1320976 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種發光二極體製備方法,尤其涉及一種側 光式發光二極體製備方法。 【先前技術】 目前背光模組中之發光裝置一般爲冷陰極熒光燈(Cold Cathode Fluorescent Lamp,CCFL)與發光二極體(Light Emitting Diode,LED)。其中,發光二極體係一種固態之半導 體發光裝置,其係利用二極體内分離之兩種載流子(帶負電 之電子與帶正電之電洞)相互結合而産生光。與冷陰極熒光 燈相比,發光二極體具有高色彩飽和度、不含汞、壽命長及 可透過驅動電流調整色溫等優點。 請參閱圖1,採用習知發光二極體之背光模組示意圖。 該背光模組10包括一底板11、複數設置於底板11之發光二 極體12及一設置于該複數發光二極體12上方之光學板14。 其中,每一發光二極體12包括一含有發光區1211之半導體 發光元件121及一設置于該半導體發光元件121上之導光透 鏡123。導光透鏡123包括使一與半導體發光元件121配合 而封閉發光區1211之橫截面爲近似“门”形之入光面 1231、一與該入光面1231相對之漏斗狀頂面1233及一位於 導光透鏡123側面並與頂面1233相連之出光面1235。其中, 半導體發光元件121發射之光線從入光面1231進入導光透 鏡123,頂面1233將部分入射光反射至出光面1235而射出。 儘管導光透鏡123之頂面1233能使部分滿足全反射條 7 丄: 件之入射光線發生全反射,但仍存在較多^滿足全反射條件 之光線’會於與垂直方向成較小角度之範圍内出射至光學板 14’爲避免該部分入射光學板14之光線於發光二極體^正 上方形成亮點而影響背光模組1G之發光效果,於光學板14 與稷數發光二極體12之間需設置固定有反射片15之辅助擴 散板13 ’以減小該部分可入射至光學板14之光線之強度。 然而,輔助擴散板13之使用不僅容易使背光模組1〇成本與 重里增加,且於使用過程中該輔助擴散板13還可能產生黃 化現象而影響背光模組1G之質量;另,於組裝時還需考慮 反射片15與發光二極體12之對準問題。 【發明内容】 鑒於上述狀況’有必要提供一種可減少與垂直方向成較 小角度範圍内之出光量之發光二極體製備方法。 一種發光一極體之製備方法,其包括以下步驟:提供複 數透明樹脂顆粒、複數透明導光透鏡材料顆粒與一半導體發 光元件;向該透明樹脂顆纟中摻雜加入複數反射粒子並加 熱,以使該反射粒子與該透明樹脂均勻混合並溶煉出高反射 率之反射層材料;將該反射層材料與透明導光透鏡材料採用 雙色射出成型之方式形成所述具有反射層之導光透鏡;將制 得之具有反射層之導光透鏡與該半導體發光元件組裝成發 光二極體。 相較于習知技術,藉由於發光二極體之導光透鏡之頂面 形成-反射層’藉由反射層將透過頂面之部分光線反射回導 光透鏡’以減少與垂直方向成較小角度範圍内之出光量,防 8 1320976 止焭點形成。而且,該反射層形成於導光透鏡之頂面上,無 需固定反射片之辅助擴散板,減少了背光模組重量及材料成 本。另,於組裝時無需考慮反射片與發光二極體之對準問 題’提高了組裝效率,節約了人力成本。 【實施方式】 下面將結合附圖及複數實施例對本發明之發光二極 體,以及該發光二極體之製備方法進一步詳細說明。 明參閱圖2,本發明背光模組較佳實施例一提供一發光 二極體30,其包括一半導體發光元件31及一導光透鏡33〇 該導光透鏡33包括一與該半導體發光元件31相對之入光面 331、一與該入光面331相對之頂面333及一位於該導光透 鏡33外側之出光面335。該發光二極體孙還包括一形成於 該導光透鏡33之頂面333之反射層35,該反射層%及該導 光透鏡33爲-體成型製成’該反射層材料爲摻雜有反射粒 子之透明樹脂。該反射層35用以將透過導光透鏡%之頂面 333之部分光線反射回導光透鏡33。 根據不同之出光要求,導光透鏡33可採用不同之形 狀’且爲使導紐鏡33從出光面335各處出射之光線較爲 均勻,該導光透鏡33優選爲旋轉體;具體於本實施例中, 5亥導光透鏡33爲中心對稱之旋轉體,其人光面331之橫截 =爲近似“Π,,形,頂面333爲漏斗形。可以理解,爲增加 導光透鏡33側面出光效果,該導光透鏡%之出光面奶曰可 設計爲一第一折射面3351及一與該第一折射面3351相連之 第二折射面3353構成之複合結構。該第一折射面3351可使 9 丄JZUy/b 得被反射層35反射回來之部分光線順利出射,該第二折射 =3353可使仔直接來自半導體發光元件31之部分光線順利 出射。 。玄反射層35覆蓋該漏斗狀頂面33,並且該反射層^ 遠離該導光透鏡333之-側爲—平面。爲保證透過反射層^ =光線均一性,反射層35也應設計爲具有軸對稱性之結構, >、對稱轴與漏斗狀頂面333之中心軸重合。 士 °亥反射層材料之透明樹脂可爲丙烯酸樹脂、丙烯酸氨基 樹脂和環氧樹脂中之-種或—種以上之混合物。該反射粒子 之折射率㉒圍冑1·6至2.75。該反射粒子可爲二氧化鈦顆 ,、硫酸鋇顆粒、硫化鋅顆粒、氧化辞顆粒、氧化錄顆粒和 石反酸每顆粒中之-種或—種以上之混合物。且反射粒子之粒 控範圍爲0.01至5微米。 工作時,半導體發光元件31所發出之光線從入光面331 進入導光透鏡33,透過頂面333之部分光線被該反射層% 反射回來導光透鏡33。故,藉由該反射層35之作用可減少 與垂直方向成較小角度範圍内之出光量,防止亮點形成:二 且,該反射層35形成於導光透鏡33之頂面333上,碑少了 輔助擴散板之使用,相應減少了背光模組3〇之重量及材料 成本。另,於組裝時無需考慮反射片與發光二極體之對準問 題,提高了組裝效率,節約了人力成本。 請參閱圖3,本發明發光二極體較佳實施例二提供一發 光二極體50,其與本發明之第一實施例提供之發光二極體 3〇結構相似,其不同在於:該反射層55遠離該導光透鏡幻 丄jzuy/〇 之一側形成有—凸起部553,該凸起# 553爲-部分球體 狀且八對稱中心轴與導光透鏡53之對稱中心轴相重合。 請參閱圖4’本發明發光二極體較佳實施例三提供一發 光二極體70’其與本發明之第一實施例提供之發光二極體 3〇結構相似’其不同在於··該反射層75覆蓋料光透鏡73 之漏斗狀頂面733形成—漏斗狀凹穴。 可乂理解_L述導光透鏡也可設計爲外形輪廓呈半球狀 之其他透鏡形式,且該漏斗狀頂面也可設計爲平面狀之頂 面’相應㈣,反射層之外形結構與導光透鏡之外形結構相 配合即可。 本發明另提供-種所述發光二極體之製備方法,其包括 以下步驟: 首先,提供複數透明樹脂顆粒、複數透明導光透鏡材料 顆粒與半導體發光凡件。該透明樹脂可爲丙稀酸樹脂、丙 烯酸氨基樹脂或環氧樹脂中之 其次’向該透明樹脂顆粒中換雜加人複數反射粒子並加 熱’以使該反射粒子與該透明樹脂均勻混合並熔煉出高反射 率之反射層材料。該反射粒子之折射率範圍爲Μ至2.乃。 ,反射粒子可爲二氧化鈦顆粒、硫酸侧粒、硫化辞顆粒、 氧化鋅顆粒、氧化錄顆粒和碳酸躺粒中之—種或一種以上 之混合物’且反射粒子之粒徑範圍爲〇 〇1至5微米。 然後’將該反射層材料與透明導光透鏡材料㈣雙色射 出成型之方式形成所述具有反射層之導光透鏡,即該反射層 及該導光透鏡爲-體成型製成。該雙色射出成型爲使用兩個 11 1320976 或兩個以上注射系統之注射機,將該反射層材料與透明導光 透鏡材料按先後順序注射人模具内成型。並且,可以選擇先 將該反射層材料注射人模具内,再將透明導光透鏡材料注射 入模具内之成型方式;也可選擇先將該透明導光透鏡材料注 射入模具内,再將反射層材料注射人模具内之成型方式。採 用該方式製作’該反射層與透明導光透鏡結合爲—體,強度 高’反射層不會剝落且不易磨損。 最後’將具有反射層之導光透鏡與半導體發光元件組裝 成發先-一極體。 可以理解’可以適當調節該透明樹脂顆粒與反射粒子之 重I比例,以使得該反射層材料製成之反射層具有預定之光 穿透率。 細上所述,本發明符合發明專利要件,爰依法提出專利 申明惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉 本案技藝之人士,在爰依本發明精神所作之等效修飾或變 化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 圖1係習知背光模組之剖面示意圖。 圖2係本發明發光二極體較佳實施例一之剖面示意圖。 圖3係本發明發光二極體較佳實施例二之剖面示意圖。 圖4係本發明發光二極體較佳實施例三之剖面示意圖。 【主要元件符號說明】 (本發明) 發光二極體 30、50、70 12 31 1320976 半導體發光元件 導光透鏡 入光面 頂面 出光面 第一折射面 第二折射面 反射層 凸起部 (習知) 背光模組 底板 發光二極體 半導體發光元件 發光區 導光透鏡 入光面 頂面 出光面 輔助擴散板 光學片 反射片 33 、 53 、 73 331 333 ' 733 335 3351 3353 35 、 55 、 75 553 10 11 12 121 1211 123 1231 1233 1235 13 14 15 131320976 IX. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a light-emitting diode, and more particularly to a method for preparing a side-lighting light-emitting diode. [Prior Art] At present, the light-emitting devices in the backlight module are generally a Cold Cathode Fluorescent Lamp (CCFL) and a Light Emitting Diode (LED). Among them, a light-emitting diode system is a solid-state semiconductor light-emitting device which combines two kinds of carriers (negatively charged electrons and positively charged holes) separated in a dipole to generate light. Compared with cold cathode fluorescent lamps, light-emitting diodes have the advantages of high color saturation, no mercury, long life and adjustable color temperature through drive current. Please refer to FIG. 1 , which is a schematic diagram of a backlight module using a conventional light-emitting diode. The backlight module 10 includes a bottom plate 11, a plurality of light emitting diodes 12 disposed on the bottom plate 11, and an optical plate 14 disposed above the plurality of light emitting diodes 12. Each of the light-emitting diodes 12 includes a semiconductor light-emitting element 121 including a light-emitting region 1211 and a light-guiding lens 123 disposed on the semiconductor light-emitting element 121. The light guiding lens 123 includes a light-incident surface 1231 having a cross-section close to the light-emitting region 1211 and having a substantially "gate" shape, and a funnel-shaped top surface 1233 opposite to the light-incident surface 1231. The light-emitting surface 1235 of the light guide lens 123 and connected to the top surface 1233. The light emitted from the semiconductor light-emitting element 121 enters the light-guiding lens 123 from the light-incident surface 1231, and the top surface 1233 reflects part of the incident light to the light-emitting surface 1235 to be emitted. Although the top surface 1233 of the light guiding lens 123 can partially reflect the incident light of the total reflection strip 7 丄:, there are still more rays that satisfy the total reflection condition, which will be at a smaller angle from the vertical direction. The light exiting to the optical plate 14' in the range is to prevent the light incident on the optical plate 14 from forming a bright spot on the light-emitting diode, thereby affecting the light-emitting effect of the backlight module 1G, and the optical plate 14 and the plurality of light-emitting diodes 12 An auxiliary diffusion plate 13' to which the reflection sheet 15 is fixed is disposed between them to reduce the intensity of light which is incident on the optical plate 14. However, the use of the auxiliary diffusion plate 13 not only increases the cost and the weight of the backlight module 1 , but also causes the yellowing phenomenon to affect the quality of the backlight module 1G during use; The alignment problem between the reflective sheet 15 and the light-emitting diode 12 is also considered. SUMMARY OF THE INVENTION In view of the above circumstances, it is necessary to provide a method of fabricating a light-emitting diode that can reduce the amount of light emitted in a smaller angle range from the vertical direction. A method for preparing a light-emitting body, comprising the steps of: providing a plurality of transparent resin particles, a plurality of transparent light-guiding lens material particles and a semiconductor light-emitting element; and doping the transparent resin particles with a plurality of reflective particles and heating The reflective particles are uniformly mixed with the transparent resin to dissolve a high reflectivity reflective layer material; the reflective layer material and the transparent light guiding lens material are formed by two-color injection molding to form the light guiding lens having the reflective layer; The light guide lens having the reflective layer and the semiconductor light emitting element are assembled into a light emitting diode. Compared with the prior art, the top surface of the light guiding lens of the light emitting diode forms a reflective layer 'reflecting part of the light transmitted through the top surface back to the light guiding lens' by the reflective layer to reduce the vertical direction The amount of light in the angle range is prevented from forming on the 8 1320976 stop point. Moreover, the reflective layer is formed on the top surface of the light guiding lens, and the auxiliary diffusing plate of the reflecting sheet is not required, which reduces the weight and material cost of the backlight module. In addition, there is no need to consider the alignment problem between the reflective sheet and the light-emitting diode during assembly, which improves assembly efficiency and saves labor costs. [Embodiment] Hereinafter, a light-emitting diode of the present invention and a method of producing the same will be further described in detail with reference to the accompanying drawings and the embodiments. Referring to FIG. 2, a preferred embodiment of the backlight module of the present invention provides a light emitting diode 30 including a semiconductor light emitting element 31 and a light guiding lens 33. The light guiding lens 33 includes a semiconductor light emitting element 31. The light incident surface 331 , a top surface 333 opposite to the light incident surface 331 , and a light emitting surface 335 located outside the light guiding lens 33 . The light-emitting diode further includes a reflective layer 35 formed on the top surface 333 of the light guiding lens 33. The reflective layer % and the light guiding lens 33 are formed by body forming. The reflective layer material is doped with A transparent resin that reflects particles. The reflective layer 35 is used to reflect a portion of the light transmitted through the top surface 333 of the light guiding lens to the light guiding lens 33. According to different light-emitting requirements, the light guiding lens 33 can adopt different shapes ′, and the light that is emitted from the light-emitting surface 335 is relatively uniform, and the light guiding lens 33 is preferably a rotating body; In the example, the 5H light guiding lens 33 is a centrally symmetrical rotating body, and the cross section of the human light surface 331 is approximately "Π,, and the top surface 333 is funnel shaped. It can be understood that the side surface of the light guiding lens 33 is increased. The light-emitting surface of the light guide lens can be designed as a composite structure composed of a first refractive surface 3351 and a second refractive surface 3353 connected to the first refractive surface 3351. The first refractive surface 3351 can be A part of the light that is reflected back by the reflective layer 35 is smoothly emitted by the 9 丄JZUy/b, and the second refraction=3353 allows a part of the light directly from the semiconductor light-emitting element 31 to be smoothly emitted. The meta-reflective layer 35 covers the funnel-shaped top. The face 33, and the side of the reflective layer away from the light guiding lens 333 is a plane. To ensure the uniformity of the transmitted reflective layer, the reflective layer 35 should also be designed to have an axisymmetric structure, >, symmetry Shaft and funnel-shaped top surface 333 The central axis is coincident. The transparent resin of the reflective layer material may be a mixture of acrylic resin, acrylic amino resin and epoxy resin, or a mixture of the above. The refractive index of the reflective particle is about 2.6 to 2.75. The reflective particles may be titanium dioxide particles, barium sulfate particles, zinc sulfide particles, oxidized particles, oxidized particles, and a mixture of sulphuric acid per particle or a mixture thereof, and the particle size range of the reflective particles is 0.01 to 5 μm. During operation, light emitted from the semiconductor light-emitting element 31 enters the light guiding lens 33 from the light incident surface 331, and part of the light transmitted through the top surface 333 is reflected by the reflective layer % back to the light guiding lens 33. The function of the reflective layer 35 can reduce the amount of light emitted in a small angle range from the vertical direction, preventing the formation of bright spots: and the reflective layer 35 is formed on the top surface 333 of the light guiding lens 33, and the auxiliary diffusing plate is less. The use of the backlight module 3〇 reduces the weight and material cost. In addition, the assembly problem does not need to consider the alignment between the reflective sheet and the light-emitting diode, which improves assembly efficiency and saves manpower. Referring to FIG. 3, a preferred embodiment 2 of the light-emitting diode of the present invention provides a light-emitting diode 50 similar to the structure of the light-emitting diode 3〇 provided by the first embodiment of the present invention, and the difference is: The reflecting layer 55 is formed away from one side of the light guiding lens illusion jzuy/〇 with a convex portion 553 which is a partial spherical shape and an eight-symmetric central axis and a symmetrical central axis of the light guiding lens 53 Referring to FIG. 4, a preferred embodiment 3 of the light-emitting diode of the present invention provides a light-emitting diode 70' which is similar in structure to the light-emitting diode 3〇 provided by the first embodiment of the present invention. The reflective layer 75 covers the funnel-shaped top surface 733 of the light lens 73 to form a funnel-shaped recess. It can be understood that the light guide lens can also be designed as other lens forms having a hemispherical shape, and the funnel-shaped top surface can also be designed as a planar top surface corresponding to (four), the outer layer of the reflective layer and the light guide. The outer structure of the lens can be matched. The present invention further provides a method for preparing the light-emitting diode, comprising the steps of: first, providing a plurality of transparent resin particles, a plurality of transparent light guiding lens material particles, and a semiconductor light emitting device. The transparent resin may be an acrylic resin, an acryl resin or an epoxy resin, and 'substituting a plurality of reflective particles into the transparent resin particles and heating' to uniformly mix and smelt the reflective particles with the transparent resin. High reflectivity reflective layer material. The refractive index of the reflective particles ranges from Μ to 2. The reflective particles may be titanium dioxide particles, sulfuric acid side particles, sulfurized particles, zinc oxide particles, oxide particles and carbonic acid particles or a mixture of more than one and the reflective particles have a particle size ranging from 〇〇1 to 5 Micron. Then, the light-guiding lens having the reflective layer is formed by two-color injection molding of the reflective layer material and the transparent light guiding lens material (4), that is, the reflective layer and the light guiding lens are formed by body molding. The two-color injection molding is an injection machine using two 11 1320976 or more injection systems, and the reflective layer material and the transparent light guiding lens material are sequentially molded into a human mold. Moreover, the method of first injecting the reflective layer material into the mold and then injecting the transparent light guide lens material into the mold may be selected; or the transparent light guide lens material may be injected into the mold first, and then the reflective layer may be selected. The molding method of the material injected into the mold. In this way, the reflective layer and the transparent light guiding lens are combined into a body, and the strength is high. The reflective layer does not peel off and is not easily worn. Finally, the light guiding lens having the reflective layer and the semiconductor light emitting element are assembled into a first-pole. It is understood that the ratio of the weight I of the transparent resin particles to the reflective particles can be appropriately adjusted so that the reflective layer made of the reflective layer material has a predetermined light transmittance. As described above, the present invention complies with the requirements of the invention patent, and the patent application is filed according to law. The above is only a preferred embodiment of the present invention, and those who are familiar with the skill of the present invention are equivalent in the spirit of the present invention. Modifications or variations are intended to be included within the scope of the claims below. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a conventional backlight module. 2 is a schematic cross-sectional view showing a preferred embodiment 1 of the light-emitting diode of the present invention. 3 is a schematic cross-sectional view showing a preferred embodiment 2 of the light-emitting diode of the present invention. 4 is a schematic cross-sectional view showing a preferred embodiment 3 of the light-emitting diode of the present invention. [Description of main component symbols] (Invention) LEDs 30, 50, 70 12 31 1320976 Light-emitting diodes of semiconductor light-emitting elements, light-emitting surface, top surface, light-emitting surface, first refractive surface, second refractive surface, reflective layer, convex portion Known) Backlight module bottom plate light emitting diode semiconductor light emitting element light emitting area light guiding lens light receiving surface top surface light emitting surface auxiliary diffusing plate optical sheet reflecting sheet 33, 53 , 73 331 333 ' 733 335 3351 3353 35 , 55 , 75 553 10 11 12 121 1211 123 1231 1233 1235 13 14 15 13