TWI327367B - Semiconductor substrate structure and method for fabricating the same - Google Patents
Semiconductor substrate structure and method for fabricating the same Download PDFInfo
- Publication number
- TWI327367B TWI327367B TW96108267A TW96108267A TWI327367B TW I327367 B TWI327367 B TW I327367B TW 96108267 A TW96108267 A TW 96108267A TW 96108267 A TW96108267 A TW 96108267A TW I327367 B TWI327367 B TW I327367B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor substrate
- conductive
- substrate structure
- core plate
- Prior art date
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
1327367 九、發明說明: 【發明所屬之技術領域】 方法,尤 性之半導 本發明係關於一種半導體基板結構及其製作1327367 IX. Description of the invention: [Technical field to which the invention pertains] Method, particularly semi-conductive The present invention relates to a semiconductor substrate structure and its fabrication
指一種適用於具有良好電性、散熱性及尺寸安定 體基板結構及其製作方法。 【先前技術】 隨著電子產業的蓬勃發展’電子產品亦逐漸邁入多功 能、高性能研發趨#,為滿足半導體封裝建高積隹产 (integratl〇n)及微型化(Miniaturizatl〇n)的封裝需求,以 多主動、被動元件或線路互相電性連接,承载半導體晶片 之電路板藉由配合高線路密度之積體電路㈣抑㈣ -rcmt)需求,以在相同電路板單元下提高線路密度以接置 更多數量的電子元件。 15 在目前習知的半導體基板或印刷電路板(pnnted :mng board ; PWB)中的通孔,都是利用樹脂或者是綠漆等 等予以塞孔,接著再繼續後續之增層結構。在習知的結構 中,請參考圖1A&1B,其係為習知的半導體基板結構剖視 圖。如圖1A所示,此半導體基板具有一核心板Ua、一線路 2〇 層 12以及一電鑛導通孔(Plating Through Hole ; ΡΤΗ)13。線 路層12係形成於核心板丨丨a表面兩側,而電鍍導通孔13則形 成於核心板11a内以電性導通核心板lla兩側的線路層12。 再如圖1B所示,其係為四層半導體基板結構,其具有核心 板lib'内層線路層12a、外層線路層12b、第一電鍍導通孔Refers to a structure suitable for a substrate having good electrical properties, heat dissipation and dimensional stability, and a method for fabricating the same. [Prior Art] With the booming development of the electronics industry, electronic products are gradually entering the multi-functional, high-performance R&D trend #, in order to meet the semiconductor package building (integratl〇n) and miniaturization (Miniaturizatl〇n) The package requirements are electrically connected to each other by multiple active and passive components or circuits. The circuit board carrying the semiconductor chip is increased in line density under the same circuit board unit by matching the high circuit density integrated circuit (4)-(rc) requirements. To connect a larger number of electronic components. 15 The through holes in the conventional semiconductor substrate or printed circuit board (pngted: mng board; PWB) are all plugged with resin or green paint, etc., and then the subsequent buildup structure is continued. In the conventional structure, please refer to Figs. 1A & 1B, which are cross-sectional views of a conventional semiconductor substrate structure. As shown in FIG. 1A, the semiconductor substrate has a core plate Ua, a line 2 layer 12, and a plating via hole 13 (Plating Through Hole). The wiring layer 12 is formed on both sides of the surface of the core board a, and the plating vias 13 are formed in the core board 11a to electrically conduct the wiring layers 12 on both sides of the core board 11a. Further, as shown in FIG. 1B, it is a four-layer semiconductor substrate structure having a core board lib' inner layer wiring layer 12a, an outer layer wiring layer 12b, and a first plating via hole.
5 1327367 13a、第二電鍍導通孔13b以及導電盲孔15。其中,第一電 • 鍍導通孔13&可導通在核心板iib兩側的内層線路層12a,第 • 二電鍍導通孔丨补可導通半導體基板兩側之外層線路層5 1327367 13a, a second plating via 13b and a conductive via 15. Wherein, the first electrical plating via 13& can conduct the inner wiring layer 12a on both sides of the core board iib, and the second plating via hole complements the outer circuit layer on both sides of the semiconductor substrate
• 12b ’而導電盲孔15則用以導通内層線路層12a與外層線路 5層12b。在此,不論如圖1A所示之電鍍導通孔13或者如圖1B . 所示之第一電鍍導通孔13a及第二電鍍導通孔13b均以一絕 緣樹恥14塞孔,然而在填充絕緣樹脂14時係利用網版印刷 . 塞孔的技術,此技術雖然較為普遍且方便但是仍有許多缺 籲 ·點你】如·其作業人員需要累積相當之操作經驗後方可孰 H)練、每-網版需針對不同塞孔孔徑而製作不同之網版或因、 通孔尺寸過小而使樹酯或綠漆無法填充,因此生產效率較 差,且亦使通孔尺寸不能做太小以致發生塞孔困難,故通 孔尺寸須做大,則基板佈線密度下降,而無法作細線路的 製程及佈線設計;此外塞孔材料之熱膨服係數與電鑛導通 ]5孔孔壁金屬不匹配亦衍生基板可靠度問題。另外,在製作 丽所提供的核心板兩側係具有銅箔(圖未示),而在製作完成 • ^其銅箱保留在半導體基板結構上,在高溫無錯之操二 • 境下時,因其延展性差易產生斷“村靠度^的問題: • -20 【發明内容】 有鑑於此,本發明係提供一種半導體基板結構,此結 構包括:一核心板;至少一第一導電柱,其係形成於該^ '心板内’且該第—導電柱係延伸出至少-第-線路層於核 心板兩側表面;至少—第二導電柱,係形成於該核心板内: 1327367 以及至少-第二線路層,形成於核心、板表面。. 依據上述的結構,本發明一 的弟線路層底部及第一導 電柱”核心板間所形成之周緣復包括—第—導電層。 依據上述本發明之半導體基板結構,例如可曰由下述, 但不限於此之步驟製作。 木=此’本發明亦提供-種半導體基板結構的製作方 、、步驟包括:首先,提供一核心板。接著,於此核心 =形成複數個通孔。再於核心板表面及通孔的内壁形成 導電層。I1現後,於核心板表面及通孔内之第一導電 2形成-第一金屬層。最後,飯刻部分之第一金屬層及 蓋於/、下之第—導電層,以使第一金屬層於該些通孔内 分別形成至少一第一導電柱及至少一第二導電柱,且核心 板表面形成-第-線路層及一第二線路層,其中該第一線 路層形成於第一導電柱的兩側。 15 僅僅於上述本發明之半導體基板結構,本發明更提供另 :種半導體基板結構’此種結構包括:_核心板;至少一 第二導電柱,其係形成於該核心板内;以及至少一第三線 路層,其係形成於部分之該第二導電柱表面及核心板表 面因此,在此結構中,可得到最佳的金屬延展性,同時 可提升細線路之可靠度品質。 依據上述的結構中,第二導電柱與核心板間所形成之 周緣復包括一第—導電層,且第三線路層底部復包括—第 一導電層。 同樣地,依據上述本發明之半導體基板結構,例如可 20 1327367 " 由下述,但不限於此之步驟製作。 因此,本發明又提供一種半導體基板結構的製作方 法,此步驟包括:首先,提供一核心板。接著’於此核心 •板内形成至少一通孔。再於核心板表面及通孔的内壁形成 5 一第一導電層。然後,於核心板表面及通孔内之第一導電 層上形成一第一金屬層。接著,於核心板表面以蝕刻之方 式將第一金屬層及覆蓋於其下之該第一導電層移除,且通 ’ 孔内之第·一金屬層係形成一第二導電柱。然後,於核心板 .表面可形成一第二導電層。再於第二導電層上形成一圖案 10 化阻層,且此阻層内可形成複數個阻層開口。隨後’於此 等阻層開口内可形成一第二金屬層。最後,移除阻層及覆 蓋於其下之第二導電層,且第二金屬層係可作為一第三線 路層。 在上述本發明中,核心板不限使用任何材料,其係可 15 例如為 ABF(Ajinomoto Build-up Film )、苯拼環丁稀 (Benzocyclo- buthene; BCB)、液晶高分子聚合物(Liquid • Crystal Polymer ; LCP)、聚乙醯胺(Polyimide ; PI)、聚乙烯 醚(Poly(phenylene ether) ; PPE)、聚四氟乙稀 (Poly(tetra-fluoroethylene) ; PTFE)、FR4、FR5、雙順丁醯 -20 二酸醯亞胺/三氮阱(Bismaleimide Triazine ; BT)、芳香尼龍 (Aramide)等感光或非感光有機樹脂,或亦可混合環氧樹脂 與玻璃纖維等材質所組成之群組。 在本發明中,該核心板亦可為鋼箔基板(CCL)或已具有 多層線路層且表面壓合有背膠鋼箔(RCC)之電路板之其中 -r^ 叫7367 孔方者形成通孔的方式可為機械鑽孔或雷射鑽 ^明的第一導電層以及第二導電層係主要作 程所需之電流傳導路徑,第—導電層及第二 屬、合金或堆疊數層的金屬所組成,或者又可: 可:!=:若為金屬、合金或堆疊數層的金屬所組成時, 10 15 20 所詛成之群έ錫、鎳、鉻、鈦、銅-鉻合金以及錫-鉛合金中 群、狀—者’且以物理沈積及化學沈積之-切 = ’ 較佳地,物理沈積的方法係錢鍍及蒸錢Μ 子作匕學沈積的方法係為無電電鑛。若以導電高分 乍為%電層’則以噴灑(spraylng)方式形成 ::::=聚乙炔、聚苯胺—; 外,中T第:金屬層係使用電鑛的方式形成。此 第金屬層可以使用的材料較佳地為飼、錫、錄 '、銅-鉻合金以料,合金巾賴叙料之_者 土 ,則可以使用銅金屬作為第一金屬層。 全属i發明中,第-線路層以及第二線路層其係經由第- -金屬層的材料相同。 使用之材料係與第 另外,本發明另一結構中,第三線路層,係 化阻層以電鍍製程形成第二金屬層,而於杪志案 第三線路層’ ☆’第三線路層的材料係遍第::面形成 -、弟一金屬層的材• 12b' and the conductive blind via 15 is used to turn on the inner wiring layer 12a and the outer wiring layer 5b. Here, the electroplated via hole 13 as shown in FIG. 1A or the first electroplated via hole 13a and the second electroplated via hole 13b as shown in FIG. 1B are each an insulating stud 14 plug hole, but filled with an insulating resin. 14 o'clock is the use of screen printing. Plug-in technology, although this technology is more common and convenient, there are still many shortcomings and points.] If its operators need to accumulate considerable operational experience, then H) practice, every - The screen version needs to make different screens for different plug apertures, and the through-hole size is too small to make the resin or green paint unable to be filled, so the production efficiency is poor, and the through-hole size cannot be made too small to cause plugging. Difficult, so the size of the through hole must be large, the substrate wiring density is reduced, and the process and wiring design of the thin circuit cannot be made; in addition, the thermal expansion coefficient of the plug material is not matched with the metal hole conduction] Substrate reliability issues. In addition, there are copper foils (not shown) on both sides of the core board provided by Li, and when the fabrication is completed, the copper box remains on the structure of the semiconductor substrate, and the high temperature is error-free. Because of its poor ductility, it is easy to generate the problem of "village reliability ^: -20 [Invention] In view of this, the present invention provides a semiconductor substrate structure, the structure comprising: a core plate; at least one first conductive pillar, Formed in the 'heart plate' and the first conductive pillar extends at least the -first circuit layer on both sides of the core plate; at least - the second conductive pillar is formed in the core plate: 1327367 and At least the second circuit layer is formed on the core and the surface of the board. According to the above structure, the periphery formed by the bottom of the circuit layer and the core of the first conductive pillar of the present invention includes a first conductive layer. The semiconductor substrate structure according to the present invention described above can be produced, for example, by the following steps, but is not limited thereto. Wood = This 'The present invention also provides a method for fabricating a semiconductor substrate structure, and the steps include: first, providing a core plate. Next, at this core = a plurality of vias are formed. A conductive layer is formed on the surface of the core plate and the inner wall of the through hole. After I1, the first conductive layer 2 is formed on the surface of the core plate and in the through hole. Finally, the first metal layer of the portion of the rice portion and the first conductive layer of the lower layer and the lower layer are formed so that the first metal layer respectively forms at least one first conductive pillar and at least one second conductive pillar in the through holes. And the surface of the core board forms a first-circuit layer and a second circuit layer, wherein the first circuit layer is formed on both sides of the first conductive pillar. 15 The present invention further provides a semiconductor substrate structure of the present invention. The structure includes: a core plate; at least one second conductive pillar formed in the core plate; and at least one The third circuit layer is formed on a portion of the surface of the second conductive pillar and the surface of the core plate. Therefore, in this structure, the best metal ductility can be obtained, and the reliability quality of the fine circuit can be improved. According to the above structure, the periphery formed between the second conductive pillar and the core plate further includes a first conductive layer, and the bottom of the third circuit layer further includes a first conductive layer. Similarly, the semiconductor substrate structure according to the present invention described above can be produced, for example, by the following steps, but not limited thereto. Therefore, the present invention further provides a method of fabricating a semiconductor substrate structure, the method comprising: first, providing a core board. Then at least one through hole is formed in the core plate. Further, a first conductive layer is formed on the surface of the core plate and the inner wall of the through hole. Then, a first metal layer is formed on the surface of the core plate and the first conductive layer in the through hole. Then, the first metal layer and the first conductive layer covering the underlying layer are removed by etching on the surface of the core plate, and the first metal layer in the through hole forms a second conductive pillar. Then, a second conductive layer can be formed on the surface of the core board. A pattern 10 photoresist layer is formed on the second conductive layer, and a plurality of resist layer openings are formed in the resist layer. A second metal layer can then be formed in the opening of the resist layer. Finally, the resist layer and the second conductive layer underlying it are removed, and the second metal layer serves as a third wiring layer. In the above invention, the core board is not limited to any material, and may be, for example, ABF (Ajinomoto Build-up Film), Benzocyclo-buthene (BCB), liquid crystal polymer (Liquid • Crystal Polymer; LCP), Polyimide (PI), Poly(phenylene ether; PPE), Poly(tetra-fluoroethylene), FR4, FR5, Double Photosensitive or non-photosensitive organic resin such as cis-butyl hydrazine/Bismaleimide Triazine (BT), aromatic polyamide (Aramide), or a mixture of epoxy resin and glass fiber group. In the present invention, the core plate may also be a steel foil substrate (CCL) or a circuit board having a multi-layer circuit layer and a surface laminated with a backing steel foil (RCC), wherein -r^ is called 7367 holes. The hole may be in the form of a mechanically drilled or laser drilled first conductive layer and a second conductive layer, the current conducting path required for the main process, the first conductive layer and the second genus, the alloy or the stacked layers Made up of metal, or can be: Can:! =: If it is composed of a metal, an alloy or a stack of several layers of metal, 10 15 20 is composed of tin, nickel, chromium, titanium, copper-chromium alloy and tin-lead alloy. And physical deposition and chemical deposition - cut = ' Preferably, the physical deposition method is the method of money plating and steaming scorpion for sedimentation is non-electrical ore. If the conductive high-spectrum is used as the % electric layer, then it is formed by spraying: ::::=polyacetylene, polyaniline-; outside, medium-T: metal layer is formed by using electric ore. The material which can be used for the first metal layer is preferably a feed metal, a tin-copper alloy, a copper-chromium alloy material, and a copper metal as the first metal layer. In all of the inventions, the first-line layer and the second circuit layer are made of the same material through the first-metal layer. In another structure of the present invention, the third circuit layer, the resistive layer is formed into a second metal layer by an electroplating process, and the third circuit layer of the third circuit layer of the third circuit layer of the 杪? The material is all over the surface:: the surface is formed - the material of the metal layer
9 1327367 料相同。然而,本發明中的第二金屬層使用的材料係可為 銅、m、n銅鉻合金以及錫_錯合金中所組成之 群組之一者。較佳則可以使用銅。 再者,前述中,本發明所使用之阻層可 (Ph0t0l_响)製程所適用之阻層材料較佳可為= ’且此感光材料可為至少一選自由乾膜(忉f㈣及液 二光阻之其中—者。且,本發明中阻層之形成無限制,較 <土可利用印刷、旋轉塗佈、貼合或前述方式之组人。 ίο 15 前述本發明的封裝基板結構及其製作方法中口 2路增層結構’其係可形成於具有第―線路層及第二線 :層之核心板表面或可形成於具有第三線路層之核心板表 面。而此線路增層結構包括有一介電層、至少一 八 電層上之增層線路層以及複數個導電盲孔。 & '" 中,料基板結構 :=:τ 增層·::== 板上之部分第二線路層,或 線路層。X,在前述的封裝基板結構 構係可再於此等線路增層結構的表面:成:二 ::脂此封裝基板結構。而該防焊層的材料較佳可為感光 代習明之半導體基板及其製作方法,係取 丄繁的電一不但 且了以美升生產良率以及減少成 20 1327367 二:時、’本發明所形成的導電柱可以具有良好的電性、 ,,,、、^免塞孔材料熱膨脹係數與電鑛導通孔孔壁金屬 不匹配的問題,更可以做到細線路的製程能力與佈線設計。 59 1327367 The same material. However, the material used in the second metal layer in the present invention may be one of a group consisting of copper, m, n copper-chromium alloy, and tin-alloy. Preferably, copper can be used. Furthermore, in the foregoing, the resist layer material applicable to the resist layer used in the present invention may preferably be = ' and the photosensitive material may be at least one selected from the group consisting of dry film (忉f(四)) and liquid two Further, in the present invention, the formation of the resist layer is not limited, and the substrate can be printed, spin-coated, bonded, or the like in the above-described manner. ίο 15 The package substrate structure of the present invention and In the manufacturing method, the 2-way build-up structure can be formed on the surface of the core board having the first line layer and the second line: layer or can be formed on the surface of the core board having the third line layer. The structure includes a dielectric layer, a build-up wiring layer on at least one of the eight electrical layers, and a plurality of conductive blind vias. &'" Medium, substrate structure: =: τ buildup ·::== part of the board The second circuit layer, or the circuit layer. X, in the foregoing package substrate structure, the surface of the circuit-added structure can be further formed as follows: the second:: grease package substrate structure, and the material of the solder resist layer is Jiake is a semiconductor substrate for sensitization and its manufacturing method. The electricity is not only the production yield of Meisheng, but also reduced to 20 1327367. The conductive pillar formed by the invention can have good electrical properties, and the thermal expansion coefficient and electrical conductivity of the plugged material can be avoided. The problem of mismatched metal in the via hole of the mine can make the process capability and wiring design of the fine line more.
【實施方式J 乂下係藉由特定的具體實施例說明本發明之 式,熟習此#蓺少又-•丄L 乃 ^ 不可由本說明書所揭示之内容細 =明之其他優點與功效。本發明亦可藉由其= 10 可==例加以施行或應用,本說明書中的各項細節亦 了基於不同硯點與應用,在不俘離本發明 種修飾與變更。 卜迮订各 之實施例中該等圖式均為簡化之示意圖。惟該 ^圖式僅顯示與本發明有關之元件,其所顯示之元件非為 15 貫際實施時之態樣’其實際實施時之元件數目、形狀等比 二為二選擇性之設計,且其元件佈局型態可能。 貫施例1 請參考圖2,其係為本發明半導體基板結構剖視n 匕括了—核心板2卜至少—第—導電柱24卜至少—第二導 20 :=4 21及至少一第二線路層244。第一導電柱2 41則係形 ^於核心板21内’且此第—導電柱241係延伸出至少 線路層243於核,讀21兩側表面。此外,第三導電柱 =成於核心板2i内’而第二線路層⑷係形成於核心板 在此,第-導電柱241及其所延伸之第—線路層μ/ 弟二導電柱242以及第二線路層244所使用的材料係為相 11 1327367 同,於本實施例中係使用銅。而本實施例中係以一銅猪基 ‘ 板(CoPPer Clad Laminates ; CCL)為核心板21之基底,其在 表面具有一金屬薄層21a,即銅箔,且厚度可為約卜^^爪。 . 此外,本實施例亦可在第一線路層243底部以及第一導 5電柱241與核心板21所形成之周緣形成一第一導電層23。同 樣地,在第二線路層244底部、第二導電柱242與核θ心板21 ' 所形成之周緣亦形成同時形成此第一導電層23。此第一導 電層23主要在於進行電鍍製程時所需的電流傳導路徑之 ,用。因此,第一導電層23可使用的材料為導電材料,例如 1〇銅或導電咼分子。在本實施例中第一導電層23係使用銅。 實施例2 本實施例使用的材料係可如實施例1的材料相同。本實 施例係可製造如圖2所示之半導體基板結構。請參考圖3八 至3E ’係為本發明半導體基板結構製作流程剖視圖。 15 如圖3A所示,提供一核心板21,此核心板表面具有一 金屬薄層2 la,例如銅箔,且厚度可為約2〜12μιη。接著,如 圖3Β中,係利用機械鑽孔或雷射方式將核心板幻形成複數 夢 個通孔22,惟當利用雷射鑽孔的技術時,復需進行除膠渣 - (De-smea〇作業以移除因鑽孔所殘留於通孔22内的膠渣。 -2〇 然後’如圖3C所示,於核心板21表面及通孔22内壁以 無電電鍍的方式形成一第一導電層23,而此第一導電層23 ·" 主要在於進行後續電鍍製程時所需的電流傳導路徑之用。 隨後,於核心板21表面及通孔22内之第一導電層23上以 電鍍的方式形成一第一金屬層24,而形成如圖3D所示之結 12 丄327367 構。其中’此第一金屬層24使用的材料係為銅。 最後,如圖3E所示,爾後進行圖案化製程,利用濕式 飯刻或是乾式蝕刻的方式將此第一金屬層24予以圓案化線 路製程,以移除部分第一金屬層24,同時亦將覆蓋於欲移 ,5除之第—金屬層24下之第一導電層23以及金屬薄層21a移 除而顯路出此核心板21,以使第一金屬層24於通孔22内 . 分別形成至少一第一導電柱241及至少一第二導電柱242 , 且核心板2 1表面形成一第一線路層243及一第二線路層 44其中,第一線路層243形成於第一導電柱241的兩側。 10 因此’而得到本實施例之半導體基板結構。 實施例3 本實施例使用的材料係可與實施例i的材料相同。請參 考圖4,係為本貫施例半導體基板結構之剖視圖。如圖4所 不,其包括一核心板21、至少一第二導電柱242以及一第三 4·路層33其中,第一導電柱242則形成於核心板21内,而 第三線路層33係形成於部分之第二導電柱242表面及核心 板1表面在此,第二線路層33使用的材料係亦為銅。 此外,在本實施例中,於第二導電柱242與核心板21間 所形成之周緣内係可形成—第一導電層23。而在第三線路 2〇層33的底部係形成有一第二導電層31。帛―導電層23的材 料係與實施例!相同,而第二導電層31可使用的材料為銅或 導電问刀子,在本實施例中係為銅。在此結構中,此種半 導體基板結構可以作更細之線路,以符合各種產品之需求。 實施例4 13 1327367 本實施例使用的材料係可如實施例3的材料相同。另,[Embodiment J] The present invention is described by way of a specific embodiment, and is familiar with this. 蓺 又 又 丄 丄 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 = = = = = = = = = = = The present invention may also be practiced or applied by the method of = 10 ==, and the details in the present specification are also based on different points and applications without departing from the modifications and variations of the invention. The drawings in the various embodiments are simplified. However, the figure only shows the components related to the present invention, and the components shown therein are not designed in a continuous manner. The actual number of components in the actual implementation is a two-selective design. Its component layout type is possible. Referring to FIG. 2, which is a cross-sectional view of a semiconductor substrate structure of the present invention, a core board 2, at least a first conductive pillar 24, at least a second conductor 20:=4 21 and at least one Two circuit layers 244. The first conductive pillars 2 41 are shaped in the core plate 21 and the first conductive pillars 241 extend at least the wiring layer 243 to the core to read the two side surfaces. In addition, the third conductive pillar=into the core board 2i' and the second circuit layer (4) is formed on the core board, the first conductive pillar 241 and the extended first-layer layer/secondary conductive pillar 242 thereof The material used for the second wiring layer 244 is the same as the phase 11 1327367, and copper is used in this embodiment. In this embodiment, a copper pig base plate (CPP) is used as the base of the core plate 21, and has a thin metal layer 21a on the surface, that is, a copper foil, and the thickness can be about . In addition, in this embodiment, a first conductive layer 23 may be formed on the bottom of the first circuit layer 243 and the periphery of the first conductive pillar 241 and the core plate 21. Similarly, the first conductive layer 23 is formed simultaneously at the bottom of the second wiring layer 244, the periphery of the second conductive pillar 242 and the core θ core plate 21'. This first conductive layer 23 is mainly used for conducting the current conduction path required for the electroplating process. Therefore, the material that can be used for the first conductive layer 23 is a conductive material such as a copper or conductive germanium molecule. In the present embodiment, the first conductive layer 23 is made of copper. Example 2 The materials used in this example were the same as those of Example 1. This embodiment can fabricate a semiconductor substrate structure as shown in Fig. 2. Please refer to FIG. 3 to FIG. 3E as a cross-sectional view showing the manufacturing process of the semiconductor substrate structure of the present invention. As shown in Fig. 3A, a core plate 21 is provided having a thin metal layer 2 la, such as a copper foil, and having a thickness of about 2 to 12 μm. Then, as shown in Fig. 3, the core board is formed by mechanical drilling or laser to form a plurality of dream through holes 22, but when using the technique of laser drilling, the degumming is required - (De-smea The operation is performed to remove the slag remaining in the through hole 22 due to the drilling. - 2 〇 Then, as shown in FIG. 3C, a first conductive is formed on the surface of the core plate 21 and the inner wall of the through hole 22 by electroless plating. Layer 23, and the first conductive layer 23 is mainly used for performing the current conduction path required for the subsequent plating process. Subsequently, plating is performed on the surface of the core plate 21 and the first conductive layer 23 in the through hole 22. The first metal layer 24 is formed to form a junction 12 丄 327367 as shown in FIG. 3D. The material used for the first metal layer 24 is copper. Finally, as shown in FIG. 3E, the pattern is followed. The first metal layer 24 is subjected to a round-line process by wet rice etching or dry etching to remove a portion of the first metal layer 24, and will also cover the desired metal layer. - the first conductive layer 23 under the metal layer 24 and the thin metal layer 21a are removed and become apparent The core plate 21 is such that the first metal layer 24 is formed in the through hole 22. The first conductive pillar 241 and the at least one second conductive pillar 242 are respectively formed, and a first circuit layer 243 and a surface are formed on the surface of the core board 21 The second circuit layer 44 is formed on the two sides of the first conductive pillar 241. Thus, the semiconductor substrate structure of the present embodiment is obtained. Embodiment 3 The material used in this embodiment can be combined with the embodiment. The material of i is the same. Please refer to FIG. 4, which is a cross-sectional view of the structure of the semiconductor substrate of the present embodiment. As shown in FIG. 4, it includes a core board 21, at least a second conductive pillar 242, and a third 4th layer. 33, wherein the first conductive pillar 242 is formed in the core board 21, and the third circuit layer 33 is formed on a portion of the surface of the second conductive pillar 242 and the surface of the core board 1 where the material used in the second circuit layer 33 is In addition, in the present embodiment, the first conductive layer 23 can be formed in the periphery formed between the second conductive pillar 242 and the core plate 21, and the bottom layer of the third layer 2 is formed on the bottom layer 33. Forming a second conductive layer 31. The material structure of the conductive layer 23 The same is true, and the second conductive layer 31 can be made of copper or a conductive knife, which is copper in this embodiment. In this structure, the semiconductor substrate structure can be made into a finer line to conform to The requirements of various products. Embodiment 4 13 1327367 The material used in this embodiment can be the same as the material of Example 3.
. 在本實施例中,其製造流程的前段製程可如實施例2之圖3A 至3D的步驟實施,而在接下來的製程則與實施例2不同請 參考圖5A至5D,係為本發明半導體基板結構製作流程剖視 5 圖。 在得到如圖3D所示之結構之後,再以濕式蝕刻或乾式 •蝕^的方式將核心板21表面的第一金屬層24及覆蓋於其下 之第一導電層23完全移除以及同時會移除核心板21表面之 • 金屬薄層2la。此時,仍然保留通孔22内的第-金屬層24以 1〇形成—第二導電柱242,而可得到如圖5A所示的結構:核心 板门表面經過蝕刻之後不會完全光滑,而具有一粗糙度(圖 未不)。然而,可利用此粗糙度增加在後續製程中之線路結 合能力。 考如圖5 B所示,於此核心板21表面利用無電電⑲ 15方式形成—第二導電層31,且此第二導電層31使用的材料 可:銅或導電高分子,以作為進行後續電鍍製程時所需的 φ 電机傳導路控之用。在本實施例中的第二導電層31係使用 銅。 然後,如圖5C所示,於第二導電層31上可利用印刷的 '2〇方式形成—以乾膜做成的阻層32,且此阻層32係利用曝光 以及顯影之方式形成複數個阻層開口 32a,當在進行曝光時 使用的光源則可以為以紫外光照射,而顯影時則可以以一 般使用於半導體製程的顯影劑’而形成本發明 似’進而得到-圖案化阻層32。 " 1327367 最後,如圖5D所示,於圖5C中之阻層開口 32a内以電鍵 的方式形成一第二金屬層34,其中,此第二金屬層34使用 的材料係為銅。爾後移除阻層32及蝕刻覆蓋於此阻層32下 ' 之第二導電層31。因此,核心板21表面的第二金屬層34及 5 其下之第二導電層3 1係可作為一第三線路層33,而可得到 本發明之半導體基板結構。 - 實施例5 • 本實施例可依據實施例1的結構繼續製作另一形式之 > 半導體基板結構。請參考圖6A至6F,係為製作本實施例半 10 導體基板結構流程圖。 首先,如圖6 A所示,提供一如圖2所示之半導體基板結 構,將此半導體基板結構作為一核心基板20a,於此核心基 板2 0 a表面兩側壓合一介電層41。此介電層41的材料例如可 為 ABF(Ajinomoto Build-up Film )、苯啡環丁烯(Benzocyclo-15 buthene ; BCB)、液晶高分子聚合物(Liquid CrystalIn this embodiment, the front-end process of the manufacturing process can be implemented as the steps of FIGS. 3A to 3D of Embodiment 2, and the next process is different from Embodiment 2, please refer to FIG. 5A to FIG. 5D, which is the present invention. Figure 5 is a cross-sectional view of the fabrication process of the semiconductor substrate structure. After the structure shown in FIG. 3D is obtained, the first metal layer 24 on the surface of the core board 21 and the first conductive layer 23 covering the surface of the core board 21 are completely removed by wet etching or dry etching, and simultaneously The thin metal layer 2la of the surface of the core board 21 is removed. At this time, the first metal layer 24 in the via hole 22 is still formed to be formed by 1 — - the second conductive pillar 242, and the structure as shown in FIG. 5A can be obtained: the surface of the core panel is not completely smooth after being etched, and Has a roughness (not shown). However, this roughness can be utilized to increase the line bonding capability in subsequent processes. As shown in FIG. 5B, the surface of the core board 21 is formed by using no electro-electricity 19 15 - the second conductive layer 31, and the material used for the second conductive layer 31 may be copper or a conductive polymer for subsequent use. φ motor conduction path control required for electroplating process. The second conductive layer 31 in this embodiment uses copper. Then, as shown in FIG. 5C, a resist layer 32 made of a dry film can be formed on the second conductive layer 31 by a printed '2" method, and the resist layer 32 is formed by a plurality of exposure and development methods. The resist layer opening 32a may be irradiated with ultraviolet light when the exposure is performed, and may be formed by the developer which is generally used in the semiconductor process during development to form a patterned resist layer 32. . " 1327367 Finally, as shown in Fig. 5D, a second metal layer 34 is formed by electrical bonding in the resist opening 32a of Fig. 5C, wherein the second metal layer 34 is made of copper. The resist layer 32 is then removed and the second conductive layer 31 overlying the underlying layer 32 is etched. Therefore, the second metal layer 34 on the surface of the core board 21 and the second conductive layer 31 under it can be used as a third wiring layer 33, and the semiconductor substrate structure of the present invention can be obtained. - Embodiment 5: This embodiment can continue to fabricate another form of > semiconductor substrate structure in accordance with the structure of Embodiment 1. Please refer to Figs. 6A to 6F, which are flowcharts for fabricating the structure of the semi-conductor substrate of this embodiment. First, as shown in Fig. 6A, a semiconductor substrate structure as shown in Fig. 2 is provided. The semiconductor substrate structure is used as a core substrate 20a, and a dielectric layer 41 is laminated on both sides of the surface of the core substrate 20a. The material of the dielectric layer 41 can be, for example, ABF (Ajinomoto Build-up Film), Benzocyclobutene (BCB), Liquid Crystal Polymer (Liquid Crystal).
Polymer ; LCP)、聚乙縫胺(Polyimide ; PI)、聚乙烯醚 (Poly(phenylene ether) ; PPE)、聚四氟乙烯(卩〇1丫(^1^&-. fluoroethylene) ; PTFE)、FR4、FR5、雙順丁 醯二酸醯亞胺 • /三氮拼(Bismaleimide Triazine; BT)、芳香尼龍(Aramide) -20 等感光或非感光有機樹脂,或亦可混合環氧樹脂與玻璃纖 維等材質所組成之群組。在本實施例係使用ABF作為介電 層41。 接著,如圖6B所示,於介電層41内以雷射鑽孔的方式 形成一盲孔41a,並以機械鑽孔或雷射鑽孔方式形成一貫穿 15 1327367 核心基板2〇a及其表面兩侧之介電層41的通孔41b。 然後’如圖6C所示’於介電層41表面、盲孔41a及通孔 41b内壁以無電電鑛的方式形成一第三導電層42。此第三導 电層42使用的材料係可為銅金屬。此第三導電層42的功能 5係主要在於進行後續電鍍製程時所需的電流傳導路徑之 用。 再如圖6D所示,於第三導電層42表面以印刷的方式形 成一阻層43,其材料可為乾膜。此阻層43係可利用曝光及 • 顯影之方式形成複數個阻層開口 43a,並顯露出盲孔4丨^及 10 通孔41b。 最後,如圖6E所示,於圖6D中之阻層開口 43a、盲孔4 la 及通孔41b内以電鍍的方式,形成一電鍍金屬層料。此電鍍 金屬層44使用的材料為銅金屬。之後,移除阻層43及其所 覆盍之第二導電層42。因此,所形成的電鍍金屬層44係用 15以作為增層線路層441、導電盲孔442及第三導電柱443。其 t導電目孔442及增層線路層441係作為線路增層結構45 • 的一部份。此導電盲孔442係用以電性導通核心基板2〇a的 第一線路層243與第二線路層244以及線路增層結構45中的 -增層線路層44!。而第三導電柱443更可直接電性導通至核 -20 心基板20a另一側表面的增層線路層441及部分的第二線路 層 244 〇 此外,在完成前述的線路增層結構45之後,可如圓卯 所示,再於此線路增層結構45的表面形成一防焊層46,以 保護此線路增層結構45 ’而此防焊層46的材料係為感光性 ^27367 樹月曰。此防蟬層46係利用曝光以及顯影之方式形成複數個 開口 461 ’此等開口 461係顯露出增層線路層441,以作為電 性連接塾444 ’而可與外部電子元件電性連接。 因此,在本實施例中係以實施例丨的半導體基板結構作 為—核心基板2〇a,此核心基板20a表面係可形成一線路增 層結構45 ’以作為不同形式之半導體基板結構。 貫施例6 本實施例係與實施例5相同,但不同的是,請參考圖7, 本實施例使用的核心基板20b係為實施例3中之半導體基板 結構,其餘步驟皆與實施例5相同。在此,導電盲孔442係 電性導通核心基板2〇b的第三線路層33以及線路增層結構 45中的增層線路層441。而第三導電柱443可直接電性導通 至核心基板20b另一側表面的增層線路層441及部分的第三 線路層3 3。進而完成本實施例的半導體基板結構。 15 綜上所述,相較於習知的電鍍導通孔結構中所包括的導 電層、金屬銅層以及絕緣樹脂,在填充絕緣樹脂的製程中 會產生塞孔材料熱膨脹係數與電鍍導通孔孔壁金屬不匹配 的可靠度問題。本發明利用導電柱取代電鍍導通孔,其僅 包括導電層以及金屬銅。在此結構中,可以具有良好的電 -20 性、散熱性、避免塞孔材料熱膨脹係數與電鍍導通孔孔壁 金屬不匹配的問題’更可以做到細線路的製程能力 設計》 ^ 、 另外,依據本發明實施例3及實施例4中所形成的半導體 基板結構所形成的線路,因為金屬薄層完全去除,其所得 17 U27367 提升細線路 到的線路(即第三線路層)可得到最佳的延展性, 之可靠度品質。 上述實施例僅係為了方便說明而舉例而已,本發明所 =張之權利範圍自應Μ請專利範圍所述為準, 於上述實施例。 民 【圖式簡單說明】 圖1Α及1Β係習知之且古香力立2 構剖視圖。 U電料通孔之半導體基板結 10 15 20 圖2係本發明-較佳實施例之半導體基板結構剖視圖。 圖3A至3雌本發明—較㈣施例之半導録板結 作流程剖視圖。 圖4係本發明另一較佳實施例之半導體基板結構剖視 圖0 圖5A至5D係本發明另—較佳者 姓制& 平又住μ鈿例之+導體基板結 構製作流程剖視圖。 圖从細係本發明再—較佳實施例之半導體基板 製作流程剖視圖。 圖7係本發明又一較佳實施例之半導體基板結構剖視 圖0 12 12a 線路層 内層線路層 【主要元件符號說明 Ua,llb,21核心板 13 電鍍導通孔 18 1327367 12b 外層線路層 13a 第一電鍍導通孔 13b 第二電鍍導通孔 14 絕緣樹脂 15 導電孔 20a,20b核心基板 21 核心板 21a 金屬薄層 22 通孔 23 第一導電層 24 第一金屬層 241 第一導電柱 242 第二導電柱 243 第一線路層 244 第二線路層 31 第二導電層 32 阻層 32a 阻層開口 33 第三線路層 41 介電層 41a 盲孔 41b 通孔 42 第三導電層 43 阻層 43a 阻層開口 44 電鍍金屬層 441 增層線路層 442 導電盲孔 443 第二導電柱 45 線路增層結構 46 防焊層 444 電性連接墊 34 第二金屬層 19Polymer ; LCP), Polyimide (PI), Poly(phenylene ether; PPE), Polytetrafluoroethylene (卩〇1丫(^1^&-. fluoroethylene); PTFE) , FR4, FR5, Bismuthimide Triazine (BT), Aromatic Nylon (Aramide)-20, etc., or may be mixed with epoxy resin and glass. A group of materials such as fibers. In the present embodiment, ABF is used as the dielectric layer 41. Next, as shown in FIG. 6B, a blind hole 41a is formed in the dielectric layer 41 by laser drilling, and a 15 1327367 core substrate 2A is formed by mechanical drilling or laser drilling. The through hole 41b of the dielectric layer 41 on both sides of the surface. Then, as shown in Fig. 6C, a third conductive layer 42 is formed on the surface of the dielectric layer 41, the blind via 41a, and the inner wall of the via 41b in an electroless manner. The material used for the third conductive layer 42 may be copper metal. The function 5 of the third conductive layer 42 is mainly for the current conduction path required for the subsequent plating process. Further, as shown in Fig. 6D, a resist layer 43 is formed on the surface of the third conductive layer 42 in a printed manner, and the material thereof may be a dry film. The resist layer 43 is formed by a plurality of barrier openings 43a by exposure and development, and the blind vias 4 and 10 vias 41b are exposed. Finally, as shown in Fig. 6E, an electroplated metal layer is formed by electroplating in the resist opening 43a, the blind via 4 la and the via 41b in Fig. 6D. The material used for the plated metal layer 44 is copper metal. Thereafter, the resist layer 43 and its covered second conductive layer 42 are removed. Therefore, the formed plating metal layer 44 is used as the build-up wiring layer 441, the conductive blind vias 442, and the third conductive pillars 443. The t-conductive aperture 442 and the build-up wiring layer 441 are part of the line build-up structure 45. The conductive via 442 is used to electrically conduct the first circuit layer 243 and the second circuit layer 244 of the core substrate 2A and the build-up circuit layer 44 of the line build-up structure 45. The third conductive pillar 443 is further electrically conductively connected to the build-up wiring layer 441 of the other side surface of the core-20 core substrate 20a and a portion of the second wiring layer 244. Further, after completing the aforementioned line build-up structure 45 As shown by the circle, a solder resist layer 46 is formed on the surface of the line build-up structure 45 to protect the line build-up structure 45'. The material of the solder resist layer 46 is photosensitive ^27367 tree month Hey. The anti-caries layer 46 is formed by a plurality of openings 461' by exposure and development. These openings 461 expose the build-up wiring layer 441 to be electrically connected to the external electronic components as the electrical connection 塾 444'. Therefore, in the present embodiment, the semiconductor substrate structure of the embodiment is used as the core substrate 2A, and the surface of the core substrate 20a is formed with a line build-up structure 45' as a semiconductor substrate structure of a different form. The embodiment is the same as the embodiment 5, but the difference is that, referring to FIG. 7, the core substrate 20b used in the embodiment is the semiconductor substrate structure in the third embodiment, and the remaining steps are the same as the embodiment 5. the same. Here, the conductive blind vias 442 electrically connect the third wiring layer 33 of the core substrate 2〇b and the buildup wiring layer 441 of the wiring buildup structure 45. The third conductive pillar 443 can be electrically electrically connected to the build-up wiring layer 441 and a portion of the third wiring layer 33 of the other side surface of the core substrate 20b. Further, the structure of the semiconductor substrate of this embodiment is completed. 15 In summary, compared with the conductive layer, metal copper layer and insulating resin included in the conventional electroplated via structure, the thermal expansion coefficient of the plug material and the via hole of the electroplated via hole are generated in the process of filling the insulating resin. Reliability issues with metal mismatch. The present invention utilizes a conductive post instead of a plated via that includes only a conductive layer and metallic copper. In this structure, it can have good electric -20 properties, heat dissipation, avoid the problem that the thermal expansion coefficient of the plug material does not match the metal of the plated via hole, and the process capability design of the fine line can be made. According to the semiconductor substrate structure formed in Embodiment 3 and Embodiment 4 of the present invention, since the thin metal layer is completely removed, the obtained 17 U27367 thin wiring line (ie, the third wiring layer) can be optimally obtained. The malleability, the reliability of the quality. The above-described embodiments are merely examples for convenience of description, and the scope of the present invention is determined by the scope of the claims. [Picture of the diagram] Figure 1Α and 1Β are a well-known and quaint view of the structure. Semiconductor Substrate Junction of U-Electrical Through Hole 10 15 20 FIG. 2 is a cross-sectional view showing the structure of a semiconductor substrate of the preferred embodiment of the present invention. Fig. 3A to Fig. 3 are partial cross-sectional views showing the process of the semi-recording plate of the invention according to the fourth embodiment. 4 is a cross-sectional view showing the structure of a +-conductor substrate according to another preferred embodiment of the present invention. FIG. 5 is a cross-sectional view showing the structure of a +-conductor substrate of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. is a cross-sectional view showing the fabrication process of a semiconductor substrate in accordance with still another preferred embodiment of the present invention. 7 is a cross-sectional view showing a structure of a semiconductor substrate according to still another preferred embodiment of the present invention. 0 12 12a circuit layer inner layer circuit layer [main component symbol description Ua, llb, 21 core plate 13 plating via hole 18 1327367 12b outer layer layer 13a first plating Via 13b second plating via 14 insulating resin 15 conductive hole 20a, 20b core substrate 21 core plate 21a metal thin layer 22 via 23 first conductive layer 24 first metal layer 241 first conductive pillar 242 second conductive pillar 243 First circuit layer 244 second circuit layer 31 second conductive layer 32 resist layer 32a resist layer opening 33 third circuit layer 41 dielectric layer 41a blind hole 41b via hole 42 third conductive layer 43 resist layer 43a resist layer opening 44 plating Metal layer 441 build-up circuit layer 442 conductive blind hole 443 second conductive pillar 45 line build-up structure 46 solder resist layer 444 electrical connection pad 34 second metal layer 19
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96108267A TWI327367B (en) | 2007-03-09 | 2007-03-09 | Semiconductor substrate structure and method for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96108267A TWI327367B (en) | 2007-03-09 | 2007-03-09 | Semiconductor substrate structure and method for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200837916A TW200837916A (en) | 2008-09-16 |
TWI327367B true TWI327367B (en) | 2010-07-11 |
Family
ID=44820368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96108267A TWI327367B (en) | 2007-03-09 | 2007-03-09 | Semiconductor substrate structure and method for fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI327367B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832138A (en) * | 2011-06-15 | 2012-12-19 | 景硕科技股份有限公司 | Method for forming packaging substrate with ultrathin seed layer |
-
2007
- 2007-03-09 TW TW96108267A patent/TWI327367B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200837916A (en) | 2008-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5290761B2 (en) | Novel integrated circuit support structure and its manufacture | |
TWI294678B (en) | A method for manufacturing a coreless package substrate | |
US8586875B2 (en) | Wiring board and method for manufacturing the same | |
JP3297879B2 (en) | Integrated circuit package formed continuously | |
US7921550B2 (en) | Process of fabricating circuit structure | |
US7754598B2 (en) | Method for manufacturing coreless packaging substrate | |
TWI296843B (en) | A method for manufacturing a coreless package substrate | |
US20090241332A1 (en) | Circuitized substrate and method of making same | |
US20060284640A1 (en) | Structure of circuit board and method for fabricating the same | |
TWI295842B (en) | A method for manufacturing a coreless package substrate | |
WO2004103039A1 (en) | Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board | |
US20140102767A1 (en) | Multi-layer type printed circuit board and method of manufacturing the same | |
JP2007324559A (en) | Multilayer circuit board with fine pitch and fabricating method thereof | |
JP2016134624A (en) | Electronic element built-in printed circuit board and manufacturing method therefor | |
JP2014082441A (en) | Multi-layer type coreless substrate and method of manufacturing the same | |
US20080030965A1 (en) | Circuit board structure with capacitors embedded therein and method for fabricating the same | |
TWI327367B (en) | Semiconductor substrate structure and method for fabricating the same | |
US6913814B2 (en) | Lamination process and structure of high layout density substrate | |
JP2008016805A (en) | Printed circuit board, and method of manufacturing the same | |
TWI361483B (en) | Aluminum oxide-based substrate and method for manufacturing the same | |
WO2018047612A1 (en) | Component-incorporated substrate and method for manufacturing same | |
KR100477258B1 (en) | Method for creating bump and making printed circuit board using the said bump | |
CN101295698A (en) | Flip-chip substrate structure and production method thereof | |
TWI355725B (en) | Multilayer module of stacked aluminum oxide-based | |
TWI296436B (en) |