!318803 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種導光透鏡及採用該導光透鏡之發光二 極體’尤其涉及一種側光式導光透鏡及採用該導光透鏡之發 光二極體。 【先前技術】 近年來,發光二極體由於具有高色彩飽和度、不含汞及 壽命長等優點被廣泛應用於顯示和照明光學設備中。惟,目 前採用之發光二極體多爲單色光發光二極體,應用於照明或 顯示裝置中,需要將三種基色(RGB)之發光二極體所發出 之單色光相互混合以形成白光,才能達到照明或顯示之目 的。應用時,一般係將複數不同基色之發光二極體同時設置 於一電路板上。於採用發光二極體之直下式背光模組之設計 中,爲達到更好之混光效果,發光二極體一般設計爲光從側 面出射。 一請參閱圖1,其係習知技術之側光式發光二極體之剖面 示意圖。該發光二極體1〇包括一含有發光區ηι之半導體 發光元件11、一與該半導體發光元件u相固定之導光透鏡 13及一反射膜層15。導光透鏡13包括一與半導體發光元件 11相對而封閉發光區m且截面近似爲“门,,形之入光底面 131、、一與該入光底面131相對之漏斗狀頂面133及—位於 導光透鏡13.外侧之出光側面135。反射膜層15設置於導光 透鏡13之漏斗狀頂面133。該出光側面135包括一第一折射 面咖與一第二折射面1353,第一折射面i35i與漏斗狀頂 1318803 •面133相連且其與導光透鏡對稱中心軸成一定傾斜角度,第 二折射面1353爲一從入光底面131向第一折射面1351延伸 * 形成之光滑彎曲面。 . 半導體發光元件11發出之光線從入光底面131進入導 光透鏡13,一部分直接達到第二折射面1353,另一部分直 接到達漏斗狀頂面133。直接到達第二折射面1353之光線基 本可從第二折射面1353直接出射,而直接到達漏斗狀頂面 133之光線則藉由漏斗狀頂面133與反射膜層15反射回導光 籲透鏡13。在此,爲使得從漏斗狀頂面133與反射膜層15反 射回導光透鏡13之光線順利從侧面出射,該第一折射面 1351設置成與漏斗狀頂面133相連且與導光透鏡13對稱中 心軸成一定傾斜角度之結構。由此,第一折射面1351與漏 斗狀頂面1233相連接處之截面輪廓爲一楔形,第一折射面 1351與第二折射面1353相連接處形成一不規則凹槽,其增 加了導光透鏡之結構之複雜程度,相應地增加了用於製備上 述導光透鏡之模具之設計難度、製造難度及相應成本。 【發明内容】 鑒於上述狀況,有必要提供一種結構簡單、製造便利, 且能較佳滿足侧面出光效果之導光透鏡及採用該導光透鏡 之發光二極體。 一種導光透鏡,其包括一入光底面、一與該入光底面相 對之漏斗狀頂面及一介於該入光底面與該漏斗狀頂面之間 之出光側面,該出光側面爲一朝向該導光透鏡中心彎曲之外 凸弧形曲面。 7 1318803 • 一種發光二極體,其包括一半導體發光元件及一與該半 導體發光元件相固定之導光透鏡,該導光透鏡包括一與該半 • 導體發光元件相對之入光底面、一與該入光底面相對之漏斗 « 狀頂面及一介於該入光底面與該漏斗狀頂面之間之出光側 面,該出光側面爲一朝向該導光透鏡中心彎曲之外凸弧形曲 面。 相較於習知技術,介於入光底面與漏斗狀頂面之導光透 鏡出光側面設置爲外凸弧形曲面,其可使得直接來自半導體 •發光元件之光線與來自漏斗狀頂面方向之光線均能夠順利 • 從側面出射,無需設置與漏斗狀頂面相連且與導光透鏡對稱 中心軸成一定傾斜角度之第一折射面。故,導光透鏡具有結 構相對簡單、製造便利,且能較佳滿足側面出光效果之優點。 【實施方式】 下面將結合附圖及複數實施例對本發明之導光透鏡及 採用該導光透鏡之發光二極體作進一步詳細說明。 請一併參閱圖2與圖3,本發明較佳實施例一提供一發 *光二極體30。該發光二極體30包括一半導體發光元件31、 一與該半導體發光元件31相固定之導光透鏡33及一反射元 件35。該導光透鏡33包括一與半導體發光元件31相對之入 光底面331、一與入光底面331相對之漏斗狀頂面333及一 介於該入光底面331與漏斗狀頂面333之間之出光側面 335。反射元件35設置於導光透鏡33之漏斗狀頂面333,其 用以將透過導光透鏡33之漏斗狀頂面333之部分光線反射 回導光透鏡33。出光側面335爲一朝向導光透鏡33中心彎 1318803 •曲之外凸弧形曲面,外凸弧形曲面可爲球形面與抛物面之 一,本實施例中外凸弧形曲面爲一球形面,其可使得直接來 • 自半導體發光元件31之光線與被漏斗狀頂面333及反射元 - 件反射至出光侧面335之光線均能夠順利從側面出射。 導光透鏡33可爲軸對稱之旋轉體,亦可爲非軸對稱之 其他結構,爲使從出光側面335各處出射之光線較爲均勻, 本實施例之導光透鏡33優選爲軸對稱之旋轉體。導光透鏡 33之入光底面331之横截面近似爲“门”形。漏斗狀頂面 • 333爲一光滑之漏斗面。球形面之圓心位於導光透鏡33之對 • 稱中心軸上,且其半徑取值大於1毫米。 • 反射元件35可設計爲多種形式,例如反射片、反射膜 層及與導光透鏡一體成型之反射部等,本實施例之反射元件 35爲反射片,其係以黏合固定之方式固定於漏斗狀頂面 333。採用於漏斗狀頂面333固定反射片之方式,反射片結 構簡單、無需特別之設備,具有製備成本低之特點。爲保證 經過反射元件35作用後之光線均一性,反射元件35亦應設 *計爲具有軸對稱性之結構,其對稱中心軸與漏斗狀頂面333 之對稱中心軸重合。 當半導體發光元件31所發出之光線從入光底面331進 入導光透鏡33時,光線於漏斗狀頂面333或反射元件35被 反射回導光透鏡33。球形面可使得直接來自半導體發光元件 31之光線與被漏斗狀頂面333及反射元件35反射至出光側 面335之光線均能夠順利從側面出射,無需設置與漏斗狀頂 面333相連且與導光透鏡33對稱中心軸成一定傾斜角度之 1318803 •第一折射面,從而不存在楔形與不規則凹槽等結構。並且, 製備該導光透鏡33之模具亦無需設置用以形成楔形結構與 * 不規則凹槽結構之複雜結構,相應地降低了模具之設計難 - 度、製造難度及相應成本。故,導光透鏡33具有結構相對 簡單、製造便利,且能較佳滿足側面出光效果之優點。 請參閱圖4,本發明發光二極體較佳實施例二提供一發 光二極體50,其與本發明之第一實施例提供之發光二極體 30結構相似,其不同在於:反射元件55爲一與導光透鏡53 • 一體成型之反射部,該反射部覆蓋導光透鏡53之漏斗狀頂 面533並填充該漏斗狀頂面533所圍成之凹穴。反射部之材 質可爲摻雜有反射粒子之透明樹脂。透明樹脂可爲丙烯酸樹 脂、丙烯酸氨基樹脂和環氧樹脂中之一種或一種以上之混合 物。反射粒子之折射率範圍爲1.6至2.75。反射粒子可爲二 氧化鈦顆粒、硫酸鋇顆粒、硫化辞顆粒、氧化鋅顆粒、氧化 銻顆粒和碳酸鈣顆粒中之一種或一種以上之混合物,且反射 粒子之粒徑範圍爲0.01至5微米。採用該方式製備之發光二 @極體具有反射部不易脫落,批量化製造速度快之優點。 請一併參閱圖5與圖6,本發明發光二極體較佳實施例 三提供一發光二極體70,其與本發明之第一實施例提供之發 光二極體30結構相似,其不同在於:導光透鏡73之漏斗狀 頂面733由複數全反射面7331相互連接而成。除靠近漏斗 狀頂面733底部之全反射面外,其他全反射面爲圓台側面, 且圓台側面之對稱中心軸與導光透鏡73之對稱中心軸重 合。這樣,從漏斗狀頂面733及反射元件反射回導光透鏡之 1318803 •光線能夠以一定之角度射至出光側面並順利出射。 可以理解,除靠近漏斗狀頂面底部之全反射面外,其他 - 全反射面還可全部或部分爲弧形曲面。並且,漏斗狀頂面亦 - 可由兩個全反射面相互連接而成。 綜上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉 本案技藝之人士,在爰依本發明精神所作之等效修飾或變 化,皆應涵蓋於以下之申請專利範圍内。 • 【圖式簡單說明】 圖1係習知發光二極體之剖面示意圖。 圖2係本發明發光二極體較佳實施例一之剖面示意圖。 圖3係圖2所示之導光透鏡之立體示意圖。 圖4係本發明發光二極體較佳實施例二之剖面示意圖。 圖5係本發明發光二極體較佳實施例三之剖面示意圖。 圖6係圖5所示之導光透鏡之立體示意圖。 【主要元件符號說明】 * (本發明) 發光二極體 30、50、70 半導體發光元件31 導光透鏡 33、53、73 入光底面 331 漏斗狀頂面 333、533、733 全反射面 7331 出光侧面 335 11 1318803 反射元件 35 ' 55 知) 發光二極體 10 半導體發光元件 11 發光區 111 導光透鏡 13 入光底面 131 漏斗狀頂面 133 出光侧面 135 第一折射面 1351 第二折射面 1353 反射膜層 15 12BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light guiding lens and a light emitting diode using the same, and more particularly to an edge light guiding lens and illumination using the same Diode. [Prior Art] In recent years, light-emitting diodes have been widely used in display and illumination optical devices due to their high color saturation, mercury-free, and long life. However, the light-emitting diodes currently used are mostly monochromatic light-emitting diodes, and are used in illumination or display devices, and it is necessary to mix monochromatic lights emitted by three primary color (RGB) light-emitting diodes to form white light. In order to achieve the purpose of lighting or display. In application, a plurality of light-emitting diodes of different primary colors are generally disposed on a circuit board at the same time. In the design of a direct-lit backlight module using a light-emitting diode, in order to achieve a better light-mixing effect, the light-emitting diode is generally designed to emit light from the side. Referring to Figure 1, there is shown a cross-sectional view of a side-lit LED of the prior art. The light-emitting diode 1 includes a semiconductor light-emitting element 11 including a light-emitting region η, a light guide lens 13 fixed to the semiconductor light-emitting element u, and a reflective film layer 15. The light guiding lens 13 includes a funnel-shaped top surface 133 opposite to the semiconductor light-emitting element 11 and enclosing the light-emitting region m and having a cross section of approximately a "gate, a light-incident bottom surface 131, and a funnel-shaped top surface 133 opposite to the light-incident bottom surface 131. The light-emitting side surface 135 of the light guide lens 13. The reflective film layer 15 is disposed on the funnel-shaped top surface 133 of the light guide lens 13. The light-emitting side surface 135 includes a first refractive surface and a second refractive surface 1353, the first refractive The surface i35i is connected to the funnel-shaped top 1318803, the surface 133, and is inclined at an angle to the central axis of the light guiding lens. The second refractive surface 1353 is a smooth curved surface formed by extending from the light-incident surface 131 to the first refractive surface 1351*. The light emitted from the semiconductor light-emitting element 11 enters the light guiding lens 13 from the light incident bottom surface 131, a part directly reaches the second refractive surface 1353, and the other part directly reaches the funnel-shaped top surface 133. The light directly reaching the second refractive surface 1353 can be substantially The light directly exiting from the second refractive surface 1353 and directly reaching the funnel-shaped top surface 133 is reflected back to the light guiding lens 13 by the funnel-shaped top surface 133 and the reflective film layer 15. Here, from the funnel shape The light reflected from the surface 133 and the reflective film layer 15 back to the light guiding lens 13 is smoothly emitted from the side surface, and the first refractive surface 1351 is disposed to be connected to the funnel-shaped top surface 133 and at a certain oblique angle with the central axis of the light guiding lens 13 Thus, the cross-sectional profile of the first refractive surface 1351 and the funnel-shaped top surface 1233 is a wedge shape, and the first refractive surface 1351 and the second refractive surface 1353 are joined to form an irregular groove, which increases the guide. The complexity of the structure of the optical lens increases the design difficulty, manufacturing difficulty and corresponding cost of the mold for preparing the above-mentioned light guiding lens. [Invention] In view of the above situation, it is necessary to provide a simple structure and convenient manufacturing, and A light guiding lens capable of better satisfying a side light emitting effect and a light emitting diode using the light guiding lens. A light guiding lens comprising a light incident bottom surface, a funnel-shaped top surface opposite to the light incident bottom surface, and an a light-emitting side surface between the bottom surface of the light incident surface and the funnel-shaped top surface, the light-emitting side surface being a convex curved surface curved toward the center of the light guiding lens. 7 1318803 • A type a light emitting diode comprising a semiconductor light emitting element and a light guiding lens fixed to the semiconductor light emitting element, the light guiding lens comprising a light incident bottom surface opposite to the semiconductor light emitting element, and a light incident bottom surface Opposite the funnel « top surface and a light exiting side between the light incident bottom surface and the funnel top surface, the light exiting side is a convex curved surface curved toward the center of the light guiding lens. Compared with the conventional The light-emitting side of the light-guiding lens between the light-incident bottom surface and the funnel-shaped top surface is provided as a convex curved curved surface, which can make the light directly from the semiconductor light-emitting element and the light from the funnel-shaped top surface smooth. From the side, it is not necessary to provide a first refractive surface that is connected to the funnel-shaped top surface and at an oblique angle to the central axis of the light guiding lens. Therefore, the light guiding lens has the advantages of relatively simple structure, convenient manufacture, and better meeting the side light-emitting effect. [Embodiment] Hereinafter, a light guiding lens of the present invention and a light emitting diode using the same will be further described in detail with reference to the accompanying drawings and the embodiments. Referring to FIG. 2 and FIG. 3 together, a preferred embodiment of the present invention provides a light-emitting diode 30. The light emitting diode 30 includes a semiconductor light emitting element 31, a light guiding lens 33 fixed to the semiconductor light emitting element 31, and a reflecting element 35. The light guiding lens 33 includes a light incident bottom surface 331 opposite to the semiconductor light emitting element 31, a funnel-shaped top surface 333 opposite to the light incident bottom surface 331, and a light output between the light incident bottom surface 331 and the funnel top surface 333. Side 335. The reflective element 35 is disposed on the funnel-shaped top surface 333 of the light guiding lens 33 for reflecting a portion of the light transmitted through the funnel-shaped top surface 333 of the light guiding lens 33 back to the light guiding lens 33. The light-emitting side surface 335 is a curved surface facing the center of the light guiding lens 33. The convex curved surface may be one of a spherical surface and a paraboloid. In this embodiment, the convex curved surface is a spherical surface. The light directly from the semiconductor light-emitting element 31 and the light reflected by the funnel-shaped top surface 333 and the reflective element to the light-emitting side surface 335 can be smoothly emitted from the side. The light guiding lens 33 may be an axisymmetric rotating body or other structure that is not axisymmetric. In order to make the light emitted from the light emitting side surface 335 relatively uniform, the light guiding lens 33 of the embodiment is preferably axisymmetric. Rotating body. The cross section of the light incident bottom surface 331 of the light guiding lens 33 is approximately "gate". Funnel top surface • 333 is a smooth funnel surface. The center of the spherical surface is located on the pair of central axes of the light guiding lens 33, and its radius is greater than 1 mm. The reflective element 35 can be designed in various forms, such as a reflective sheet, a reflective film layer, and a reflective portion integrally formed with the light guiding lens. The reflective element 35 of the present embodiment is a reflective sheet that is fixed to the funnel by adhesive bonding. Top surface 333. The method of fixing the reflective sheet on the funnel-shaped top surface 333 is simple in structure, requires no special equipment, and has the characteristics of low preparation cost. In order to ensure the uniformity of the light after the action of the reflecting element 35, the reflecting element 35 should also be designed to have an axisymmetric structure whose center of symmetry coincides with the central axis of symmetry of the funnel-shaped top surface 333. When the light emitted from the semiconductor light emitting element 31 enters the light guiding lens 33 from the light incident bottom surface 331, the light is reflected back to the light guiding lens 33 at the funnel-shaped top surface 333 or the reflecting member 35. The spherical surface enables the light directly from the semiconductor light-emitting element 31 and the light reflected by the funnel-shaped top surface 333 and the reflective element 35 to the light-emitting side surface 335 to smoothly exit from the side without connecting to the funnel-shaped top surface 333 and guiding light. The symmetry central axis of the lens 33 is at a certain inclination angle of 1318803. The first refractive surface, so that there are no structures such as a wedge shape and an irregular groove. Moreover, the mold for preparing the light guiding lens 33 does not need to be provided with a complicated structure for forming the wedge structure and the * irregular groove structure, thereby correspondingly reducing the design difficulty, manufacturing difficulty and corresponding cost of the mold. Therefore, the light guiding lens 33 has the advantages of relatively simple structure, convenient manufacture, and better meeting the side light-emitting effect. Referring to FIG. 4, a preferred embodiment 2 of the light-emitting diode of the present invention provides a light-emitting diode 50, which is similar in structure to the light-emitting diode 30 provided by the first embodiment of the present invention, except that the reflective element 55 is provided. It is a reflecting portion integrally formed with the light guiding lens 53. The reflecting portion covers the funnel-shaped top surface 533 of the light guiding lens 53 and fills the cavity surrounded by the funnel-shaped top surface 533. The material of the reflecting portion may be a transparent resin doped with reflective particles. The transparent resin may be a mixture of one or more of an acrylic resin, an acrylic amino resin, and an epoxy resin. The refractive index of the reflective particles ranges from 1.6 to 2.75. The reflective particles may be a mixture of one or more of titanium oxide particles, barium sulfate particles, sulfurized particles, zinc oxide particles, cerium oxide particles, and calcium carbonate particles, and the particles of the reflective particles have a particle size ranging from 0.01 to 5 μm. The light-emitting two-pole body prepared by the method has the advantages that the reflecting portion is not easy to fall off, and the batch manufacturing speed is fast. Referring to FIG. 5 and FIG. 6 , a preferred embodiment 3 of the light-emitting diode of the present invention provides a light-emitting diode 70, which is similar in structure to the light-emitting diode 30 provided by the first embodiment of the present invention. The funnel-shaped top surface 733 of the light guiding lens 73 is formed by interconnecting the plurality of total reflection surfaces 7331. Except for the total reflection surface near the bottom of the funnel-shaped top surface 733, the other total reflection surface is the side surface of the circular table, and the central axis of symmetry of the side surface of the circular table coincides with the central axis of symmetry of the light guiding lens 73. Thus, 1318803 is reflected from the funnel-shaped top surface 733 and the reflective element back to the light guiding lens. • The light can be incident on the light emitting side at a certain angle and smoothly exit. It can be understood that the other - total reflection surface may be all or part of a curved surface except for the total reflection surface near the bottom of the funnel-shaped top surface. Moreover, the funnel-shaped top surface can also be formed by connecting two totally reflecting surfaces to each other. In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. • [Simplified illustration of the drawings] Fig. 1 is a schematic cross-sectional view of a conventional light-emitting diode. 2 is a schematic cross-sectional view showing a preferred embodiment 1 of the light-emitting diode of the present invention. 3 is a perspective view of the light guiding lens shown in FIG. 2. 4 is a cross-sectional view showing a preferred embodiment 2 of the light-emitting diode of the present invention. Figure 5 is a cross-sectional view showing a preferred embodiment 3 of the light-emitting diode of the present invention. Figure 6 is a perspective view of the light guiding lens shown in Figure 5. [Description of main component symbols] * (Invention) LEDs 30, 50, 70 Semiconductor light-emitting elements 31 Light-guiding lenses 33, 53, 73 Light-receiving bottom surface 331 Funnel-shaped top surfaces 333, 533, 733 Total reflection surface 7331 Light-emitting Side 335 11 1318803 Reflecting element 35 ' 55 Knowing light emitting diode 10 Semiconductor light emitting element 11 Light emitting area 111 Light guiding lens 13 Light entering bottom surface 131 Funneling top surface 133 Light emitting side surface 135 First refractive surface 1351 Second refractive surface 1353 Reflection Film layer 15 12