TW200820469A - Apparatus, fabrication method and operating method and for non-volatile multi-bit memory - Google Patents

Apparatus, fabrication method and operating method and for non-volatile multi-bit memory Download PDF

Info

Publication number
TW200820469A
TW200820469A TW95139862A TW95139862A TW200820469A TW 200820469 A TW200820469 A TW 200820469A TW 95139862 A TW95139862 A TW 95139862A TW 95139862 A TW95139862 A TW 95139862A TW 200820469 A TW200820469 A TW 200820469A
Authority
TW
Taiwan
Prior art keywords
memory
layer
component
layers
conductive material
Prior art date
Application number
TW95139862A
Other languages
Chinese (zh)
Other versions
TWI327381B (en
Inventor
Erh-Kun Lai
Chia-Hua Ho
Kuang-Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95139862A priority Critical patent/TWI327381B/en
Publication of TW200820469A publication Critical patent/TW200820469A/en
Application granted granted Critical
Publication of TWI327381B publication Critical patent/TWI327381B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory device that selectively exhibits first and second logic levels. A first conductive material has a first surface with a first memory layer formed thereon, and a second conductive material has a second surface with a second memory layer formed thereon. A connective conductive layer joins the first and second memory layers and places the same in electrical contact. The structure is designed so that the first memory layer has a cross-section area less than that of the second memory layer.

Description

2〇〇82_〇469tw3〇18pA 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種非揮發性記憶體、及其製造方法 與操作方法,且特別是有關於一種適於建構大尺寸超小型 記憶系統之元件、及其製造方法與操作方法。 【先前技術】 隨著非揮發性記憶元件,特別是快閃記憶元件,對於 ,穩疋度、密集度以及可靠度需求的增加,使得許多不同的 元件相繼問世。目冑有一種非常有用的技術可與動態隨機 存取記憶體(DRAM)匹敵,其記憶體單元可以在兩種或 多種狀態之間轉變,其各狀態具有一特徵阻抗準位。在狀 態之間轉變的能力,可以輕易轉換為顯示兩種阻抗準位的 能力,其可以輕易地等於邏輯值〇或1。 目前已有許多的材料可以用於此種記憶應用。其中的 一種疋稱為硫屬化合物的材料,其至少具有兩個固相。這 些材料可以藉由施加適合用於積體電路之準位的電流來 產生相變化。一般非結晶固相(generally amorphous solid state)的阻值高於一般結晶固相之阻值,其可快速感測指 不出資料。這一些特性已經被研究使用來做為可程式阻抗 材料,以形成可被讀取、寫入以及隨機存取的非揮發性記 憶體電路。 從非晶相轉變到結晶相一般是在低電流下操作。從結 曰曰相改變到非晶相,此處做為重置,一般是在高電流下操 作’其包括一個短而高電流密度脈衝以熔化或破壞結晶結 52〇〇82_〇469tw3〇18pA IX. Description of the Invention: [Technical Field] The present invention relates to a non-volatile memory, a method of manufacturing the same, and a method of operating the same, and in particular to a suitable construction A component of a large-sized ultra-small memory system, a method of manufacturing the same, and an operation method. [Prior Art] With the increase in demand for stability, density, and reliability of non-volatile memory elements, particularly flash memory elements, many different components have been introduced. There is a very useful technique for competing with dynamic random access memory (DRAM), in which the memory cells can transition between two or more states, each state having a characteristic impedance level. The ability to transition between states can be easily converted to the ability to display two impedance levels, which can easily be equal to a logical value of 〇 or 1. A number of materials are currently available for such memory applications. One of them is a material known as a chalcogen compound having at least two solid phases. These materials can produce phase changes by applying a current suitable for the level of the integrated circuit. Generally, the resistance of the generally amorphous solid state is higher than that of the general crystalline solid phase, which can quickly detect no data. These features have been investigated for use as programmable impedance materials to form non-volatile memory circuits that can be read, written, and random accessed. The transition from an amorphous phase to a crystalline phase is generally operated at low currents. Changing from the junction phase to the amorphous phase, here as a reset, is typically operated at high currents. 'It includes a short, high current density pulse to melt or destroy the crystallographic junction 5

rW3〇18PA 200820469 構’之後,相變化材料很快冷卻,終止相變化程序,允許 至少一部份的相變化結構穩定於非晶態。一般都希望能使 得相變化材料由結晶態轉變為非晶態的重置電流大小愈 小愈好。重置電流的大小可以透過減少記憶胞中相變化材 料單元的尺寸來減少之,以期能以小的絕對電流值通過相 變化材料單元,來達到較高的電流密度。 目前發展的方向是在積體電路結構中形成小孔洞,再 以少量的可程式化阻抗材料來填充小孔洞。有關小孔洞之 發展的專利包括:Ovshinsky於1997年11月11日核准之 名稱為“具有錐形接觸窗之多位元單胞記憶體單元,,的美 國專利第5,687,112號;Zahorik等人於1998年8月4曰 獲准之名稱為“硫屬化合物之記憶元件,,的美國專利第 5,789,277號;Doan等人於2000年11月21日獲准之名稱 為“可控制Ovnic相變化半導體記憶元件,,的美國專利第 6,150,253 號。 在製造小尺寸元件以及符合大尺度記憶元件的嚴格 規格在製程上所產生的變異,會衍生一些問題。再者,隨 著電容量的增加,元件尺寸縮小,業界已到達一領域,其 受物理限制,如原子尺寸,因而阻礙了未來的發展。因此, 需要持續發展一種較佳的技術,以在間距減少下增加記憶 體的效能。 【發明内容】 本發明是提供一種記憶元件及其製造方法,其可以在 間距減少下增加記憶體的效能。After rW3〇18PA 200820469, the phase change material cools quickly, terminating the phase change procedure, allowing at least a portion of the phase change structure to stabilize in the amorphous state. It is generally desirable to make the change current of the phase change material from a crystalline state to an amorphous state as small as possible. The magnitude of the reset current can be reduced by reducing the size of the phase change material unit in the memory cell in order to achieve a higher current density by varying the material unit with a small absolute current value. The current development direction is to form small holes in the integrated circuit structure, and then fill the small holes with a small amount of stylized impedance material. Patents relating to the development of small holes include: U.S. Patent No. 5,687,112, issued on November 11, 1997 by Ovshinsky, entitled "Multi-bit cell memory cells with tapered contact windows"; Zahorik et al. U.S. Patent No. 5,789,277, entitled "Civil Compound Memory Element," was approved by Doan et al. on November 21, 2000 as "Controllable Ovnic Phase Change Semiconductor Memory Element". U.S. Patent No. 6,150,253. The variation in the manufacturing process of small-sized components and the strict specifications of large-scale memory components can cause problems. Furthermore, as the capacitance increases, the component size As the industry shrinks, the industry has reached a field that is limited by physical limitations, such as atomic size, thus hindering future development. Therefore, it is necessary to continuously develop a better technique to increase the efficiency of memory under reduced pitch. The present invention provides a memory element and a method of fabricating the same that can increase the performance of a memory with reduced pitch.

rW3018PA 200820469 ---- 一 V …Μ 本發明是提供一種記憶元件之製造方法,其可以在間 距減少下增加記憶體的效能。 本發明是提供一種記憶元件之操作方法,其可以在間 距減少下增加記憶體的效能。 本發明一方面是提供一種記憶元件,其可選擇性顯示 第一和第二邏輯準位。一第一導電材料,具有一第一表 面,且其上有一第一記憶層。一第二導電材料,具有一第 二表面,且其上有一第二記憶層。一連結導電層,連接第 一和第二記憶層且電性接觸。其結構之第一記憶層之截面 積小於第二記憶層之截面積。 本發明提供一種選擇記憶體單元之邏輯狀態的方 法,此記憶體單元延伸至位元線bl和b2之間且具有彼此 成直角的RRAM單元,此RRAM單元是由L型導電連結 構件構成,且其中的一第一記憶層之截面積小於一第二記 憶層之截面積。此方法包括:於位元線bl施加一電壓 Vi,並於位元線b2施加一電壓V2,其中電壓Vi* V2超 過各記憶體單元的重置電壓;以及藉由施加一選擇的準位 乂!和V2,從第一、第二、第三以及第四記憶體單元邏輯 準位之中選擇其一。 本發明又提出一種記憶元件,其包括第一導電材料、 第二導電材料與連結導電層。第一導電材料,具有一第一 表面,且其上有第一記憶層;第二導電材料,具有一第二 表面,且其上有第二記憶層。第一和第二記憶層可選擇性 顯示第一和第二邏輯準位,各邏輯準位相應於該層之一已 7 200820469rW3018PA 200820469 ---- A V ... The present invention provides a method of fabricating a memory element that can increase the performance of the memory with a reduced pitch. SUMMARY OF THE INVENTION The present invention is directed to a method of operating a memory device that can increase the performance of a memory with reduced spacing. One aspect of the present invention is to provide a memory element that selectively displays first and second logic levels. A first conductive material having a first surface and having a first memory layer thereon. A second electrically conductive material having a second surface and having a second memory layer thereon. A connecting conductive layer connects the first and second memory layers and is in electrical contact. The cross-sectional area of the first memory layer of the structure is smaller than the cross-sectional area of the second memory layer. The present invention provides a method of selecting a logic state of a memory cell that extends between bit lines bl and b2 and has RRAM cells at right angles to each other, the RRAM cell being composed of an L-type conductive bonding member, and The cross-sectional area of one of the first memory layers is smaller than the cross-sectional area of the second memory layer. The method includes applying a voltage Vi to the bit line bl and applying a voltage V2 to the bit line b2, wherein the voltage Vi*V2 exceeds a reset voltage of each memory cell; and by applying a selected level 乂! And V2, selecting one of the first, second, third, and fourth memory unit logic levels. The invention further provides a memory element comprising a first conductive material, a second conductive material and a bonded conductive layer. The first conductive material has a first surface and has a first memory layer thereon; the second conductive material has a second surface and has a second memory layer thereon. The first and second memory layers can selectively display the first and second logic levels, and each logic level corresponds to one of the layers. 7 200820469

一违綱 m · rW3018PA 知電性阻抗。第一記憶層之截面積小於第二記憶層之截面 積。連結導電層,連接且電性接觸第一和第二記憶層。 本發明提出一種記憶元件,其包括二插塞、共源極 線、導電材料、二第一記憶層、兩第二記憶層、二連結導 電層與位元線。二插塞,位於基底上。共源極線,位於二 插塞之間。二字元線,分別位於各插塞與共源極線之間。 導電材料,位於共源極線與二字元線上方,並與共源極線 電性連接。二第一記憶層,分別位於二插塞的表面上。二 第二記憶層,分別位於第一導電材料的側壁上,且各第二 記憶層具有一截面積大於各第二記憶層的截面積。二連結 導電層,分別連接且電性接觸各第一和各第二記憶層,分 別構成一記憶單元。位元線,電性連接第一導電材料。 本發明又提出一種記憶單元,包括至少一字元線、介 電層、插塞、共源極線、至少一導電材料、第一記憶層、 第一 s己憶層、連結導電層與位元線。字元線位於基底上。 ( 7丨電層位於基底上。一插塞與一共源極線,分別位於字元 線兩侧之介電層之中。導電材料,具有一截面,且位於介 電層上,與共源極線電性連接。第一記憶層,位於插塞的 表面上並與其電性接觸。第二記憶層,位於於導電材料的 截面上並與其電性接觸,且第二記憶層具有一截面積大於 第二記憶層的截面積。連結導電層,電性連接第一和第二 記憶層。位元線,電性連接導電材料層。 —為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 8 2008戀_隱 【實施方式】 此種記憶胞之多位元記憶胞、陣列及其製造方法將配 合第1圖至第6圖詳細說明如下。 第1圖是繪示具有記憶體單元100a、100b之記憶胞 之實施例100,其回應所附之申請專利範圍之需求。如同 一般實際的記憶體單元設計,此處所繪示和討論的記憶體 單元只是一個較大記憶體電路的一部份,其中記憶體單元 (100&和100b構成記憶胞100。記憶胞係排成陣列以控制 其存取,且一個完整的記憶單位可能包含十億個以上的記 憶體單元。記憶體單元的以外的電路並非本發明之範圍。 典型的s己憶體電路可參照美國專利申請第11/155〇67號, 其名稱為“薄膜熔化相變化隨機存取記體及其製造方法”, 申請人與本案者相同,其内容併入本案參考之。 記憶胞100係建構於下方結構101之上,其為傳統的 共源極記憶體陣列結構。其架構詳細說明如下,但,值得 、注意的是,其單元是一種面對稱環繞於共源極線108之軸 心的結構。各半個部分分別相當於單一個記憶體單元結 構。在傳統的共源極結構中,各單元結構包括字元線106 以及插塞構件104。插塞構件104較佳的是以耐熱金屬來 形成的,耐熱金屬例如是鎢。其他合適的耐熱金屬包括 Ή、Mo、A卜 Ta、Cu、Pt、Ir、La、Ni 以及 RU ,及其氧 化物與氮化物。例如TiN、Ru0或Ni〇則是已知有用的耐 熱金屬。較佳的字元線106是以多晶矽、金屬矽化物或是 9 200820469A violation m · rW3018PA Electro-optical impedance. The cross-sectional area of the first memory layer is smaller than the cross-sectional area of the second memory layer. A conductive layer is bonded to connect and electrically contact the first and second memory layers. The invention provides a memory device comprising a second plug, a common source line, a conductive material, two first memory layers, two second memory layers, two connected conductive layers and bit lines. Two plugs, located on the substrate. Common source line, located between the two plugs. Two word lines are located between each plug and the common source line. The conductive material is located above the common source line and the two-character line, and is electrically connected to the common source line. Two first memory layers are respectively located on the surface of the two plugs. The second memory layers are respectively located on sidewalls of the first conductive material, and each of the second memory layers has a cross-sectional area larger than a cross-sectional area of each of the second memory layers. The two connecting conductive layers respectively connect and electrically contact the first and second memory layers to form a memory unit. The bit line is electrically connected to the first conductive material. The invention further provides a memory unit comprising at least one word line, a dielectric layer, a plug, a common source line, at least one conductive material, a first memory layer, a first s memory layer, a connection conductive layer and a bit element line. The word line is on the substrate. (7 丨 electric layer is located on the substrate. A plug and a common source line are respectively located in the dielectric layer on both sides of the word line. The conductive material has a cross section and is located on the dielectric layer, and the common source The first memory layer is located on and electrically in contact with the surface of the plug. The second memory layer is located on the cross section of the conductive material and is in electrical contact therewith, and the second memory layer has a cross-sectional area greater than The cross-sectional area of the second memory layer is connected to the conductive layer and electrically connected to the first and second memory layers. The bit line is electrically connected to the conductive material layer. - To make the above content of the present invention more obvious, the following A preferred embodiment, in conjunction with the drawings, is described in detail as follows: 8 2008 Love_Hidden [Embodiment] The memory cell of the memory cell, the array and the manufacturing method thereof will cooperate with Figure 1 to Figure 6 is described in detail below. Figure 1 is a diagram showing an embodiment 100 of a memory cell having memory cells 100a, 100b in response to the needs of the appended claims. As is typical of memory cell designs, here Draw and discuss The body unit is only a part of a larger memory circuit in which the memory units (100& and 100b form a memory cell 100. The memory cells are arranged in an array to control their access, and a complete memory unit may contain one billion More than one memory unit. Circuits other than the memory unit are not within the scope of the invention. A typical suffix circuit can be found in U.S. Patent Application Serial No. 11/155,67, entitled "Thin Film Melting Phase Change Randomly The reader and its manufacturing method are the same as those of the present applicant, and the contents thereof are incorporated in the present application. The memory cell 100 is constructed on the lower structure 101, which is a conventional common source memory array structure. The details are as follows, but it is worth noting that the unit is a structure in which the plane symmetry surrounds the axis of the common source line 108. Each half portion is equivalent to a single memory unit structure. In the pole structure, each unit structure includes a word line 106 and a plug member 104. The plug member 104 is preferably formed of a heat resistant metal such as tungsten. Suitable heat resistant metals include ruthenium, Mo, A, Ta, Cu, Pt, Ir, La, Ni, and RU, and oxides and nitrides thereof. For example, TiN, RuO, or Ni〇 are known to be useful heat resistant metals. The good word line 106 is polycrystalline germanium, metal germanide or 9 200820469

二斑綱肌.rW3018PA 的内層介電層 這些材料盡可 一氧化發或相 相似的材料來形成。這一些構件被埋在傳統 /内金屬介電層(ILD/IMD)之中。如習知, 能以具有低介電常數者較佳,較佳的材料是 似的材料。 在所不的實施例中’覆蓋共源極層的結構係位於金屬 層no中心的上方,其可以使用銅金屬化。其他的金 包括鋁、氮化鈦以及鎢為主的材料都是可以採用的。此 外’也可以使用非金屬導電材料例如是摻雜 層位於隨層118之間,分別位於金屬層的上方和下方 ==說Γ。這三層組件延伸到接近、但未覆蓋 插基構件104之處。再者’咖材料並未覆蓋金屬層。金 屬層的厚度較佳的齡於1G至細nm之間,更佳的是約 為20腿。兩個SiN層的厚度較佳的是介於2〇 之 間,更佳的是約為30nm。 在各插塞構件的頂面以及金屬層的側壁分別設置記 隱層110和112。這些材料層的組成將說明如後。而其形 狀般呈扁平狀,其厚度範圍在2nm至3〇〇nm ,較佳的是 約為10nm 〇 各忑隐層11〇、112是以一種採用至少具有兩種穩定 阻抗準位的材料形成的,此材料稱之為電阻式隨機存取記 憶體RRAM材料。目前,已有數種材料被證實可以用於製 造RRAM,其說明如後。 硫屬化合物族群是一種重要的RRAM材料。硫族元 素包括週期表第六族的元素中的氧、硫、石西、碌四種元素 200820469 _The inner dielectric layer of the two-spotted muscle. rW3018PA These materials can be formed by a oxidized or similar material. These components are buried in a conventional/internal metal dielectric layer (ILD/IMD). As is conventional, a material having a low dielectric constant can be preferred, and a preferred material is a material. In a non-embodimental embodiment, the structure covering the common source layer is located above the center of the metal layer no, which can be metallized using copper. Other gold materials, including aluminum, titanium nitride, and tungsten, are available. Alternatively, a non-metallic conductive material such as a doped layer may be used between the layers 118, above and below the metal layer, respectively. The three-layer assembly extends to near, but does not cover, the insert member 104. Furthermore, the 'coffee material does not cover the metal layer. The thickness of the metal layer is preferably between 1 G and fine nm, more preferably about 20 legs. The thickness of the two SiN layers is preferably between 2 Å, more preferably about 30 nm. Recessive layers 110 and 112 are provided on the top surface of each plug member and the side walls of the metal layer, respectively. The composition of these material layers will be explained as follows. The shape is flat, and the thickness thereof ranges from 2 nm to 3 nm, preferably about 10 nm. Each of the hidden layers 11〇, 112 is formed of a material having at least two stable impedance levels. This material is called a resistive random access memory RRAM material. Currently, several materials have been proven to be useful in the fabrication of RRAM, as explained below. The chalcogenide group is an important RRAM material. The chalcogen elements include the four elements of oxygen, sulfur, Shixi, and Lu in the elements of the sixth group of the periodic table. 200820469 _

二達編3711 · rW3〇18PA 中任何一種。硫屬化合物包括硫族元素和陽電性 (electropositive)之元素或自由基之化合物。硫屬化合物 合金包括硫屬化合物和其他材料例如是過渡金屬之組合 物。通常硫屬化合物合金包括一種或多種週期表第六族之 元素,例如鍺和鋅。通常,硫屬化合物合金包括銻(讥)、 鎵(Ga)、銦(In)和銀(Ag)中一種或多種的組合物。 由於硫屬化合物可包括兩種固態相,且分別具有特徵阻 抗,可達成雙記憶之特性,因此,這一些材料稱之為“相 ^ 變化”材料或合金。 科技文獻中已揭露多種相變化型記憶體材料,其合金 包括 Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、 In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、 Ge/Sn/Sb/Te、Ge/Sb/Se/Te 以及 Te/Ge/Sb/S。在 Ge/Sb/Te 合金族群中,可實施之合金組成的範圍非常廣。其組成可 以TeaGebSbn^a,來表示之。研究人員研究大部分有用的 合金中的Te在沉積材料中的平均濃度最好低於7〇0/。,典 、 型的是小於6〇%,通常的範圍是約為23%至58%,更佳的 是約為48%至58%。Ge在材料中的平均濃度是大於5%, 其範圍為8%至約為30%,通常是低於50%。較佳的是Ge 的/辰度乾圍為約為8%至40%。組成物中剩下的主要組成 元素是Sb。所述的這一些百分比為原子百分比,其全部組 成元素之原子為100%。( 0vshinsky,112專利,第10-11 行)°其他的研究人員研究的特定合金包括Ge2SbTe5、 GeSb2Te4 以及 GeSb4Te7。( Noboru Yamada,高資料率紀錄 11 200820469Erda has compiled any of 3711 · rW3〇18PA. The chalcogen compound includes a chalcogen element and an electropositive element or a compound of a radical. Chalcogenide alloys include chalcogenides and other materials such as transition metal combinations. Typically, chalcogenide alloys include one or more elements of Group VI of the Periodic Table, such as cerium and zinc. Generally, the chalcogenide alloy includes a combination of one or more of cerium (lanthanum), gallium (Ga), indium (In), and silver (Ag). Since chalcogenide compounds can include two solid phases and each have a characteristic impedance, a double memory property can be achieved, and therefore, these materials are referred to as "phase change" materials or alloys. A variety of phase change memory materials have been disclosed in the scientific literature, including alloys of Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/. Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te, and Te/Ge/Sb/S. In the Ge/Sb/Te alloy population, the range of alloy compositions that can be implemented is very broad. Its composition can be expressed by TeaGebSbn^a. Researchers have studied that most of the useful alloys have an average concentration of Te in the deposited material of preferably less than 7〇0/. The formula, the type is less than 6%, and the usual range is about 23% to 58%, more preferably about 48% to 58%. The average concentration of Ge in the material is greater than 5%, which ranges from 8% to about 30%, typically less than 50%. Preferably, the Ge/Changing dry circumference is about 8% to 40%. The main constituent element remaining in the composition is Sb. These percentages are atomic percentages, and the atoms of all of the constituent elements are 100%. (0vshinsky, 112 patent, lines 10-11) ° Specific alloys studied by other researchers include Ge2SbTe5, GeSb2Te4, and GeSb4Te7. (Noboru Yamada, high data rate record 11 200820469

二達緬航· rW3018PA 之Ge-Sb-Te相變化光碟片之電位,SPIE第3109期,第 28-37頁,1997年)。通常,過渡金屬例如是鉻(Cr)、鐵 (Fe)、鎳(Ni)以及铌(Nb)、鈀(pd)、鉑(Pt)及其 混合物或合金,可與Ge/Sb/Te結合成一相變化合金,其斗 有防程式化之特性。可以使用的記憶材料的具體實例如 Ovshinsky’112專利第11-13行所述,其實例併入本案參考 之。 在記憶胞的主動通道區的局部範圍(l〇cal 〇rder)中, 相變化合金可以在第一個結構態和第二結構態之間轉 換,第一個結構態是一種為一般非晶形固態的材料;第二 結構態是一種為一般結晶固態材料。這一些合金至少為铖 穂悲(bistable)。“非晶形”表示有序性相對較低的結構, 比單結晶無序,其具有可偵測的特性,如電阻較高於結晶 相。“結晶’’表示有序性相對較高的結構,比非晶形有序, 其具有可偵測的特性,如電阻較低於非晶相。典型的相變 化材料可以在完全非晶態和完全結晶態之間的整個光譜 的局部範圍之不同的可偵測的狀態之間轉換。改變非晶相 和、Lb曰相所影響之材料的其他特性包括原子的排列;自由 電子的密度以及活化能。材料可轉換到不同的固相,或轉 ^到兩個或更多個固相,提供介於完全非晶態和完全結晶 L之間的灰階。其材料的電性也隨之而改變。 才目灸化合金可藉由施加電脈衝(electrical pluses)而 由個相怨改變到另一個相態。短而高振幅的脈衝可以使 付相變化材料改變為一般的非晶態。長而低振幅的脈衝可 12 200820469The potential of the Ge-Sb-Te phase change optical disc of Erda Burma·rW3018PA, SPIE 3109, pp. 28-37, 1997). In general, the transition metal is, for example, chromium (Cr), iron (Fe), nickel (Ni), and niobium (Nb), palladium (pd), platinum (Pt), and mixtures or alloys thereof, which can be combined with Ge/Sb/Te. Phase change alloy, its bucket has anti-stylization characteristics. Specific examples of memory materials that can be used are described in lines 11-13 of the Ovshinsky '112 patent, examples of which are incorporated herein by reference. In the local range of the active channel region of the memory cell (l〇cal 〇rder), the phase change alloy can be switched between the first structural state and the second structural state, the first structural state being a generally amorphous solid state The second structural state is a general crystalline solid material. These alloys are at least bistable. "Amorphous" means a structure having a relatively low order, which is more than a single crystal disorder, and has detectable characteristics such as a higher electrical resistance than a crystalline phase. "Crystal" means a structure with a relatively high order, which is more ordered than amorphous, and has detectable properties such as lower electrical resistance than amorphous phase. Typical phase change materials can be completely amorphous and completely Conversion between different detectable states of the entire range of the spectrum between crystalline states. Other properties of the material affected by the amorphous phase and the Lb germanium phase include the arrangement of atoms; the density of free electrons and the activation energy The material can be converted to a different solid phase, or transferred to two or more solid phases, providing a gray scale between the completely amorphous state and the fully crystalline L. The electrical properties of the material also change. The moxibustion alloy can be changed from one to another by applying electrical pluses. Short and high amplitude pulses can change the phase change material to a general amorphous state. Low amplitude pulses can be 12 200820469

—* TW3018PA 以使得相變化材料改變為一般的結晶相。短而高振幅的脈 衝夠高,足以打斷晶結構的鍵;夠短,可以避免原子再結 晶成結晶態。適當的脈衝輪廓可以依據經驗或模擬(模式 ling)來決定之,並且具體施加於特定的相變化合金。在 以下的内谷中’相變化材料以GST來表示之,而其他種類 的相變化材料也是可以使用的。此處用於pCRAM的材料 為 Ge2Sb2Te5。 本發明的其他實施例,也可以使用其他的可程式化阻 C 抗材料。其中的一種材料是超巨磁電阻(CMR)阻抗材 料,其可以在磁場存在下,大幅改變阻抗的準位。這一些 材料通㊉疋猛型欽礦氧化物(perovskite oxide ),且在一定 範圍的磁場下可改變其阻抗。應用於rRAM時,其較佳的 化學式為PrxCayMn03,其中X: y=〇.5: 〇·5,或是其他的 組成為X: 0〜l;y: 〇〜1。其他的CMR材料包括Μη的氧 化物也是可以被使用的。 其他的RRAM材料是二元素化合物,例如Nix〇y、 TixOy、Alx〇y、wx0y、ZnxOy、ZrxOy、CuxOy 等,其中 X: y=0·5· 〇·5。或是,其他的組成x: 0〜1 ; y: 0〜1。或者, 也可以使用摻雜的聚合物,其摻雜例如是銅、C6〇、銀, 其聚合物例如是7,7,8,8-四氰基對醌二曱烷(TCNQ)、[6,6] 苯基 051 丁酸甲脂(PCBM)、TCNQ-PCBM、Cu-TCNQ、 Ag-TCNQ、C60_TCVQ、摻雜其他金屬的TCNQ,或是其 他任何具有雙穩態或多穩態阻抗態且可以以電脈衝控制 的聚合物材料。 13 200820469—* TW3018PA to change the phase change material to a general crystalline phase. The short, high amplitude pulse is high enough to break the bond of the crystal structure; short enough to prevent the atoms from recrystallizing into a crystalline state. The appropriate pulse profile can be determined empirically or by analog (mode ling) and applied specifically to a particular phase change alloy. In the following inner valleys, the phase change material is represented by GST, and other kinds of phase change materials are also usable. The material used for pCRAM here is Ge2Sb2Te5. Other programmable resistive materials may also be used in other embodiments of the invention. One such material is a giant magnetoresistance (CMR) resistive material that can significantly change the impedance level in the presence of a magnetic field. These materials pass through the perovskite oxide and change their impedance over a range of magnetic fields. When applied to rRAM, the preferred chemical formula is PrxCayMn03, where X: y = 〇.5: 〇·5, or other composition is X: 0~l; y: 〇~1. Other CMR materials including Μη oxides can also be used. Other RRAM materials are two-element compounds such as Nix〇y, TixOy, Alx〇y, wx0y, ZnxOy, ZrxOy, CuxOy, etc., where X: y = 0.5·5· 〇·5. Or, the other composition x: 0~1; y: 0~1. Alternatively, a doped polymer may be used, which is doped with, for example, copper, C6 ruthenium, silver, and the polymer thereof is, for example, 7,7,8,8-tetracyano-p-dioxane (TCNQ), [6 , 6] phenyl 051 butyric acid methyl ester (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60_TCVQ, TCNQ doped with other metals, or any other bistable or multi-stable state A polymeric material that can be controlled by electrical pulses. 13 200820469

一迁/1肺m · /W3018PA 層。此層必須具有三種^生1所=實施例中為一〔型 有絕佳的黏著性。第-第一’與下述的變化材料具 障特性,的電導電性;第三,擴散阻 塞材3 呆作溫度下,對於金屬例如是插 或M1N,或是更包括或一或者,阻障層可以是τ_ W. τντ ^ 匕括一種或多種的元素,其係選自於Ti、 向上姑他之方、冑車乂佳的阻障層是橫越過插塞構件的寬並 112。至金屬層的面,較佳的是完全覆蓋金屬層110和 材介f材料層m覆蓋阻障層1R,其可採时電填充 行對淮且可選自於内層介電層124之材料。此膜層做為自 阻障層114的間隙壁,以第6e圖更清楚說明之。 矽、:Γ金屬介電層124包覆記憶胞,較佳的包括二氧化 中,聚亞醯胺、氮化矽或其他的介電填充材料。在實施例 行、,此層是經過平坦化,較佳的是以化學機械研磨製程進 平垣化製程,以提供一個平坦的表面來進行下層材料 的 >冗積製程。 八位元線122位於内金屬介電層的頂面,其延伸到内金 口介電層之中,以透過介層窗123連接金屬層12〇。此層 ^ °己憶體電路的其他部分接觸,如熟悉此技藝者所知, 成此不在贅述。此構件可以採用已知的任何一種材料來形 。在一實施例中,位元線的材料是Ti化合物,例如是 200820469A move / 1 lung m · / W3018PA layer. This layer must have three types of ones = one of the examples has excellent adhesion. The first-first and the following change materials have the electrical conductivity of the barrier property; third, the diffusion blocking material 3 stays at the temperature, for the metal such as plug or M1N, or more includes or one or, the barrier The layer may be τ_W. τντ ^ including one or more elements selected from Ti, the upper side, and the barrier layer being across the width of the plug member 112. Preferably, the metal layer 110 and the material layer m cover the barrier layer 1R, which can be electrically filled and selected from the inner dielectric layer 124. This film layer serves as a spacer for the self-blocking layer 114, which is more clearly illustrated in Figure 6e.矽, the ruthenium metal dielectric layer 124 encapsulates the memory cell, preferably including oxidized polyamine, tantalum nitride or other dielectric filler material. In an embodiment, the layer is planarized, preferably by a chemical mechanical polishing process, to provide a flat surface for the > redundancy process of the underlying material. The octal line 122 is located on the top surface of the inner metal dielectric layer and extends into the inner gold dielectric layer to connect the metal layer 12 through the via window 123. This layer is in contact with other parts of the circuit, as is known to those skilled in the art, and will not be described here. This member can be formed using any of the known materials. In an embodiment, the material of the bit line is a Ti compound, such as 200820469

一迁爾m · rW3018PA ΤιΝ,或n+多晶矽,或是包含鈦層的多層材料,例如是 TiN/W/TiN二層材料,或是相似結構TiN/Ti/A1/TiN材料。 第1圖的結構的等效電路可以第2圖來表示之 。兩個 電阻心和R2串接’介於位元線BLi和bl2之間。施加於 位元線的電壓分別以Vbl、Vb2來表示之 。兩個電阻Ri和 的壓降為γ2。因此兩個位猶之間的壓降為 Vb2-Vbl ’其等於Vi+V2。如圖所示,RRAM單元Ri的面 積小於單元R2的面積,因此,阻抗Ri會大於R2。 至丄態/值A mover m · rW3018PA ΤιΝ, or n+ polysilicon, or a multilayer material comprising a titanium layer, such as a TiN/W/TiN two-layer material, or a similar structure TiN/Ti/A1/TiN material. The equivalent circuit of the structure of Fig. 1 can be represented by Fig. 2. The two resistor cores are connected in series with R2' between the bit lines BLi and bl2. The voltage applied to the bit line is represented by Vbl and Vb2, respectively. The voltage drop across the two resistors Ri and is γ2. Therefore, the voltage drop between the two bits is Vb2-Vbl' which is equal to Vi+V2. As shown, the area of the RRAM cell Ri is smaller than the area of the cell R2, and therefore, the impedance Ri will be greater than R2. To state/value

Ri 尺2 記憶胞值 重置 重置 0 重置 設定 1 設定 重置 2 rHT. S又疋 設定 3 RRAM的狀態組合,及其記憶胞值的結果,如表i 所示。記憶胞值對應相對的所有的阻抗值。 值得注意的是,表1所示的實施例採用“small-endian” 結構。也就是,最後單元是最低有效位數位(LSD),第一 單元是最高有效位數位(MSD)。其他的實施例則可以採 用“big-endian”模式,其數位是相反的,以下所述的程序是 相同的,但是兩記憶體單元是相反的。 各記憶胞狀態的關係繪示於第3 a_3d圖。第3a圖繪 15 200820469Ri Ruler 2 Memory Value Reset Reset 0 Reset Setting 1 Setting Reset 2 rHT. S again 设定 Set the result of the 3 RRAM state combination and its memory cell value as shown in Table i. The memory cell value corresponds to all relative impedance values. It is worth noting that the embodiment shown in Table 1 adopts a "small-endian" structure. That is, the last unit is the least significant digit (LSD) and the first unit is the most significant digit (MSD). Other embodiments may employ a "big-endian" mode in which the digits are reversed, the procedures described below are the same, but the two memory cells are reversed. The relationship between the state of each memory cell is shown in the 3 a_3d diagram. Drawing 3a 15 200820469

二连緬航· JHV3018PA 示具有弟6己丨$胞單元112和導電阻障層11 *以及第二記 憶體單元110的記憶胞。在此,兩單元均在重置狀態,具 有低阻值。若是R表示較單元112的阻值,其 他單元110的阻值相對於單元112為定值f。在所示的實 加例中’早元110的阻抗南於單元112者,因此,定值f 大於1 ’但在其他的實施例中,可以相反的方式來說明之。 f值決定了元件的操作的空間,亦即,可允許的阻值變化 量。元件運作時,f值足以進行2位元操作。 i 如上所述,在第3a-3d圖的實施例中顯示尺寸不同的 兩個RRAM單元產生不同阻抗的結果。其中,較小的單元 具有較高的阻抗。在其他的實施例(未繪示)中,兩個單 元可以採用不同的材料來產生具有同樣差異的阻抗。兩個 實方也例之間的結構差異不影響其彼此關係之描述,但差異 仍以定值f來表示。在此實施例中,兩個RRAM單元的厚 度大致相同(詳細說明如後),但寬度不同,以產生不同 的阻抗。 兩個RRAM單元串接,因此,整個記憶胞的阻抗可 以表示成R+fR或(1+f) r。 將低階單元112轉變為具有較高阻抗準位的設定狀 恝,如第3b圖所示。在此,阻抗準位以定值n的比例增 加。不同材質具有不同的定值,依特定的化合物或可選擇 的特性而定,但一給定材料的重置和設定狀態的關係如第 3b圖所示,可以以R—nR來表示。因此,第31)圖所示的 狀態可以表示成fR+nR或是(n+f) R。 16 200820469Erlang Airways JHV3018PA shows the memory cells of the cell unit 112 and the conductive barrier layer 11* and the second memory unit 110. Here, both units are in a reset state with a low resistance value. If R is the resistance of unit 112, the resistance of other unit 110 is a fixed value f relative to unit 112. In the illustrated embodiment, the impedance of 'early element 110' is souther than unit 112, and therefore, the fixed value f is greater than 1 'but in other embodiments, it can be described in the reverse manner. The value of f determines the space in which the component operates, that is, the allowable change in resistance. When the component is operating, the f value is sufficient for 2-bit operation. i As described above, in the embodiment of Figs. 3a-3d, the results show that two RRAM cells of different sizes produce different impedances. Among them, the smaller unit has a higher impedance. In other embodiments (not shown), the two cells can use different materials to produce impedances that are equally different. The structural differences between the two real-world examples do not affect the description of their relationship, but the difference is still expressed by the fixed value f. In this embodiment, the two RRAM cells are approximately the same thickness (described in detail later) but differ in width to produce different impedances. The two RRAM cells are connected in series, so the impedance of the entire memory cell can be expressed as R+fR or (1+f)r. The lower order unit 112 is converted to a set state with a higher impedance level, as shown in Fig. 3b. Here, the impedance level is increased by a constant value of n. Different materials have different settings depending on the particular compound or optional characteristics, but the relationship between the reset and set state of a given material, as shown in Figure 3b, can be expressed as R-nR. Therefore, the state shown in Fig. 31) can be expressed as fR + nR or (n + f) R. 16 200820469

—mmwju · TW3018PA 同樣地,第3c圖表示RRAM單元110轉變為設定狀 態;而單元112維持在重置狀態的結果示意圖。在所示的 實施例中’兩個單元是以相同的材料形成,定值η表示設 定和重置狀態的差值,可以以nfR表示其阻值。其可以 (1+nf) R來表示記憶胞的阻值。 最後,第3d圖繪示RRAM單元112和110轉變為設 定狀悲的結果,產生以及汉―nfR轉變。其狀態可 表示為 nR+nfR,或 n ( i+f) r。 、 這四個記憶胞值的關係可以下表2來表示之。 憶胞值之關係 -- _ ^ 口 Ui hKJ * 關係 iSm l¥rj ΙλΓ^ 記憶胞值 r 0 __Cnil) R 1 _Uinf) R 2 r 3 值得注意的是,n值和f值分別選擇在n=1〇〇以及 f=2。這些值可產生表!所示的所有阻值汛、i〇2r、2i〇r 以及300R。 在位元線ΒΙΆ BL2施加電壓,可將記憶胞設定在所 需值(第2圖)。四個電難全部足辑絲丨所有的可 能值。熟悉此技藝者可知,實際電壓有多種可能。在一實 施例中,採用兩個正電壓(相對於Vm在的量測是正 值)以及兩個負電壓,其所得的電壓表示為Vhigh、、 -Vhigh和-Vlow。所施加電塵的絕對值與記憶體單元的特 17 200820469—mmwju · TW3018PA Similarly, Fig. 3c shows a diagram showing the result of the RRAM unit 110 transitioning to the set state; and the unit 112 maintaining the reset state. In the illustrated embodiment, the two cells are formed of the same material, and the constant value η represents the difference between the set and reset states, and its resistance can be expressed in nfR. It can represent the resistance of the memory cell by (1+nf) R. Finally, Figure 3d shows the result of the RRAM cells 112 and 110 transitioning to a set sorrow, resulting in a Han-nfR transition. Its state can be expressed as nR+nfR, or n (i+f) r. The relationship between these four memory cell values can be expressed in Table 2 below. Recalling the relationship between cell values -- _ ^ mouth Ui hKJ * relationship iSm l¥rj ΙλΓ^ memory cell value r 0 __Cnil) R 1 _Uinf) R 2 r 3 It is worth noting that the n value and the f value are selected at n= 1〇〇 and f=2. These values can produce a table! All resistance values 汛, i〇2r, 2i〇r, and 300R are shown. Applying a voltage to the bit line ΒΙΆ BL2 sets the memory cell to the desired value (Fig. 2). All four electric difficulties are all possible. Those skilled in the art will appreciate that there are many possibilities for actual voltage. In one embodiment, two positive voltages (measured relative to Vm are positive) and two negative voltages are used, the resulting voltages being expressed as Vhigh, -Vhigh, and -Vlow. The absolute value of the applied electric dust and the characteristics of the memory unit 17 200820469

二连獅航· iW3018PA 性有關,其相關的特性包括所使用的材料和尺寸。在所示 的實施例中,有效的高值為3.3伏特,低值為1.5伏特。 首先,最關鍵的程序是一般重置(RESET),其可使 兩個RRAM單元轉為重置狀態,產生記憶胞值0。此程序 如下表3所示。 表3全部轉變為重置 τΐσ —· 早兀 記憶胞 動作 σσ — 早兀 記憶 狀態 狀態 胞 Ml 1 3 |Vi|>Vreset 0 0 M2 1 |V2|〉VREset 0Erlian Lion Air · iW3018PA related, its related characteristics include the materials and sizes used. In the embodiment shown, the effective high value is 3.3 volts and the low value is 1.5 volts. First, the most critical program is a general reset (RESET), which causes two RRAM cells to go into a reset state, producing a memory cell value of zero. This procedure is shown in Table 3 below. Table 3 all changes to reset τΐσ —· early memory cell action σσ — early memory state state cell Ml 1 3 |Vi|>Vreset 0 0 M2 1 |V2|〉VREset 0

(Vb2~Vbi ) =-VhigH 如所不’進行這種轉變的合適電壓為-Vhigh,其可使 得Vi和v2的壓降絕對值分別超過重置值。在重置狀態的 兩個RRAM單元,其記憶胞全部的值為0。 重置的狀態是所有進一部操作的起始點。由於中間態 之間的轉換可能發生不可預期的結果,因此,較佳的是將 單元回覆到重置狀態,做為改變狀態之操作的第一個步 驟。 相反的狀態的記憶胞值為3,如下表4所示者。 表4 0〜3的轉變 XXX3 一 早兀 狀態 記憶胞 動作 TTtT 一 早70 狀態 記憶 胞 Ml 0 0 Vi〉Vset 1 3 18(Vb2~Vbi) = -VhigH The appropriate voltage for this transition is -Vhigh, which allows the absolute values of the voltage drops of Vi and v2 to exceed the reset value, respectively. In the two RRAM cells in the reset state, the total value of the memory cells is zero. The reset state is the starting point for all further operations. Since the transition between the intermediate states may have unpredictable results, it is preferable to return the cell to the reset state as the first step of the operation of changing the state. The opposite state has a memory cell value of 3, as shown in Table 4 below. Table 4 0~3 transition XXX3 one early state memory cell action TTtT one early 70 state memory cell Ml 0 0 Vi>Vset 1 3 18

200820469 ^ 一· TWj018PA M2 0 V2>VsET 1 (Vb2-VBi ) =VHigh 此處所施加的VHIGH電壓,足以使得兩個單元產生超 過vSET的壓降。當兩個單元在設定狀態時,記憶胞值為二 位元11或3。 產生記憶胞值2的程序如下表5所示。 表5 0〜2的轉變 σσ 一 早兀 記憶胞 動作 X3X* —' 早兀 記憶胞 狀態 狀態 Ml 0 0 Vi〉Vset 1 2 M2 0 V2<VsET 0200820469 ^ 一·TWj018PA M2 0 V2>VsET 1 (Vb2-VBi) =VHigh The VHIGH voltage applied here is sufficient to cause the two cells to produce a voltage drop exceeding vSET. When the two units are in the set state, the memory cell value is two bits 11 or 3. The procedure for generating the memory cell value 2 is shown in Table 5 below. Table 5 0~2 transition σσ I early memory cell action X3X* —' early memory cell state M1 0 0 Vi>Vset 1 2 M2 0 V2<VsET 0

(VB2-Vbi ) =Vl〇W 在此設定狀態下,壓降V!大於產生設定狀態所需要 的壓降,因此,Ri是設定,但,壓降V2係小於設定之需 求,留下的單元則是在重置狀態。心在設定狀態,而R2 在重置狀態的結果,將使得記憶胞值為兩位元01或2。 下表6為產生記憶胞值為1之例示。達到1值,是比 其他的轉變困難的,顯而易見的是,假設一開始有兩個單 元在重置,施加足以在V2產生設定狀態的電壓也必須設 定為Vi,所得到的值為3,而不是1。解決的方法是讓記 憶胞回到完全設定狀態,如上表3所示。然後,再從記憶 200820469(VB2-Vbi) =Vl〇W In this setting state, the pressure drop V! is greater than the pressure drop required to generate the set state. Therefore, Ri is set, but the pressure drop V2 is less than the set demand, and the remaining unit It is in the reset state. The heart is in the set state, and the result of R2 in the reset state will cause the memory cell value to be two digits 01 or 2. Table 6 below is an illustration showing the generation of a memory cell value of 1. Achieving a value of 1 is more difficult than other transitions. It is obvious that, assuming that two units are reset at the beginning, applying a voltage sufficient to generate a set state at V2 must also be set to Vi, and the resulting value is 3, and Not 1. The solution is to return the memory cell to the fully set state, as shown in Table 3 above. Then, from memory 200820469

二達編i/t · CW3018PA 胞值3開始’施加-Vl〇w的電壓’足以在Ri’而非R2產生 重置,產生記憶胞值為雙位元01或1。 表6轉變為3-1 口 β 一 早兀 記憶胞 動作 etJ — 早兀 記憶 狀態 狀態 胞 Ml 1 3 |Vi|>Vreset 0 1 M2 1 |V2|<Vreset 1Erda, i/t, CW3018PA, cell value 3 starts 'applied-Vl〇w' voltage enough to generate a reset at Ri' instead of R2, resulting in a memory cell value of two bits 01 or 1. Table 6 is converted to 3-1 mouth β a early memory cell action etJ — early memory state state cell Ml 1 3 |Vi|>Vreset 0 1 M2 1 |V2|<Vreset 1

(Vb2-VBi ) =-Vl〇W 第1圖之記憶胞的電壓電流特性如第4圖所示。在圖 中,有兩條曲線,其一是從重置到設定的轉變;其二是想 反的情況。 所得到的流經記憶胞100的電流流動的情形如第5圖 所示。為清楚起見,僅以其中一個單元來說明之。如箭頭 所示,電流由下方的電路經由插塞構件104流到記憶體單 元。然後,電流再通過記憶層110、阻障導電層114以及 第二記憶層112。當然,如以上所說明的,依照各個記憶 層的阻抗狀態,電流量是規則的。然後,電流會通過金屬 層120,並且經由位元線122向外流到記憶體電路。 依照以上所述之原理,一記憶胞之製造方法的實施例 如圖6a-6i所示。請參照圖6a,以傳統的方法形成下層結 構101,具體的結構如上所述。為使以下的說明更為清楚 起見,在以下圖式中的下層結構的構件中相同符號不再重 20 200820469(Vb2-VBi) = -Vl〇W The voltage-current characteristics of the memory cell of Fig. 1 are as shown in Fig. 4. In the figure, there are two curves, one is the transition from reset to set; the other is the opposite situation. The resulting current flowing through the memory cell 100 is as shown in Fig. 5. For the sake of clarity, only one of the units will be explained. As indicated by the arrows, current flows from the underlying circuitry via the plug member 104 to the memory unit. Then, the current passes through the memory layer 110, the barrier conductive layer 114, and the second memory layer 112. Of course, as explained above, the amount of current is regular in accordance with the impedance state of each memory layer. Current then passes through the metal layer 120 and flows outward through the bit line 122 to the memory circuit. In accordance with the principles described above, an embodiment of a method of fabricating a memory cell is illustrated in Figures 6a-6i. Referring to Fig. 6a, the underlying structure 101 is formed in a conventional manner, and the specific structure is as described above. In order to make the following description clearer, the same symbols are no longer heavy in the components of the lower structure in the following figures. 20 200820469

—^»5/1 · TW3018PA 複標不。 第6b圖繪示沉積兩阻障層/絕緣層118a和118b以及 位於其中的金屬層120。此製程較佳的是採用傳統的化學 氣相沉積技術來施行之。然後,以習知的技術進行圖案化 與修整,以形成第6c圖所示的結構。 第6d圖繪示形成RRAM單元in和110。各RRAM 單元的形成方法是分別將金屬層120的材料以及插塞單元 104氧化。較佳的,是使用電漿氧化製程,以可變比例之 ( 氧氣和氮氣的混合氣體做為氣體源。習知此製程可以採用 直接或是間接法,後者係在微波產生器中產生下流 (downstream)電漿,再以導波器將其注入反應腔室之中。 在任一情況下,所需要功率範圍是8〇〇至3000瓦特,對 於直接製程來說,腔室的壓力範圍是10至500托;對間 接製程來說,腔室的壓力範圍是1000至3〇〇〇托。如上所 述,氧氣和氮氣的比例可以是1: 1至1〇〇%的氧氣,較佳 的是9: 1。腔室溫度範圍是從室溫至攝氏25〇度,較佳^ 1 是攝氏200度。製程的時間與氧化的金屬的厚度有關,較 佳的是約為400秒。 Λ 此製程可形成兩個RRAM單元,其呈l型圖幸,如 第6e圖所示。這一些構件的實際尺寸與金屬層12〇以及 插塞構件104的尺寸有關,這是因為這些構件是在該處進 行氧化而成的。此構件的厚度與氧化或其他的製程有關, 如習知所知者。 RRAM單元之間係透過導電層114來電性接觸,導電 21—^»5/1 · TW3018PA The standard is not. Figure 6b illustrates the deposition of two barrier/insulation layers 118a and 118b and a metal layer 120 therein. This process is preferably carried out using conventional chemical vapor deposition techniques. Then, patterning and trimming are performed by a conventional technique to form the structure shown in Fig. 6c. Figure 6d shows the formation of RRAM cells in and 110. Each of the RRAM cells is formed by oxidizing the material of the metal layer 120 and the plug unit 104, respectively. Preferably, a plasma oxidation process is used with a variable ratio (a mixed gas of oxygen and nitrogen as a gas source. It is known that the process can be either direct or indirect, and the latter produces a downflow in the microwave generator ( Downstream) plasma, which is then injected into the reaction chamber by a waveguide. In either case, the required power range is 8 〇〇 to 3000 watts, and for direct processes, the pressure range of the chamber is 10 to 500 Torr; for indirect processes, the chamber pressure ranges from 1000 to 3 Torr. As noted above, the ratio of oxygen to nitrogen may be from 1:1 to 1% oxygen, preferably 9 : 1. The chamber temperature ranges from room temperature to 25 degrees Celsius, preferably ^ 1 is 200 degrees Celsius. The time of the process depends on the thickness of the oxidized metal, preferably about 400 seconds. Λ This process can be Two RRAM cells are formed which are in the form of a l-shaped figure, as shown in Fig. 6e. The actual dimensions of these components are related to the metal layer 12A and the size of the plug member 104, since these components are made there. Oxidized. The thickness of this member is oxidized or otherwise Related to the process, as is known by the art. RRAM cells are electrically contacted through the conductive layer 114, conductive 21

200820469 pA200820469 pA

二违細a/ΰ . rW30l8PA 層114呈L型’其覆蓋第一 RRAM單元ii〇並且在第二方 向上(較隹的是相對於第一方向大約呈9〇度)覆蓋第二 RRAM單元m ’導電層114可以採用此領域採用任何的 習知材料來形成。在一實施例中’導電層是以丁“匕合物形 成而成’例如是TiN或是n+多晶石夕,或是以多層材料形 成而成,例如是TiN/Ti/Al/TiN材料。 L型廣’如導電層114,可以_習知所知的任何一 方法來沉積。在-實施例中,是將共形的導電材料沉積 …在正個阻障層/金屬層118/12〇結構上。然後,再將一 化材料116沉積在阻障材料上。接著,在氧化材料^中 ^蓋乙型層m上方塗上光阻材料,然後,利用兩步㈣ ㈣序移除氧化材料以及阻障材料。這兩舰刻步驟均可 輯用反應性離子姓刻程序來進行非等向性姓刻。較佳的 =物的_步驟是採用含氟的化學品,例如ACF4、叫 似於™阻障材料來說,較佳的是含氯之則程序, 鍤是C12、BC13、以及習知的其他含氯化學品。由於各 層的材料具有_差異,因此,較佳的是採用終點 率γ 1方法’若是特定材料具有合適的餘刻速 :也疋可以採用時間控制之方式進行蝕刻。值得注意的 =較佳的氧化物和TiN是過度蝕刻,以由殘留的TiN產 ^爲電路徑。同樣地,藉由增加非等向性,可確保L型層 =4的形狀,例如是減少腔室的壓力、增加電漿偏壓或是 調整蝕刻聚合物保護層的蝕刻速率。 在圖6f中,記憶胞被介電填充材料124包覆。此材 22 200820469Second violation a / ΰ. rW30l8PA layer 114 is L-shaped 'which covers the first RRAM cell ii 〇 and covers the second RRAM cell m in the second direction (relatively about 9 degrees with respect to the first direction) The conductive layer 114 can be formed using any of the conventional materials in this field. In one embodiment, the conductive layer is formed of a bismuth "such as TiN or n+ polycrystalline stone" or formed of a multilayer material such as a TiN/Ti/Al/TiN material. L-type wide, such as conductive layer 114, can be deposited by any of the methods known in the art. In an embodiment, a conformal conductive material is deposited... in a positive barrier/metal layer 118/12〇 Structurally, then, a chemical material 116 is deposited on the barrier material. Then, a photoresist material is applied over the oxidized material ^, and then the oxidized material is removed by a two-step (four) (four) sequence. And the barrier material. Both of the ship-engraving steps can use the reactive ion surname program to perform the anisotropic surrogate. The preferred step of the object is to use a fluorine-containing chemical, such as ACF4, called For TM barrier materials, the preferred procedure is chlorine, which is C12, BC13, and other known chlorine-containing chemicals. Since the materials of the layers have a difference, it is preferred to use the end point. Rate γ 1 method 'If the specific material has a suitable residual speed: it can also be time controlled The etching is performed. It is worth noting that the preferred oxide and TiN are over-etched to produce an electrical path from the residual TiN. Similarly, by increasing the anisotropy, the shape of the L-type layer = 4 can be ensured. For example, reducing the pressure in the chamber, increasing the plasma bias, or adjusting the etch rate of the etched polymer protective layer. In Figure 6f, the memory cells are covered by a dielectric fill material 124. This material 22 200820469

一· TW3018PA 料層可以選自於用來做為内層介電層/内八 的材料,或是習知所知/讀102 :=包括二—亞;=;=, 有相對較佳絕緣特^此t電填充材料包括對熱和電具 ^ ^ 者以達到對橋接的熱和 “和㈣描述連結構件的形成 憶胞下方的電路部分。首 、連^到記 料m中形成介層孔12 芦通m在介電材 經由阻障/絕綾屏11δ 此;|層通迢由,I電層的上表面 ^ 、’ 3 118延伸至與金屬層120接觸。 π上所述,雖然本發明已以較佳實施例揭露如上,缺 /、並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之 利範圍所界定者為準。 甲咕專 23 200820469A TW3018PA layer can be selected from the material used as the inner dielectric layer / inner eight, or known / read 102: = including two - sub; =; =, has a relatively good insulation ^ The t-electric filling material includes heat and electric appliances to achieve heat to the bridge and "and (4) describe the circuit portion underneath the formation of the connecting member. The first, the second is connected to the recording material m to form the via hole 12 The ruthen m is in the dielectric material via the barrier/insulating screen 11δ; the layer is 迢, the upper surface of the I electrical layer ^, ' 3 118 extends to contact with the metal layer 120. π is described above, although the invention The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the invention. It is to be understood that various modifications and changes can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is subject to the definition of the scope of the appended claims.

二理綱弧· iW3018PA 【圖式簡單說明】 第1圖繪示如申請專利範圍之記憶體單元的實施例。 第2圖繪示第1圖所示之元件之電路的示意圖。 第3A-3D圖繪示第1圖所示之元件可達成之邏輯狀 態之阻抗值。 第4圖繪示第1圖之元件的電壓與電流的關係圖。 第5圖繪示第1圖之元件的電流流動的情形。 第6A-6H圖繪示第1圖之記憶元件之製造流程的實 施例。 【主要元件符號說明】 100 :實施例 100a、100b :記憶體單元 101 :下方結構 104 :插塞構件 106 :字元線 108 :共源極線 110、112 :記憶層 118 : SiN 層 114 :阻障層 116 :介電材料 118a、118b :阻障層/絕緣層 120 ··金屬層 122 :位元線 124 :介電填充材料 24The two-dimensional arc · iW3018PA [Simple description of the drawings] Figure 1 shows an embodiment of a memory unit as claimed in the patent application. Fig. 2 is a schematic view showing the circuit of the element shown in Fig. 1. Figures 3A-3D illustrate the impedance values of the logic states achievable by the components shown in Figure 1. Fig. 4 is a graph showing the relationship between voltage and current of the element of Fig. 1. Fig. 5 is a view showing a state in which the current of the element of Fig. 1 flows. 6A-6H are diagrams showing an embodiment of a manufacturing flow of the memory element of Fig. 1. [Description of main component symbols] 100: Embodiments 100a, 100b: Memory cell 101: Lower structure 104: Plug member 106: Word line 108: Common source line 110, 112: Memory layer 118: SiN layer 114: Resistance Barrier 116: dielectric material 118a, 118b: barrier layer/insulation layer 120 · metal layer 122: bit line 124: dielectric filling material 24

Claims (1)

200820469 二達編就:TW3018PA 十、申請專利範圍: 1. 一種記憶元件,包括: 一第一導電材料,具有一第一表面,其上有一第一記 憶層; 一第二導電材料,具有一第二表面,其上有一第二記 憶層;以及 一連結導電層,連接該第一和該第二記憶層且電性接 觸, :其中該第一記憶層具有一截面積小於該第二記憶層 的截面積。 2. 如申請專利範圍第1項所述之元件,其中各該記 憶層可選擇地顯示第一和第二邏輯準位。 3. 如申請專利範圍第1項所述之元件,其中各該記 憶層依據該記憶元件所選擇的電壓準位顯示第一和第二 邏輯準位。 4. 如申請專利範圍第1項所述之元件,其中該些記 記憶胞之邏輯準位的選擇是選自於第一、第二、第三以及 第四邏輯準位。 5·如申請專利範圍第4項所述之元件,其中該第一 邏輯準位相應於元件之阻抗準位為(1+f) R,其中f為一 介電間隙壁的厚度的函數。 6.如申請專利範圍第4項所述之元件,其中該第二 邏輯準位相應於元件之阻抗準位為(n+f) R,其中f為一 介電間隙壁的厚度的函數,η為該元件材料的函數。 25 200820469 三達編號:·018ΡΑ 7.如申請專利範圍第4項所述之元件,其中該第三 邏輯準位相應於元件之阻抗準位為(1+nf) R,其中f為一 介電間隙壁的厚度的函數’ π為該元件材料的函數。 8·如申請專利範圍第4項所述之元件,其中該第四 邏輯準位相應於元件之阻抗準位為n ( 1+f) R,其中f為 一介電間隙壁的厚度的函數,η為該元件材料的函數。 9.如申請專利範圍第1項所述之元件,其中該連結 導電層為L型構件,該第一和該第二記憶層彼此呈直角。 ' 10·選擇記憶體單元之邏輯狀態的方法,該記憶體單 元延伸至位元線bl和b2之間且具有彼此成直角的RRAM 單元,該RRAM單元是由L型導電連結構件構成,且其 中的一第一記憶層之截面積小於一第二記憶層之截面 積,該方法包括: 於該位元線bl施加一電壓V!,並於該位元線b2施 加一電壓V2’該電壓V!和V2超過各該記憶體单元的重置 電壓;以及 x 藉由施加一選擇的準位Vi和v2,從第一、第二、第 三以及第四記憶體單元邏輯準位之中選擇其一。 11. 如申請專利範圍第10項所述之選擇記憶體單元 之邏輯狀態的方法,其中該記憶體單元邏輯準位由重置邏 輯準位改變為兩位元邏輯準位3,係藉由在位元線施加一 電壓,使得各該記憶層的電壓超過各層的VSET。 12. 如申請專利範圍第10項所述之選擇記憶體單元 之邏輯狀態的方法,其中該記憶體單元邏輯準位由重置邏 26 200820469 二遂編航· TW3018PA 輯準位改變為兩位元邏輯準位2,係藉由在位元線施加一 電壓,使得該第一記憶層的電壓超過各層的VSET,並且使 得該第二記憶層的電壓小於該層之VSET。 13·如申請專利範圍第10項所述之選擇記憶體單元 之邏輯狀態的方法,其中該記憶體單元邏輯準位由兩位元 邏輯準位3改變為兩位元邏輯準位1,係藉由在位元線施 加一電壓,使得該第一記憶層之電壓的絕對值超過各層的 VresET ’並且使得該第二記憶層之電壓的絕對值小於該層 之 Vreset 0 14. 一記憶元件,包括: 一第一導電材料,具有一第一表面,且其上有一第一 記憶層; 一第二導電材料,具有一第二表面,且其上有一第二 記憶層; 其中各該記憶層可選擇性顯示第一和第二邏輯準 位,各邏輯準位相應於該層之一已知電性阻抗;以及 一連結導電層,連接該第一和該第二記憶層,且電性 接觸, 其中該第一記憶層之截面積小於該第二記憶層之截 面積。 15. 如申請專利範圍第14項所述之記憶元件,其中 該些記憶層係以一角度排列。 16. 如申請專利範圍第14項所述之記憶元件,其中 該些記憶層係排列成大致上呈直角。 27 200820469 二遂編魷· TW3018PA 17·如申請專利範圍第14項所述之記憶元件,其中 該記憶層之邏輯準位係選自於第一、第二、第三和第四邏 輯準位。 18·如申請專利範圍第17項所述之記憶元件,其中 該第一邏輯準位相應於元件阻抗準位〇+f) R,其中f 為一介電間隙壁的厚度的函數。 / 々19·如申請專利範圍第17項所述之記憶元件,其中 ,該第二邏輯準位相應於元件之阻抗準位為(n+f) R,其中 f為-介電間隙壁的厚度的函數,n為該元件材料的函數。 # 20·如申請專利範圍第17項所述之記憶元件,其中 違第二邏輯準位相應於元件之阻抗準位為(1+nf) R,其 中f為一介電間隙壁的厚度的函數,n為該元件材料的函 數。 产21·如申請專利範圍第17項所述之記憶元件,其中 邊第四邏輯準位相應於元件之阻抗準位為^ ( i+f) R,其 t f為一介電間隙壁的厚度的函數,n為該元件材料的函 數。 22· —種記憶元件,包括·· 至少二插塞,位於一基底上; 至> 一共源極線,位於該至少二插塞之間; 至J 一子疋線,分別位於各該至少二插塞與該至少一 共源極線之間; 一導電材料,位於該至少一共源極線與該至少二字元 線上方,亚與該至少一共源極線電性連接; 28 200820469 二连緬a/n . FW3018PA 至少二第一記憶層,分別位於該至少二插塞的表面 上; 至少二第二記憶層,分別位於該導電材料的側壁上, 且各該第二記憶層之截面積大於各該第-記憶層的截面 積; 々至少二連結導電層,分別連接且電性接觸各該至少二 第和各該至少二第二記憶層,分別構成一記憶體單元; 以及 " 至少一位元線,電性連接該導電材料。 23·如申請專利範圍第22項所述之記憶元件,其中 口亥至少一子元線以該至少一共源極線為轴心,對稱設置於 該基底上。 ^ 24·如申請專利範圍第22項所述之記憶元件,其中 夕插塞以該至少一共源極線為轴心,對稱設置於該 基底上。 ▲、25·如申印專利範圍第22項所述之記憶元件,其中 該導電材料以該至少一共源極線之延伸軸為轴心,對稱設 置於該基底上。 %·如申請專利範圍第22項所述之記憶元件,其中該 至少二連結導電層是以該至少一共源極線之延伸軸為軸 心,對稱設置在該導電材料的兩側。 27.如申請專利範圍第%項所述之記憶元件,其中 各該至少二連結導電層為L型構件,各該第-和各該第二 5己憶層彼此呈直角。 29 200820469 三達編號:TW3018PA 28. 如申請專利範圍第22項所述之記憶元件,其中 該些第一記憶層之材料包括相變化隨機存取記憶體材料。 29. 如申請專利範圍第22項所述之記憶元件,其中 該些第二記憶層之材料包括相變化隨機存取記憶體材料。 30. 如申請專利範圍第22項所述之記憶元件,其中 該記憶元件為電阻式隨機存取記憶體元件。 31 · —種記憶單元,包括: 至少一字元線,位於一基底上; ( 一介電層,位於該基底上; 一插塞與一共源極線,分別位於該字元線兩側之該介 電層之中; 至少一導電材料,具有一截面,且位於該介電層上, 與該共源極線電性連接; 一第一記憶層,位於該插塞的表面上並與其電性接 觸; 一第二記憶層,位於該導電材料的該截面上並與其電 性接觸,且該第二記憶層之截面積大於該第二記憶層的截 面積; 至少一連結導電層,電性連接該第一和該第二記憶 層;以及 一位元線,電性連接該導電材料層。 32.如申請專利範圍第31項所述之記憶單元,其中 該連結導電層為L型構件,該第一和各該第二記憶層彼此 呈直角。 30 200820469 二遂獅就· TW3018PA 33·如申請專利範圍第31項所述之記憶單元,其中 該第一記憶層之材料包括相變化隨機存取記憶體材料。 34. 如申請專利範圍第31項所述之記憶單元,其中 該些第二記憶層之材料包括相變化隨機存取記憶體材料。 35. 如申請專利範圍第31項所述之記憶單元,其中 該記憶元件為電阻式隨機存取記憶體元件。 36. —種記憶元件的製造方法,包括: 在一基底上形成一介電層; # 在該介電層中形成一共源極線與一插塞; 在介電層上形成一圖案化導電材料,其未覆蓋該插塞 但與該共源極線電性連接; 在該插塞的表面上形成一第一記憶層; 在該圖案化導電材料的側壁形成一第二記憶層;以及 形成連接該第一記憶層與該第二記憶層之一連結導 電層。 37. 如申請專利範圍第36項所述之記憶元件的製造方 法,其中該第一記憶層之材料包括相變化隨機存取記憶體 材料。 38. 如申請專利範圍第36項所述之記憶元件的製造 方法,其中該第二記憶層之材料包括相變化隨機存取記憶 體材料。 39. 如申請專利範圍第36項所之記憶元件的製造方 法,其中該第一記憶層與該第一記憶層是同時形成。 40·如申請專利範圍第39項所之記憶元件的製造方 31 200820469 二遂緬航· [W3018PA 法,其中該第一記憶層與該第一記憶層是經由一氧化製程 形成。 41. 如申請專利範圍第40項所之記憶元件的製造方 法,其中該氧化製程包括電漿氧化製程。 42. 如申請專利範圍第41項所之記憶元件的製造方 法,其中該電漿氧化製程係通入氧氣與氮氣做為氣體源。 43·如申請專利範圍第42項所之記憶元件的製造方 法,其中氧氣與氮氣的比例為1 : 1至100%的氧氣。 44·如申請專利範圍第41項所之記憶元件的製造方 法,其中該電漿氧化製程之功率為800至3000瓦特。 45·如申請專利範圍第41項所之記憶元件的製造方 法,其中該電漿氧化製程之溫度範圍是從室溫至攝氏250 度。 46. 如申請專利範圍第36項所之記憶元件的製造方 法,其中該連結導電層的形成方法包括: 在該基底上形成一材料層,覆蓋該圖案化導電材料層 與該插塞; 該材料層上形成一介電材料層;以及 回蝕刻該介電材料層與該材料層,以形成該連結導電 層。 47. 如申請專利範圍第46項所之記憶元件的製造方 法,其中該材料層為一阻障層。 48. 如申請專利範圍第36項所之記憶元件的製造方 法,更包括在該介電層與圖案化導電層之間形成一阻障 32 200820469 二達編號:fW3018PA 層。 49. 如申請專利範圍第36項所之記憶元件的製造方 法,更包括在形成該介電層之前,在該基底上形成一字元 線。 50. 如申請專利範圍第36項所之記憶元件的製造方 法,更包括在該圖案化導電材料層形成一位元線,與該圖 案化導電材料層電性連接。 51. 如申請專利範圍第36項所之記憶元件的製造方 ( ' 法,更包括在形成該位元線之前,在該圖案化導電材料層 上形成一阻障層。 52. 如申請專利範圍第36項所之記憶元件的製造方 法,其中該第一記憶層之之截面積小於該第二記憶層之截 面積。 33200820469 Erda compiled: TW3018PA X. Patent application scope: 1. A memory component, comprising: a first conductive material having a first surface having a first memory layer thereon; a second conductive material having a first a second surface having a second memory layer thereon; and a bonding conductive layer connecting the first and the second memory layer and electrically contacting the first memory layer, wherein the first memory layer has a cross-sectional area smaller than the second memory layer Cross-sectional area. 2. The component of claim 1, wherein each of the memory layers selectively displays the first and second logic levels. 3. The component of claim 1, wherein each of the memory layers displays the first and second logic levels in accordance with a voltage level selected by the memory component. 4. The component of claim 1, wherein the selection of the logical levels of the memory cells is selected from the first, second, third, and fourth logic levels. 5. The component of claim 4, wherein the first logic level corresponds to an impedance level of the component of (1+f) R, where f is a function of a thickness of a dielectric spacer. 6. The component of claim 4, wherein the second logic level corresponds to an impedance level of the component of (n+f) R, where f is a function of a thickness of a dielectric spacer, η A function of the material of the component. 25 200820469 三达编号:·018ΡΑ 7. The component described in claim 4, wherein the third logic level corresponds to the impedance level of the component is (1+nf) R, where f is a dielectric The function 'π' of the thickness of the spacer is a function of the material of the element. 8. The component of claim 4, wherein the fourth logic level corresponds to an impedance level of the component of n (1+f) R, where f is a function of a thickness of a dielectric spacer, η is a function of the material of the component. 9. The component of claim 1, wherein the bonded conductive layer is an L-shaped member, the first and second memory layers being at right angles to each other. a method of selecting a logic state of a memory cell, the memory cell extending between the bit lines bl and b2 and having RRAM cells at right angles to each other, the RRAM cell being composed of an L-type conductive connecting member, and wherein The cross-sectional area of a first memory layer is smaller than the cross-sectional area of a second memory layer. The method includes: applying a voltage V! to the bit line bl, and applying a voltage V2' to the bit line b2. And V2 exceed the reset voltage of each of the memory cells; and x selects one of the first, second, third, and fourth memory cell logic levels by applying a selected level Vi and v2 One. 11. The method of selecting a logic state of a memory cell as described in claim 10, wherein the memory cell logic level is changed from a reset logic level to a two-dimensional logic level 3 by The bit line applies a voltage such that the voltage of each of the memory layers exceeds the VSET of each layer. 12. The method for selecting a logic state of a memory unit according to claim 10, wherein the memory unit logic level is changed from a reset logic 26 200820469 2 遂 · TW3018PA alignment level to 2 digits Logic level 2 is achieved by applying a voltage across the bit line such that the voltage of the first memory layer exceeds the VSET of each layer and the voltage of the second memory layer is less than the VSET of the layer. 13. The method of selecting a logic state of a memory unit according to claim 10, wherein the memory unit logic level is changed from a two-dimensional logic level 3 to a two-dimensional logic level 1, Applying a voltage to the bit line such that the absolute value of the voltage of the first memory layer exceeds VresET' of each layer and the absolute value of the voltage of the second memory layer is less than the Vreset of the layer. a first conductive material having a first surface and having a first memory layer thereon; a second conductive material having a second surface and having a second memory layer thereon; wherein each of the memory layers is selectable Firstly displaying first and second logic levels, each logic level corresponding to a known electrical impedance of the layer; and a connecting conductive layer connecting the first and the second memory layer and electrically contacting, wherein The cross-sectional area of the first memory layer is smaller than the cross-sectional area of the second memory layer. 15. The memory element of claim 14, wherein the memory layers are arranged at an angle. 16. The memory element of claim 14, wherein the memory layers are arranged at substantially right angles. The memory element of claim 14, wherein the logic level of the memory layer is selected from the first, second, third and fourth logic levels. 18. The memory device of claim 17, wherein the first logic level corresponds to a component impedance level 〇+f) R, where f is a function of a thickness of a dielectric spacer. The memory element of claim 17, wherein the second logic level corresponds to an impedance level of the element (n+f) R, where f is a thickness of the dielectric spacer The function, n is a function of the material of the component. #20. The memory component of claim 17, wherein the second logic level corresponds to an impedance level of the component of (1+nf) R, where f is a function of a thickness of a dielectric spacer. , n is a function of the material of the component. The memory element according to claim 17, wherein the fourth logic level corresponds to the impedance level of the component is ^ ( i + f ) R , and tf is the thickness of a dielectric spacer The function, n is a function of the material of the component. 22· a memory element, comprising: at least two plugs on a substrate; to > a common source line, located between the at least two plugs; to J a sub-line, respectively located at each of the at least two Between the plug and the at least one common source line; a conductive material located above the at least one common source line and the at least two word line, and electrically connected to the at least one common source line; 28 200820469 /n. FW3018PA at least two first memory layers respectively located on the surface of the at least two plugs; at least two second memory layers respectively located on sidewalls of the conductive material, and each of the second memory layers has a larger cross-sectional area than each a cross-sectional area of the first memory layer; at least two connected conductive layers respectively connected and electrically contacting each of the at least two and each of the at least two second memory layers to form a memory unit; and " at least one bit A wire that is electrically connected to the conductive material. The memory element according to claim 22, wherein at least one sub-line of the mouth is symmetrically disposed on the substrate with the at least one common source line as an axis. The memory element according to claim 22, wherein the plug is symmetrically disposed on the substrate with the at least one common source line as an axis. The memory element of claim 22, wherein the conductive material is symmetrically disposed on the substrate with the axis of extension of the at least one common source line as an axis. The memory device of claim 22, wherein the at least two connecting conductive layers are symmetrical about the extending axis of the at least one common source line and symmetrically disposed on both sides of the conductive material. 27. The memory device of claim 1 , wherein each of the at least two connected conductive layers is an L-shaped member, each of the first and each of the second adjacent layers being at right angles to each other. The memory element of claim 22, wherein the materials of the first memory layers comprise phase change random access memory materials. 29. The memory device of claim 22, wherein the material of the second memory layer comprises a phase change random access memory material. 30. The memory element of claim 22, wherein the memory element is a resistive random access memory element. 31 - a memory unit comprising: at least one word line on a substrate; (a dielectric layer on the substrate; a plug and a common source line, respectively located on both sides of the word line a dielectric layer having a cross section and electrically connected to the common source line; a first memory layer on the surface of the plug and electrically connected thereto Contacting; a second memory layer on the cross section of the conductive material and in electrical contact therewith, and a cross-sectional area of the second memory layer is greater than a cross-sectional area of the second memory layer; at least one connecting conductive layer, electrically connected The first and the second memory layer; and the one-dimensional wire electrically connected to the conductive material layer. The memory unit according to claim 31, wherein the connecting conductive layer is an L-shaped member, The first and each of the second memory layers are at right angles to each other. 30 200820469 遂 就 · TW TW TW TW TW TW TW TW TW TW TW TW TW TW , , , , , , , , , , , , , , , , , , , , , Memory material The memory unit of claim 31, wherein the material of the second memory layer comprises a phase change random access memory material. 35. The memory unit according to claim 31, The memory component is a resistive random access memory component. 36. A method of fabricating a memory component, comprising: forming a dielectric layer on a substrate; # forming a common source line and a dielectric layer in the dielectric layer a plug; forming a patterned conductive material on the dielectric layer that does not cover the plug but is electrically connected to the common source line; forming a first memory layer on the surface of the plug; The sidewall of the conductive material forms a second memory layer; and the method of manufacturing the memory device according to claim 36, wherein the first memory layer and the second memory layer are connected to each other. The material of the first memory layer includes a phase change random access memory material. The method of manufacturing the memory device according to claim 36, wherein the material of the second memory layer comprises a phase change 39. A method of fabricating a memory device according to claim 36, wherein the first memory layer is formed simultaneously with the first memory layer. 40. Manufacture of memory elements 31 200820469 二遂公航· [W3018PA method, wherein the first memory layer and the first memory layer are formed by an oxidation process. 41. The memory element of claim 40 The manufacturing method, wherein the oxidizing process comprises a plasma oxidizing process. The method of manufacturing the memory device according to claim 41, wherein the plasma oxidizing process is conducted by using oxygen and nitrogen as a gas source. 43. The method of producing a memory element according to claim 42 wherein the ratio of oxygen to nitrogen is from 1:1 to 100% oxygen. 44. The method of fabricating a memory element according to claim 41, wherein the plasma oxidation process has a power of 800 to 3000 watts. 45. The method of producing a memory device according to claim 41, wherein the plasma oxidation process has a temperature ranging from room temperature to 250 degrees Celsius. 46. The method of manufacturing a memory device according to claim 36, wherein the method of forming the bonding conductive layer comprises: forming a material layer on the substrate, covering the patterned conductive material layer and the plug; Forming a layer of dielectric material on the layer; and etching back the layer of dielectric material and the layer of material to form the bonded conductive layer. 47. The method of fabricating a memory element according to claim 46, wherein the material layer is a barrier layer. 48. The method of fabricating a memory device according to claim 36, further comprising forming a barrier between the dielectric layer and the patterned conductive layer. 32 200820469 达达号: fW3018PA layer. 49. The method of fabricating a memory device according to claim 36, further comprising forming a word line on the substrate prior to forming the dielectric layer. 50. The method of fabricating a memory device according to claim 36, further comprising forming a one-dimensional line in the patterned conductive material layer to electrically connect the patterned conductive material layer. 51. The method of manufacturing a memory element according to claim 36 (the method further comprises forming a barrier layer on the patterned conductive material layer before forming the bit line. 52. The method of manufacturing the memory device of item 36, wherein a cross-sectional area of the first memory layer is smaller than a cross-sectional area of the second memory layer.
TW95139862A 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory TWI327381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Publications (2)

Publication Number Publication Date
TW200820469A true TW200820469A (en) 2008-05-01
TWI327381B TWI327381B (en) 2010-07-11

Family

ID=44770176

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139862A TWI327381B (en) 2006-10-27 2006-10-27 Apparatus, fabrication method and operating method and for non-volatile multi-bit memory

Country Status (1)

Country Link
TW (1) TWI327381B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385314B2 (en) 2008-08-12 2016-07-05 Industrial Technology Research Institute Memory cell of resistive random access memory and manufacturing method thereof
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
TWI781792B (en) * 2018-02-09 2022-10-21 美商美光科技公司 Dopant-modulated etching for memory devices
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497492B (en) * 2012-05-30 2015-08-21 Ind Tech Res Inst Memory cell of resistive random access memory and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385314B2 (en) 2008-08-12 2016-07-05 Industrial Technology Research Institute Memory cell of resistive random access memory and manufacturing method thereof
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
TWI781792B (en) * 2018-02-09 2022-10-21 美商美光科技公司 Dopant-modulated etching for memory devices
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles
US11800816B2 (en) 2018-02-09 2023-10-24 Micron Technology, Inc. Dopant-modulated etching for memory devices

Also Published As

Publication number Publication date
TWI327381B (en) 2010-07-11

Similar Documents

Publication Publication Date Title
US7616472B2 (en) Method and apparatus for non-volatile multi-bit memory
US7531825B2 (en) Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US7842536B2 (en) Vacuum jacket for phase change memory element
CN100573898C (en) The bottom electrode Ovonics unified memory and the manufacture method thereof of autoregistration and planarization
CN101197422B (en) Method for making a keyhole opening during the manufacture of a memory cell
CN100562985C (en) Make the autoregistration cavity of memory cell and the method for hearth electrode
TWI316752B (en) Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7033856B2 (en) Spacer chalcogenide memory method
TWI309454B (en) Process in the manufacturing of a resistor random access memory and memory device
CN101237026B (en) Memory device and its manufacture method
TW201005936A (en) Fully self-aligned pore-type memory cell having diode access device
US8344347B2 (en) Multi-layer electrode structure
TW200820422A (en) Memory cell device with circumferentially-extending memory element
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
TW200830535A (en) Resistor random access memory cell device
TW200947695A (en) Memory cell having a buried phase change region and method for fabricating the same
TW201041176A (en) Ring-shaped electrode and munufacturing method for same
TW200834911A (en) Memory element with reduced-current phase change element
CN101013737A (en) Thermally insulated phase change memory device and manufacturing method
TW200908313A (en) Phase change memory with dual word lines and source lines and method of operating same
TWI327381B (en) Apparatus, fabrication method and operating method and for non-volatile multi-bit memory
TW200822295A (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI305044B (en) Bridge resistance random access memory device and method with a singular contact structure
TWI305043B (en) Structures and methods of a bistable resistive random access memory