug 326, which has an aspect ratio of about 1:1. Similarly, the top of plug 328 is directly etched to remove tungsten and a contact hole 512 is created from plug 328 with an aspect ratio of about 1:1. The selectivity of the interlayer dielectric layer 33 is sufficiently high to protect the interlayer dielectric layer 33 from etching damage. A chemical suitable for tungsten etching is sulfur hexafluoride (SF6). The depth of tungsten etching is selected relative to the size of a contact hole. In one embodiment, the tungsten etch depth of the plug 326 is about 2 〇〇 nm with a contact hole of 〇 2 μπ.

Chinese SDec..MacrouixP940202 final 13 1305043 一可程式化電阻記憶材料34〇係沈積進入栓塞326之接 觸孔510内’且一可程式化電阻記憶材料342係沈積進入 检,328之接觸孔512内。可程式化電阻記憶材料34〇,342 之每一上表面’係被研磨以移除過量而可能從接觸孔 510,512中露出的可程式化電阻記憶材料34〇,342。研磨製 程的實施例包括化學機械研磨製程、接著則以毛刷清潔與 液體及/或軋體清潔程序,如此領域中所週知。A SD485. Each upper surface of the programmable resistive memory material 34, 342 is ground to remove excess programmable memory material 34, 342 that may be exposed from contact holes 510, 512. Examples of the polishing process include chemical mechanical polishing processes followed by brush cleaning and liquid and/or rolling body cleaning procedures, as is well known in the art.

在第6圖係一剖面圖6〇〇,其繪示用以製造雙穩態電阻 隨機存取記憶體之第三步驟,包括形成一介電層35〇、接 著進行介電側壁子蝕刻。此介電層35〇係沈積於層間介電 質330與可程式化電阻記憶材料34〇,342之上。此介電層 350的性質之一,在於其低導熱性。介電層孔洞的蝕刻會 延伸至接觸孔,其臨界尺寸係等於或小於接觸孔的尺寸。 介電侧壁子360,362亦具有低導熱性的特性。利用化學氣 相沈積製程所進行的一順形介電沈積作用,係用以製造介 電侧壁子360,362,其厚度係小於接觸孔之一半。介電侧壁 子360,362係利用一具有以氟為基礎之化合物而進行乾式 餘刻。介電侧壁子360,362的飿刻會在其深度達到可程式 化電阻記憶材料340,342之上表面時停止。 ^ 介電填充層350可包括二氧化矽、氮氧化矽、氮化矽、 氧化鋁、其他低K值(低介電常數)之介電物、或一氧化 物-氮化物-氧化物(ΟΝΟ)或矽-氧化物_氮化物_氧化物 (SONO )多層結構。「低Κ值」係指低介電常數。或者, 填充物可包括一電絕緣體其包括有一個以上選自下列群組 之元素:♦、鈦”、氮、氧、與碳。在介電層35〇 包括二氧化石夕的元件中’此填充物之導熱性係低於二氧化 矽之導熱性0.014 J/cm*degK*sec。代表性的絕熱材料包括 enpr fin»1 14 1305043 由矽、碳、氧、氟、與氫所級成之複合材料。可使用於熱 絕緣填充層之熱絕緣材料的純例,包括二氧化;g夕、、 聚亞醯胺、聚醯胺、以及氟碳聚合物。其他可用於熱絕緣 填充層中的材料範例’包括氟化之二氧化矽、石夕氧烧 (silsesquioxane)、聚亞 ^香醚(p〇iyaryiene 灿灯)、聚對二 甲苯(parylene)、含氟聚合物、含氟非晶碳、鑽石類碳、多 孔性二乳化石夕、中孔性一氧化石夕、多孔性石夕氧燒、多孔性 聚亞醯胺、以及多孔性聚亞芳香醚。單層或複合層均可提 供熱絕緣與電絕緣效果。 ® 第7圖一剖面圖700,其繪示用以製造雙穩態電阻隨機 存取記憶體之方法的第四步驟,包括沈積第二電阻記憶材 料370與金屬位元線380,接著進行位元線的圖案化。第 二電阻記憶材料370係沈積於介電侧壁子之内、以及在第 一介電填充區段350a、第二介電填充區段35〇b、與第三介 電填充區段350c之上。金屬位元線38〇係位於可程式化電 阻記憶材料370之上。此金屬位元線380可與一導電材料 共同使用’包括氮化鈦、氮化鈕、氮化鈦/鋁銅、氮化鈕/ 銅、以及其他類型之類似導電材料。接著,進行位元線的 圖案化,位元線的方向係與閘極、源極、與汲極的方向垂 直。位元線的侧形成了 -直線,其包括了由上電阻記憶 材料谓與金屬位元線380所形成之薄膜疊層。金屬位元 線38〇與上電阻記憶材料37〇係併稱為一上電極。或者, 金屬位元線380係稱為上電極,其係位於上可程式化電阻 材料370 ^上其中上可程式化電阻記憶材料370減少了 散失至金屬位元線380之熱量。本發明的-個特徵在於, 上電極’亦即金屬位元線)並非經過圖案化以定義一特定 記憶細胞。在-圖案化的上電極中,金屬位元線係在一獨In Fig. 6, a cross-sectional view of Fig. 6A illustrates a third step for fabricating a bistable resistive random access memory, including forming a dielectric layer 35, followed by dielectric sidewall etch. The dielectric layer 35 is deposited on the interlayer dielectric 330 and the programmable resistive memory material 34, 342. One of the properties of this dielectric layer 350 is its low thermal conductivity. The etching of the dielectric layer holes extends to the contact holes, the critical dimension of which is equal to or smaller than the size of the contact holes. Dielectric sidewalls 360, 362 also have low thermal conductivity properties. A conformal dielectric deposition process using a chemical vapor deposition process is used to fabricate dielectric sidewalls 360, 362 having a thickness that is less than one half of the contact holes. The dielectric sidewalls 360, 362 are dry-engraved using a compound having a fluorine-based compound. The engraving of the dielectric sidewalls 360, 362 will stop when the depth reaches the upper surface of the programmable resistive memory material 340, 342. ^ Dielectric fill layer 350 may include hafnium oxide, hafnium oxynitride, tantalum nitride, aluminum oxide, other low K (low dielectric constant) dielectric, or monooxide-nitride-oxide (ΟΝΟ Or a bismuth-oxide-nitride-oxide (SONO) multilayer structure. "Low Κ value" means a low dielectric constant. Alternatively, the filler may comprise an electrical insulator comprising one or more elements selected from the group consisting of: ♦, titanium", nitrogen, oxygen, and carbon. In the dielectric layer 35, including elements of the dioxide eve, The thermal conductivity of the filler is lower than that of cerium oxide by 0.014 J/cm*degK*sec. Representative thermal insulation materials include enpr fin»1 14 1305043, which is composed of ruthenium, carbon, oxygen, fluorine, and hydrogen. Composite material. A pure example of a thermal insulating material that can be used for a thermally insulating filling layer, including oxidizing, polythene, polyamidamine, and fluorocarbon polymers. Others can be used in thermal insulating filling layers. Examples of materials include fluorinated cerium oxide, silsesquioxane, polyfluorene ether (p〇iyaryiene lamp), parylene, fluoropolymer, fluorine-containing amorphous carbon , diamond-like carbon, porous diacetate, mesoporous nitric oxide, porous austenite, porous polyamidamine, and porous polyarylene ether. Single or composite layers are available Thermal insulation and electrical insulation effects. ® Figure 7 - Sectional view 700, which is shown A fourth step of the method of fabricating a bistable resistive random access memory includes depositing a second resistive memory material 370 and a metal bit line 380, followed by patterning of the bit lines. The second resistive memory material 370 is deposited. Within the dielectric sidewalls, and over the first dielectric fill section 350a, the second dielectric fill section 35〇b, and the third dielectric fill section 350c. The metal bit line 38 Located on the programmable resistive memory material 370. The metal bit line 380 can be used with a conductive material 'including titanium nitride, nitride button, titanium nitride/aluminum copper, nitride button/copper, and other types. Similar to the conductive material. Then, the bit line is patterned, and the direction of the bit line is perpendicular to the direction of the gate, the source, and the drain. The side of the bit line forms a straight line, which includes the upper line. The resistive memory material is a thin film laminated with a metal bit line 380. The metal bit line 38 is connected to the upper resistive memory material 37 and is referred to as an upper electrode. Alternatively, the metal bit line 380 is referred to as an upper electrode. , which is located on the upper programmable resistance material 370 ^ The upper middle programmable resistive memory material 370 reduces the amount of heat lost to the metal bit line 380. A feature of the invention is that the upper electrode 'i.e., the metal bit line' is not patterned to define a particular memory cell. In the patterned upper electrode, the metal bit line is in a single

Chinese soec.-MacronixP9402n2 final 15 1305043 憶ίΐ的兩側進行蝕刻,以生成-柱狀結構。在本發 ’金屬位το線38G延伸橫越整條位元線(例如複數個 雜細胞),使得金屬位元、線係做為—頂電極而被多個 記憶細胞所共用。 第8圖係綠示在電阻記憶材料_之内的一加熱區域。 "電側壁子360定義了 一相對微小的接觸孔,其與其下沈 積在接觸栓塞326之頂部内的電阻記憶材料34〇、與其上 所沈積的電阻記憶材料370相較之下,沈積了較少量的電 鲁阻記憶材料。「加熱區域」365係指在介電侧壁子36〇内的 一微小區域,其包括了可以發生相轉換之可程式化電阻記 憶材料。在加熱區域365内的電流密度,係於設置(SET) 與重置(RESET )程式化時達到最高。電阻記憶材料 370,340,342、介電側壁子360,362、與介電層350均具有低 導熱性。在一實施例中,電阻記憶材料370,34〇,342所具有 之導熱性質係低於介電側壁子360,362之導熱性質。介電 填充子360,362之導熱性質係等於介電層350。從加熱區域 365所產生的熱量並無法大幅散失,因為具有電阻記憶材 φ 料的加熱區域365係被電阻記憶材料、介電側壁子360、 與介電層350所包圍。因此,從加熱區域所散失的熱量可 以大幅減少。此外,加熱區域365内的小範圍電阻記惊材 料也具有低導熱性質、可減少從電阻記憶材料37〇、電 侧壁子360與金屬位元線380處所散失的熱量,係有助於 減少SET與RESET程式化電流。 電阻記憶材料370可從多種材料中挑選,包括但不限 於’硫屬化物材料、巨磁阻材料、雙元素化合物、以及聚 合物材料。電阻記憶材料340,342係與一底電極(亦即接 觸检塞326,328 )有關。電阻s己憶材料34〇與接觸栓塞326 final 16 1305043 為一底電極。電阻記憶材料370係與-頂電極(亦 =系作用為-頂電極。多種電-記憶賴其以 j使用’而不至於背離本發明之精神。在—實施例中, 此電^記憶材料340,342係與電阻記憶材料37〇相同 =-實:例中’電阻記憶材料37〇係選自一硫屬化物^ :+::電阻記憶材料34〇,342則係選自一巨磁 , 雙兀素化合物、或一聚合物材料。 # = 施㈣包括以相轉換為基礎之記憶材料 屬化物為基礎之材料與其他材料。炉 了列四元素之任一者:氧(〇)、硫⑴、碼(C m形成元素週期表上第νι族的部分。硫屬化 硫屬元素與一更為正電性之元素或自由基結合 屬包!!將硫屬化合物與其他物質如過 3週3第六欄的元素,例如錯(Ge)以及錫(sn選)自 i銻匕合物合金包括下列元素中-個以上的複合 礎之記憶材料已經被描述於技術文件中,包括 銦ί//錄、銦/録、銦/碼、録/碲、鍺/碲、鍺/錄/碲 、銻t鎵/碼/碲、錫/銻/碲、錮/録/錯、銀/鋼 ,/錄/碲、鍺/録/石西/碌、以及碲/鍺/録/硫。在鍺/錄二2 =中」可以嘗試大範園的合金成分。此成分可以下歹: 斂式表不· TeaGebSb⑽七,。一位研究員描述了最有用的人 金係為’在沈積材料中所包含之平均碎漠度係遠低^ 70%,典型地係低於60%,並在一般型態合金中的碲含量 範圍從最低23%至最高58%,且最佳係介於^。/❶至%%之Chinese soec.-MacronixP9402n2 final 15 1305043 The sides of the memory are etched to create a columnar structure. In the present invention, the metal position το line 38G extends across the entire bit line (e.g., a plurality of cells) so that the metal bit and the line are used as the top electrode and are shared by a plurality of memory cells. Figure 8 is a green area shown in the resistive memory material. "Electrical sidewalls 360 define a relatively small contact hole that is deposited with the resistive memory material 34 下 deposited on top of the contact plug 326, compared to the resistive memory material 370 deposited thereon. A small amount of electrical resistance to memory materials. "Heating area" 365 refers to a tiny area within dielectric sidewalls 36A that includes a programmable resistance memory material that can undergo phase switching. The current density in the heating zone 365 is maximized when the settings (SET) and reset (RESET) are programmed. The resistive memory materials 370, 340, 342, the dielectric sidewalls 360, 362, and the dielectric layer 350 both have low thermal conductivity. In one embodiment, the resistive memory materials 370, 34A, 342 have a lower thermal conductivity than the dielectric sidewalls 360, 362. The thermal conductivity of the dielectric fillers 360, 362 is equal to the dielectric layer 350. The heat generated from the heating zone 365 is not dissipated significantly because the heating zone 365 having the resistive memory material φ is surrounded by the resistive memory material, the dielectric sidewalls 360, and the dielectric layer 350. Therefore, the amount of heat lost from the heated area can be greatly reduced. In addition, the small-range resistive material in the heating region 365 also has low thermal conductivity properties, which can reduce heat loss from the resistive memory material 37, the electrical sidewalls 360, and the metal bit line 380, which helps to reduce the SET. Stylize current with RESET. The resistive memory material 370 can be selected from a variety of materials including, but not limited to, 'chalcogenide materials, giant magnetoresistive materials, two-element compounds, and polymeric materials. Resistive memory material 340, 342 is associated with a bottom electrode (i.e., contact plugs 326, 328). Resistor s ignoring material 34 〇 and contact plug 326 final 16 1305043 is a bottom electrode. The resistive memory material 370 is connected to the top electrode (also as a top electrode. A plurality of electrical-memory functions are used in the sense of j) without departing from the spirit of the invention. In the embodiment, the electrical memory material 340, 342 It is the same as the resistive memory material 37〇=-real: In the example, the 'resistive memory material 37〇 is selected from a chalcogenide ^ :+:: the resistive memory material 34〇, 342 is selected from a giant magnet, diterpenoid Compound, or a polymer material. # = (4) Includes materials based on phase-converted memory material and other materials. The furnace has one of four elements: oxygen (〇), sulfur (1), code. (C m forms part of the νι group on the periodic table. The chalcogenized chalcogen is combined with a more positive element or radical!! The chalcogen compound and other substances such as 3 weeks 3 Six columns of elements, such as the wrong (Ge) and tin (sn selected) from the i-chelate alloy, including more than one of the following elements, have been described in the technical documentation, including indium ί// , indium / recording, indium / code, recording / 碲, 锗 / 碲, 锗 / recorded / 碲, 锑 t gallium / code / 碲, tin / 锑 /碲, 锢 / recorded / wrong, silver / steel, / recorded / 碲, 锗 / recorded / Shixi / Lu, and 碲 / 锗 / recorded / sulphur. In 锗 / recorded 2 2 = in the middle can try the big Fan Park Alloy composition. This component can be squatted: Convergence table does not · TeaGebSb (10) VII. One researcher described the most useful human gold system as 'the average fragmentation degree contained in the deposited material is far lower than 70%, typical The soil system is less than 60%, and the cerium content in the general type alloy ranges from the lowest 23% to the highest 58%, and the optimum system is between ^./❶ to %%

Chinese soec.-Macr〇DixP940202 final 17 13〇5〇43 7含量。鍺的濃度係高於約5%,且其在材料中的平均範圍 系從最低8%至最南30% ’ 一般係低於50%。最佳地,錯的 ’農度範圍係介於8%至40%。在此成分中所剩下的主要成分 則為銻。上述百分比係為原子百分比,其為所有組成元素 力口總為100%。( 〇vshinky ‘ 112專利,欄10〜11 )由另一研 究者所評估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及Chinese soec.-Macr〇DixP940202 final 17 13〇5〇43 7 content. The concentration of cerium is above about 5% and its average range in the material ranges from a minimum of 8% to a maximum of 30% 'typically less than 50%. Optimally, the wrong 'farm range' is between 8% and 40%. The main component remaining in this ingredient is 锑. The above percentages are atomic percentages, which are 100% of all constituent elements. (〇vshinky ‘112 patent, columns 10-11) Special alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4, and

GeSb4Te7。( Noboru Yamada,"Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording55, • ν·37(?9, pp. 28_37(1997))更一般地,過渡金屬如鉻 (Cr)、鐵(pe)、鎳(Ni)、鈮(Nb)、鈀(pd)、鉑(pt)、以及上述 之混合物或合金’可與鍺/録/碲結合以形成一相轉換合金其 包括有可程式化的電阻性質。可使用的記憶材料的特殊範 例,係如Ovshinsky ‘112專利中欄11-13所述,其範例在 此係列入參考。 相變化材料能在此細胞主動通道區域内依其位置順序 於材料為一般非晶狀態之第一結構狀態與為一般結晶固體 狀態之第二結構狀態之間切換。此合金至少為雙穩態的。 φ 此詞彙「非晶」係用以指稱一相對較無次序之結構,其較 之一單晶更無次序性,而帶有可偵測之特徵如較之結晶態 更高之電阻值。此詞彙「結晶態」係用以指稱一相對較有 次序之結構,其較之非晶態更有次序,因此包括有可偵測 的特徵例如比非晶態更低的電阻值。典型地,相轉換材料 可電切換至完全結晶態與完全非晶態之間所有可偵測的不 同狀‘態°其他受到非晶態與結晶態之改變而影響之材料特 中包括’原子次序、自由電子密度、以及活化能。此材料 可切換成為不同的固態、或可切換成為由兩種以上固態所 形成之混合物,提供從非晶態至結晶態之間的灰階部分。GeSb4Te7. (Noboru Yamada, "Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording55, • ν·37 (?9, pp. 28_37 (1997)) More generally, transition metals such as chromium ( Cr), iron (pe), nickel (Ni), niobium (Nb), palladium (pd), platinum (pt), and mixtures or alloys of the above may be combined with niobium/recording/ruthenium to form a phase-converting alloy. Included are programmable resistance properties. A special example of memory materials that can be used is described in columns 11-13 of the Ovshinsky '112 patent, examples of which are incorporated herein by reference. Phase change materials can be used in this cellular active channel region. The interior is switched between a first structural state in which the material is in a generally amorphous state and a second structural state in a generally crystalline solid state. The alloy is at least bistable. φ The term "amorphous" is used. By referring to a relatively inhomogeneous structure, one of the single crystals is more out of order, and has a detectable characteristic such as a higher resistance value than the crystalline state. The term "crystalline state" is used to refer to a relatively orderly structure that is more ordered than amorphous, so the package There are detectable features such as lower resistance values than amorphous. Typically, the phase change material can be electrically switched to all detectable different states between the fully crystalline state and the completely amorphous state. Materials affected by changes in crystalline and crystalline states include 'atomic order, free electron density, and activation energy. This material can be switched to a different solid state, or can be switched into a mixture of two or more solids. The gray-scale portion from the amorphous state to the crystalline state.

Chinese snec -MacronixP〇4n2n2 final 18 1305043 此材料中的電性質亦可能隨之改變。 j目轉換合金可藉由施加—電脈衝而從〆種相態切換至English snec -MacronixP〇4n2n2 final 18 1305043 The electrical properties of this material may also change. The j-mesh conversion alloy can be switched from the phase state to the state by applying an electric pulse

於將;切觀察指出,—較短、較大幅度的脈衝傾向 :::轉換材料的相態改變成大體為非晶態。一較長、較 曰^又的脈衝傾向於將相轉換材料的相態改變成大體為結 曰:先、。在較短、較大幅度脈衝中的能量,夠大因此足以破 ,釔,,構的鍵結,同時夠短因此可以防止原子再次排列 成結晶=。在沒有不適當實驗的情形下,可決定特別適用 ,、特疋相轉換合金的適當脈衝量變曲線。在本文的後續 部分,此相轉換材料係以GST代稱,同時吾人亦需瞭解, 亦可使用其他類型之相轉換材料。在本文中戶片描述之一種 適用於PCRAM中之材料,係為GexSbyTez,其x:y:z = 2:2:5 ° 其他 GexSbyTez 的成分包括 X: 〇〜5; y: 〇〜5; z: 0〜10。 可用於本發明其他實施例中之其他可程式化之記憶材 料包括,摻雜N2iGST、GexSby、或其他以不同結晶態轉The observation shows that the shorter, larger amplitude pulse tendency ::: the phase of the conversion material changes to a substantially amorphous state. A longer, longer pulse tends to change the phase of the phase change material to a substantially knot: first. The energy in a shorter, larger amplitude pulse is large enough to break the bond, 钇, and bond, while being short enough to prevent the atoms from realigning into crystal =. In the absence of undue experimentation, it is possible to determine the appropriate pulse-quantity curve for a particularly suitable phase-shifting alloy. In the subsequent part of this article, this phase-converting material is referred to as GST, and we also need to understand that other types of phase-converting materials can be used. One of the materials described in this article for PCRAM is GexSbyTez, which has x:y:z = 2:2:5 °. Other GexSbyTez components include X: 〇~5; y: 〇~5; z : 0~10. Other programmable memory materials that can be used in other embodiments of the invention include doped N2iGST, GexSby, or others that are converted to different crystalline states.

換來決定電阻之物質;PrxCayMn03、PrxSryMn03、ZrOx、 或其他使用一電脈衝以改變電阻狀態之物質; TCNQ(7,7,8,8-tetracyanoquinodimethane) 、 PCBM (methanofullerene 6,6-phenyl C61-butyric acid methyl ester)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、 以其他物質摻雜之TCNQ、或任何其他聚合物材料其包括 有以一電脈衝而控制之雙穩態或多穩態電阻態;一巨磁阻 (CMR)材料如PrxCayMn03其中x:y = 0.5:0.5、或其他成 分為x:0〜1; y:〇〜卜或其他包括有錳氧化物之巨磁阻材料; 以及一雙元素化合物如NixOy,其中x:y = 〇.5:〇·5、或其他 成分為X:0〜1; y:〇〜1。 第9圖係說明本發明第二實施例之雙穩態電阻記憶體之 1305043 其係形成一介層窗。介電層350係沈積於岸 間介電質33G之上表面、以及可程式化電 340,342之上。在一實施例中,此介電層35()包括^, 其係利用-化學氣相沈積製㈣沈積4介電層 ’ 有的特性之―,係在於其低導電性。介電層孔洞的飯亥^系 延伸至接觸孔’其臨界尺寸鮮於或小於接觸孔。一相告、 微小的介層窗910之臨界尺寸係遠小於接觸栓塞326。二 層窗910之圖案化係位於接觸栓塞326中的電阻 二Substance to determine the resistance; PrxCayMn03, PrxSryMn03, ZrOx, or other substance that uses an electrical pulse to change the resistance state; TCNQ(7,7,8,8-tetracyanoquinodimethane), PCBM (methanofullerene 6,6-phenyl C61-butyric Acid methyl ester), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, TCNQ doped with other substances, or any other polymeric material including bistable or controlled by an electrical pulse Steady-state resistance state; a giant magnetoresistance (CMR) material such as PrxCayMn03 where x:y = 0.5:0.5, or other components are x:0~1; y:〇~b or other giant magnetoresistance including manganese oxide Material; and a two-element compound such as NixOy, where x:y = 〇.5: 〇·5, or other components are X:0~1; y: 〇~1. Fig. 9 is a view showing a 1305043 bistable resistive memory of a second embodiment of the present invention which forms a via. A dielectric layer 350 is deposited over the surface of the surface dielectric 33G and over the programmable 340, 342. In one embodiment, the dielectric layer 35() comprises a fourth dielectric layer deposited by chemical vapor deposition (4) because of its low conductivity. The dielectric layer of the dielectric layer extends to the contact hole' whose critical dimension is fresher or smaller than the contact hole. As a result, the critical dimension of the tiny via 910 is much smaller than the contact plug 326. The patterning of the two-layer window 910 is located in the contact plug 326.

340之上。在一實施例中,此介層窗_之臨界Above 340. In an embodiment, the threshold of the via window is

於約10nm至約100nm之間。此介層窗的深寬比係介於二 1至約2。 ' J 第10圖係根據本發明第二實施例中,用以製 電阻記憶體之方法的下一步驟中,一製程_咖的^ 圖,其係進行電阻記憶材料與金屬的沈積作用,以及一位 元線的圖案化。第二電阻記憶材料370係沈積進入介層窗 910,912之内,並位於第一介電填充區段35〇a、第二介電 填充區段350b、與第三介電填充區段35〇c之上。金屬位 兀線380係位於可程式化電阻記憶材料370之上。金屬位 兀線可與一導電材料共同使用,包括氮化鈦、氮化鈕、氮 =鈦/鋁銅、氮化鈕/銅、以及其他類型之類似導電材料。接 著’進行位元線的圖案化,位元線的方向係與閘極、源極、 與汲極的方向垂直。位元線的蝕刻形成了一直線,其包括 了由上電阻記憶材料370與金屬位元線380所形成之薄膜 疊層。 第11圖係根據本發明第二實施例,說明了之在電阻記 憶材料中之一加熱區域内製造雙穩態電阻記憶體的剖面圖 1100 °每一介層窗910或912係定義了一相當微小的接觸 rhin«s« κηί*Γ -Μ«ΡτοηίγΡ04Γ)?η7 final 20 1305043 孔洞,其與其下沈積在接觸栓塞326之頂部内的電阻記憶 材料340、與其上所沈積的電阻記憶材料370相較之下, 沈積了較少量的電阻記憶材料。加熱區域1110係發生在介 層窗910内、包括有電阻記憶材料的一微小區域中。在加 熱區域1110内的電流密度’係於設置(SET )與重置 (RESET)程式化時達到最高。電阻記憶材料370,340,342、 與介電層350均具有低導熱性。在一實施例中,電阻記憶 材料370,340,342所具有之導熱性質係低於介電層35〇。從 加熱區域1110所產生的熱量並無法良好地散失,因為具有 電阻記憶材料的加熱區域1110係被電阻記憶材料、與介電 層350所包圍。因此’從加熱區域所散失的熱量可以大幅 減少。此外,由於加熱區域1110内小範圍的電阻記憶材料 也具有低導熱性質、可減少從電阻記憶材料370、介電層 350與金屬位元線380處所散失的熱量,set與RESET程 式化電流亦被降低了。 對於相轉換隨機存取記憶元件的額外製造資訊、元件材 料、使用、與操作方法,請參見美國專利申請案第11/155,〇67 號’’Thin Film Fuse Phase Change RAM and ManufacturingIt is between about 10 nm and about 100 nm. The via window has an aspect ratio of from two to about two. 'J FIG. 10 is a diagram showing a process of resistive memory material and metal deposition in a next step of a method for fabricating a resistive memory according to a second embodiment of the present invention, and The patterning of a meta line. The second resistive memory material 370 is deposited into the vias 910, 912 and is located in the first dielectric fill section 35a, the second dielectric fill section 350b, and the third dielectric fill section 35〇c. on. The metal bit line 380 is located above the programmable resistive memory material 370. The metal wire can be used with a conductive material, including titanium nitride, nitride button, nitrogen = titanium / aluminum copper, nitride button / copper, and other types of similar conductive materials. Next, the patterning of the bit lines is performed, and the direction of the bit lines is perpendicular to the direction of the gate, the source, and the drain. The etching of the bit lines forms a straight line that includes a thin film stack formed by the upper resistive memory material 370 and the metal bit line 380. Figure 11 is a cross-sectional view showing the fabrication of a bistable resistive memory in a heated region of a resistive memory material according to a second embodiment of the present invention. 1100 ° each via 910 or 912 defines a relatively small The contact rhin«s« κηί*Γ -Μ«ΡτοηίγΡ04Γ)?η7 final 20 1305043 is compared to the resistive memory material 340 deposited on top of the contact plug 326, and the resistive memory material 370 deposited thereon. Next, a smaller amount of resistive memory material is deposited. The heated region 1110 occurs in a tiny region of the via 910 that includes the resistive memory material. The current density in the heating region 1110 is maximized when the setting (SET) and the reset (RESET) are programmed. The resistive memory materials 370, 340, 342, and the dielectric layer 350 each have low thermal conductivity. In one embodiment, the resistive memory material 370, 340, 342 has a lower thermal conductivity than the dielectric layer 35A. The heat generated from the heated region 1110 is not well dissipated because the heated region 1110 having the resistive memory material is surrounded by the resistive memory material and the dielectric layer 350. Therefore, the amount of heat lost from the heating zone can be greatly reduced. In addition, since a small range of resistive memory materials in the heating region 1110 also have low thermal conductivity properties, heat loss from the resistive memory material 370, the dielectric layer 350, and the metal bit line 380 can be reduced, and the set and RESET stylized currents are also Reduced. For additional manufacturing information, component materials, usage, and methods of operation for phase-converted random access memory devices, see U.S. Patent Application Serial No. 11/155, No. 67 'Thin Film Fuse Phase Change RAM and Manufacturing

Method”、申請日為2005年6月17日,申請人與本案相同, 且該案系列入本案之參考。 雖然本發明係已參照較佳實施例來加以描述,將為吾人 所瞭解的是’本發賴作並未受限於其詳細描述内容。替 換方式及修改樣式係6於先前描述+所建議,並且其他替 換方式及修改樣式將為熟f此項技藝之人士所思及。特別 是,根據本發明之結構財法,所有具有實質上相同於本 發月之構件、、、σ 5而達成與本發明實質上相同結果者皆不脫 離本發明之精神_。因此,财此等㈣方式及修改樣Method, the application date is June 17, 2005, the applicant is the same as the case, and the case series is referred to in this case. Although the present invention has been described with reference to the preferred embodiments, what we will understand is ' The present invention is not limited by the detailed description thereof. The alternative and modified styles 6 are suggested in the previous description +, and other alternatives and modifications will be considered by those skilled in the art. In particular, According to the structural method of the present invention, all of the members having substantially the same composition as the present month, σ 5 and substantially the same result as the present invention do not depart from the spirit of the present invention. Therefore, the fourth (method) And modification

PhmMR -Μργγγ>τιΪυΡ04Π9.Π?. finnl 21 1305043 ^係意欲落在本發明於隨附申請專利範 尺的範紅巾。任何在敎巾提及之專物所界 文本,均係列為本案之參考。 明案以及印刷 【圖式簡單說明】PhmMR - Μργγγ> τιΪυΡ04Π9. Π?. finnl 21 1305043 ^ is intended to fall within the scope of the invention of the invention of the patent red bread. Any text in the context of the special items mentioned in the scarf is a reference for this case. Ming case and printing [Simple description]

憶陣第列丨。圖係㈣—本發_ —種雙穩態電崎機存取記 方塊第圖2。圖係繪示了本發明—實施例之—積體電路的簡化 第/圖係繪示了本發明第—實施例中,—雙穩態電阻隨 機存取,己fe體之剖面圖,其具有j型結構之可程式化電阻 記憶材料。 第4圖係根據本發明之第一實施例,繪示用以製造雙穩 態電阻隨機存取記憶體之方法的第一步驟,其形成了層間 介電質。 第5圖係根據本發明之第一實施例,繪示用以製造雙穩 態電阻隨機存取記憶體之方法的第二步驟,包括鎢蝕刻、 形成一電阻記憶材料、以及研磨。 第6圖係根據本發明之第一實施例,繪示用以製造雙穩 態電阻隨機存取記憶體之方法的第三步驟,形成一介電層 沈積’接著進行介電側壁子蝕刻。 第7圖係根據本發明之第一實施例,繪示用以製造雙穩 態電阻隨機存取記憶體之方法的第四步驟,包括沈積一第 一電阻δ己憶材料與金屬,接著圖形化一位元線。 第8圖係根據本發明一實施例,繪示在此雙穩態電阻記 憶體中之一加熱區域。 第9圖係根據本發明之第二實施例,繪示用以製造雙穩 22 Γ .MacmniTP940?ft7 ' 1305043 - 態電阻隨機存取記憶體之方法,包括形成一介層窗。 第ίο圖係根據本發明之第二實施例,繪示用以製造雙 穩態電阻隨機存取記憶體之方法的下一步驟,包括進行電 阻記憶材料與金屬的沈積,並圖形化一位元線。 第11圖係根據本發明之第二實施例,繪示用以製造雙 穩態電阻隨機存取記憶體之方法的下一步驟,包括形成一 介層窗。 【主要元件符號說明】 100 記憶陣列 123,124 字元線 128 共同源極線 132,133 底電極構件 134,137 頂電極構件 135 記憶細胞 141,142 位元線 145 γ解碼器與字元線驅動器 146 X解碼器與感測放大器 150,151,152,153 存取電晶體 200 積體電路 260 記憶陣列 261 列解碼器 262 字元線 263 行解碼器 264 位元線 265 匯流排 266 感測放大器與資料輸入結構Recalling the first column. Figure (4) - this hair _ - a kind of bistable electric kiln machine access record box Figure 2. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified cross-sectional view of an integrated circuit of a first embodiment of the present invention, showing a cross-sectional view of a bistable resistive random access having a body Programmable resistive memory material for j-type structures. Figure 4 is a first step of a method for fabricating a bistable-resistive random access memory device which forms an interlayer dielectric in accordance with a first embodiment of the present invention. Figure 5 is a diagram showing a second step of a method for fabricating a bistable-resistive random access memory, including tungsten etching, forming a resistive memory material, and grinding, in accordance with a first embodiment of the present invention. Figure 6 is a diagram showing a third step of a method for fabricating a bistable-resistive random access memory to form a dielectric layer deposition followed by a dielectric sidewall etch according to a first embodiment of the present invention. Figure 7 is a fourth step of a method for fabricating a bistable resistive random access memory according to a first embodiment of the present invention, comprising depositing a first resistor δ remembrance material and metal, followed by patterning One yuan line. Figure 8 is a diagram showing a heating zone in the bistable resistance memory body in accordance with an embodiment of the present invention. Figure 9 is a diagram showing a method for fabricating a bistable 22 Γ .Macmni TP 940 ft 7 ' 1305043 - state resistive random access memory, including forming a via, in accordance with a second embodiment of the present invention. A second step of a method for fabricating a bistable resistive random access memory according to a second embodiment of the present invention includes performing deposition of a resistive memory material and a metal, and patterning a bit line. Figure 11 is a diagram showing the next step of a method for fabricating a bistable resistive random access memory, including forming a via, in accordance with a second embodiment of the present invention. [Main component symbol description] 100 memory array 123, 124 word line 128 common source line 132, 133 bottom electrode member 134, 137 top electrode member 135 memory cell 141, 142 bit line 145 γ decoder and word line driver 146 X decoder and sense amplifier 150, 151, 152, 153 access transistor 200 integrated circuit 260 memory array 261 column decoder 262 word line 263 row decoder 264 bit line 265 bus 266 sense amplifier and data input structure

Chinese spec.-MacronixP940202 final 23 1305043Chinese spec.-MacronixP940202 final 23 1305043

267 資料匯流排 268 偏壓供應電壓 269 偏壓安排狀態器 271 貧料輸入線 272 資料輸出線 274 其他電路 275 積體電路 300 雙穩態電阻隨機存取記憶體 310 半導體基板 312,314,316 η型終端 320,322 多晶石夕閘極 326,328 栓塞結構 330 層間介電層 330a,b,c 介電填充 340,342 可程式化電阻記憶材料 350 介電填充層 350a,b,c 介電填充區段 360,362 介電側壁子 365 加熱區域 370 可程式化電阻記憶材料 380 金屬位元線 400 電晶體結構 510,512 接觸孔 910,912 介層窗 1110 加熱區域267 data bus 268 bias supply voltage 269 bias arrangement state 271 poor input line 272 data output line 274 other circuit 275 integrated circuit 300 bistable resistance random access memory 310 semiconductor substrate 312, 314, 316 n-type terminal 320, 322 Crystal etch gate 326, 328 embolic structure 330 interlayer dielectric layer 330a, b, c dielectric fill 340, 342 programmable resistive memory material 350 dielectric fill layer 350a, b, c dielectric fill section 360, 362 dielectric sidewall 365 heating Area 370 Programmable Resistive Memory Material 380 Metal Bit Line 400 Transistor Structure 510, 512 Contact Hole 910, 912 Membrane 1110 Heating Area

Chinese «mec.-MacronixP940202 final 24Chinese «mec.-MacronixP940202 final 24

Claims (1)

1305043 十、申請專利範圍 i 一種記憶元件,包括: 括^貝塞電極結構,其垂直地與一底電極分離,該底電極包 電接一觸上匕面電阻記憶構件,其具有—與該頂電極結構 觸電構:該底電極電接 栓塞之側邊對準;以及 隐構件之側邊係與該 ϋίΛ構件,其包括一可程式化電阻記憶材料,該可程 ^電阻纪憶材料係設置於一侧壁子之内界 域播f㈣該上與下可程式化電阻記憶構件加 心構件係電接觸至該上與下可程式化電阻記憶構; 極二之記憶元件,其中該頂電 胞所共用申位兀線,該位元線係被複數個記憶細 申請專利範圍第1項所述之記憶元件,其中该上可 =化電阻記憶構件與該頂電極結構係作用為一工 4·如中請專利範圍第2項所述之記憶元件, 線係包括一導電材料1 /、中μ位兀 銅、或氮化组/銅。 氮化欽鼠化纽、氮化鈦/銘 5·如申請專利範圍第1項所述之記憶元件,其中該下可 25 Chinese s〇ec.-MacronixP940202 final 1305043 程式化電阻記憶構件與該栓塞係作用為一第二導體。 &如申請專利_第丨項所述之記憶元件 包括一鎢栓塞。 丫飞栓塞 7.如申請專利範圍第1項所述之記憶元件,其中該检塞 包括一多晶矽栓塞。 土 ❿ ,如中請專利範圍第i項所述之記憶元件,其中該側壁 子包括一介電侧壁子。 如申明專利範圍第8項所述之記憶元件,其中該上可 =、化電阻記㈣件、該下可程式化電阻記憶構件、以及 k亥心構件之導熱性質係低於該介電侧壁子之導熱性質。 百it如申請專利範11第1項所述之記憶元件,其中該下1305043 X. Patent application scope i A memory element comprising: a beast electrode structure vertically separated from a bottom electrode, the bottom electrode package being electrically connected to a top surface resistive memory member having - and the top The electrode structure is electrically connected: the bottom electrode is electrically aligned with the side of the plug; and the side of the hidden member is coupled to the member, and the device includes a programmable resistive memory material, and the resistive material is disposed on the device The inner boundary of a side wall broadcasts f (4) the upper and lower programmable resistance memory member core members are electrically connected to the upper and lower programmable resistance memory structures; the second memory element, wherein the top battery unit The memory line is shared by the plurality of memory lines, wherein the upper memory and the top electrode structure function as a work. In the memory element described in claim 2, the wire system comprises a conductive material 1 /, a medium-μ copper, or a nitride/copper. Nitrided rattan, titanium nitride / Ming 5 · The memory element described in claim 1 of the patent, wherein the lower 25 English s〇ec.-MacronixP940202 final 1305043 stylized resistance memory member and the plug system The role is a second conductor. & The memory element as described in the patent application of the above-mentioned item includes a tungsten plug. The memory element of claim 1, wherein the plug comprises a polysilicon plug. The memory element of claim i, wherein the sidewall includes a dielectric sidewall. The memory device of claim 8, wherein the upper conductive layer, the chemical resistance (four) member, the lower programmable resistance memory member, and the k-heel member have lower thermal conductivity properties than the dielectric sidewall The thermal conductivity of the child. Baiyi is applying the memory element described in the first item of Patent No. 11, wherein the 二主式化電阻記憶構件之橫向尺寸係大於雜&構件之橫 向尺寸。 w4如申印專利範圍第1項所述之記憶元件’其中該上 1r i化電阻記憶構件 <橫向尺寸係大於該核心構件之橫 间尺寸。 與f可t申請專利範圍第1項所述之記憶元件,其中該上 β程式化電阻記憶構件包括相同之可程式化電阻材 ΓΊ»«η^β^ on*»r -MarmniTpOdft^A^ final 26 1305043 13. 如申請專利範圍第12項所述之記憶元件,其中該上 與下可程式化電阻記憶構件係包括GeSbTe。 14. 如申請專利範圍第12項所述之記憶元件,其中該上 與下可程式化電阻記憶構件係包括下列群組之二者或以上 材料所組成之組合物:鍺、銻、碲、銦、鈦、鎵、鉍、錫、 銅、鈀、鉛、銀、硫、或金。 15. 如申請專利範圍第12項所述之記憶元件,其中該上 與下可程式化電阻記憶構件包括一巨磁阻材料。 16. 如申請專利範圍第12項所述之記憶元件,其中該上 與下可程式化電阻記憶構件係包括一雙元素化合物。 17. 如申請專利範圍第12項所述之記憶元件,其中該上 與下可程式化電阻記憶構件包括一聚合物材料。 18. 如申請專利範圍第1項所述之記憶元件,其中該上 可程式化電阻記憶構件包括一第一型可程式化電阻記憶材 料,且該下可程式化電阻記憶材料係包括一第二型可程式 化電阻記憶材料。 19. 如申請專利範圍第18項所述之記憶元件,其中該上 可程式化電阻記憶構件所包括之該第一型材料係為 GeSbTe、巨磁阻材料、一雙元素化合物、或一聚合物材料, 且該下可程式化電阻記憶構件所包括之第二行材料係為 GeSbTe、巨磁阻材料、一雙元素化合物、或一聚合物材料。 Chinese st»ec.-Macr〇ttixP940202 final 27 1305043 其中該可 二固態相 20.如申請專利範圍第1項所述之呓憶元 程式化電阻記憶材料其係具有至少二固態相,該 係可藉由一電流而可逆地轉換。 21. 如申請專利範圍第i項所述之記憶元件, 程式化電阻記憶材料係包括至少二固態相,該二固離:: 括一大致非晶態以及一大致結晶態。 ^相匕The lateral dimension of the two mainized resistive memory members is greater than the lateral dimension of the hybrid & W4 is the memory element according to item 1 of the patent application scope wherein the upper dimension is greater than the transverse dimension of the core member. The memory element of claim 1, wherein the upper β-stabilized memory member comprises the same programmable resistance material ΓΊ»«η^β^ on*»r-MarmniTpOdft^A^ final The memory element of claim 12, wherein the upper and lower programmable resistance memory components comprise GeSbTe. 14. The memory element of claim 12, wherein the upper and lower programmable resistance memory members comprise a combination of two or more of the following groups: bismuth, bismuth, bismuth, indium , titanium, gallium, germanium, tin, copper, palladium, lead, silver, sulfur, or gold. 15. The memory element of claim 12, wherein the upper and lower programmable resistive memory members comprise a giant magnetoresistive material. 16. The memory device of claim 12, wherein the upper and lower programmable resistive memory members comprise a two-element compound. 17. The memory element of claim 12, wherein the upper and lower programmable resistance memory members comprise a polymeric material. 18. The memory device of claim 1, wherein the upper programmable resistive memory member comprises a first type of programmable resistive memory material, and the lower programmable resistive memory material comprises a second Type programmable resistance memory material. 19. The memory device of claim 18, wherein the first type of material included in the upper programmable resistance memory member is GeSbTe, a giant magnetoresistive material, a two-element compound, or a polymer. The material, and the second row of materials included in the lower programmable resistance memory member is GeSbTe, a giant magnetoresistive material, a two-element compound, or a polymer material. Chinese st»ec.-Macr〇ttixP940202 final 27 1305043 wherein the two-solid phase 20. The memory element of the memory element according to claim 1 has at least two solid phases, and the system can borrow Reversible conversion by a current. 21. The memory element of claim i, wherein the stabilizing memory material comprises at least two solid phases, the two solids: comprising a substantially amorphous state and a substantially crystalline state. ^相匕 22. 如申請專利範圍第!項所述之記憶元件, 與下可程式化電阻記憶構件係傳導由該核心構ς二 區域所產生之熱量。 加熱 7睛寻利耗圍第i項所述之記憶元件,其中該相 壁子該頂電極結構、以及該底電極三者各自展1 於用以形成該元件之-微影製程之最小微影特徵^。序乂 =如申請專利範圍第ljf所述之記憶元件, 壁子之厚度係介於10至20 nm之間。 /、中該值 =如中請專利範圍第1ΙΜ所述之記憶 心構件之厚度係為約80腿或以下。 其中該核 26. —種記憶元件,包括: 第二電極分離 該第二電 一第一電極,其係垂直地與一 極包括一栓塞; 上可程式化電阻記憶構件,其具有與該第—電極電接 28 Ϊ305043 觸之一接觸表面; -下可程式化電阻記憶構件,其具有與 觸之-接觸表面,該下可程式 ϋ ;電極電接 準至該栓塞之側邊;以及 己隐構件之侧邊係對 -核心構件,其包括一可程式化電阻 電阻記憶材料係設置於一介電 斗化 域、並設置於該上盥下」内乂界疋一加熱區 心構件係電接觸至,μ β 4化電5己憶構件之間,該核 構仵係電接觸至該上與下可程式化電阻記憶構件。 27. 一種記憶元件,包括: -第-電極’其係垂直地與一第 極包括一栓塞; r刀離,該第一電 雜一上可程式化電阻記憶構件’其具有與該第-電極雷接 觸之一接觸表面; 乐冤極電接 觸下憶構件,其具有與該第二電極電接 ;;二:邊=程式化電阻記憶構件之侧邊係對 -核心構件’其包括—可程式化電阻材料,該可 電,記憶材料係設置於一介層窗内以 ==了:程式化電阻記憶構件之間,心構件 糸電接觸至4上與下可程式化電阻記憶構件。 28. —種用以製造一記憶元件之方法,包括: 提供-電晶體本體,其具有—栓塞結構以及—層間介電 質,該栓塞結構具有一接觸孔; 韻刻該栓塞結構之一部份以沈積一層下可程式化電阻 記憶材料於該栓塞結構之頂部; rhinftCfi cn«· .MarrrtflirPOJn^n? fin»! 29 1305043 形成一侧壁子於該層下可程式化電阻記憶材料之上; 藉由沈積一可程式化電阻材料,於由該側壁子所形成之 一開口中而形成一核心構件,該核心構件係電接觸至該層 下可程式化電阻記憶材料以及一層上可程式化電阻記憶材 料,該核心構件係界定·一加熱區域,以及 沈積一導電材料於該層上可程式化電阻記憶材料之上。 29. 如申請專利範圍第28項所述之方法,其中該蝕刻步 驟包括選擇而使該層間介電質之選擇性足夠高,以防止該 層間介電質受到該蝕刻步驟的損傷。 30. 如申請專利範圍第28項所述之方法,其中該栓塞結 構係以鎢所填充,且其中該蝕刻步驟係包括以蝕刻深寬比 約為1:1而直接触刻該鶴。 31. 如申請專利範圍第28項所述之方法,其中該蝕刻步 驟包括在一 0.2 μπι之接觸孔内以約200nm之深度蝕刻該栓 塞結構。 32. 如申請專利範圍第28項所述之方法,其中該蝕刻步 驟包括一蝕刻化學物質為六氟化硫(SF6)。 33. 如申請專利範圍第28項所述之方法,在該蝕刻步驟 之後更包括研磨該層下可程式化電阻記憶材料之一上表 面,該上表面係突出於在該栓塞結構中之該栓塞孔之該一 上表面。 Chinese soec.-MacronixP940202 final 30 1305043 34. 如申請專利範圍第28項所述之方法,在該側壁子形 成步驟之前,更包括研磨該層下可程式化電阻記憶材料之 一上表面。 35. 如申請專利範圍第28項所述之方法,其中該側壁子 形成步驟係包括: 沈積一介電層於該層下可程式化電阻記憶材料之上; 蝕刻該介電層以生成一孔洞,該孔洞之寬度係等於或小 於該栓塞結構中之該接觸孔之寬度; 沈積一側壁子材料於該孔洞中以形成該側壁子,該側壁 子之厚度係少於該接觸孔之尺寸之一半;以友 以一以氟為基礎之化合物之乾式蝕刻而進行非等向性 蝕刻,以形成該側壁子。 36. 如申請專利範圍第28項所述之方法,其中該導電材 料包括氮化鈦、氮化钽、氮化鈦/1呂銅、或氮化钽/銅。 37. 如申請專利範圍第28項所述之方法,其中該導電材 料係作用為一位元線。 38. 如申請專利範圍第37項所述之方法,其中該位元線 之方向係垂直於該電晶體本體中之一閘極、一源極、以及 —汲極° P!hin«ft ςη«·. -Μαπ*λ«ϊυΡΡ407Π?. final 3122. If you apply for a patent scope! The memory element described in the item, and the lower programmable resistance memory member, conduct heat generated by the core structure. Heating the 7-eyes to find the memory element described in item i, wherein the top wall structure of the phase wall and the bottom electrode are respectively formed by the minimum lithography of the lithography process for forming the element Feature ^. Sequence 乂 = Memory element as described in the patent application section ljf, the thickness of the wall is between 10 and 20 nm. /, the value of the memory = the thickness of the memory member described in the first paragraph of the patent range is about 80 legs or less. Wherein the core 26 is a memory element, comprising: a second electrode separating the second electric first electrode, the vertical electrode and the one pole including a plug; the upper programmable resistance memory member having the first Electrode connection 28 Ϊ305043 touch one contact surface; - lower programmable resistance memory member having a contact-contact surface, the lower programmable circuit; electrode electrically connected to the side of the plug; and hidden component The side is a pair of core components, comprising a programmable resistive memory material disposed in a dielectric sinter domain and disposed in the upper 」 」 加热 加热 加热 加热 加热 加热 加热 加热Between the members, the nucleus is electrically contacted to the upper and lower programmable resistance memory members. 27. A memory device, comprising: - a first electrode - comprising a plug perpendicular to a first pole; a knife-off, the first electrical hybrid programmable memory member having a first electrode One of the contact surfaces of the lightning contact; the element is electrically connected to the lower member, which has electrical connection with the second electrode; and the second side: the side of the stylized resistance memory member is a pair of core components - which includes - programmable The electrically resistive material is disposed in a via window to ==: between the stabilizing resistive memory members, the core member is electrically contacted to the upper and lower programmable resistive memory members. 28. A method for fabricating a memory device, comprising: providing a transistor body having a plug structure and an interlayer dielectric, the plug structure having a contact hole; and engraving a portion of the plug structure Depositing a layer of a programmable resistive memory material on top of the plug structure; rhinftCfi cn«· .MarrrtflirPOJn^n?fin»! 29 1305043 forms a sidewall on the layer of the programmable resistive memory material; A core member is formed by depositing a programmable resistive material in an opening formed by the sidewall, the core member electrically contacting the layer of the programmable resistive memory material and the layer of programmable resistive memory The material, the core member defines a heating region, and deposits a conductive material on the layer to program the resistive memory material. 29. The method of claim 28, wherein the etching step comprises selecting such that the selectivity of the interlayer dielectric is sufficiently high to prevent the interlayer dielectric from being damaged by the etching step. 30. The method of claim 28, wherein the embolic structure is filled with tungsten, and wherein the etching step comprises directly contacting the crane with an etch aspect ratio of about 1:1. The method of claim 28, wherein the etching step comprises etching the plug structure at a depth of about 200 nm in a contact hole of 0.2 μm. 32. The method of claim 28, wherein the etching step comprises an etch chemistry of sulfur hexafluoride (SF6). 33. The method of claim 28, further comprising, after the etching step, grinding an upper surface of the layer of the programmable resistive memory material, the upper surface protruding from the plug in the plug structure The upper surface of the hole. The method of claim 28, wherein before the step of forming the sidewall, the method further comprises: grinding an upper surface of the programmable resistive memory material under the layer. 35. The method of claim 28, wherein the sidewall sub-forming step comprises: depositing a dielectric layer over the layer to pattern the resistive memory material; etching the dielectric layer to create a hole The width of the hole is equal to or smaller than the width of the contact hole in the plug structure; a sidewall material is deposited in the hole to form the sidewall, the thickness of the sidewall is less than one half of the size of the contact hole Anisotropic etching is performed by dry etching of a fluorine-based compound to form the sidewall. 36. The method of claim 28, wherein the electrically conductive material comprises titanium nitride, tantalum nitride, titanium nitride/1 Lu copper, or tantalum nitride/copper. 37. The method of claim 28, wherein the electrically conductive material acts as a one-dimensional line. 38. The method of claim 37, wherein the direction of the bit line is perpendicular to a gate, a source, and a drain of the transistor body. P!hin«ft ςη« ·. -Μαπ*λ«ϊυΡΡ407Π?. final 31
TW95117738A 2006-05-18 2006-05-18 Structures and methods of a bistable resistive random access memory TWI305043B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95117738A TWI305043B (en) 2006-05-18 2006-05-18 Structures and methods of a bistable resistive random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95117738A TWI305043B (en) 2006-05-18 2006-05-18 Structures and methods of a bistable resistive random access memory

Publications (1)

Publication Number Publication Date
TWI305043B true TWI305043B (en) 2009-01-01

Family

ID=45071067

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95117738A TWI305043B (en) 2006-05-18 2006-05-18 Structures and methods of a bistable resistive random access memory

Country Status (1)

Country Link
TW (1) TWI305043B (en)

Similar Documents

Publication Publication Date Title
CN100555699C (en) The structure of bistable resistive random access memory and method
CN100573952C (en) Use the bridge resistance, random access memory device and the method for single contact structures
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US7449710B2 (en) Vacuum jacket for phase change memory element
US7993962B2 (en) I-shaped phase change memory cell
US7956358B2 (en) I-shaped phase change memory cell with thermal isolation
TWI311798B (en) Spacer electrode small pin phase change ram and manufacturing method
US7598512B2 (en) Thin film fuse phase change cell with thermal isolation layer and manufacturing method
CN100573898C (en) The bottom electrode Ovonics unified memory and the manufacture method thereof of autoregistration and planarization
US7791057B2 (en) Memory cell having a buried phase change region and method for fabricating the same
US7479649B2 (en) Vacuum jacketed electrode for phase change memory element
US7507986B2 (en) Thermal isolation for an active-sidewall phase change memory cell
US7879692B2 (en) Programmable resistive memory cell with self-forming gap
TWI397997B (en) Memory cell having improved mechanical stability
US7772581B2 (en) Memory device having wide area phase change element and small electrode contact area
TWI427773B (en) Phase change memory cell having top and bottom sidewall contacts
TWI309454B (en) Process in the manufacturing of a resistor random access memory and memory device
US8084842B2 (en) Thermally stabilized electrode structure
US20080157053A1 (en) Resistor Random Access Memory Cell Device
US20100144128A1 (en) Phase Change Memory Cell and Manufacturing Method
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
TW200828518A (en) Phase change memory cell with thermal barrier and method for fabricating the same
TW200908313A (en) Phase change memory with dual word lines and source lines and method of operating same
TWI305043B (en) Structures and methods of a bistable resistive random access memory
TWI328873B (en) Thin film fuse phase change cell with thermal isolation layer and manufacturing method