TWI327381B - Apparatus, fabrication method and operating method and for non-volatile multi-bit memory - Google Patents

Apparatus, fabrication method and operating method and for non-volatile multi-bit memory Download PDF

Info

Publication number
TWI327381B
TWI327381B TW95139862A TW95139862A TWI327381B TW I327381 B TWI327381 B TW I327381B TW 95139862 A TW95139862 A TW 95139862A TW 95139862 A TW95139862 A TW 95139862A TW I327381 B TWI327381 B TW I327381B
Authority
TW
Taiwan
Prior art keywords
memory
layer
component
memory layer
logic level
Prior art date
Application number
TW95139862A
Other languages
Chinese (zh)
Other versions
TW200820469A (en
Inventor
Erh Kun Lai
Chia Hua Ho
Kuang Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95139862A priority Critical patent/TWI327381B/en
Publication of TW200820469A publication Critical patent/TW200820469A/en
Application granted granted Critical
Publication of TWI327381B publication Critical patent/TWI327381B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

1327381 • 脊1327381 • Ridge

三達編號:TW3018PA 九、發明說明: m 【發明所屬之技術領域】 本發明是有關於一種非揮發性記憶體、及其製造方法 與操作方法,且特別是有關於一種適於建構大尺寸超小型 記憶糸統之元件、及其製造方法與操作方法。 【先如技術】 隨著非揮發性記憶元件,特別是快閃記憶元件,對於 _穩疋度、密集度以及可靠度需求的增加,使得許多不同的 元件相繼問世。目前有一種非常有用的技術可與動態隨機 存取記憶體(DRAM)匹敵,其記憶體單元可以在兩種或 多種狀態之間轉變,其各狀態具有一特徵阻抗準位。在狀 I、之間轉變的能力,可以輕易轉換為顯示兩種阻抗準位的 能力,其可以輕易地等於邏輯值〇或1。 目前已有許多的材料可以用於此種記憶應用。其中的 一種是稱為硫屬化合物的材料,其至少具有兩個固相。這 Φ 些材料可以藉由施加適合用於積體電路之準位的電流來 產生相變化。一般非結晶固相(generally amorphous solid state)的阻值高於一般結晶固相之阻值,其可快速感測指 示出資料。這一些特性已經被研究使用來做為可程式阻抗 材料’以形成可被讀取、寫入以及隨機存取的非揮發性記 憶體電路。 從非晶相轉變到結晶相一般是在低電流下操作。從結 晶相改變到非晶相,此處做為重置,一般是在高電流下操 作’其包括一個短而高電流密度脈衝以熔化或破壞結晶結 5 1327381 * ♦达达编号号: TW3018PA IX. Description of the invention: m [Technical field of invention] The present invention relates to a non-volatile memory, a method of manufacturing the same, and a method of operation thereof, and in particular to a method suitable for constructing a large size super A component of a small memory system, a method of manufacturing the same, and an operation method. [Before technology] With the increase in the demand for stability, density, and reliability of non-volatile memory components, especially flash memory components, many different components have been introduced. A very useful technique is currently available that rivals dynamic random access memory (DRAM), in which memory cells can be transitioned between two or more states, each state having a characteristic impedance level. The ability to transition between states I can be easily converted to the ability to display two impedance levels, which can easily be equal to a logical value of 〇 or 1. A number of materials are currently available for such memory applications. One of them is a material called a chalcogen compound having at least two solid phases. These Φ materials can produce phase changes by applying a current suitable for the level of the integrated circuit. Generally, the resistance of the generally amorphous solid state is higher than that of the general crystalline solid phase, which can quickly sense the data. These features have been investigated for use as programmable impedance materials to form non-volatile memory circuits that can be read, written, and random accessed. The transition from an amorphous phase to a crystalline phase is generally operated at low currents. Changing from the crystalline phase to the amorphous phase, here as a reset, is typically operated at high currents. 'It includes a short, high current density pulse to melt or destroy the crystalline junction. 5 1327381 * ♦

三魏號:TW3018PA . 構,之後,相變化材料很快冷卻,終止相變化程序,允許 至少一部份的相變化結構穩定於非晶態。一般都希望能使 得相變化材料由結晶態轉變為非晶態的重置電流大小愈 小愈好。重置電流的大小可以透過減少記憶胞中相變化材 料單元的尺寸來減少之,以期能以小的絕對電流值通過相 變化材料單元,來達到較高的電流密度。 目前發展的方向是在積體電路結構中形成小孔洞,再 以少量的可程式化阻抗材料來填充小孔洞。有關小孔洞之 發展的專利包括:Ovshinsky於1997年11月11日核准之 名稱為“具有錐形接觸窗之多位元單胞記憶體單元,,的美 國專利第5,687,112號;Zahorik等人於1998年8月4曰 獲准之名稱為“硫屬化合物之記憶元件’,的美國專利第 5,789,277號;Doan等人於2000年11月21日獲准之名稱 為“可控制Ovnic相變化半導體記憶元件,’的美國專利第 6,150,253 號。 φ 在製造小尺寸元件以及符合大尺度記憶元件的嚴格 規格在製私上所產生的變異,會衍生一些問題。再者,隨 著電容量的增加,元件尺寸縮小,業界已到達一領域,其 受物理限制,如原子尺寸,因而阻礙了未來的發展。因此, 需要持續發展一種較佳的技術,以在間距減少下增加記憶 體的效能。 【發明内容】 本發明是提供一種記憶元件及其製造方法,其可以在 間距減少下增加記憶體的效能。 6 1327381 ,The three-week: TW3018PA. After that, the phase change material cools quickly, terminating the phase change procedure, allowing at least a portion of the phase change structure to stabilize in an amorphous state. It is generally desirable to make the change current of the phase change material from a crystalline state to an amorphous state as small as possible. The magnitude of the reset current can be reduced by reducing the size of the phase change material unit in the memory cell in order to achieve a higher current density by varying the material unit with a small absolute current value. The current development direction is to form small holes in the integrated circuit structure, and then fill the small holes with a small amount of stylized impedance material. Patents relating to the development of small holes include: U.S. Patent No. 5,687,112, issued on November 11, 1997 by Ovshinsky, entitled "Multi-bit cell memory cells with tapered contact windows"; Zahorik et al. U.S. Patent No. 5,789,277, entitled "Memory Element of Chalcogenide", August 4, 1998; Doan et al., entitled "Controllable Ovnic Phase Change Semiconductor Memory Element" on November 21, 2000 U.S. Patent No. 6,150,253. φ Variations in the manufacture of small-sized components and in strict compliance with the strict specifications of large-scale memory components can cause problems. Furthermore, as the capacitance increases, The size of components has shrunk, and the industry has reached a field that is physically limited, such as atomic size, thus hindering future development. Therefore, it is necessary to continue to develop a better technique to increase the memory efficiency with reduced pitch. The present invention provides a memory element and a method of fabricating the same that can increase the efficiency of a memory with a reduced pitch. 6 1327381 ,

三達編號:TW3018PA 本發明是提供一種記憶元件之製造方法,其可以在間 距減少下增加記憶體的效能。 * 本發明是提供一種記憶元件之操作方法,其可以在間 距減少下增加記憶體的效能。 本發明一方面是提供一種記憶元件,其可選擇性顯示 第一和第二邏輯準位。一第一導電材料,具有一第一表 面,且其上有一第一記憶層。一第二導電材料,具有一第 二表面,且其上有一第二記憶層。一連結導電層,連接第 ® 一和第二記憶層且電性接觸。其結構之第一記憶層之截面 積小於第二記憶層之截面積。 本發明提供一種選擇記憶體單元之邏輯狀態的方 法,此記憶體單元延伸至位元線bl和b2之間且具有彼此 成直角的RRAM單元,此RRAM單元是由L型導電連結 構件構成,且其中的一第一記憶層之截面積小於一第二記 憶層之截面積。此方法包括:於位元線bl施加一電壓 Vi,並於位元線b2施加一電壓V2,其中電壓V!和V2超 ® 過各記憶體單元的重置電壓;以及藉由施加一選擇的準位 Vi和v2,從第一、第二、第三以及第四記憶體單元邏輯 準位之中選擇其一。 本發明又提出一種記憶元件,其包括第一導電材料、 第二導電材料與連結導電層0第一導電材料,具有一第一 表面,且其上有第一記憶層;第二導電材料,具有一第二 表面,且其上有第二記憶層。第一和第二記憶層可選擇性 顯示第一和第二邏輯準位,各邏輯準位相應於該層之一已 7 1327381 * >Sanda Number: TW3018PA The present invention provides a method of manufacturing a memory element that can increase the efficiency of a memory with a reduced pitch. * The present invention provides a method of operating a memory element that can increase the performance of the memory with a reduced pitch. One aspect of the present invention is to provide a memory element that selectively displays first and second logic levels. A first conductive material having a first surface and having a first memory layer thereon. A second electrically conductive material having a second surface and having a second memory layer thereon. A connecting conductive layer connects the first and second memory layers and is in electrical contact. The cross-sectional area of the first memory layer of the structure is smaller than the cross-sectional area of the second memory layer. The present invention provides a method of selecting a logic state of a memory cell that extends between bit lines bl and b2 and has RRAM cells at right angles to each other, the RRAM cell being composed of an L-type conductive bonding member, and The cross-sectional area of one of the first memory layers is smaller than the cross-sectional area of the second memory layer. The method includes: applying a voltage Vi to the bit line bl, and applying a voltage V2 to the bit line b2, wherein the voltages V! and V2 exceed the reset voltage of each memory cell; and by applying a selection Levels Vi and v2 select one of the first, second, third, and fourth memory unit logic levels. The invention further provides a memory element comprising a first conductive material, a second conductive material and a first conductive material connecting the conductive layers 0, having a first surface having a first memory layer thereon; and a second conductive material having a second surface having a second memory layer thereon. The first and second memory layers can selectively display the first and second logic levels, each logic level corresponding to one of the layers 7 1327381 * >

三達編號:TW3018PA 知電性阻抗。第一記憶層之截面積小於第二記憶層之截面 積。連結導電層,連接且電性接觸第一和第二記憶層。 ' 本發明提出一種記憶元件,其包括二插塞、共源極 線、導電材料、二第一記憶層、兩第二記憶層、二連結導 電層與位元線。二插塞,位於基底上。共源極線,位於二 插塞之間。二字元線,分別位於各插塞與共源極線之間。 導電材料,位於共源極線與二字元線上方,並與共源極線 電性連接。二第一記憶層,分別位於二插塞的表面上。二 ® 第二記憶層,分別位於第一導電材料的側壁上,且各第二 記憶層具有一截面積大於各第二記憶層的截面積。二連結 導電層,分別連接且電性接觸各第一和各第二記憶層,分 別構成一記憶單元。位元線,電性連接第一導電材料。 本發明又提出一種記憶單元,包括至少一字元線、介 電層、插塞、共源極線、至少一導電材料、第一記憶層、 第二記憶層、連結導電層與位元線。字元線位於基底上。 $ 介電層位於基底上。一插塞與一共源極線,分別位於字元 線兩側之介電層之中。導電材料,具有一截面,且位於介 電層上,與共源極線電性連接。第一記憶層,位於插塞的 表面上並與其電性接觸。第二記憶層,位於於導電材料的 截面上並與其電性接觸,且第二記憶層具有一截面積大於 第二記憶層的截面積。連結導電層,電性連接第一和第二 記憶層。位元線,電性連接導電材料層。 為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 8 1327381 * ¥Sanda number: TW3018PA Electro-optical impedance. The cross-sectional area of the first memory layer is smaller than the cross-sectional area of the second memory layer. A conductive layer is bonded to connect and electrically contact the first and second memory layers. The present invention provides a memory device comprising a second plug, a common source line, a conductive material, two first memory layers, two second memory layers, two interconnected conductive layers and bit lines. Two plugs, located on the substrate. Common source line, located between the two plugs. Two word lines are located between each plug and the common source line. The conductive material is located above the common source line and the two-character line, and is electrically connected to the common source line. Two first memory layers are respectively located on the surface of the two plugs. The second memory layers are respectively located on sidewalls of the first conductive material, and each of the second memory layers has a cross-sectional area larger than a cross-sectional area of each of the second memory layers. The two connecting conductive layers respectively connect and electrically contact the first and second memory layers to form a memory unit. The bit line is electrically connected to the first conductive material. The invention further provides a memory unit comprising at least one word line, a dielectric layer, a plug, a common source line, at least one conductive material, a first memory layer, a second memory layer, a bonded conductive layer and a bit line. The word line is on the substrate. The dielectric layer is on the substrate. A plug and a common source line are respectively located in the dielectric layers on both sides of the word line. The conductive material has a cross section and is located on the dielectric layer and electrically connected to the common source line. The first memory layer is located on and electrically in contact with the surface of the plug. The second memory layer is located on and in electrical contact with the cross section of the conductive material, and the second memory layer has a cross-sectional area larger than that of the second memory layer. The conductive layer is connected to electrically connect the first and second memory layers. The bit line is electrically connected to the conductive material layer. In order to make the above description of the present invention more comprehensible, a preferred embodiment will be described hereinafter with reference to the accompanying drawings, as follows: 8 1327381 * ¥

三達編號:TW3018PA 【實施方式】 此種記憶胞之多位元記憶胞、陣列及其製造方法將配 合第1圖至第6圖詳細說明如下。 第1圖是繪示具有記憶體單元l〇〇a、100b之記憶胞 之實施例100,其回應所附之申請專利範圍之需求。如同 一般實際的記憶體單元設計,此處所繪示和討論的記憶體 單元只是一個較大記憶體電路的一部份,其中記憶體單元 100a和100b構成記憶胞100。記憶胞係排成陣列以控制 其存取,且一個完整的記憶單位可能包含十億個以上的記 憶體單元。記憶體單元的以外的電路並非本發明之範圍。 典型的記憶體電路可參照美國專利申請第1"155067號, 其名稱為“薄膜熔化相變化隨機存取記體及其製造方法”, 申請人與本案者相同,其内容併入本案參考之。 記憶胞100係建構於下方結構101之上,其為傳統的 共源極記憶體陣列結構。其架構詳細說明如下,但,值得 注意的是,其單元是一種面對稱環繞於共源極線108之軸 心的結構。各半個部分分別相當於單一個記憶體單元結 構。在傳統的共源極結構中,各單元結構包括字元線106 以及插塞構件104。插塞構件104較佳的是以耐熱金屬來 形成的,耐熱金屬例如是鎢。其他合適的耐熱金屬包括 Ti、Mo、Al、Ta、Cu、Pt、Ir、La、Ni 以及 Ru,及其氧 化物與氮化物。例如TiN、RuO或NiO則是已知有用的耐 熱金屬。較佳的字元線106是以多晶矽、金屬矽化物或是 9 1327381 4 ψSanda number: TW3018PA [Embodiment] The multi-dimensional memory cell, array and manufacturing method of the memory cell will be described in detail with reference to Figs. 1 to 6 as follows. Figure 1 is a diagram showing an embodiment 100 of a memory cell having memory cells 10a, 100b in response to the needs of the appended claims. As with conventional memory cell designs, the memory cells illustrated and discussed herein are only part of a larger memory circuit in which memory cells 100a and 100b form memory cells 100. Memory cells are arrayed to control access, and a complete memory unit may contain more than one billion memory cells. Circuitry other than the memory unit is not within the scope of the invention. A typical memory circuit can be found in U.S. Patent Application Serial No. 1 " 155,067, entitled "Thin Film Melt Phase Change Random Access Recorder and Method of Making Same", the Applicant being the same as the present application, the contents of which are incorporated herein by reference. The memory cell 100 is constructed on the underlying structure 101, which is a conventional common source memory array structure. The structure is described in detail below, but it is worth noting that the unit is a structure in which the plane symmetry surrounds the axis of the common source line 108. Each half is equivalent to a single memory cell structure. In a conventional common source structure, each cell structure includes a word line 106 and a plug member 104. The plug member 104 is preferably formed of a heat resistant metal such as tungsten. Other suitable heat resistant metals include Ti, Mo, Al, Ta, Cu, Pt, Ir, La, Ni, and Ru, and their oxides and nitrides. For example, TiN, RuO or NiO is a known useful heat resistant metal. The preferred word line 106 is polycrystalline germanium, metal germanide or 9 1327381 4 ψ

三達編號:TW3018PA • 相似的材料來形成。這一些構件被埋在傳統的内層介電層 /内金屬介電層(ILD/IMD)之中。如習知,這些材料盡^ 能以具有低介電常數者較佳,較佳的材料是二氧化矽或相 似的材料。 在所示的實施例中,覆蓋共源極層的結構係位於金屬 層120中心的上方,其可以使用銅金屬化。其他的金屬, 包括鋁、氮化鈦以及鎢為主的材料都是可以採用的。此 籲外,也可以使用非金屬導電材料例如是摻雜多晶矽。金屬 層位於SiN層118之間’分別位於金屬層的上方和下方。 以下將更詳細說明之。這三層組件延伸到接近、但未覆蓋 插塞構件104之處。再者,SiN材料並未覆蓋金屬層。金 屬層的厚度較佳的係介於10至2〇〇nm之間,更佳的是約 為20nm。兩個SiN層的厚度較佳的是介於2〇至1〇〇nm之 間’更佳的疋約為3〇nm。 在各插塞構件的頂面以及金屬層的側壁分別設置記 φ 憶層Π〇和U2。這些材料層的組成將說明如後。而其形 狀般呈扁平狀,其厚度範圍在2nm至300nm,較佳的是 約為1 Onm。 各圯It層11〇、112是以一種採用至少具有兩種穩定 阻抗準位的材料形成的,此材料稱之為電阻式隨機存取記 憶體RRAM材料。目前,已有數種材料被證實可以用於製 造RRAM,其說明如後。 瓜屬化δ物族群是一種重要的RRAM材料。硫族元 素包括週期表第六族的元素中的氧、硫、砸、碲四種元素 1327381 * ψSanda number: TW3018PA • Similar materials to form. These components are buried in a conventional inner dielectric layer/internal metal dielectric layer (ILD/IMD). As is conventionally known, these materials are preferred to have a low dielectric constant, and a preferred material is cerium oxide or a similar material. In the illustrated embodiment, the structure covering the common source layer is above the center of the metal layer 120, which can be metallized using copper. Other metals, including aluminum, titanium nitride and tungsten-based materials, can be used. In addition, non-metallic conductive materials such as doped polysilicon can also be used. The metal layers are located between the SiN layers 118' above and below the metal layers, respectively. This will be explained in more detail below. The three-layer assembly extends to near, but does not cover, the plug member 104. Furthermore, the SiN material does not cover the metal layer. The thickness of the metal layer is preferably between 10 and 2 Å, more preferably about 20 nm. The thickness of the two SiN layers is preferably between 2 Å and 1 〇〇 nm. More preferably, the 疋 is about 3 〇 nm. φ 忆 Π〇 and U2 are respectively disposed on the top surface of each plug member and the side wall of the metal layer. The composition of these material layers will be explained as follows. The shape is flat, and its thickness ranges from 2 nm to 300 nm, preferably about 1 Onm. Each of the 圯 It layers 11 〇 112 is formed using a material having at least two stable impedance levels, which is referred to as a resistive random access memory RRAM material. Currently, several materials have been proven to be useful in the fabrication of RRAM, as explained below. The melonized δ species group is an important RRAM material. The chalcogen element includes four elements of oxygen, sulfur, antimony and bismuth in the elements of the sixth group of the periodic table. 1327381 * ψ

三M號:TW3018PA .中任何一種。硫眉化合物包括硫族元素和陽電性 (eleCtr〇P〇SitiVe)之元料自由基之化合物。硫屬化合物 合金包括硫屬化合物和其他材料例如是過渡金屬之組合 物。通常硫屬化合物合金包括—贱多種週期表第六族之 元素,例如鍺和鋅。通常,硫屬化合物合金包括銻(外)、 嫁(Ga)、銦(In)和銀(Ag)中一種或多種的組合物。 由於硫屬化合物可包括兩種固態相,且分別具有特徵阻 抗,可達成雙記憶之特性,因此,這一些材料稱之為‘‘相 胃變化,,材料或合金。 科技文獻中已揭露多種相變化型記憶體材料,其合金 包括 Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、 In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、 Ge/Sn/Sb/Te、Ge/Sb/Se/Te 以及 Te/Ge/Sb/S。在 Ge/Sb/Te 合金族群中,可實施之合金組成的範圍非常廣。其組成可 以TeaGebSbn^a+w來表示之。研究人員研究大部分有用的 φ 合金中的Te在沉積材料中的平均濃度最好低於70%,典 型的是小於60%,通常的範圍是約為23%至58%,更佳的 疋約為48%至58Λ。Ge在材料中的平均濃度是大於5%, 其範圍為8%至約為30%,通常是低於50%。較佳的是Ge 的濃度範圍為約為8%至40%。組成物中剩下的主要組成 元素是Sb。所述的這一些百分比為原子百分比,其全部組 成元素之原子為100%°(0vshinsky’112專利,第10-11 行)。其他的研究人員研究的特定合金包括Ge2SbTe5、 GeSb2Te4 以及 GeSb4Te7。( Noboru Yamada,高資料率紀錄 1327381 • ·Three M: TW3018PA. Any one of them. The sulfur eyebrow compound includes a chalcogen element and a compound of a cationic radical of eleCtr〇P〇SitiVe. Chalcogenide alloys include chalcogenides and other materials such as transition metal combinations. Generally, chalcogenide alloys include - elements of the sixth group of various periodic tables, such as bismuth and zinc. Generally, the chalcogenide alloy includes a combination of one or more of bismuth (external), marry (Ga), indium (In), and silver (Ag). Since the chalcogenide compound can include two solid phases and each has a characteristic impedance, a double memory characteristic can be achieved, and therefore, these materials are referred to as 'phase-to-gastric changes, materials or alloys. A variety of phase change memory materials have been disclosed in the scientific literature, including alloys of Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/. Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te, and Te/Ge/Sb/S. In the Ge/Sb/Te alloy population, the range of alloy compositions that can be implemented is very broad. Its composition can be expressed by TeaGebSbn^a+w. Researchers have studied that most of the useful φ alloys have an average concentration of Te in the deposited material of preferably less than 70%, typically less than 60%, and typically range from about 23% to 58%, more preferably. It is 48% to 58Λ. The average concentration of Ge in the material is greater than 5%, which ranges from 8% to about 30%, typically less than 50%. Preferably, the concentration of Ge ranges from about 8% to about 40%. The main constituent element remaining in the composition is Sb. These percentages are atomic percentages, and the atoms of all of the constituent elements are 100% (0vshinsky '112 patent, lines 10-11). Specific alloys studied by other researchers include Ge2SbTe5, GeSb2Te4, and GeSb4Te7. (Noboru Yamada, high data rate record 1327381 • ·

三達編號:TW3018PA 之Ge-Sb-Te相變化光碟片之電位,SPIE第3109期,第 * 28-37頁,1997年)。通常,過渡金屬例如是鉻(Cr)、鐵 * (Fe)、鎳(Ni)以及鈮(Nb)、鈀(Pd)、鉑(Pt)及其 混合物或合金,可與Ge/Sb/Te結合成一相變化合金,其具 有防程式化之特性。可以使用的記憶材料的具體實例如 Ovshinsky’112專利第11-13行所述,其實例併入本案參考 之0 在記憶胞的主動通道區的局部範圍(local order )中, 相變化合金可以在第一個結構態和第二結構態之間轉 換,第一個結構態是一種為一般非晶形固態的材料;第二 結構態是一種為一般結晶固態材料。這一些合金至少為雙 穩態(bistable)。“非晶形”表示有序性相對較低的結構, 比單結晶無序’其具有可4貞測的特性,如電阻較高於結晶 相。“結晶”表示有序性相對較高的結構,比非晶形有序, 其具有可偵測的特性,如電阻較低於非晶相《典型的相變 化材料可以在完全非晶態和完全結晶態之間的整個光譜 的局部範圍之不同的可偵測的狀態之間轉換。改變非晶相 和結晶相所影響之材料的其他特性包括原子的排列;自由 電子的密度以及活化能。材料可轉換到不同的固相,或轉 換到兩個或更多個固相,提供介於完全非晶態和完全結晶 態之間的灰階。其材料的電性也隨之而改變。 相變化合金可藉由施加電脈衝(electrical pluses)而 由一個相態改變到另一個相態。短而高振幅的脈衝可以使 得相變化材料改變為一般的非晶態。長而低振幅的脈衝可 12Sanda number: Potential of Ge-Sb-Te phase change optical disc of TW3018PA, SPIE 3109, pp. * 28-37, 1997). In general, the transition metal is, for example, chromium (Cr), iron* (Fe), nickel (Ni), and niobium (Nb), palladium (Pd), platinum (Pt), and mixtures or alloys thereof, which can be combined with Ge/Sb/Te. A phase change alloy with anti-stylulation properties. Specific examples of memory materials that can be used are described in lines 11-13 of the Ovshinsky '112 patent, examples of which are incorporated herein by reference. In the local order of the active channel region of the memory cell, the phase change alloy can be The transition between the first structural state and the second structural state is a material that is generally amorphous solid; the second structural state is a generally crystalline solid material. Some of these alloys are at least bistable. "Amorphous" means a structure having a relatively low order of order, which has a property comparable to that of a single crystal, such as a higher resistance than a crystalline phase. "Crystalline" means a structure with a relatively high order, which is more ordered than amorphous, and has detectable properties such as lower electrical resistance than amorphous phase. "A typical phase change material can be completely amorphous and fully crystallized." The transition between the detectable states of the local range of the entire spectrum between states. Other properties of materials that affect the amorphous and crystalline phases include the arrangement of atoms; the density of free electrons and the activation energy. The material can be converted to a different solid phase, or converted to two or more solid phases, providing a gray scale between the fully amorphous and fully crystalline states. The electrical properties of the material also change. Phase change alloys can be changed from one phase to another by the application of electrical pluses. Short, high amplitude pulses can cause the phase change material to change to a generally amorphous state. Long, low amplitude pulses can be 12

三達編號:TW3018PA 以使得相變化材料改繆发 ^ β 夂崎一般的結晶相。短而高振幅的脈 = 晶結構的鍵;夠短,可以避免原子再結 / 可⑽據經驗或模 式 、 ,、體施加於特定的相變化合金。在 以下的内容中,相變化姑 ^ 亿材枓以GST來表示之,而其他種類 的相變化材料也是可以彳丨 Λ使用的。此處用於PCRAM的材料 為 Ge2Sb2Te5 〇 « ’也可以使用其他的可程式化阻 抗材料。其中的-種材料是超巨磁電阻(cmr)阻抗材 料,其可以在磁場存在下,大幅改變阻抗的準位。這一些 材料通常是猛型鈦礦氧化物(per〇vskite 〇xide) ,且在一定 fe圍的磁場下可改變其阻抗。應用於RRAM時,其較佳的 化學式為PrxCayMn03,其中χ: y=〇 5: 〇 5,或是其他的 組成為X: 0〜l;y: 0〜1。其他的CMR材料包括Μη的氧 化物也是可以被使用的。 • 其他的RRAM材料是二元素化合物,例如Nix〇y、Sanda number: TW3018PA to make the phase change material change the β β 夂 一般 general crystal phase. Short, high-amplitude veins = crystal-structured bonds; short enough to avoid atomic re-knots / (10) applied to specific phase-change alloys based on experience or mode. In the following content, the phase change is expressed in GST, and other types of phase change materials can be used. The material used for PCRAM here is Ge2Sb2Te5 〇 « ', and other programmable resistance materials can also be used. One of these materials is a giant magnetoresistance (cmr) resistive material that can significantly change the impedance level in the presence of a magnetic field. Some of these materials are usually perovskite oxides (per〇vskite 〇xide) and can change their impedance under a magnetic field of a certain fem. When applied to RRAM, its preferred chemical formula is PrxCayMn03, where χ: y = 〇 5: 〇 5, or other composition is X: 0~l; y: 0~1. Other CMR materials including Μη oxides can also be used. • Other RRAM materials are two-element compounds such as Nix〇y,

TixOy > AlxOy、wx0y、Znx〇y、Zrx〇y、CuxOy 等,其中 x: y=0.5: 0.5。或是,其他的組成χ: 〇〜1 ; y: 〇〜1。或者, 也可以使用摻雜的聚合物,其摻雜例如是銅、C60、銀, 其聚合物例如是7,7,8,8-四氰基對醌二曱烷(TCNQ)、[6,6] 苯基 C61 丁酸曱月旨(PCBM)、TCNQ-PCBM、Cu-TCNQ、 Ag-TCNQ、C60-TCVQ、摻雜其他金屬的TCNQ,或是其 他任何具有雙穩態或多穩態阻抗態且可以以電脈衝控制 的聚合物材料。 13 1327381TixOy > AlxOy, wx0y, Znx〇y, Zrx〇y, CuxOy, etc., where x: y = 0.5: 0.5. Or, the other components are: 〇~1; y: 〇~1. Alternatively, a doped polymer may be used, the doping of which is, for example, copper, C60, silver, the polymer of which is, for example, 7,7,8,8-tetracyanoquinonedioxane (TCNQ), [6, 6] phenyl C61 butyrate (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCVQ, TCNQ doped with other metals, or any other bistable or multi-stable impedance A polymeric material that can be controlled by electrical pulses. 13 1327381

三廳號:TW3018PA 層。二其r:—·-型 有絕佳的黏著性。第二,導電:述;變:具 障特性,特別是在升溫的摔,第二,擴散阻 塞材料或是全屬㈣ιΓΓ ^於金屬例如是插 層較佳的材::====:=Three hall number: TW3018PA floor. Second, its r:-·- type has excellent adhesion. Second, the conductivity: said; change: the characteristic of the barrier, especially in the temperature rise, the second, the diffusion barrier material or the whole family (four) ιΓΓ ^ in the metal, for example, the preferred material for the intercalation::====:=

AbTa、Cu、pt、Ir、La、Ni 以及 之族群。較佳的阻障層是橫越過插塞構件的寬1 112。 屬層的面,較佳的是完全覆蓋金屬層m和 介電材料層116^蓋阻障層114,其可採 ^料’且可選自於内層介電層124之材料。此膜層做為 仃對準阻障層m的間隙壁,以第6e圖更清楚說曰明之、。 内金屬介電層124包覆記憶胞’較佳的包括二氧化 中胺、氮切或其他的介電填充材料。在實施例 行平經過平坦化,較佳的是以化學機械研磨製程進 的沉程,以提供—個平坦的表面來進行下層材料層 人位元線122位於内金屬介電層的頂面,其延伸到内金 屬介電層之中,以透過介層窗123連接金屬層12〇。此層 可與記憶體電路的其他部分接觸,如熟悉此技藝者所知曰, 在此不在贅述。此構件可以採用已知的任何一種材料來形 成。在一實施例中,位元線的材料是Ti化合物,例如是 1327381 • ·AbTa, Cu, pt, Ir, La, Ni, and the like. A preferred barrier layer is a width 1 112 that traverses the plug member. Preferably, the face of the glazing layer is completely covered with the metal layer m and the dielectric material layer 116, the barrier layer 114, which may be selected from the material of the inner dielectric layer 124. This film layer serves as a spacer for the alignment of the barrier layer m, which is more clearly illustrated in Fig. 6e. The inner metal dielectric layer 124 envelops the memory cell' preferably comprises a diamine in the dioxide, a nitrogen cut or other dielectric fill material. In the embodiment, the planarization is planarized, preferably by a chemical mechanical polishing process, to provide a flat surface for the underlying material layer of the human bit line 122 on the top surface of the inner metal dielectric layer. It extends into the inner metal dielectric layer to connect the metal layer 12 through the via window 123. This layer can be in contact with other portions of the memory circuit, as is known to those skilled in the art, and will not be described herein. This member can be formed using any of the known materials. In one embodiment, the material of the bit line is a Ti compound, for example 1327381 •

三達編號:TW3018PA . TiN ’或n+多晶石夕’或是包含鈦層的多層材料,例如是 TiN/W/TiN三層材料,或是相似結構TiN/Ti/A1/TiN材料。 第1圖的結構的等效電路可以第2圖來表示之。兩個 電阻1^和&串接,介於位元線31^和BL2之間。施加於 位元線的電壓分別以Vbl、Vb2來表示之。兩個電阻R〗和 R2的壓降為乂丨和v2。因此兩個位元線之間的壓降為 Vb2-Vbl,其等於VfVa。如圖所示,RRAM單元&的面 積小於單元R2的面積’因此,阻抗Ri會大於R2。 表1狀態/值Sanda number: TW3018PA. TiN' or n+ polycrystalline stone or a multilayer material comprising a titanium layer, such as a TiN/W/TiN three-layer material, or a similar structure TiN/Ti/A1/TiN material. The equivalent circuit of the structure of Fig. 1 can be represented by Fig. 2. The two resistors 1^ and & are connected in series between the bit lines 31^ and BL2. The voltage applied to the bit line is represented by Vbl and Vb2, respectively. The voltage drops of the two resistors R and R2 are 乂丨 and v2. Thus the voltage drop between the two bit lines is Vb2-Vbl, which is equal to VfVa. As shown, the area of the RRAM cell &amp is smaller than the area of the cell R2. Therefore, the impedance Ri will be greater than R2. Table 1 status / value

Ri r2 記憶胞值 重置 重置 0 重置 設定 1 δ又疋 重置 2 設定 設定 3 RRAM的狀態組合,及其記憶胞值的結果,如表1 所示。記憶胞值對應相對的所有的阻抗值。 值得注意的是,表1所示的實施例採用“small-endian” 結構。也就是’最後單元是最低有效位數位(LSD),第一 單元是最高有效位數位(MSD)。其他的實施例則可以採 用“big-endian”模式,其數位是相反的,以下所述的程序是 相同的,但是兩記憶體單元是相反的。 各記憶胞狀態的關係繪示於第3 a-3d圖。第3a圖繪 15 1327381Ri r2 Memory Cell Reset Reset 0 Reset Setting 1 δ and 疋 Reset 2 Setting Setting 3 The state combination of RRAM and the result of its memory cell value are shown in Table 1. The memory cell value corresponds to all relative impedance values. It is worth noting that the embodiment shown in Table 1 adopts a "small-endian" structure. That is, the last unit is the least significant digit (LSD) and the first unit is the most significant digit (MSD). Other embodiments may employ a "big-endian" mode in which the digits are reversed, the procedures described below are the same, but the two memory cells are reversed. The relationship between the state of each memory cell is shown in Fig. 3a-3d. Drawing 3a 15 1327381

三達編號:TW3018PA 示具有第一記憶胞單元112和導電阻障層114以及第二記 憶體單元110的記憶胞。在此,兩單元均在重置狀態,具 有低阻值。若是R表示較大RRAM單元112的阻值,其 他單元110的阻值相對於單元112為定值f。在所示的實 施例中,單元110的阻抗高於單元112者,因此,定值f 大於1,但在其他的實施例中,可以相反的方式來說明之。 f值決定了元件的操作的空間,亦即,可允許的阻值變化 量。元件運作時,f值足以進行2位元操作。 如上所述,在第3a-3d圖的實施例中顯示尺寸不同的 兩個RRAM單元產生不同阻抗的結果。其中,較小的單元 具有較高的阻抗。在其他的實施例(未繪示)中,兩個單 元可以採用不同的材料來產生具有同樣差異的阻抗。兩個 實施例之間的結構差異不影響其彼此關係之描述,但差異 仍以定值f來表示。在此實施例中,兩個RRAM單元的厚 度大致相同(詳細說明如後),但寬度不同,以產生不同 的阻抗。 兩個RRAM單元串接,因此,整個記憶胞的阻抗可 以表示成R+fR或(1 +f) R。 將低階單元112轉變為具有較高阻抗準位的設定狀 態,如第3b圖所示。在此,阻抗準位以定值η的比例增 加。不同材質具有不同的定值,依特定的化合物或可選擇 的特性而定,但一給定材料的重置和設定狀態的關係如第 3b圖所示,可以以R—>nR來表示。因此,第3b圖所示的 狀態可以表示成汉+nR或是(n+f) R。 1327381 I tSanda number: TW3018PA shows the memory cell having the first memory cell unit 112 and the conductive resistance barrier layer 114 and the second memory cell unit 110. Here, both units are in a reset state with a low resistance value. If R represents the resistance of the larger RRAM cell 112, the resistance of the other cell 110 is a fixed value f relative to cell 112. In the illustrated embodiment, the impedance of unit 110 is higher than unit 112, and therefore, the fixed value f is greater than 1, but in other embodiments, it can be described in the reverse manner. The value of f determines the space in which the component operates, that is, the allowable change in resistance. When the component is operating, the f value is sufficient for 2-bit operation. As described above, in the embodiment of Figs. 3a-3d, the results show that two RRAM cells of different sizes produce different impedances. Among them, the smaller unit has a higher impedance. In other embodiments (not shown), the two cells can use different materials to produce impedances that are equally different. The structural differences between the two embodiments do not affect the description of their relationship to each other, but the difference is still expressed by a fixed value f. In this embodiment, the two RRAM cells are approximately the same thickness (described in detail later) but differ in width to produce different impedances. The two RRAM cells are connected in series, so the impedance of the entire memory cell can be expressed as R+fR or (1 +f) R. The lower order unit 112 is converted to a set state having a higher impedance level as shown in Fig. 3b. Here, the impedance level is increased by a ratio of a fixed value η. Different materials have different values depending on the particular compound or optional characteristics, but the relationship between the reset and set state of a given material, as shown in Figure 3b, can be expressed as R->nR. Therefore, the state shown in Fig. 3b can be expressed as Han + nR or (n + f) R. 1327381 I t

三M號:TW3018PA 同樣地,第3c圖表示RRAM單元110轉變為設定狀 態;而單元112維持在重置狀態的結果示意圖。在所示的 ' 實施例中,兩個單元是以相同的材料形成,定值η表示設 定和重置狀態的差值,可以以nfR表示其阻值。其可以 (1+nf) R來表示記憶胞的阻值。 最後,第3d圖繪示RRAM單元112和110轉變為設 定狀態的結果,產生R—nR以及fR—nfR轉變。其狀態可 表示為 nR+nfR,或 n ( 1+f) R。 ® 這四個記憶胞值的關係可以下表2來表示之。 表2記憶胞值之關係 關係 記憶胞值 (1+f) R 0 (n+f) R 1 (1+nf) R 2 n (1+f) R 3 值得注意的是,η值和f值分別選擇在n=100以及 f=2。這些值可產生表1所示的所有阻值3R、102R、210R 以及300R。 在位元線BI^和BL2施加電壓,可將記憶胞設定在所 需值(第2圖)。四個電壓值全部足以達成表1所有的可 能值。熟悉此技藝者可知,實際電壓有多種可能。在一實 施例中,採用兩個正電壓(相對於Vbl在Vb2的量測是正 值)以及兩個負電壓,其所得的電壓表示為 Vhigh、Vlow、 -Vhigh 和 _Vl〇w。 所施加電壓的絕對值與記憶體單元的特 17 1327381 < » 三達編號:TW3018PA 性有關,其相關的特性包括所使用的材料和尺寸。在所示 的實施例中,有效的高值為3.3伏特,低值為1.5伏特。 首先,最關鍵的程序是一般重置(RESET),其可使 兩個RRAM單元轉為重置狀態,產生記憶胞值0。此程序 如下表3所示。 表3全部轉變為重置 〇〇 一 早兀 記憶胞 動作 tr9 —· 早兀 記憶 狀態 狀態 胞 Ml 1 3 |Vi |>VRESET 0 0 M2 1 |V2|>VreSET 0 (Vb2~Vbi) =-VhighTriple M: TW3018PA Similarly, Figure 3c shows a schematic diagram of the result of the RRAM cell 110 transitioning to the set state; and the cell 112 maintaining the reset state. In the illustrated embodiment, the two cells are formed of the same material, and the fixed value η represents the difference between the set and reset states, and its resistance can be expressed in nfR. It can represent the resistance of the memory cell by (1+nf) R. Finally, Figure 3d shows the result of the RRAM cells 112 and 110 transitioning to the set state, producing R-nR and fR-nfR transitions. Its state can be expressed as nR+nfR, or n (1+f) R. The relationship of these four memory cell values can be expressed in Table 2 below. Table 2 Relationship of memory cell values Memory cell value (1+f) R 0 (n+f) R 1 (1+nf) R 2 n (1+f) R 3 It is worth noting that η value and f value Choose n=100 and f=2 respectively. These values produce all of the resistance values 3R, 102R, 210R, and 300R shown in Table 1. Applying a voltage to the bit lines BI^ and BL2 sets the memory cell to the desired value (Fig. 2). All four voltage values are sufficient to achieve all of the possible values in Table 1. Those skilled in the art will appreciate that there are many possibilities for actual voltage. In one embodiment, two positive voltages (positive with respect to Vbl at Vb2) and two negative voltages are used, the resulting voltages being expressed as Vhigh, Vlow, -Vhigh, and _Vl〇w. The absolute value of the applied voltage is related to the memory unit's characteristics: TW3018PA, and its associated properties include the materials and dimensions used. In the embodiment shown, the effective high value is 3.3 volts and the low value is 1.5 volts. First, the most critical program is a general reset (RESET), which causes two RRAM cells to go into a reset state, producing a memory cell value of zero. This procedure is shown in Table 3 below. Table 3 is all changed to reset, early morning, memory cell action tr9 —· early memory state state cell Ml 1 3 |Vi |>VRESET 0 0 M2 1 |V2|>VreSET 0 (Vb2~Vbi) = -Vhigh

如所示,進行這種轉變的合適電壓為-VHIGH,其可使 得Vi和V2的壓降絕對值分別超過重置值。在重置狀態的 兩個RRAM單元,其記憶胞全部的值為0。 重置的狀態是所有進一部操作的起始點。由於中間態 之間的轉換可能發生不可預期的結果,因此,較佳的是將 單元回覆到重置狀態,做為改變狀態之操作的第一個步 相反的狀態的記憶胞值為3,如下表4所示者。 表4 0〜3的轉變 早兀 狀態 記憶胞 動作 早兀 狀態 記憶 胞 Ml 0 0 Vi〉Vset 1 3 18 1327381As shown, the appropriate voltage for this transition is -VHIGH, which allows the absolute values of the voltage drops of Vi and V2 to exceed the reset value, respectively. In the two RRAM cells in the reset state, the total value of the memory cells is zero. The reset state is the starting point for all further operations. Since the transition between the intermediate states may have unpredictable results, it is preferable to return the cell to the reset state, and the memory cell value of the state opposite to the first step of the operation of changing the state is 3, as follows Table 4 shows. Table 4 0~3 transition early 兀 state memory cell action early 兀 state memory cell Ml 0 0 Vi>Vset 1 3 18 1327381

· A· A

三達編號:TW3018PA M2 0 V2〉VsET 1Sanda number: TW3018PA M2 0 V2>VsET 1

(VB2_VB1) =VHIGH 此處所施加的Vhigh電壓’足以使得兩個早元產生超 過VSET的壓降。當兩個單元在設定狀態時,記憶胞值為二 位元11或3。 產生記憶胞值2的程序如下表5所示。(VB2_VB1) = VHIGH The Vhigh voltage applied here is sufficient to cause the two early elements to produce a voltage drop that exceeds VSET. When the two units are in the set state, the memory cell value is two bits 11 or 3. The procedure for generating the memory cell value 2 is shown in Table 5 below.

表5 0〜2的轉變 早兀 記憶胞 動作 XJVt — 早兀 記憶胞 狀態 狀態 Ml 0 0 V 1>VseT 1 2 M2 0 V2<VsET 0 (VB2-VB1 ) =VL〇w 在此設定狀態下,壓降Vi大於產生設定狀態所需要 的壓降,因此,R!是設定,但,壓降V2係小於設定之需 求,留下的單元則是在重置狀態。I在設定狀態,而R2 在重置狀態的結果,將使得記憶胞值為兩位元οι或2。 下表6為產生記憶胞值為1之例示。達到1值,是比 其他的轉變困難的,顯而易見的是,假設一開始有兩個單 元在重置,施加足以在V2產生設定狀態的電壓也必須設 定為V!,所得到的值為3,而不是1。解決的方法是讓記 憶胞回到完全設定狀態,如上表3所示。然後,再從記憶 19 1327381 « *Table 5 0~2 transition early memory cell action XJVt — early memory state state Ml 0 0 V 1>VseT 1 2 M2 0 V2<VsET 0 (VB2-VB1) =VL〇w In this setting state, The pressure drop Vi is greater than the pressure drop required to produce the set state. Therefore, R! is the setting, but the pressure drop V2 is less than the set demand, and the remaining unit is in the reset state. I is in the set state, and the result of R2 in the reset state will cause the memory cell value to be two-dimensional οι or 2. Table 6 below is an illustration showing the generation of a memory cell value of 1. Achieving a value of 1 is more difficult than other transitions. It is obvious that if two units are reset at the beginning, a voltage sufficient to generate a set state at V2 must also be set to V!, and the resulting value is 3. Not 1. The solution is to return the memory cell to the fully set state, as shown in Table 3 above. Then, from memory 19 1327381 « *

三達編號:TW3018PA 胞值3開始,施加-Vl〇w的電塵’足以在Ri’而非R2產生 重置,產生記憶胞值為雙位元01或1。 表6轉變為3-1 — 早兀 記憶胞 動作 口口 一 早兀 記憶 狀態 狀態 胞 Ml 1 3 |Vi|>Vreset 0 1 M2 1 |V2|<Vreset 1Sanda number: TW3018PA At the beginning of cell value 3, the electric dust applied to -Vl〇w is sufficient to generate a reset at Ri' instead of R2, resulting in a memory cell value of double bit 01 or 1. Table 6 is changed to 3-1 - early memory cell action mouth one early memory state state cell Ml 1 3 |Vi|>Vreset 0 1 M2 1 |V2|<Vreset 1

(Vb2-Vbi) =-Vl〇W(Vb2-Vbi) =-Vl〇W

第1圖之記憶胞的電壓電流特性如第4圖所示。在圖 中,有兩條曲線,其一是從重置到設定的轉變;其二是想 反的情況。 所得到的流經記憶胞100的電流流動的情形如第5圖 所示。為清楚起見,僅以其中一個單元來說明之。如箭頭 所示,電流由下方的電路經由插塞構件104流到記憶體單 元。然後,電流再通過記憶層110、阻障導電層114以及 第二記憶層112。當然,如以上所說明的,依照各個記憶 層的阻抗狀態,電流量是規則的。然後,電流會通過金屬 層120,並且經由位元線122向外流到記憶體電路。 依照以上所述之原理,一記憶胞之製造方法的實施例 如圖6a-6i所示。請參照圖6a,以傳統的方法形成下層結 構101,具體的結構如上所述。為使以下的說明更為清楚 起見,在以下圖式中的下層結構的構件中相同符號不再重 20 1327381 • ♦The voltage-current characteristics of the memory cell of Fig. 1 are as shown in Fig. 4. In the figure, there are two curves, one is the transition from reset to set; the other is the opposite situation. The resulting current flowing through the memory cell 100 is as shown in Fig. 5. For the sake of clarity, only one of the units will be explained. As indicated by the arrows, current flows from the underlying circuitry via the plug member 104 to the memory unit. Then, the current passes through the memory layer 110, the barrier conductive layer 114, and the second memory layer 112. Of course, as explained above, the amount of current is regular in accordance with the impedance state of each memory layer. Current then passes through the metal layer 120 and flows outward through the bit line 122 to the memory circuit. In accordance with the principles described above, an embodiment of a method of fabricating a memory cell is illustrated in Figures 6a-6i. Referring to Fig. 6a, the underlying structure 101 is formed in a conventional manner, and the specific structure is as described above. For the sake of clarity in the following description, the same symbols are no longer weighted in the components of the underlying structure in the following figures. 20 1327381 • ♦

三達編號:TW3018PA 複標不。 第6b圖繪示沉積兩阻障層/絕緣層ii8a和118b以及 位於其中的金屬層120。此製程較佳的是採用傳統的化學 氣相沉積技術來施行之。然後’以習知的技術進行圖案化 與修整,以形成第6c圖所示的結構。 第6d圖繪示形成RRAM單元112和11 〇。各RRAM 單元的形成方法是分別將金屬層120的材料以及插塞單元 鲁 104氧化。較佳的,是使用電漿氧化製程,以可變比例之 氧氣和氮氣的混合氣體做為氣體源。習知此製程可以採用 直接或是間接法,後者係在微波產生器中產生下流 (downstream )電漿,再以導波器將其注入反應腔室之中。 在任一情況下,所需要功率範圍是800至3000瓦特,對 於直接製程來說,腔室的壓力範圍是1〇至5〇〇托;對間 接製私來乂 ’腔室的壓力範圍是1 〇〇〇至3000托。如上所 述’氧氣和氮氣的比例可以是1: 1至100%的氧氣,較佳 鲁 的是9: 1。腔室溫度範圍是從室溫至攝氏250度,較佳的 是攝氏200度。製程的時間與氧化的金屬的厚度有關,較 佳的是約為400秒。 此製程可形成兩個RRAM單元,其呈l型圖案,如 第6e圖所示。這一些構件的實際尺寸與金屬層120以及 插塞構件104的尺寸有關,這是因為這些構件是在該處進 行氧化而成的。此構件的厚度與氧化或其他的製程有關, 如習知所知者。 RRAM單元之間係透過導電層114來電性接觸,導電 21 1327381Sanda number: TW3018PA Double standard. Figure 6b illustrates the deposition of two barrier/insulation layers ii8a and 118b and a metal layer 120 therein. This process is preferably carried out using conventional chemical vapor deposition techniques. Then, patterning and trimming are performed by a conventional technique to form the structure shown in Fig. 6c. Figure 6d illustrates the formation of RRAM cells 112 and 11 〇. Each of the RRAM cells is formed by oxidizing the material of the metal layer 120 and the plug unit 104, respectively. Preferably, a plasma oxidation process is employed with a variable ratio of oxygen and nitrogen as a gas source. It is known that this process can be either direct or indirect, in which a downstream plasma is generated in a microwave generator and injected into the reaction chamber by a waveguide. In either case, the required power range is 800 to 3000 watts, for direct processes, the chamber pressure range is 1 〇 to 5 Torr; for indirect private 乂' chamber pressure range is 1 〇 〇〇 to 3000 Torr. The ratio of oxygen and nitrogen as described above may be from 1:1 to 100% oxygen, preferably from 9:1. The chamber temperature ranges from room temperature to 250 degrees Celsius, preferably 200 degrees Celsius. The time of the process is related to the thickness of the oxidized metal, preferably about 400 seconds. This process forms two RRAM cells in an l-type pattern as shown in Figure 6e. The actual dimensions of these components are related to the size of the metal layer 120 and the plug member 104 because these members are oxidized there. The thickness of this member is related to oxidation or other processes, as is known. RRAM cells are electrically contacted through conductive layer 114, conductive 21 1327381

* I 三達編號:TW3018PA 層114呈L型’其覆蓋第一 RRAM單元ιι〇並且在第二方 向上(較佳的是相對於第一方向大約呈9〇度 RRAM單元112 ’導電層114可以採用此領域採用任何: 習知材料來形成。在—實施例中,導電層是以卩化合物形 成而成令J如是ΤιΝ或是n+多晶石夕,或是以多層材料形 成而成’例如是TiN/Ti/Al/TiN材料。 L型層’如導電層114’可以採用f知所知的任何一* I Sanda number: TW3018PA Layer 114 is L-shaped' it covers the first RRAM cell ιι and is in the second direction (preferably about 9 degrees relative to the first direction RRAM cell 112 ' Conductive layer 114 can In the embodiment, the conductive layer is formed by using a germanium compound, such as ΤιΝ or n+ polycrystalline stone, or formed of a plurality of layers of materials, for example, TiN/Ti/Al/TiN material. The L-type layer 'such as the conductive layer 114' may be any one known to the well.

法來°在―實施射,是將共形的導電材料沉積 在整個阻障層/金屬層應2G結構上。然後,再將一 ^料116沉積在阻障材料上。接著,在氧化材料116中 fL型層114上方塗上光阻材料,雜,利用兩步驟钱 1序移除氧化材料以及阻障材料。這兩個似彳步驟均可 =採用反應性離子蝴程序來進行非等向性侧。較佳的 ^化物的姓刻步驟是採用含氣的化學品,例如ACF4、F4C 專。,於TiN阻障材料來說,較佳的是含氣之_程序; 歹J如疋Cl2、BC13、以及習知的其他含氣化學品。由於各 ,材料層的材料具有明顯差異,因此,較佳的是採用終點 測控,方法’雖然,若是特定材料具有合適的钱刻速 J也疋可以採用時間控制之方式進行蝕刻。值得注意的 疋較佳的氧化物和TiN是過度蝕刻,以由殘留的TiN產 生漏電路控。同樣地,藉由增加非等向性,可確保L型層 114的形狀’例如是減少腔室的壓力、增加電漿偏壓或是 調餘刻聚合物保護層的钱刻速率。 在圖6f中,記憶胞被介電填充材料124包覆。此材 22 1327381In the implementation of the method, the conformal conductive material is deposited on the entire barrier layer/metal layer 2G structure. Then, a material 116 is deposited on the barrier material. Next, a photoresist material is applied over the fL-type layer 114 in the oxidized material 116, and the oxidized material and the barrier material are removed by a two-step process. Both of these steps can be performed using a reactive ion bombing procedure for the anisotropic side. The preferred step of the compound is to use a gas-containing chemical such as ACF4 or F4C. In the case of TiN barrier materials, it is preferred to have a gas-containing process; 歹J such as 疋Cl2, BC13, and other conventional gas-containing chemicals. Since the materials of the material layers have significant differences, it is preferable to use the end point measurement and control method. Although the specific material has a suitable velocity, it can be etched by time control. It is worth noting that the preferred oxide and TiN are over etched to create a drain circuit control from the residual TiN. Similarly, by increasing the anisotropy, the shape of the L-type layer 114 can be ensured, e.g., by reducing the pressure of the chamber, increasing the plasma bias, or adjusting the rate of the polymer protective layer. In Figure 6f, the memory cells are covered by a dielectric fill material 124. This material 22 1327381

三達編號:TW3018PA 料層可以選自於用來做為内層介電層/内金屬介電層102 的材料,或是習知所知道的一些等效材料。介電填充材料 較佳的是包括二氧化石夕、聚亞酿胺、氮化梦或其他的介電 填充材料。在實施例中,此介電填充材料包括對熱和電具 有相對較佳絕緣特性者,以達到對橋接的熱和電絕緣。 第6g和6h圖描述連結構件的形成,其電性連接到記 憶胞下方的電路部分。首先,請參照第6g圖,在介電材 料124中形成介層孔121,此介層通道由介電層的上表面 經由阻障/絕緣層118延伸至與金屬層120接觸。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。The Sanda number: TW3018PA layer may be selected from materials used as the inner dielectric layer/internal metal dielectric layer 102, or some equivalent materials known in the art. The dielectric filler material preferably comprises a dioxide dioxide, a polyaramine, a nitride or other dielectric filler material. In an embodiment, the dielectric fill material includes relatively good insulating properties for heat and electricity to achieve thermal and electrical insulation of the bridge. Figures 6g and 6h depict the formation of a joint member that is electrically connected to the portion of the circuit below the memory cell. First, referring to Fig. 6g, a via hole 121 is formed in the dielectric material 124, and the via is extended from the upper surface of the dielectric layer via the barrier/insulating layer 118 to be in contact with the metal layer 120. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

23 1327381 * »23 1327381 * »

三達編號:TW3018PA 【圖式簡單說明】 第1圖繪示如申請專利範圍之記憶體單元的實施例。 " 第2圖繪示第1圖所示之元件之電路的示意圖。 第3A-3D圖繪示第1圖所示之元件可達成之邏輯狀 態之阻抗值。 第4圖繪示第1圖之元件的電壓與電流的關係圖。 第5圖繪示第1圖之元件的電流流動的情形。 第6A-6H圖繪示第1圖之記憶元件之製造流程的實 @施例。 【主要元件符號說明】 100 :實施例 100a、100b :記憶體單元 101 下方結構 104 插塞構件 106 字元線 108 共源極線 110、112 :記憶層 118 : SiN 層 114 :阻障層 116 :介電材料 118a、118b :阻障層/絕緣層 120 :金屬層 122 :位元線 124 :介電填充材料 24Sanda number: TW3018PA [Simple description of the drawing] Fig. 1 illustrates an embodiment of a memory unit as claimed in the patent application. " Fig. 2 is a schematic view showing the circuit of the element shown in Fig. 1. Figures 3A-3D illustrate the impedance values of the logic states achievable by the components shown in Figure 1. Fig. 4 is a graph showing the relationship between voltage and current of the element of Fig. 1. Fig. 5 is a view showing a state in which the current of the element of Fig. 1 flows. 6A-6H are diagrams showing the manufacturing process of the memory element of Fig. 1. [Main component symbol description] 100: Embodiment 100a, 100b: Memory cell 101 Lower structure 104 Plug member 106 Word line 108 Common source line 110, 112: Memory layer 118: SiN layer 114: Barrier layer 116: Dielectric material 118a, 118b: barrier layer / insulating layer 120: metal layer 122: bit line 124: dielectric filling material 24

Claims (1)

2010/3/18 修正 、申請專利範園: 一種記憶元件,包括: 憶層; 第-導電材料’具有一第—表面,其上有一第一記 -第二導電材料,具有一第二表面, 憶層;以及 /、有第一 5己 觸^^導電層’連㈣第—和該第二記騎且電性接 ==:r直:㈣件,使及 其中該第一記憶層具有一截 的截面積。 面積小於該第二記憶層 2. 如申請翻範圍第丨項所述 憶層可選擇地顯示第—和第二邏輯準位。 該5己 3. 如申請專利範圍第丨項所述之元件,其中各 =依據該記憶元件所選擇的電壓準位顯^ 邏輯準位。 π弟一 4. 如申料利朗第丨項所述 憶層之邏輯準位的潠煜β&认够 ,、甲这些兄 四邏輯準Γ輸於第―、第:、第三以及第 邏輯^7請專利範圍第4項所述之元件,其中該第一 邏輯準位相應於疋件之阻抗準位為(i+f) R,其 隙壁的厚度的函數’且11為該第—記憶層及該第二 °己隐層之其中一者的阻值。 6.如申請專利範圍第4項所述之元件,其中該第二 25 1327381 2010/3/18 修正 * » * I 邏輯準位相應於元件之阻抗準位為(n+f) R,其中f為一 介電間隙壁的厚度的函數,η為該元件材料的函數,且R 為該第一記憶層及該第二記憶層之其中一者的阻值。 7. 如申請專利範圍第4項所述之元件,其中該第三 邏輯準位相應於元件之阻抗準位為(1+nf) R,其中f為一 介電間隙壁的厚度的函數,η為該元件材料的函數,且R 為該第一記憶層及該第二記憶層之其十一者的阻值。 8. 如申請專利範圍第4項所述之元件,其中該第四 邏輯準位相應於元件之阻抗準位為n ( 1+f) R,其中f為 一介電間隙壁的厚度的函數,η辱該元件材料的函數,且 R為該第一記憶層及該第二記憶層之其中一者的阻值。 9. 一種選擇記憶體單元之邏輯狀態的方法,該記憶 體單元延伸至位元線bl和b2之間且具有彼此成直角的 RRAM單元,該RRAM單元是由L型導電連結構件構成, 且其中的一第一記憶層之截面積小於一第二記憶層之截 面積,該方法包括: 於該位元線bl施加一電壓V!,並於該位元線b2施 加一電壓V2,該電壓Vi和V2超過各該記憶體單元的重置 電壓;以及 藉由施加一選擇的準位乂!和V2,從第一、第二、第 三以及第四記憶體單元邏輯準位之中選擇其一。 10. 如申請專利範圍第9項所述之選擇記憶體單元之 邏輯狀態的方法,其中該記憶體單元邏輯準位由重置邏輯 準位改變為兩位元邏輯準位3,係藉由在位元線施加一電 26 1327381 2010以18修正 壓,使得各該記憶層的電壓超過各層的vSET。 11. 如申請專利範圍第9項所述之選擇記憶體單元之 邏輯狀態的方法,其中該記憶體單元邏輯準位由重置邏輯 準位改變為兩位元邏輯準位2,係藉由在位元線施加一電 壓,使得該第一記憶層的電壓超過各層的VSET,並且使得 該第二記憶層的電壓小於該層之Vset。 12. 如申請專利範圍第9項所述之選擇記憶體單元之 邏輯狀態的方法,其中該記憶體單元邏輯準位由兩位元邏 輯準位3改變為兩位元邏輯準位1,係藉由在位元線施加 一電壓,使得該第一記憶層之電壓的絕對值超過各層的 VRESET,並且使得該第二記憶層之電壓的絕對值小於該層 之 Vreset。 13. —記憶元件,包括: 一第一導電材料,具有一第一表面,且其上有一第一 記憶層; 一第二導電材料,具有一第二表面,且其上有一第二 記憶層; 其中各該記憶層可選擇性顯示第一和第二邏輯準 位,各邏輯準位相應於該層之一已知電性阻抗;以及 一連結導電層,連接該第一和該第二記憶層,且電性 接觸,該連結導電層係為一 L型構件,使得該第一記憶層 及該第二記憶層彼此呈直角; 其中該第一記憶層之截面積小於該第二記憶層之截 面積。 27 1327381 2010/3/18 修正 » » t 14. 如申請專利範圍第13項所述之記憶元件,其中 該記憶層之邏輯準位係選自於第一、第二、第三和第四邏 輯準位。 15. 如申請專利範圍第14項所述之記憶元件,其中 該第一邏輯準位相應於元件阻抗準位(1+f) R,其中f為 一介電間隙壁的厚度的函數,且R為該第一記憶層及該第 二記憶層之其中一者的阻值。 16. 如申請專利範圍第14項所述之記憶元件,其中 該第二邏輯準位相應於元件之阻抗準位為(n+f) R,其中 f為一介電間隙壁的厚度的函數,η為該元件材料的函數, 且R為該第一記憶層及該第二記憶層之其中一者的阻值。 17. 如申請專利範圍第14項所述之記憶元件,其中 該第三邏輯準位相應於元件之阻抗準位為(1+nf) R,其 中f為一介電間隙壁的厚度的函數,η為該元件材料的函 數,且R為該第一記憶層及該第二記憶層之其中一者的阻 值。 18. 如申請專利範圍第14項所述之記憶元件,其中 該第四邏輯準位相應於元件之阻抗準位為n ( 1+f) R,其 中f為一介電間隙壁的厚度的函數,η為該元件材料的函 數,且R為該第一記憶層及該第二記憶層之其中一者的阻 值0 28 13273812010/3/18 Amendment, Patent Application: A memory element comprising: a memory layer; the first conductive material has a first surface having a first-second conductive material having a second surface Recalling the layer; and /, having the first 5 touches ^^ conductive layer 'connected (four) first - and the second riding and electrically connected ==: r straight: (four) pieces, and the first memory layer has one The cross-sectional area of the cut. The area is smaller than the second memory layer. 2. The memory layer optionally displays the first and second logic levels as described in the application. The component of claim 5, wherein each component = displays a logic level according to a voltage level selected by the memory component. π弟一4. As stated in the 利β& The component of claim 4, wherein the first logic level corresponds to the impedance level of the component is (i+f) R, and the function of the thickness of the gap is 'and 11 is the first memory The resistance of one of the layer and the second hidden layer. 6. The component of claim 4, wherein the second 25 1327381 2010/3/18 amendment* » * I logic level corresponds to the impedance level of the component is (n+f) R, where f η is a function of the thickness of a dielectric spacer, η is a function of the material of the component, and R is the resistance of one of the first memory layer and the second memory layer. 7. The component of claim 4, wherein the third logic level corresponds to an impedance level of the component of (1+nf) R, where f is a function of a thickness of a dielectric spacer, η Is a function of the material of the component, and R is the resistance of the eleventh of the first memory layer and the second memory layer. 8. The component of claim 4, wherein the fourth logic level corresponds to an impedance level of the component of n (1+f) R, where f is a function of a thickness of a dielectric spacer, n is a function of the component material, and R is the resistance of one of the first memory layer and the second memory layer. 9. A method of selecting a logic state of a memory cell, the memory cell extending between bit lines bl and b2 and having RRAM cells at right angles to each other, the RRAM cell being comprised of an L-type conductive bonding member, and wherein The cross-sectional area of a first memory layer is smaller than the cross-sectional area of a second memory layer. The method includes: applying a voltage V! to the bit line bl, and applying a voltage V2 to the bit line b2, the voltage Vi And V2 exceeds the reset voltage of each of the memory cells; and by applying a selected level 乂! And V2, selecting one of the first, second, third, and fourth memory unit logic levels. 10. The method of selecting a logic state of a memory cell as described in claim 9 wherein the memory cell logic level is changed from a reset logic level to a two-dimensional logic level 3 by The bit line is applied with an electric 26 1327381 2010 with a correction pressure of 18 such that the voltage of each of the memory layers exceeds the vSET of each layer. 11. The method of selecting a logic state of a memory cell as described in claim 9 wherein the memory cell logic level is changed from a reset logic level to a two-dimensional logic level 2 by The bit line applies a voltage such that the voltage of the first memory layer exceeds the VSET of each layer and the voltage of the second memory layer is less than the Vset of the layer. 12. The method for selecting a logic state of a memory unit according to claim 9, wherein the memory unit logic level is changed from a two-dimensional logic level 3 to a two-dimensional logic level 1, A voltage is applied across the bit line such that the absolute value of the voltage of the first memory layer exceeds the VRESET of each layer and the absolute value of the voltage of the second memory layer is less than the Vreset of the layer. The memory element comprises: a first conductive material having a first surface and having a first memory layer thereon; a second conductive material having a second surface and having a second memory layer thereon; Each of the memory layers can selectively display first and second logic levels, each logic level corresponding to a known electrical impedance of the layer; and a bonding conductive layer connecting the first and second memory layers And electrically contacting, the connecting conductive layer is an L-shaped member, such that the first memory layer and the second memory layer are at right angles to each other; wherein a cross-sectional area of the first memory layer is smaller than a section of the second memory layer area. 27 1327381 2010/3/18 Amendment» » t 14. The memory element of claim 13 wherein the logic level of the memory layer is selected from the first, second, third and fourth logic Level. 15. The memory device of claim 14, wherein the first logic level corresponds to a component impedance level (1+f) R, where f is a function of a thickness of a dielectric spacer, and R The resistance of one of the first memory layer and the second memory layer. 16. The memory device of claim 14, wherein the second logic level corresponds to an impedance level of the component of (n+f) R, where f is a function of a thickness of a dielectric spacer, η is a function of the material of the component, and R is a resistance of one of the first memory layer and the second memory layer. 17. The memory device of claim 14, wherein the third logic level corresponds to an impedance level of the component of (1+nf) R, where f is a function of a thickness of a dielectric spacer, η is a function of the material of the component, and R is a resistance of one of the first memory layer and the second memory layer. 18. The memory device of claim 14, wherein the fourth logic level corresponds to an impedance level of the component of n (1+f) R, where f is a function of a thickness of a dielectric spacer , η is a function of the material of the component, and R is a resistance value of one of the first memory layer and the second memory layer 0 28 1327381 识更)正替換頁 2010/3/18專利申請案號 第095139862號修正It is revised, and it is revised. 13273811327381 2010/3/18專利中請案號 第095139862號修正 114Proposal No. 095139862 in the 2010/3/18 patent 114 第3A圓 114Circle 3A 114 第3B圖 1327381Figure 3B 1327381 2010/3/18專利申請案號 第095139862號修正 1142010/3/18 Patent Application No. 095139862 Amendment 114 第3C圖 114Figure 3C 114 第3D圖 1327381 /] /¾ 2010/3/18專利申請案號 第0951398K號修正 100 1223D Figure 1327381 /] /3⁄4 2010/3/18 Patent Application No. 0951398K Amendment 100 122 第5number 5 13273811327381 fiW月/Tw復)正替換頁 2010/3/18專利申請案號 第095139862號修正FiW month / Tw complex) is replacing page 2010/3/18 Patent Application No. 095139862 第6A匱 ILD/IMD 118a 120 118b 第6B匱 1327381Section 6A ILD/IMD 118a 120 118b Section 6B 1327381 2010/3/18專利申請案號 第095139862號修正2010/3/18 Patent Application No. 095139862 第6C圓6C round 104 第6D匱 1327381104 6D匮 1327381 2010/3/18專利申請案號 第095139862號修正 120 118 1122010/3/18 Patent Application No. 095139862 Amendment 120 118 112 第6E圖 124Figure 6E 124 第6F圖 1327381Figure 6F 1327381 月条 (交)正替換頁 2010/3/18專利申請案號 第095139862號修正 118 121 120 124Monthly replacement (provisional) replacement page 2010/3/18 Patent Application No. 095139862 Amendment 118 121 120 124 第6G圖 123 122Figure 6G 123 122 第6H圖Figure 6H
TW95139862A 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory TWI327381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Publications (2)

Publication Number Publication Date
TW200820469A TW200820469A (en) 2008-05-01
TWI327381B true TWI327381B (en) 2010-07-11

Family

ID=44770176

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Country Status (1)

Country Link
TW (1) TWI327381B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497492B (en) * 2012-05-30 2015-08-21 Ind Tech Res Inst Memory cell of resistive random access memory and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385314B2 (en) 2008-08-12 2016-07-05 Industrial Technology Research Institute Memory cell of resistive random access memory and manufacturing method thereof
US10424374B2 (en) 2017-04-28 2019-09-24 Micron Technology, Inc. Programming enhancement in self-selecting memory
US10424730B2 (en) 2018-02-09 2019-09-24 Micron Technology, Inc. Tapered memory cell profiles
US10854813B2 (en) * 2018-02-09 2020-12-01 Micron Technology, Inc. Dopant-modulated etching for memory devices
US10693065B2 (en) 2018-02-09 2020-06-23 Micron Technology, Inc. Tapered cell profile and fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497492B (en) * 2012-05-30 2015-08-21 Ind Tech Res Inst Memory cell of resistive random access memory and manufacturing method thereof

Also Published As

Publication number Publication date
TW200820469A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US7616472B2 (en) Method and apparatus for non-volatile multi-bit memory
CN100573898C (en) The bottom electrode Ovonics unified memory and the manufacture method thereof of autoregistration and planarization
CN100501920C (en) Method for manufacturing thin film fuse phase change RAM in self-aligned mode
CN100562985C (en) Make the autoregistration cavity of memory cell and the method for hearth electrode
CN101197422B (en) Method for making a keyhole opening during the manufacture of a memory cell
US7449710B2 (en) Vacuum jacket for phase change memory element
TWI309454B (en) Process in the manufacturing of a resistor random access memory and memory device
CN100502029C (en) Phase change memory element and its forming method
CN100481389C (en) Programmable resistive RAM and manufacturing method thereof
TWI325174B (en) I-shaped phase change memory cell
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US8912515B2 (en) Manufacturing method for pipe-shaped electrode phase change memory
US8084760B2 (en) Ring-shaped electrode and manufacturing method for same
TW200820422A (en) Memory cell device with circumferentially-extending memory element
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
US8344347B2 (en) Multi-layer electrode structure
TWI313044B (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
TW200834911A (en) Memory element with reduced-current phase change element
CN101013737A (en) Thermally insulated phase change memory device and manufacturing method
TW200908313A (en) Phase change memory with dual word lines and source lines and method of operating same
TWI327381B (en) Apparatus, fabrication method and operating method and for non-volatile multi-bit memory
US7897954B2 (en) Dielectric-sandwiched pillar memory device
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI305044B (en) Bridge resistance random access memory device and method with a singular contact structure