13187 f68twf d〇c/g 九、發明說明: 【發明所屬之技術領域】 本發明大體係關於一種顯示裝置。更特定言之,本發 明係關於一種反射型液晶面板。 【先前技術】 矽基液晶(LCOS)面板基本上為一以矽晶圓為基底 的面板,其係藉由使用MOS電晶體來替代習知液晶面板 中所使用之薄膜電晶體。通常,該LCOS面板具有兩種基 本類型:透射型及反射型。然而,大多數研究及開發工作 係集中於反射型LCOS面板。該反射型LCOS面板之像素 電極係由金屬材料製成。此外,因為金屬像素電極幾乎覆 蓋整個像素區域(尤其是MOS電晶體),所以與習知液 晶面板相比,該LCOS面板在影像顯示方面較優良。 圖1繪示一習知反射型LCOS面板中之一像素的電路 佈局。如圖1所示’藉由控制MOS電晶體110,可將儲存 電谷器120及LC(液晶)電容器130充電至一電壓,且LC 電谷器130中之液晶分子根據該電壓而沿一特定方向排 列。此外,為了達到優良之顯示均一性,儲存電容器12〇 係用於在一圖框時間維持LC電容器13〇之電壓。然而, 因為M0S電晶體11〇係由半導體材料製成,所以由進入 L曰COS面板之光所誘發的洩漏電流,尤其是發生於電 晶體110之沒極端子116處的茂漏電力,會導致儲 120之電壓下降’使得該LCOS面板之顯示均一性變差。 因此’習知更提出了具有光屏蔽功能之LCOS面板。 6 13187 r68twf-doc/g 圖2繪示以典型1P3M (單一多晶矽層及三個金屬層)晶 圓製程所製造之反射型LCOS面板的截面圖。如圖2所 示’ LCOS面板200包括一矽基板210、一液晶層220及 一玻璃基板230。對應於不同像素區域202之MOS電晶體 212分別形成於矽基板210中。反射像素電極250位於其 所對應的像素區域202中’且在像素區域202之間形成光 透射區域252。一用以形成可電連接至MOS電晶體212之 閘極、源極及沒極端子(圖2中未圖示)之互相正交之列 線及行線(圖2中未圖示)的佈線金屬層214形成於石夕基 板210上方。此外,一光屏蔽金屬層216配置於光透射區 域252下方且位於反射像素電極250與佈線金屬層214之 間,以防止經由透射區域252進入LCOS面板200之光到 達矽基板210。 然而,值得注意的是,由於光屏蔽金屬層216須相互 分離,以使反射像素電極250可與佈線金屬層214電連接。 因此’穿過分離之光屏蔽金屬層216進入LCOS面板200 之光線仍可到達石夕基板210,而無法完全避免被誘發之洩 漏電流。此外,由於光屏蔽金屬層216的佈線圖案密度過 高,也容易導致諸如應力集中或不良晶圓平面度等非預期 的機械效應。 【發明内容】 有鑑於此,本發明的目的之一是提供一種反射型液晶 面板及其像素結構,其具有更有效的騎蔽能力且 良的可靠性。 I3l87W8twfd0C/8 本發明提出一種用於一反射型液晶面板之像 像素結構包括一電晶體、一電容器、一金屬構, 電壁及一反射像素電極。電晶體及電容器配置於、、〜 上,且電谷盗環繞電晶體之―沒極端子。金屬圖心’ 晶體,與電容器重疊,且金屬圖案電連接至沒極端:恚電 電壁環繞電晶體且連接於金屬圖案與電容^之間。導 素電極配置於金屬圖案上方且電連接至沒極端子/射像 本發明更提出一種反射型液晶面板,其包括— —電晶體陣列、多個電容器、多個金屬@案、多板、 ^固反射像素電極、-對向基板及—液晶層。電^電壁、 ^配置於基板上’且電容器分別環繞相應電晶體之及電 =。金屬圖案分別覆蓋相應電晶體並分別與 = 重,,且金屬圖別電連接至相歧極端子 W環繞相應電晶體且分別連接於相應屬 施二刀 器之間。反射像素電極分別配置於相應金K牵 ^電連接至相應難端子。對向基板上 ㈢且液晶層配置於透明電極層與反射像素電極之門 屬層=發明之-實施例’上述金屬圖案是由,線金 根據本發明之—實施例,上述電晶體為— :導體⑽s)電晶體。每一電容器之一電極及每一電巧 外之;源?^該汲極端子是由一擴散層所形成。: 由妒= 端子及每—電容器之另—電極是 ^政層上方的一多晶矽層所形成。 I3187r68twfdoc/g 根據本發明之一實施例,上述反射像素電極是由一鏡 面金屬層所形成。 根據本發明之一實施例,上文所述之像素結構或反射 型液晶面板可更包括一光屏蔽金屬層,其配置於金屬圖案 與反射像素電極之間。 根據本發明之一實施例,導電壁為u形。 因為金屬圖案、導電壁及電容器排列於電晶體之汲極 端子周圍以阻擋進入反射型液晶面板的光,所以可有效地 消除所誘發之 >戈漏電流並提昇反射型液晶面板的可靠性。 【實施方式】 現將本發明配合所附本發明實施例之圖式作詳細說明 如下’其中相同的標號代表相同的元件。 本發明提供一種反射型液晶面板及其像素結構,其藉 由改進該像素結構之佈局設計而具有優良之光屏蔽能力。 特別是’儘管以下實施例中之反射型液晶面板被設定為一 藉由一 1P3M (單一多晶石夕層及三個金屬層)晶圓製程而 製造之LCOS面板,而其電晶體被設定為一 MOS電晶體, 佴是根據本發明之精神,亦可採用其它可應用的晶圓製程 及各種不同的電晶體類型。 圖3繪示本發明之一實施例之反射型液晶面板的局部 截面圖。值得注意的是,反射型液晶面板可包括多個像素 結構’但為了簡化圖式,圖3中僅繪示了像素結構之一部 分。圖4A繪示如圖3中所示之反射型液晶面板之像素結 構的俯視圖。圖4B為沿圖4A中之A-A,線的截面圖。為 I31871768twfdoc/g 圖式及_’圖4AA4B中僅繪示了像素結構之部 如圖3所7^ ’反射型液晶面板300具有多個像素區域 3〇2 ’且反射型液晶面板雇包括-基板310、-電晶體陣 列312、夕個電容器314、多個金屬圖案316、多個導電壁 318、多個反射像素電極32〇、-對向基板 330及一液晶声 :上基其可為一石夕基板,且電晶體靖^ 、° 土板330上具有一透明電極層332,且液晶層 340配置於基板31〇與對向基板33〇之間。在一實施例中, 透明電極層332之材料可為氧化銦錫(ΙΤ〇)。 音二=12為M〇S電晶體’其分別配置於對應之像 域302巾。電容器314分別配置於基板3】0上且分別 %繞相應電晶體312之沒極端子312c。在本實施例中 晶體312之源極端子職及汲極端子3i2e與電容器川 士電極3Ma係由-擴散層342形成,在擴散層342中鮮 由進仃擴散技術來摻雜摻義。此外 ^ 上方之多㈣344 _ /、匕電極咖可由擴散層342 金屬圖案316配置於相應電晶體312上方。每 m與相應電容器314重疊且經由-接觸請而電 辆至電晶體312之汲極端子取。具體言之,金屬圖案 316係由一佈線金屬層346形成,你始八Η β 、 電連接至電晶體阳之閑it 層346亦形成 <(¥]蚀触千312a、源極端子312b及 錄端子3以之互相正交的顺及行線(圖3中未圖示)。 I31871768twfdoc/g 每一導電壁318環繞相應電晶體312且連接於相應金 屬圖案316與相應電容器314之電極314b之間。此外,反 射4象素電極320分別配置於液晶層340下方且分別電連接 至電晶體312之相應汲極端子312c。反射像素電極32〇可 =一鏡面金屬層348形成。值得注意的是,為了增強光屏 敝效果,可進一步在金屬圖案316與反射像素電極32〇之 間的特定位置上配置一光屏蔽金屬層 360。 參看圖4A及4B,沒極端子312c係被導電壁318、電 • 各器314之電極314b及場氧化區域370所環繞。此外,金 屬圖案316覆蓋汲極端子312c並連接導電壁318。因此, 進入反射型液晶面板之光線L會被金屬圖案316及環繞汲 極端子312c之導電壁318所阻擋。 如此一來,藉由本發明將可保護電晶體之汲極端子免 於受到進入之光線的作用,而可有效地消除被誘發之洩漏 電流,以得到優良之顯示均一性。此外,雖然本發明仍可 採用光屏蔽層來增強光屏蔽的效果,但是其圖案密度將被 • 減少至一可應用之範圍,以防止應力集中並可改良晶圓平 面度。因而,本發明可提昇反射型液晶面板之可靠性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1繪示一習知反射型LCOS面板中之像素的電路佈 13187辨_岣 局。 圖2繪示一習知反射型LCOS面板之示意性橫截面 圖。 圖3繪示本發明之一實施例之反射型液晶面板的局部 截面圖。 圖4A繪示如圖3 的俯視圖。 所示之反射型液晶面板之像素13187 f68twf d〇c/g IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a display device. More specifically, the present invention relates to a reflective liquid crystal panel. [Prior Art] A liquid crystal on silicon (LCOS) panel is basically a wafer-based panel which replaces a thin film transistor used in a conventional liquid crystal panel by using a MOS transistor. Typically, the LCOS panel is available in two basic types: transmissive and reflective. However, most research and development efforts focus on reflective LCOS panels. The pixel electrode of the reflective LCOS panel is made of a metal material. In addition, since the metal pixel electrode covers almost the entire pixel area (especially the MOS transistor), the LCOS panel is superior in image display as compared with the conventional liquid crystal panel. 1 is a circuit diagram showing a circuit of a pixel in a conventional reflective LCOS panel. As shown in FIG. 1 'by controlling the MOS transistor 110, the storage grid 120 and the LC (liquid crystal) capacitor 130 can be charged to a voltage, and the liquid crystal molecules in the LC grid 130 are along a specific voltage according to the voltage. Arrange in the direction. Further, in order to achieve excellent display uniformity, the storage capacitor 12 is used to maintain the voltage of the LC capacitor 13A at a frame time. However, since the MOS transistor 11 is made of a semiconductor material, the leakage current induced by the light entering the L曰COS panel, especially the leakage power occurring at the terminal 116 of the transistor 110, may result in The voltage drop of the reservoir 120 makes the display uniformity of the LCOS panel worse. Therefore, the conventional LCOS panel with light shielding function has been proposed. 6 13187 r68twf-doc/g Figure 2 shows a cross-sectional view of a reflective LCOS panel fabricated in a typical 1P3M (single polysilicon layer and three metal layers) wafer process. As shown in FIG. 2, the LCOS panel 200 includes a germanium substrate 210, a liquid crystal layer 220, and a glass substrate 230. MOS transistors 212 corresponding to different pixel regions 202 are formed in the germanium substrate 210, respectively. The reflective pixel electrode 250 is located in its corresponding pixel region 202 and forms a light transmissive region 252 between the pixel regions 202. A wiring for forming mutually parallel column lines and row lines (not shown in FIG. 2) that can be electrically connected to the gate, the source, and the terminal (not shown in FIG. 2) of the MOS transistor 212. A metal layer 214 is formed over the Shih-kung substrate 210. In addition, a light shielding metal layer 216 is disposed under the light transmissive region 252 and between the reflective pixel electrode 250 and the wiring metal layer 214 to prevent light entering the LCOS panel 200 via the transmissive region 252 from reaching the germanium substrate 210. However, it is worth noting that the light shielding metal layers 216 must be separated from each other such that the reflective pixel electrodes 250 can be electrically connected to the wiring metal layer 214. Therefore, the light entering the LCOS panel 200 through the separated light shielding metal layer 216 can still reach the Shishi substrate 210, and the induced leakage current cannot be completely avoided. In addition, since the wiring pattern density of the light-shielding metal layer 216 is too high, unintended mechanical effects such as stress concentration or poor wafer flatness are easily caused. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a reflective liquid crystal panel and a pixel structure thereof which have more effective riding ability and good reliability. I3l87W8twfd0C/8 The invention provides an image pixel structure for a reflective liquid crystal panel comprising a transistor, a capacitor, a metal structure, an electric wall and a reflective pixel electrode. The transistor and capacitor are placed on the ~, and the electric valley is surrounded by the transistor - no extreme. The metal core is a crystal that overlaps the capacitor and the metal pattern is electrically connected to the extreme: the 恚 electrical wall surrounds the transistor and is connected between the metal pattern and the capacitor ^. The ferrite electrode is disposed above the metal pattern and electrically connected to the terminalless/imaging image. The present invention further provides a reflective liquid crystal panel comprising: an array of transistors, a plurality of capacitors, a plurality of metals, a case, a multi-plate, ^ Solid reflective pixel electrode, - opposite substrate and - liquid crystal layer. The electric wall is disposed on the substrate and the capacitors respectively surround the corresponding transistors. The metal patterns respectively cover the respective transistors and are respectively associated with =, and the metal patterns are electrically connected to the phase terminals to surround the corresponding transistors and are respectively connected between the respective two cutters. The reflective pixel electrodes are respectively disposed on the corresponding gold K to be electrically connected to the corresponding hard terminals. On the opposite substrate (3) and the liquid crystal layer is disposed on the gate layer of the transparent electrode layer and the reflective pixel electrode = the invention - the above-mentioned metal pattern is the wire gold according to the embodiment of the invention, wherein the transistor is -: Conductor (10) s) transistor. One of the electrodes of each capacitor and each of the capacitors; the source is formed by a diffusion layer. : The 电极 = terminal and the other electrode of each capacitor are formed by a polysilicon layer above the political layer. I3187r68twfdoc/g According to an embodiment of the invention, the reflective pixel electrode is formed by a mirror metal layer. According to an embodiment of the present invention, the pixel structure or the reflective liquid crystal panel described above may further include a light shielding metal layer disposed between the metal pattern and the reflective pixel electrode. According to an embodiment of the invention, the electrically conductive wall is u-shaped. Since the metal pattern, the conductive walls, and the capacitor are arranged around the drain terminal of the transistor to block the light entering the reflective liquid crystal panel, the induced > leakage current can be effectively eliminated and the reliability of the reflective liquid crystal panel can be improved. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the accompanying drawings, in which: The present invention provides a reflective liquid crystal panel and a pixel structure thereof which have excellent light shielding capability by improving the layout design of the pixel structure. In particular, 'although the reflective liquid crystal panel in the following embodiment is set to an LCOS panel manufactured by a 1P3M (single polycrystalline layer and three metal layer) wafer process, and the transistor is set For a MOS transistor, 佴 is in accordance with the spirit of the present invention, and other applicable wafer processes and various transistor types can be used. Fig. 3 is a partial cross-sectional view showing a reflective liquid crystal panel according to an embodiment of the present invention. It is to be noted that the reflective liquid crystal panel may include a plurality of pixel structures'. However, in order to simplify the drawing, only a portion of the pixel structure is illustrated in FIG. Fig. 4A is a plan view showing the pixel structure of the reflective liquid crystal panel shown in Fig. 3. Fig. 4B is a cross-sectional view taken along line A-A of Fig. 4A. For the I31871768 twfdoc/g schema and _' FIG. 4AA4B, only the pixel structure is shown in FIG. 3. The reflective liquid crystal panel 300 has a plurality of pixel regions 3〇2' and the reflective liquid crystal panel employs a substrate. 310, a transistor array 312, a capacitor 314, a plurality of metal patterns 316, a plurality of conductive walls 318, a plurality of reflective pixel electrodes 32A, an opposite substrate 330, and a liquid crystal sound: the upper base can be a stone The substrate has a transparent electrode layer 332 on the crystal plate 330, and the liquid crystal layer 340 is disposed between the substrate 31 and the opposite substrate 33A. In an embodiment, the material of the transparent electrode layer 332 may be indium tin oxide (yttrium). The sound two = 12 is the M 〇 S transistor ', which is respectively disposed in the corresponding image area 302. The capacitors 314 are respectively disposed on the substrate 3]0 and are respectively wound around the non-terminal 312c of the corresponding transistor 312. In the present embodiment, the source terminal and the terminal 3i2e of the crystal 312 and the capacitor transistor 3Ma are formed by the diffusion layer 342, and the diffusion layer 342 is doped by the diffusion technique. In addition, the upper (four) 344 _ /, 匕 electrode can be disposed above the corresponding transistor 312 by the diffusion layer 342 metal pattern 316. Each m overlaps with the corresponding capacitor 314 and is taken via the -contact to the 汲 terminal of the transistor 312. Specifically, the metal pattern 316 is formed by a wiring metal layer 346, and the first connection to the transistor yang layer 346 also forms a < (¥) eclipse 312a, source terminal 312b and The recording terminals 3 are orthogonal to each other (see FIG. 3). I31871768twfdoc/g Each conductive wall 318 surrounds the corresponding transistor 312 and is connected to the corresponding metal pattern 316 and the electrode 314b of the corresponding capacitor 314. In addition, reflective 4 pixel electrodes 320 are respectively disposed under the liquid crystal layer 340 and electrically connected to respective 汲 terminal 312c of the transistor 312. The reflective pixel electrode 32 〇 can be formed by a mirror metal layer 348. In order to enhance the effect of the light screen, a light shielding metal layer 360 may be further disposed at a specific position between the metal pattern 316 and the reflective pixel electrode 32A. Referring to FIGS. 4A and 4B, the terminal 312c is not electrically conductive 318, The electrode 314b of each of the electrodes 314 and the field oxide region 370 are surrounded. Further, the metal pattern 316 covers the gate electrode 312c and is connected to the conductive wall 318. Therefore, the light L entering the reflective liquid crystal panel is replaced by the metal pattern 316 and The conductive wall 318 of the enthalpy terminal 312c is blocked by the conductive layer 318. Thus, by the invention, the 汲 terminal of the transistor can be protected from the incoming light, and the induced leakage current can be effectively eliminated to obtain Excellent display uniformity. In addition, although the present invention can still use a light shielding layer to enhance the effect of light shielding, the pattern density will be reduced to an applicable range to prevent stress concentration and improve wafer flatness. Therefore, the present invention can improve the reliability of the reflective liquid crystal panel. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can avoid the spirit of the present invention. In the scope of the invention, the scope of protection of the present invention is defined by the scope of the appended claims. [FIG. 1 illustrates a conventional reflective LCOS panel. Figure 2 illustrates a schematic cross-sectional view of a conventional reflective LCOS panel. Figure 3 illustrates a reflection of an embodiment of the present invention. A partial cross-sectional view of a liquid crystal panel. Fig. 4A is a top view of Fig. 3. The pixel of the reflective liquid crystal panel is shown.
圖4B為沿圖4A中之A-A,線的截面圖。 【主要元件符號說明】 L :光線 110、212 : MOS 電晶體 116、312c :汲極端子 120 :儲存電容器 130 : LC電容器 200 : LCOS 面板 202、302 :像素區域 210 :矽基板 214、346 :佈線金屬層 216、360 :光屏蔽金屬層 220、340 :液晶層 230 :玻璃基板 250、320 :反射像素電極 252 :光透射區域 300 :反射型液晶面板 12 13187 310 :基板 312 :電晶體陣列 312a :閘極端子 312b :源極端子 314 :電容器 314a、314b :電極 316 :金屬圖案 318 :導電壁 330 :對向基板 332 :透明電極層 342 :擴散層 344 :多晶矽層 348 :鏡面金屬層 350 :接觸窗 370 :場氧化區域Fig. 4B is a cross-sectional view taken along line A-A of Fig. 4A. [Description of main component symbols] L: Light 110, 212: MOS transistor 116, 312c: 汲 terminal 120: storage capacitor 130: LC capacitor 200: LCOS panel 202, 302: pixel region 210: 矽 substrate 214, 346: wiring Metal layers 216, 360: light-shielding metal layers 220, 340: liquid crystal layer 230: glass substrate 250, 320: reflective pixel electrode 252: light-transmitting region 300: reflective liquid crystal panel 12 13187 310: substrate 312: transistor array 312a: Gate terminal 312b: source terminal 314: capacitor 314a, 314b: electrode 316: metal pattern 318: conductive wall 330: opposite substrate 332: transparent electrode layer 342: diffusion layer 344: polysilicon layer 348: mirror metal layer 350: contact Window 370: Field Oxidation Area