TWI316720B - Apparatus and method for controlling on die termination - Google Patents

Apparatus and method for controlling on die termination Download PDF

Info

Publication number
TWI316720B
TWI316720B TW095136280A TW95136280A TWI316720B TW I316720 B TWI316720 B TW I316720B TW 095136280 A TW095136280 A TW 095136280A TW 95136280 A TW95136280 A TW 95136280A TW I316720 B TWI316720 B TW I316720B
Authority
TW
Taiwan
Prior art keywords
signal
code
dll
unit
external
Prior art date
Application number
TW095136280A
Other languages
Chinese (zh)
Other versions
TW200721195A (en
Inventor
Kyung-Hoon Kim
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200721195A publication Critical patent/TW200721195A/en
Application granted granted Critical
Publication of TWI316720B publication Critical patent/TWI316720B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1048Data bus control circuits, e.g. precharging, presetting, equalising
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop

Description

1316720 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種控制一晶粒内建終端電阻(〇DT)之裝 置及方法’且更特定言之,本發明係關於一種用於減小一 延遲鎖定迴路(DLL)時脈與一内部時脈之間的一時脈域差 的ODT控制裝置。 【先前技術】</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; An ODT control device that delays a time domain between the locked loop (DLL) clock and an internal clock. [Prior Art]

包括一用複數個中央處理單元(CPU)、半導體記憶體襞 置及閘極陣列建構之積體電路(IC)的各種半導體裝置組合 在諸如一個人電腦、一伺服器及一工作站之電氣產品内。 大多數半導體裝置包括一用於經由輸入墊而接收外部輸入 信號之接收器,及一用於經由輸出墊而向外部輸出内部信 號之傳輸器。 ° 隨著電氣產品之運作速度增大’在半導體裝置之間作為 介面之域的擺動範圍變得更窄以最小化傳輸信號所需之 延遲時間。隨著信號之擺動範圍變得更窄,外部雜訊之影 β曰大目此,—歸因於一介面端子之一阻抗失配 反射係關鍵所在。一船&amp;一 ^ ^ s ^ L 現 般而$,阻抗失配由外部雜訊、電源 合 運作溫度變化及製造過程變化而發生。 抗失配時’很難以-高速率傳送資料且自半導 體裝置之介面端;认· 輸出的=貝料可捩扭。若一終端電阻器之 未適當匹配, 信號傳輸失敗。傳送之^可被反射,進而導致- 一外部固定雷卩日, 器由於一積體電路之老化、運作溫度變 H4686.doc 1316720 化及製造過程變化而存在阻抗匹配的困難。因此,當半導 體裝置接收一捩扭信號時,頻繁發生諸如安裝/保持失敗 及一輸入位準之判斷錯誤的問題。 最近,用於調節終端電阻器之阻抗的技術已經發展以藉 , 由控制並聯連接之複數個電晶體中之接通電晶體的數目來 得到與一外部參考阻抗相同的阻抗。 因此,用一被稱為一晶載終端電阻或晶粒内建終端電阻 (ODT)的阻抗匹配電路來建構需要一高運作速度之半導體 ’裝置。 在下文中,參看圖1A及圖1B詳細描述一習知ODT控制 方法之一問題。 圖1A為展示在一低頻率運作下之習知晶粒内建終端電阻 (ODT)控制方法的波形圖,且圖1B為展示在一高頻率運作 下之習知晶粒内建終端電阻(ODT)控制方法的波形圖。 首先,在啟動ODT命令信號ODT_CMD之後,回應於一 g 外部時脈信號EXT_CLK之一第一上升邊緣(T0)而啟動一延 遲鎖定迴路(DLL)時脈信號DLL_CLK,且回應於DLL時脈 信號DLL_CLK而啟動一 ODT啟用信號ODTEN。 接著,一ODT電路在一回應於外部時脈信號EXT—CLK之 一第二上升邊緣(T1)而啟動的ODT信號ODT之控制下運 作。 此時,需要一預定時間”DLL至ODT之延遲時間”,其為 一在啟動ODT啟用信號ODTEN之後大體上運作ODT電路的 延遲。不管外部時脈信號EXT—CLK之頻率變化,預定時 114686.doc •6· 1316720 間&quot;DLL至〇DT之延遲時間&quot;固定。 如圖1A中所示,當外部時脈信號ext—clk在低頻率運 作下運作時,外部時脈信號EXT_CLK2 一個時脈週期(意 即,自το至τι)比預定時間&quot;〇1^至〇]〇1[之延遲時間,•長。因 此,可能在外部時脈信號EXT_CLK之第二上升邊緣(T1)處 - 正常運作ODT電路。 另方面’如圖1Β中所示,當外部時脈信號ext CLK φ 在南頻率運作下運作時,外部時脈信號EXT_CLK之時脈週 期(思即’自T0至T1)比預定時間&quot;DLL至ODT之延遲時間” 短。因此,ODT電路在外部時脈信號EXT_CLK之第三或第 二以後之上升邊緣處(意即,在丁2或丁2以後處)而非在第二 上升邊緣(τι)處運作。亦即,〇DT電路可遲於一所要時序 而運作。 【發明内容】 因此,本發明之一目標為提供一種控制一晶粒内建終端 籲電阻(〇DT)及控制電路之方法,該方法能夠不管一 ODT電 路之運作頻率而藉由減小一延遲鎖定迴路(DLL)時脈與 一内部時脈之間的一時脈域差來以一所要時序執行一 〇dt 運作。 椤據本發明之一態樣,提供一種用於控制一晶粒内建終 端電阻_τ)之裝置,纟包括:—計數單元,其用於接收 外4時脈信號及一延遲鎖定迴路(DLL)時脈信號,且自 一預設值起計數外部時脈信號及DLL時脈信號之每一者的 雙態觸發數目;-比較控制單元,其用於回應於―㈣命 114686.doc 1316720 7 L號,而比較外部時脈信號的所計數之雙態觸發數目與 dll時脈信號的所計數之雙態觸發數目,且基於比較結果 而輸出一用於控制0DT之0DT啟用信號。A plurality of semiconductor devices including a plurality of central processing units (CPUs), semiconductor memory devices, and integrated circuits (ICs) constructed by gate arrays are incorporated in electrical products such as a personal computer, a server, and a workstation. Most semiconductor devices include a receiver for receiving an external input signal via an input pad, and a transmitter for outputting an internal signal to the outside via an output pad. ° As the operating speed of electrical products increases, the range of oscillation as a domain between interfaces between semiconductor devices becomes narrower to minimize the delay time required to transmit signals. As the swing range of the signal becomes narrower, the shadow of the external noise is larger, because the impedance mismatch of one of the interface terminals is critical. A ship &amp; a ^ ^ s ^ L is now a $, impedance mismatch occurs due to external noise, power supply operating temperature changes and manufacturing process changes. When it is resistant to mismatch, it is difficult to transmit data at a high rate and from the interface end of the semiconductor device; the output = the material can be twisted. If a terminating resistor is not properly matched, the signal transmission fails. The transmitted ^ can be reflected, which in turn leads to an external fixed Thunder day, which is difficult to match due to aging of an integrated circuit, operating temperature changes, and manufacturing process variations. Therefore, when the semiconductor device receives a twist signal, problems such as mount/hold failure and an input level error are frequently caused. Recently, techniques for adjusting the impedance of a terminating resistor have been developed to obtain the same impedance as an external reference impedance by controlling the number of turn-on transistors in a plurality of transistors connected in parallel. Therefore, an impedance matching circuit called an on-chip termination resistor or a die built-in termination resistor (ODT) is used to construct a semiconductor device requiring a high operating speed. In the following, a problem of a conventional ODT control method will be described in detail with reference to Figs. 1A and 1B. 1A is a waveform diagram showing a conventional grain built-in termination resistance (ODT) control method at a low frequency operation, and FIG. 1B is a conventional grain built-in termination resistance (ODT) control method showing a high frequency operation. Waveform diagram. First, after the ODT command signal ODT_CMD is started, a delay locked loop (DLL) clock signal DLL_CLK is started in response to a first rising edge (T0) of a g external clock signal EXT_CLK, and is responsive to the DLL clock signal DLL_CLK. And start an ODT enable signal ODTEN. Next, an ODT circuit operates under the control of an ODT signal ODT initiated in response to a second rising edge (T1) of the external clock signal EXT_CLK. At this time, a predetermined time "DLL to ODT delay time" is required, which is a delay in which the ODT circuit is substantially operated after the ODT enable signal ODTEN is activated. Regardless of the frequency change of the external clock signal EXT_CLK, the predetermined delay time between the time of 114686.doc •6·1316720 &quot;DLL to 〇DT&quot; fixed. As shown in FIG. 1A, when the external clock signal ext_clk operates at a low frequency operation, the external clock signal EXT_CLK2 has a clock period (ie, from το to τι) to a predetermined time &quot;〇1^ 〇]〇1[The delay time, • long. Therefore, it is possible to operate the ODT circuit normally at the second rising edge (T1) of the external clock signal EXT_CLK. On the other hand, as shown in Figure 1Β, when the external clock signal ext CLK φ operates under the south frequency operation, the clock period of the external clock signal EXT_CLK (thinking from 'T0 to T1) is longer than the predetermined time&quot;DLL The delay time to ODT is short. Therefore, the ODT circuit is at the rising edge of the third or second after the external clock signal EXT_CLK (ie, after D2 or D2) rather than at the second rising edge ( Τι) operates, that is, the 〇 DT circuit can operate later than a desired timing. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a control for a die built-in terminal resistor (〇 DT) and a control circuit In one method, the method can perform a 〇dt operation at a desired timing by reducing a clock domain difference between a delay locked loop (DLL) clock and an internal clock regardless of the operating frequency of an ODT circuit. According to one aspect of the present invention, there is provided an apparatus for controlling a die built-in termination resistor _τ), comprising: a counting unit for receiving an external 4 clock signal and a delay locked loop (DLL) ) clock signal, and from a preset Counting the number of toggles for each of the external clock signal and the DLL clock signal; - the comparison control unit, which is used to compare the external clock signal in response to the "(4) life 114686.doc 1316720 7 L number Counting the number of toggles and the counted number of toggles of the dll clock signal, and outputting an OT enable signal for controlling 0DT based on the comparison result.

A 根據本發明之另一態樣, 電阻(ODT)之方法,其包括 提供一種控制一晶粒内建終端 •'一重設步驟,其回應於一外 部重設信號而啟動一第 啟動一第二重設信號; 一重設信號,且在一預定時間之後 一 DLL時脈計數步驟,其回應於第A method according to another aspect of the present invention, an electrical resistance (ODT) method, comprising: providing a control of a die built-in terminal, a resetting step of initiating a second start in response to an external reset signal Reset signal; a reset signal, and a DLL clock count step after a predetermined time, in response to the

重认仏號而自一預設值起計數一 DLL時脈信號之雙態觸 發數目,且輸出所計數之雙態觸發數目作為-DLL碼;-外部時脈計數步驟,其回應於第二重設信號而自—預設值 起汁數外°卩時脈信號之雙態觸發數目,且輸出所計數之 雙態觸發數目作為—外部碼;及—比較步驛,彡回應於一 ODT命令仏號而藉由比較外部碼與dll碼來確定一 〇〇了啟 用“號之一邏輯位準 以產生一 ODT啟用信號,該〇DT啟 用信號之邏輯位準係基於比較結果而確定。Re-recognizing the nickname and counting the number of toggle triggers of a DLL clock signal from a preset value, and outputting the counted number of toggles as a -DLL code; - an external clock count step, which responds to the second Reset the signal and the number of toggles from the preset value to the number of juices, and the number of toggles output by the output is the external code; and - the comparison step, 彡 responds to an ODT command By comparing the external code with the dll code, it is determined that the logic level of the DT enable signal is determined based on the comparison result when the "one logic level" is enabled to generate an ODT enable signal.

【實施方式】 下文中將參看隨附圖式詳細描述一種根據本發明之 控制一晶粒内建終端電阻(ODT)及控制電路的方法。 圖2為根據本發明之一實施例之晶粒内建終端電阻(〇dt) 控制電路的方塊圖。 ODT控制電路包括一計數單元1〇〇〇、一重設信號產生單 元2000及一比較控制單元3〇〇〇。計數單元1000接收一外部 時脈k號EXT—CLK及一延遲鎖定迴路(DLL)時脈信號 DLL_CLK,且自一預設值起計數每一時脈之一雙態觸發 114686.doc 1316720 數目。重設信號產生單元2000回應於一外部重設信號 RESET而輸出一用於初始化DLL時脈信號DLL_CLK之雙態 觸發數目的第一重設信號R1,且在一預定時間之後輸出一 用於初始化外部時脈信號EXT_CLK之雙態觸發數目的第 二重設信號R2。比較控制單元3000回應於一 ODT命令信號 ODT—CMD而比較外部時脈信號EXT—CLK的雙態觸發數目 與DLL時脈信號DLL_CLK的雙態觸發數目,以進而基於比 較結果而輸出一用於控制一 ODT電路之一運作的ODT啟用 信號ODTEN。 計數單元1000包括一外部時脈計數器1200及一DLL·時脈 計數器1400。外部時脈計數器1200回應於第二重設信號R2 而開始計數外部時脈信號EXT—CLK之雙態觸發數目’且 輸出雙態觸發數目作為一外部碼EX_CODE。DLL時脈計數 器1400回應於第一重設信號R1而開始計數DLL時脈信號 DLL_CLK之雙態觸發數目,且輸出雙態觸發數目作為一 DLL碼 DLL_CODE。[Embodiment] Hereinafter, a method of controlling a die built-in terminating resistor (ODT) and a control circuit according to the present invention will be described in detail with reference to the accompanying drawings. 2 is a block diagram of a die built-in termination resistor (〇dt) control circuit in accordance with an embodiment of the present invention. The ODT control circuit includes a counting unit 1A, a reset signal generating unit 2000, and a comparison control unit 3A. The counting unit 1000 receives an external clock k number EXT_CLK and a delay locked loop (DLL) clock signal DLL_CLK, and counts the number of one-state triggers 114686.doc 1316720 of each clock from a preset value. The reset signal generating unit 2000 outputs a first reset signal R1 for initializing the number of toggles of the DLL clock signal DLL_CLK in response to an external reset signal RESET, and outputs a one for initializing the external after a predetermined time. The binary signal of the clock signal EXT_CLK triggers a second reset signal R2. The comparison control unit 3000 compares the number of toggles of the external clock signal EXT_CLK with the number of toggles of the DLL clock signal DLL_CLK in response to an ODT command signal ODT_CMD, and further outputs a control for the control based on the comparison result. One of the ODT circuits operates an ODT enable signal ODTEN. The counting unit 1000 includes an external clock counter 1200 and a DLL·clock counter 1400. The external clock counter 1200 starts counting the number of toggles of the external clock signal EXT_CLK in response to the second reset signal R2 and outputs the number of toggles as an external code EX_CODE. The DLL clock counter 1400 starts counting the number of toggle triggers of the DLL clock signal DLL_CLK in response to the first reset signal R1, and outputs the number of toggles as a DLL code DLL_CODE.

比較控制單元3000包括一命令信號偵測單元3200、一碼 比較單元3400及一啟用信號產生單元3600。命令信號偵測 單元3200偵測ODT命令信號ODT—CMD之邊緣之一變化, 以輸出第一偵測信號P1及第二偵測信號P2。碼比較單元 3400回應於第一偵測信號P1及第二偵測信號P2而比較外部 石馬EX_CODE與DLL碼DLL_CODE,且基於比較結果而輸出 第一比較信號C1及第二比較信號C2。啟用信號產生單元 3600回應於第一比較信號C1及第二比較信號C2而確定ODT 114686.doc -9- 1316720 啟用信號ODTEN之一邏輯位準。 圖3為圖2中所示之0DT控制電路之重設信號產生單元 2 0 0 0的電路圖。 重設信號產生單元2000包括一 DLL重設信號產生單元 2200、一延遲複本模型單元2400及一外部重設信號產生單 元2600。DLL重設信號產生單元2200回應於外部重設信號 RESET,而藉由將一電源電壓VDD與DLL時脈信號 DLL·—CLK同步,來產生第一重設信號R1。延遲複本模型 單元2400藉由模型化DLL時脈信號DLL_CLK與外部時脈信 號EXT_CLK之間的一延遲時間而確定一預定時間,且將 第一重設信號R1延遲預定時間以輸出一延遲重設信號 EN。外部重設信號產生單元2600藉由將延遲重設信號EN 與外部時脈信號EXT—CLK同步而產生第二重設信號R2。 DLL重設信號產生單元2200包括一 D型正反器,該D型 正反器接收電源電壓VDD作為一資料輸入D,接收DLL時 脈信號DLL_CLK作為一時脈輸入CLK,並接收外部重設信 號RESET作為一重設輸入RST,確定第一重設信號R1之一 邏輯位準,且輸出第一重設信號R1。 同樣,外部重設信號產生單元2600包括一 D型正反器, 該D型正反器接收延遲重設信號EN作為一資料輸入D,並 接收外部時脈信號EXT—CLK作為一時脈輸入CLK,確定第 二重設信號R2之一邏輯位準,且輸出第二重設信號R2。 圖4為圖2中所示之比較控制單元3000之命令信號偵測單 3 2 0 0的電路圖。 114686.doc -10- 1316720 命令信號偵測單元3200包括一上升邊緣偵測單元3220及 一下降邊緣偵測單元3240。上升邊緣偵測單元3220偵測 ODT命令信號〇DT_CMD之一上升邊緣以雙態觸發第一偵 測信號P1。下降邊緣偵測單元3240偵測一反相ODT命令信 . 號之一下降邊緣以雙態觸發第二偵測信號P2。 _ 上升邊緣偵測單元3220包括一第一延遲單元3222、一第 一反及(NAND)閘NAND1及一第一反相器INV1。第一延遲 單元3222將ODT命令信號〇DT_CMD延遲外部時脈信號 • EXT一CLK之一個時脈週期。第一 NAND閘NAND1執行一 ODT命令信號ODT_CMD與第一延遲單元3222之一輸出信 號的NAND運算。第一反相器INV1將第一 NAND閘NAND1 之一輸出信號反相以輸出第一偵測信號P1。 下降邊緣偵測單元3240包括第二反相器INV2與第三反 相器INV3、一第二延遲單元3242及一第二NAND閘 NAND2。第二反相器INV2將ODT命令信號〇DT_CMD反 φ 相。第二延遲單元3242將第二反相器INV2之一輸出信號延 遲外部時脈信號EXT_CLK之一個時脈週期,第二NAND閘 NAND2執行一 ODT命令信號ODT—CMD與第二延遲單元 3242之一輸出信號的NAND運算。第三反相器INV3將第二 NAND閘NAND2之一輸出信號反相以輸出第二偵測信號 P2 〇 上述第一延遲單元3222及第二延遲單元3242可包括串聯 連接之複數個反相器,藉此反相並輸出所接收之信號。 圖5為圖2中所示之比較控制單元3〇〇〇之碼比較單元34〇〇 114686.doc •11- 1316720 的電路圖。 碼比較單元3400包括第一比較單元3420及第二比較單元 3440。第一比較單元3420基於第一偵測信號pi而比較外部 碼EX一CODE與DLL碼DLL_CODE,且判定是否雙態觸發第 , 一比較信號c 1。第二比較單元3440基於第二偵測信號P2而 . 比較外部碼EX_C0DE與DLL碼DLL一CODE,且判定是否雙 態觸發第二比較信號C2。 | 在下文中,參看圖5詳細解釋碼比較單元3400之一運 作。 首先’碼比較單元3400之第一比較單元3420當轉變第一 偵測信號P1時開始比較外部碼EX_CODE與DLL碼 DLL—CODE,且當外部碼 EX C0DE與 DLL碼 DLL—CODE大 體上相同時雙態觸發第一比較信號c 1。 其次,碼比較單元3400之第二比較單元3440當轉變第二 偵測信號P2時開始比較外部碼EX_CODE與DLL碼 • DLL—CODE,且當外部碼 EX—CODE與 DLL碼 DLL_CODE大 體上相同時雙態觸發第二比較信號C2。 亦即,碼比較單元3400在ODT命令信號〇DT_CMD之上 升邊緣處雙態觸發第一比較信號C1,且在〇DT命令信號 ODT—CMD之下降邊緣處雙態觸發第二比較信號匸2。 詳言之’第一比較單元3420包括一第一儲存單元3422及 一第一邏輯單元3424。第一儲存單元3422回應於第一偵測 信號P1而儲存外部碼EX_CODE。第一邏輯單元3424比較 第一儲存單元3斗22中的所儲存之碼與DLL碼DLL_CODE, 114686.doc -12- 1316720 且判定是否雙態觸發第一比較信號ci。 第一儲存單元3422包括複數個第一暫存器,其能夠儲存 —個位元’進而以一個位元為單位順序地保存外部碼 EX CODE。 第一邏輯單元3424包括複數個第一互斥或(x〇r)閘及一 第三NAND閘NAND3。每一第一 XOR閘執行一 DLL碼 DLL—CODE之相應一個位元與保存於複數個第一暫存器中 的相應一者中之一個位元的X0R運算。第三NAND閘 NAND3執行複數個第一 X0R閘之輸出信號的一 NAND運算 且輸出第一比較信號C1。 第二比較單元3440包括一第二儲存單元3442及一第二邏 輯單元3444。第二儲存單元3442回應於第二偵測信號P2而 儲存外部碼EX_C0DE。第二邏輯單元3444比較第二儲存 單元3442中的所儲存之碼與DLL碼DLL_C0DE,且判定是 否雙態觸發第二比較信號C2。 第二儲存單元3442包括複數個第二暫存器,其能夠儲存 一個位元,進而以一個位元為單位順序地保存外部碼 EX_C0DE。 第二邏輯單元3444包括複數個第二互斥或(XOR)閘及一 第四NAND閘NAND4。每一第二X0R閘執行一 DLL碼 DLL_CODE之相應一個位元與保存於複數個第二暫存器中 的相應一者中之一個位元的X0R運算。第四NAND閘 NAND4執行複數個第二X0R閘之輸出信號的一NAND運算 且輸出第二比較信號C2。 114686.doc •13· 1316720 圖6為圖2中所示之比較控制單元3000之啟用信號產生單 元3600的電路圖。 啟用信號產生單元3600包括一同步單元3620、一上升驅 動單元3640、一下降驅動單元3 660及一鎖存器單元3680。 同步單元3620將ODT啟用信號ODTEN與DLL時脈信號 DLL—CLK同步。上升驅動單元3640回應於第一比較信號 C1而輸出電源電壓VDD作為ODT啟用信號ODTEN »下降 驅動單元3660回應於第二比較信號C2而輸出一接地電壓 VSS作為ODT啟用信號ODTEN。鎖存器單元3680防止ODT 啟用信號ODTEN浮動。 詳言之,同步單元3620包括一第四反相器INV4、一第 一 PMOS電晶體PM1及一第一 NMOS電晶體NM1 »第四反相 器INV4將DLL時脈信號DLL—CLK反相以輸出一經反相之 DLL時脈信號。第一 PMOS電晶體PM1具有一接收經反相 之DLL時脈信號的閘極及一在電源電壓(VDD)端子與一第 一節點NODE1之間的源極-汲極路徑。第一 NMOS電晶體 NM1具有一接收DLL時脈信號DLL_CLK的閘極及一在接地 電壓(VSS)端子與一第二節點NODE2之間的源極-汲極路 徑。因此,當用一自&quot;低&quot;至”高&quot;之邏輯位準啟動ODT啟用 信號ODT_EN時,上述同步單元3620接通第一 PMOS電晶 體PM1及第一 NMOS電晶體NM1 ;且當用一自&quot;低&quot;至”高” 之邏輯位準撤銷ODT啟用信號ODT_EN時將其斷開。 上升驅動單元3640包括一第五反相器INV5及一第二 PMOS電晶體PM2。第五反相器INV5將第一比較信號C1反 114686.doc -14- 1316720 相》第二PMOS電晶體PM2具有一接收第五反相器INV5之 一輸出信號的閘極及一在第一節點NODE1與一第三節點 N0DE3之間的源極-汲極路徑。因此,上述上升驅動單元 3640回應於第一比較信號C1而用一&quot;高”邏輯位準啟動0DT 啟用信號0DTEN。 下降驅動單元3660包括一第二NM0S電晶體NM2。第二 NM0S電晶體NM2具有一接收第二比較信號C2的閘極及一 在第二節點N0DE2與第三節點N0DE3之間的源極-汲極路 徑。因此,上述下降驅動單元3660回應於第二比較信號C2 而用一&quot;低”邏輯位準撤銷0DT啟用信號0DTEN。 鎖存器單元3680包括一具有第六反相器INV6與第七反 相器INV7及一第八反相器INV8之反相器鎖存器。第六反 相器INV6在第三節點NODE3處將一信號反相,且第七反 相器INV7接收並反相第六反相器INV6之一輸出信號以將 經反相之信號輸出至第六反相器INV6。第八反相器INV8 將第六反相器INV6之輸出信號反相以輸出ODT啟用信號 ODTEN。 如上文所描述,當雙態觸發第一比較信號C1時啟動0DT 啟用信號ODTEN ;且當雙態觸發第二比較信號C2時撤銷 ODT啟用信號ODTEN。亦即,本發明之實施例基於外部時 脈信號EXT_CLK及DLL時脈信號DLL—CLK之雙態觸發數 目來確定ODT啟用信號ODTEN的啟動時序。因此,即使外 部時脈信號EXT_CLK及DLL時脈信號DLL—CLK在一高頻 率下運作,亦可能防止以非所要之時序啟動ODT啟用信號 114686.doc •15· 1316720 ODTEN。另外’一使用者可基於一初始設疋而在啟動〇DT 命令信號〇DT_CMD之後設定0DT啟用信號0DTEN之啟動 時序。 圖7為展示根據本發明之〇DT控制方法的波形圖。 首先,在一重設步驟中’ DLL重設信號產生單元2200回 應於外部重設信號RESET而啟動第一重設信號R1 ’且外部 重設信號產生單元2600在藉由模塑化DLL時脈信號 DLL_CLK與外部時脈信號EXT_CLK之間的一延遲時間而 • 確定之預定時間之後啟動第二重設信號R2(見①)。 其次,在一 DLL時脈計數步驟中,DLL時脈計數器1400 回應於第一重設信號R1而開始自一預設值(意即,0)起計 數DLL時脈信號DLL_CLK之雙態觸發數目’且輸出雙態觸 發數目作為DLL碼DLL—CODE(見②)。 第三,在一外部時脈計數步驟中,外部時脈計數器1200 回應於第二重設信號R2而開始自一預設值(意即,5)起計 $ 數外部時脈信號EXT_CLK之雙態觸發數目,且輸出雙態 觸發數目作為外部碼EX_CODE(見③)。 第四,在一比較步驟中,碼比較單元3400回應於ODT命 令信號ODT_CMD而比較外部碼EX_CODE與DLL碼 DLL—CODE (見④)’且啟用信號產生單元3600回應於比車交 結果而確定ODT啟用信號ODTEN之一邏輯位準(見⑤)。The comparison control unit 3000 includes a command signal detecting unit 3200, a code comparing unit 3400, and an enable signal generating unit 3600. The command signal detecting unit 3200 detects one of the edges of the ODT command signal ODT_CMD to output the first detecting signal P1 and the second detecting signal P2. The code comparison unit 3400 compares the external stone horse EX_CODE with the DLL code DLL_CODE in response to the first detection signal P1 and the second detection signal P2, and outputs the first comparison signal C1 and the second comparison signal C2 based on the comparison result. The enable signal generating unit 3600 determines one of the logic levels of the ODT 114686.doc -9- 1316720 enable signal ODTEN in response to the first comparison signal C1 and the second comparison signal C2. 3 is a circuit diagram of a reset signal generating unit 200 0 0 of the 0DT control circuit shown in FIG. 2. The reset signal generating unit 2000 includes a DLL reset signal generating unit 2200, a delayed replica model unit 2400, and an external reset signal generating unit 2600. The DLL reset signal generating unit 2200 generates a first reset signal R1 by synchronizing a power supply voltage VDD with the DLL clock signal DLL·-CLK in response to the external reset signal RESET. The delay replica model unit 2400 determines a predetermined time by modeling a delay time between the DLL clock signal DLL_CLK and the external clock signal EXT_CLK, and delays the first reset signal R1 by a predetermined time to output a delay reset signal. EN. The external reset signal generating unit 2600 generates the second reset signal R2 by synchronizing the delay reset signal EN with the external clock signal EXT_CLK. The DLL reset signal generating unit 2200 includes a D-type flip-flop that receives the power supply voltage VDD as a data input D, receives the DLL clock signal DLL_CLK as a clock input CLK, and receives an external reset signal RESET. As a reset input RST, a logic level of one of the first reset signals R1 is determined, and a first reset signal R1 is output. Similarly, the external reset signal generating unit 2600 includes a D-type flip-flop that receives the delayed reset signal EN as a data input D and receives the external clock signal EXT_CLK as a clock input CLK. A logic level of one of the second reset signals R2 is determined, and a second reset signal R2 is output. 4 is a circuit diagram of the command signal detection list 3 2 0 0 of the comparison control unit 3000 shown in FIG. 2. 114686.doc -10- 1316720 The command signal detecting unit 3200 includes a rising edge detecting unit 3220 and a falling edge detecting unit 3240. The rising edge detecting unit 3220 detects one rising edge of the ODT command signal 〇DT_CMD to trigger the first detecting signal P1 in a dual state. The falling edge detecting unit 3240 detects that one of the falling edges of the inverted ODT command signal triggers the second detecting signal P2 in a binary state. The rising edge detecting unit 3220 includes a first delay unit 3222, a first NAND gate NAND1, and a first inverter INV1. The first delay unit 3222 delays the ODT command signal 〇DT_CMD by one clock period of the external clock signal • EXT_CLK. The first NAND gate NAND1 performs an NAND operation of an ODT command signal ODT_CMD and an output signal of one of the first delay units 3222. The first inverter INV1 inverts an output signal of one of the first NAND gates NAND1 to output a first detection signal P1. The falling edge detecting unit 3240 includes a second inverter INV2 and a third inverter INV3, a second delay unit 3242, and a second NAND gate NAND2. The second inverter INV2 reverses the ODT command signal 〇DT_CMD. The second delay unit 3242 delays one of the output signals of the second inverter INV2 by one clock period of the external clock signal EXT_CLK, and the second NAND gate NAND2 performs an output of one of the ODT command signals ODT_CMD and the second delay unit 3242. The NAND operation of the signal. The third inverter INV3 inverts an output signal of one of the second NAND gates NAND2 to output a second detection signal P2. The first delay unit 3222 and the second delay unit 3242 may include a plurality of inverters connected in series, Thereby, the received signal is inverted and output. Figure 5 is a circuit diagram of the code comparison unit 34 〇〇 114686.doc • 11-1336720 of the comparison control unit 3 shown in Fig. 2. The code comparison unit 3400 includes a first comparison unit 3420 and a second comparison unit 3440. The first comparing unit 3420 compares the outer code EX_CODE and the DLL code DLL_CODE based on the first detection signal pi, and determines whether the two-state triggering and the comparison signal c1. The second comparison unit 3440 compares the outer code EX_C0DE with the DLL code DLL_CODE based on the second detection signal P2, and determines whether the second comparison signal C2 is toggled. In the following, an operation of the code comparison unit 3400 is explained in detail with reference to FIG. First, the first comparison unit 3420 of the 'code comparison unit 3400 starts comparing the external code EX_CODE with the DLL code DLL_CODE when the first detection signal P1 is changed, and when the external code EX C0DE is substantially the same as the DLL code DLL_CODE The state triggers the first comparison signal c 1 . Next, the second comparison unit 3440 of the code comparison unit 3400 starts comparing the external code EX_CODE with the DLL code DLL_CODE when the second detection signal P2 is changed, and when the external code EX_CODE is substantially the same as the DLL code DLL_CODE The state triggers the second comparison signal C2. That is, the code comparison unit 3400 toggles the first comparison signal C1 in the rising edge above the ODT command signal 〇 DT_CMD, and toggles the second comparison signal 双 2 in the falling edge of the 〇 DT command signal ODT_CMD. The first comparison unit 3420 includes a first storage unit 3422 and a first logic unit 3424. The first storage unit 3422 stores the external code EX_CODE in response to the first detection signal P1. The first logic unit 3424 compares the stored code in the bucket 22 of the first storage unit 3 with the DLL code DLL_CODE, 114686.doc -12-1316720 and determines whether the first comparison signal ci is toggled. The first storage unit 3422 includes a plurality of first registers, which are capable of storing one bit' and sequentially storing the external code EX CODE in units of one bit. The first logic unit 3424 includes a plurality of first mutually exclusive or (x〇r) gates and a third NAND gate NAND3. Each first XOR gate performs an X0R operation on a corresponding one of the DLL code DLL_CODE and one of the corresponding ones stored in the plurality of first registers. The third NAND gate NAND3 performs a NAND operation of the output signals of the plurality of first X0R gates and outputs a first comparison signal C1. The second comparison unit 3440 includes a second storage unit 3442 and a second logic unit 3444. The second storage unit 3442 stores the external code EX_C0DE in response to the second detection signal P2. The second logic unit 3444 compares the stored code in the second storage unit 3442 with the DLL code DLL_COMDE and determines whether the second comparison signal C2 is toggled. The second storage unit 3442 includes a plurality of second registers capable of storing one bit, thereby sequentially storing the external code EX_C0DE in units of one bit. The second logic unit 3444 includes a plurality of second mutually exclusive (XOR) gates and a fourth NAND gate NAND4. Each of the second X0R gates performs an X0R operation of a corresponding one of the DLL code DLL_CODE and one of the corresponding ones stored in the plurality of second registers. The fourth NAND gate NAND4 performs a NAND operation of the output signals of the plurality of second X0R gates and outputs a second comparison signal C2. 114686.doc • 13· 1316720 FIG. 6 is a circuit diagram of the enable signal generating unit 3600 of the comparison control unit 3000 shown in FIG. 2. The enable signal generating unit 3600 includes a sync unit 3620, a rising drive unit 3640, a down drive unit 3 660, and a latch unit 3680. Synchronization unit 3620 synchronizes ODT enable signal ODTEN with DLL clock signal DLL_CLK. The rising drive unit 3640 outputs the power supply voltage VDD as the ODT enable signal ODTEN »down in response to the first comparison signal C1. The drive unit 3660 outputs a ground voltage VSS as the ODT enable signal ODTEN in response to the second comparison signal C2. The latch unit 3680 prevents the ODT enable signal ODTEN from floating. In detail, the synchronization unit 3620 includes a fourth inverter INV4, a first PMOS transistor PM1, and a first NMOS transistor NM1. The fourth inverter INV4 inverts the DLL clock signal DLL_CLK to output. An inverted DLL clock signal. The first PMOS transistor PM1 has a gate that receives the inverted DLL clock signal and a source-drain path between the supply voltage (VDD) terminal and a first node NODE1. The first NMOS transistor NM1 has a gate receiving a DLL clock signal DLL_CLK and a source-drain path between a ground voltage (VSS) terminal and a second node NODE2. Therefore, when the ODT enable signal ODT_EN is activated by a logic level from &quot;low&quot; to "high", the synchronization unit 3620 turns on the first PMOS transistor PM1 and the first NMOS transistor NM1; The logic level of the "low" to "high" is turned off when the ODT enable signal ODT_EN is deactivated. The rising drive unit 3640 includes a fifth inverter INV5 and a second PMOS transistor PM2. The phase comparator INV5 has a first comparison signal C1 inverted 114686.doc -14-1316720 phase second PMOS transistor PM2 having a gate receiving an output signal of one of the fifth inverters INV5 and a first node NODE1 and one The source-drain path between the third node N0DE3. Therefore, the rising drive unit 3640 starts the 0DT enable signal 0DTEN with a &quot;high&quot; logic level in response to the first comparison signal C1. The drop drive unit 3660 includes a second NMOS transistor NM2. The second NMOS transistor NM2 has a gate receiving the second comparison signal C2 and a source-drain path between the second node NODE2 and the third node NDDE3. Therefore, the falling drive unit 3660 cancels the 0DT enable signal 0DTEN with a &quot;low&quot; logic level in response to the second comparison signal C2. The latch unit 3680 includes a sixth inverter INV6 and a seventh inverter. INV7 and an inverter latch of an eighth inverter INV8. The sixth inverter INV6 inverts a signal at the third node NODE3, and the seventh inverter INV7 receives and inverts the sixth inverted phase One of the outputs INV6 outputs a signal to output the inverted signal to the sixth inverter INV6. The eighth inverter INV8 inverts the output signal of the sixth inverter INV6 to output the ODT enable signal ODTEN. Describe that the 0DT enable signal ODTEN is enabled when the first comparison signal C1 is toggled; and the ODT enable signal ODTEN is revoked when the second comparison signal C2 is toggled. That is, embodiments of the present invention are based on the external clock signal EXT_CLK and The number of toggles of the DLL clock signal DLL_CLK determines the start timing of the ODT enable signal ODTEN. Therefore, even if the external clock signal EXT_CLK and the DLL clock signal DLL_CLK operate at a high frequency, it is possible to prevent The desired timing ODT enable signal 114686.doc •15· 1316720 ODTEN. In addition, 'a user can set the start timing of the 0DT enable signal 0DTEN after starting the 〇DT command signal 〇DT_CMD based on an initial setting. FIG. 7 is a diagram showing the start of the 0DT enable signal OFDM according to the present invention. Waveform diagram of the 〇DT control method. First, in a resetting step, the DLL reset signal generating unit 2200 activates the first reset signal R1' in response to the external reset signal RESET and the external reset signal generating unit 2600 is Molding a delay time between the DLL clock signal DLL_CLK and the external clock signal EXT_CLK. • After determining the predetermined time, the second reset signal R2 is started (see 1). Second, in a DLL clock counting step, The DLL clock counter 1400 starts counting the number of toggle triggers of the DLL clock signal DLL_CLK from a preset value (ie, 0) in response to the first reset signal R1 and outputs the number of toggles as the DLL code DLL. CODE (see 2). Third, in an external clock counting step, the external clock counter 1200 starts to count from the preset value (ie, 5) in response to the second reset signal R2. The number of toggles of the pulse signal EXT_CLK is two, and the number of toggles is output as the external code EX_CODE (see 3). Fourth, in a comparison step, the code comparison unit 3400 compares the external code EX_CODE with the DLL in response to the ODT command signal ODT_CMD. The code DLL_CODE (see 4)' and the enable signal generation unit 3600 determines a logical level of one of the ODT enable signals ODTEN in response to the result of the handover (see 5).

詳言之,碼比較單元3400當轉變ODT命令信號 ODT_CMD時將外部碼EX_CODE儲存於暫存器處,且接著 當儲存碼與DLL碼DLL_CODE大體上相同時雙態觸發〇DT 114686.doc •16- 1316720 啟用信號ODTEN。 在比較步驟中,ODT啟用信號ODTEN與ODT命令信號 ODT一CMD之上升邊緣同步而轉變為一&quot;高&quot;邏輯位準,且 與ODT命令信號〇DT_CMD之下降邊緣同步而轉變為一&quot;低&quot; 邏輯位準。 如上文所描述’本發明之晶粒内建終端電阻(〇DT)控制 裝置基於外部時脈信號及DLL時脈信號之雙態觸發數目來 確疋ODT啟用k號之啟動時序。因此,即使外部時脈信號 及DLL時脈彳έ號在一高頻率下運作,亦可能防止以非所要 之時序啟動ODT啟用信號。另外,使用者可基於一初始設 定而在啟動ODT命令信號之後設定〇DT啟用信號之啟動時 序。 本申請案含有與2005年9月29曰及2006年5月30曰在韓國 專利局申請之韓國專利申請案第2005-90953號及第2006-49027號有關的主題,其全部内容以引用的方式倂入本文 中。 雖然已關於特定實施例描述了本發8月,但熟習此項技術 者將易瞭解,在不脫離如下文之申請專利範圍中所界定的 本發明之精神及範疇的情況下,可進行各種改變及修改。 【圖式簡單說明】 圖1A為展示在一低頻率運作下之習知晶粒内建終端電阻 (ODT)控制方法的波形圖; 圖1B為展示在-高頻率運作下之習知〇dt控制方法的波 形圖; 114686.doc •17· 1316720 圖2為根據本發明之一實施例之〇Dt控制電路的方塊 圖; 圖3為圊2中所示之〇DT控制電路之重設信號產生單元的 電路圖; 圖4為圖2中所示之比較控制單元之命令信號偵測單元的 電路圖; 圖5為圖2中所示之比較控制單元之碼比較單元的電路 圖; 圖6為圖2中所示之比較控制單元之啟用信號產生單元的 電路圖;及 圖7為展示根據本發明之〇DT控制方法的波形圖。 【主要元件符號說明】 1000 1200 1400 2000 2200 2400 2600 3000 3200 3220 3222 3240 計算單元 外部時脈計數器 DLL時脈計數器 重設信號產生單元 DLL重設信號產生單元 延遲複本模型單元 外部重設信號產生單元 比較控制單元 命令信號偵測單元 上升邊緣偵測單元 第一延遲單元 下降邊緣偵測單元 114686.doc 1316720 3242 第二延遲單元 3400 碼比較單元 3420 第一比較單元 3422 第一儲存單元 3424 第一邏輯單元 3440 第二比較單元 3442 第二儲存單元 3444 第二邏輯單元 3600 啟用信號產生單元 3620 同步單元 3640 上升驅動單元 3660 下降驅動單元 3680 鎖存器單元 IN VI 第一反相器 INV2 第二反相器 INV3 第三反相器 INV4 第四反相器 INV5 第五反相器 INV6 第六反相器 INV7 第七反相器 INV8 第八反相器 NANDI 第一反及(NAND)閘 NAND2 第二NAND閘 NAND3 第三NAND閘 114686.doc -19- 1316720 NAND4 第四NAND閘 NM1 第一 NMOS電晶體 NM2 第二NMOS電晶體 NODE1 第一節點 NODE2 第二節點 NODE3 第三節點 PM1 第一 PMOS電晶體 PM2 第二PM0S電晶體 114686.doc •20-In detail, the code comparison unit 3400 stores the outer code EX_CODE at the temporary register when the ODT command signal ODT_CMD is converted, and then triggers the 〇DT 114686.doc •16- when the storage code is substantially the same as the DLL code DLL_CODE. 1316720 Enable signal ODTEN. In the comparing step, the ODT enable signal ODTEN is converted to a &quot;high&quot; logic level in synchronization with the rising edge of the ODT command signal ODT-CMD, and is converted to a &quot; in synchronization with the falling edge of the ODT command signal 〇DT_CMD. Low &quot; logic level. As described above, the die built-in terminating resistor (〇DT) control device of the present invention determines the start timing of the ODT enable k based on the number of toggles of the external clock signal and the DLL clock signal. Therefore, even if the external clock signal and the DLL clock signal operate at a high frequency, it is possible to prevent the ODT enable signal from being started at an undesired timing. In addition, the user can set the start timing of the DT enable signal after the ODT command signal is activated based on an initial setting. The present application contains the subject matter related to Korean Patent Application No. 2005-90953 and No. 2006-49027, filed on Sep. 29, 2005, and May 30, 2006, in the Korean Patent Office, the entire contents of which are incorporated by reference. Break into this article. Although the present invention has been described in connection with the specific embodiments, it will be apparent to those skilled in the art that various changes can be made without departing from the spirit and scope of the invention as defined in the following claims. And modify. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a waveform diagram showing a conventional grain built-in terminating resistance (ODT) control method under a low frequency operation; FIG. 1B is a conventional 〇dt control method showing a high frequency operation. Waveform diagram; 114686.doc • 17· 1316720 FIG. 2 is a block diagram of a 〇Dt control circuit according to an embodiment of the present invention; FIG. 3 is a circuit diagram of a reset signal generation unit of the 〇DT control circuit shown in FIG. Figure 4 is a circuit diagram of the command signal detecting unit of the comparison control unit shown in Figure 2; Figure 5 is a circuit diagram of the code comparison unit of the comparison control unit shown in Figure 2; Figure 6 is the circuit shown in Figure 2. A circuit diagram of the enable signal generating unit of the comparison control unit; and FIG. 7 is a waveform diagram showing the DT control method according to the present invention. [Main component symbol description] 1000 1200 1400 2000 2200 2400 2600 3000 3200 3220 3222 3240 Calculation unit external clock counter DLL clock counter reset signal generation unit DLL reset signal generation unit delay replica model unit external reset signal generation unit comparison Control unit command signal detection unit rising edge detection unit first delay unit falling edge detection unit 114686.doc 1316720 3242 second delay unit 3400 code comparison unit 3420 first comparison unit 3422 first storage unit 3424 first logic unit 3440 Second comparison unit 3442 Second storage unit 3444 Second logic unit 3600 Enable signal generation unit 3620 Synchronization unit 3640 Upward drive unit 3660 Drop drive unit 3680 Latch unit IN VI First inverter INV2 Second inverter INV3 Three inverter INV4 Fourth inverter INV5 Fifth inverter INV6 Sixth inverter INV7 Seventh inverter INV8 Eight inverter NANDI First NAND gate NAND2 Second NAND gate NAND3 Three NAND gate 114686.doc -19- 1316720 NAND4 fourth NAND gate NM1 first NMOS transistor NM2 second NMOS transistor NODE1 first node NODE2 second node NODE3 third node PM1 first PMOS transistor PM2 second PM0S transistor 114686.doc •20-

Claims (1)

13167¾^136280號專利申請案 HQ 中文申請專利範圍替換本(98年7月) 十、申請專利範圍: .1. 一種控制一晶粒内建終端電阻(〇DT)之裝置,該裝置包 含: 一汁數單兀,其用於接收一外部時脈信號及一延遲鎖 疋迴路(DLL)時脈信號,且自一預設值起計數外部時脈 信號及該DLL時脈信號之每一者的雙態觸發數目; 一比較控制單元’其用於回應於一 ODT命令信號,而 比較該外部時脈信號的該所計數之雙態觸發數目與該 DLL時脈信號的該所計數之雙態觸發數目,且基於比較 結果而輸出一用於控制該〇DT之ODT啟用信號。 2.如請求項丨之裝置,其進一步包含: 重叹#號產生單元,其用於回應於一外部重設信 號’而輸出一初始化該dll時脈信號之該雙態觸發數目 的第一重設信號,且在一預定時間之後輸出一初始化該 外部時脈信號之該雙態觸發數目的第二重設信號。 3·如請求項2之裝置,其中該重設信號產生單元回應於該 外部重設信號,而藉由將一資料輸入與該dLL時脈信號 同步,來產生該第一重設信號,其中該資料輸入具有一 電源電壓位準。 4.如請求項2之裝置’其中該重設信號產生單元藉由將一 藉由將該第一重設信號延遲該預定時間而產生之信號與 該外部時脈信號同步’來產生該第二重設信號。 5·如請求項2之裝置,其中該重設信號產生單元包括: dll重設信號產生單元,其用於回應於該外部重設 114686-980713.doc 1316720 仏號’而猎由將—f料輪人與該DLL時脈信號同步,來 產生忒第J设仏號’其中該資料輸入具有一電源電壓 位準; ▲ 一延遲複本模型單元,叾用於將該第一重設信號延遲 该預定時間,且輸出一經延遲之重設信號;及 一外部重設信號產生單元,其用於藉由將該經延遲之 重设#娩與該外部時脈信號同步,而產生該第二重設信 號。 6_如請求項5之裝置,其中該DLL重設信號產生單元包括一 D型正反器,其接收該電源電壓作為一資料輸入,接收 。亥DLL日^脈彳s號作為一時脈輸入,並接收該外部重設信 號作為一重設輸入,且確定該第一重設信號之—邏輯位 準。Patent application No. 131673⁄4^136280 HQ Chinese patent replacement scope (July 1998) X. Patent application scope: .1. A device for controlling a die built-in terminating resistor (〇DT), the device comprises: a juice number unit for receiving an external clock signal and a delay lock loop (DLL) clock signal, and counting each of the external clock signal and the DLL clock signal from a preset value a number of toggles; a comparison control unit operative to compare the counted number of toggles of the external clock signal with the counted binary trigger of the DLL clock signal in response to an ODT command signal The number, and based on the comparison result, outputs an ODT enable signal for controlling the DT. 2. The device of claim 1, further comprising: a sigh ## generating unit for outputting a first weight of the number of the two-state triggers for initializing the dll clock signal in response to an external reset signal A signal is asserted and a second reset signal that initializes the number of toggles of the external clock signal is output after a predetermined time. 3. The apparatus of claim 2, wherein the reset signal generating unit generates the first reset signal by synchronizing a data input with the dLL clock signal in response to the external reset signal, wherein The data input has a supply voltage level. 4. The apparatus of claim 2, wherein the reset signal generating unit generates the second by synchronizing a signal generated by delaying the first reset signal by the predetermined time with the external clock signal Reset the signal. 5. The apparatus of claim 2, wherein the reset signal generating unit comprises: a dll reset signal generating unit for responding to the external reset 114686-980713.doc 1316720 nickname 'and hunting The wheel person synchronizes with the DLL clock signal to generate a 仏 仏 ' ' ' , wherein the data input has a power supply voltage level; ▲ a delayed replica model unit 叾 for delaying the first reset signal by the predetermined Time, and outputting a delayed reset signal; and an external reset signal generating unit for generating the second reset signal by synchronizing the delayed reset signal with the external clock signal . 6_ The device of claim 5, wherein the DLL reset signal generating unit comprises a D-type flip-flop that receives the power supply voltage as a data input and receives. The DLL number is used as a clock input, and the external reset signal is received as a reset input, and the logical level of the first reset signal is determined. 8. 9. 如請求項5之裝置,其申該延遲複本模型單元藉由模型 化該DLL時脈信號與該外部時脈信號之間的—延遲時 間,而確定該預定時間。 如請求項5之裝置,其中該外部重設信號產生單元包括 一 D型正反器’其接收該經延遲之重設信號作為一資料 輸入’並接收該外部時脈信號作為一時脈輸入,且確定 該第二重設信號之一邏輯位準。 如請求項2之裴置,其中該計數單元包括: 一 DLL時脈計數器,其用於回應於該第一重設作 °您而 計數該DLL時脈信號之該雙態觸發數目’且輪出讀所▲十 數之雙態觸發數目作為一 DLL碼;及 114686-980713.doc 1316720 叶數該ΓΓ脈計數器,其用於回應於該第二重設信號而 數之雙::時脈信號之該雙態觸發數目,且輸出該所計 數之雙怨觸發數目作為-外部碼。 10.如之裝置,其中該比較控制單元包括·· 一命令信號偵測單元,其用於藉㈣測該咖 唬之轉變而輪Ψ贫 Ία 一輸出第一偵測信號及第二偵測信號; 。父單元’其用於回應於該第-偵測信號及該第 :一、=§號’而藉由比較該外部碼與該DLL碼,來輸出 第一比較信號及第二比較信號;及 及該產生單元,其用於回應於該第-比較信號 '—較信號’而確定該ODT啟用信號之一邏輯仅 平0 f长員10之裝置’其中該命令信號偵測單元 該ODT命今行哚― 只列 。就之一上升邊緣,而雙態觸發該第—僧 信號。 、N 12」叫求項1〇之裝置,其中該命令信號偵測單元藉由偵 該ODT命令作號夕 、、 說之一下降邊緣,而雙態觸發該第二偵測 信號。 、' 13. 如β求項1Q之裝置’其中該命令信號個單元包括: 上升邊緣偵測單元,其用於偵測該〇DT命令信號之 一上升邊緣,以雙態觸發該第一偵測信號;及 下降邊緣偵測單元,其用於偵測該〇DT命令信號之 下降邊緣,以雙態觸發該第二偵測信號。 14. 如叫求項13之裝置,其中該上升邊緣偵測單元包括: H4686-980713.doc 1316720 一延遲單元,其用於將該〇DT命令信號延遲一預設時 間; 一邏輯閘’其用於執行該〇DT命令信號與該延遲單元 之一輸出信號的一 NAND運算;及 反相器’其用於將該邏輯閘之一輸出信號反相,以 輸出該第一偵測信號。 15. 16. 17. 18. 19. 20. 如請求項14之裝置,其中該延遲單元將該〇DT命令信號 延遲該外部時脈信號之一個時脈週期。 如請求項14之裝置,其中該延遲單元包括串聯連接之複 數個反相器’以將該ODT命令信號反相。 如請求項13之裝置,其中該下降邊緣偵測單元包括: 一第一反相器,其用於將該〇DT命令信號反相; -延遲單元’其用於將該第一反相器之—輸出信號延 遲一預設時間; 士-邏二閘’其用於執行該第一反相器之該輸出信號與 §亥延遲單元之一輸出信號的一 NAND運算;及 一第二反相器,其用於將該邏輯閘之1出信號反 相’以輸出該第二偵測信號。 如請求項17之裝置,其中該延遲單元將 弟—反相器· 该輸出信號延遲該外部時脈信號的一個時脈週期 如請求項17之裝置,其中該延遲單元包 依甲聯連接之; 數個反相器,以將該第一反相器之該輸 叫丨5現反相。 如請求項13之|置,其中該碼比較單 茨外部碼與1 DLL碼大體上相同時回應於該第一偵 唬而雙態觸— 114686-980733.doc 1316720 該第一比較信號。 21·如請求項13之裝置,其中該碼比較單元當該外部碼與該 DLL碼大體上相同時回應於該第二㈣信號而雙態觸發 該第二比較信號。 22. 如^項13之裝置,其中該碼比較單元包括: 第』比較早兀,其用於比較該外部碼與該DLL碼’ 且基於该第—偵測信號而判定是否雙態觸發該 信號;及 一 Ί較單元,其料比較該外部碼與該DLL碼, 亡基於該第二偵測信號而判定是否雙態觸發該第二比較 信號。 23. 如請求項22之裝置,其中該第—比較單元包括: 外^存單元’其用於回應於該第—偵測信號而儲存該 外部碼;及 -邏輯單元,其用於比較該錯存單元中的該所儲存之 ^部碼與該DLL碼,以判定是否雙態觸發該第—比較信 2d:項23之裝置,其中該儲存單元包括複數個暫存 :之每-者能夠儲存一個位元,進而以一個 單位順序地保存該外部碼。 25·如請求項24之褒置,其令該邏輯單元包括_· —複數個互斥或(XO削,每—者用於執行該叫碼之 母位兀與儲存於該複數個暫存器之— 外部碼之-相應位元的-舰運算’·及相應—者中的該 1 H686-980713.doc 1316720 邏輯問’其用於執行該複數個XOR閘之輸出信號的 一NAND運算,且輪出 物出5亥第一比較信號。 26.如請求項22之裝置,复由 具中該苐二比較單元包括: 存單元*用於回應於該第二偵測信號而儲存該 外部碼;及 邏輯早70,其用於比較該儲存單元中的該所儲存之 外部碼與該DLL碼,以糸丨宁Η尤她 乂判疋疋否雙態觸發該第二比較信 號。 27’ U項26之裝置’其中該儲存單元包括複數個暫存 Γ其之每—者能夠儲存—個位元,進而以—個位元為 皁位順序地保存該外部瑪。 28·如請求項27之裝置,其中該邏輯單元包括:、 複數個互斥或(X〇R)問,每一者執行該DLL碼之每一 位元與儲存於該複數個暫存器之—相應—者中的該外部 碼之一相應位兀的—x〇R運算;及 邏輯閘其用於執行該複數個x〇r閉之輸出信號的 - NAND運算,且輸出該第二比較信號。 29. 如請求項22之裝置,装由#仙m 卜 其中5亥啟用信號產生單元回應於該 第一比較信號,而用—i羅經古a # ^輯问位準啟動該ODT啟用信 號。 30. 如請求項22之裝置,复中兮敌田户咕 '、中5亥啟用^旎產生單元回應於該 第二比較信號,而用_ i羅短供^ i 、輯低位準撤銷該ODT啟用信 號。 3】.如請求項22之裝置,其中該啟 現座生早凡回應於該 114686-980713.doc 1316720 DLL時脈信號而轉變該〇dt啟用信號。 32.如請求項22之裝置,其中該啟用信號產生單元包括: 一上升驅動單元,其用於回應於該第一比較信號而輸 出一電源電壓作為該〇DT啟用信號; 一下降驅動單元,其用於回應於該第二比較信號而輸 出一接地電壓作為該〇DT啟用信號; 一同步單元,其用於將該〇DT啟用信號與該DLL時脈 信號同步;及 一鎖存器單元’其用於鎖存該〇DT啟用信號。 3 3.如請求項32之裝置,其中該同步單元包括: 一第一反相器,其用於將該dll時脈信號反相,以輪 出一經反相之DLL時脈信號; 一第一 PMOS電晶體,其具有一接收該經反相之dLL 時脈信號的閘極及一在該電源電壓端子與一第一節點之 間的源極-沒極路徑;及 一第一 NM0S電晶體,其具有一接收該DLL時脈信號 的閘極及-在-第二節點與該接地電壓端子之間的源極_ 汲極路徑, T该同y単元分別經由該第一節點及該第二節點而 耦接於該上升驅動單元及該下降驅動單元。 34.如料項33之裝置,其中該上升驅動單元包括: —第二反相器’其用於將該第—比較信號反相;及 -第二PM0S電晶體,其具有—接收該第二反相器之 -輸出信號的閑極及—在該第—節點與一第三節點之間 114686-980713.doc 1316720 的源極-汲極路徑, 元。 單元包括一第二 其中該第三節點連接至該下降驅動單 35.如請求項34之裝置’其中該下降驅動 —接收該第二比 二郎點之間的源 NOMS電晶體’該第二NOMS電晶體具有 較k號的閘極及一在該第二節點與該第 極-沒極路徑。 3 6.如請求項34之裝置,其中該鎖存器單元包括: ^一反相器鎖存器,其具有一用於在該第三節點處將一 L號反相的第二反相器,及—用於將該第二反相器之一 輸出信號反相以將該經反相之信號輸出至該第二反相器 的第三反相器;及 一第四反相器’其用於將該第二反相器之該輸出信號 反相’以輸出該ODT啟用信號。 3 7.—種控制一晶粒内建終端電阻⑴dT)之方法,該方法包 含: 一重設步驟,其回應於一外部重設信號而啟動一第一 重設信號,且在一預定時間之後啟動一第二重設信號; —dll時脈計數步驟,其回應於該第一重設信號而自 —預設值起計數一 DLL時脈信號之雙態觸發數目,且輸 出該所計數之雙態觸發數目作為一 DLL碼; —外部時脈計數步驟,其回應於該第二重設信號而自 預设值起計數一外部時脈信號之該雙態觸發數目’且 輪出該所計數之雙態觸發數目作為一外部碼;及 —比較步驟,其回應於一 〇DT命令信號,而藉由比較 H4686-9807l3.doc 1316720 . 該外部碼與該DLL碼來確定一 ODT啟用信號之一邏輯位 準,以產生該ODT啟用信號,該0DT啟用信號之邏輯位 準係基於比較結果而確定。 38·如請求項37之方法,其中在該重設步驟中,藉由模型化 、該DLL時脈信號與該外部時脈信號之間的一延遲時間, 而設定該預定時間。 39.如請求項37之方法,其中在該比較步驟中,當轉變該 ODT命令信號時將該外部碼儲存於複數個暫存$中,且 該所儲存之外部碼與該肌碼大體上相同時轉變該 ODT啟用信號。 ,該ODT啟用 而轉變為一啟 ,該ODT啟用 而轉變為一停 40_如請求項37之方法,其中在該比較步驟 信號與該ODT命令信號之一上升邊緣同 用狀態。 * /、中在該比較步 信號與該ODT命令信號之一下降邊續 用狀態。8. The apparatus of claim 5, wherein the delayed replica model unit determines the predetermined time by modeling a delay time between the DLL clock signal and the external clock signal. The device of claim 5, wherein the external reset signal generating unit comprises a D-type flip-flop that receives the delayed reset signal as a data input and receives the external clock signal as a clock input, and A logic level of one of the second reset signals is determined. The device of claim 2, wherein the counting unit comprises: a DLL clock counter for counting the number of the binary triggers of the DLL clock signal in response to the first resetting Reading the number of the tens of thousands of binary triggers as a DLL code; and 114686-980713.doc 1316720 the number of leaves of the pulse counter, which is used to respond to the second reset signal and the number of pairs:: clock signal The number of the two-state triggers is output, and the counted number of double-hit triggers is output as the -external code. 10. The device, wherein the comparison control unit comprises: a command signal detecting unit, configured to: (4) measure the change of the curry and rim Ψα to output the first detection signal and the second detection signal ; The parent unit is configured to output the first comparison signal and the second comparison signal by comparing the external code with the DLL code in response to the first detection signal and the first:=§ number; and The generating unit is configured to determine, in response to the first comparison signal '-comparison signal', that the logic of one of the ODT enable signals is only 0 0, and the device of the commander 10 detects the ODT哚 ― only list. One of the rising edges, and the two-state triggers the first-僧 signal. , N 12" is called the device of claim 1 , wherein the command signal detecting unit triggers the ODT command to make a date, and a falling edge, and the second detecting signal is triggered in a binary state. [13] The device of the command line 1Q, wherein the command signal unit comprises: a rising edge detection unit for detecting a rising edge of the 〇DT command signal, and triggering the first detection in a dual state And a falling edge detecting unit configured to detect a falling edge of the 〇DT command signal to trigger the second detecting signal in a dual state. 14. The device of claim 13, wherein the rising edge detection unit comprises: H4686-980713.doc 1316720 a delay unit for delaying the 〇DT command signal by a predetermined time; And executing a NAND operation of the 〇DT command signal and one of the output signals of the delay unit; and an inverter for inverting an output signal of the logic gate to output the first detection signal. 15. The device of claim 14, wherein the delay unit delays the 〇DT command signal by one clock period of the external clock signal. The apparatus of claim 14, wherein the delay unit comprises a plurality of inverters connected in series to invert the ODT command signal. The device of claim 13, wherein the falling edge detecting unit comprises: a first inverter for inverting the 〇DT command signal; and a delay unit for using the first inverter - the output signal is delayed by a predetermined time; the sig-logic sluice is used to perform a NAND operation of the output signal of the first inverter and the output signal of one of the delay units; and a second inverter It is used to invert the signal of the logic gate to output the second detection signal. The device of claim 17, wherein the delay unit delays the output signal of the external clock signal by a clock period of the external clock signal, such as the device of claim 17, wherein the delay unit is connected by the connection; A plurality of inverters are used to invert the input 丨5 of the first inverter. As set forth in claim 13, wherein the code compares the single code external code to the first DLL code in response to the first Detector and the two-state touches - 114686-980733.doc 1316720 the first comparison signal. 21. The device of claim 13, wherein the code comparison unit toggles the second comparison signal in response to the second (four) signal when the outer code is substantially identical to the DLL code. 22. The device of item 13, wherein the code comparison unit comprises: a first comparison, which is used to compare the external code with the DLL code and determine whether to trigger the signal in a binary state based on the first detection signal And a comparison unit, which compares the external code with the DLL code, and determines whether the second comparison signal is triggered by the second detection signal based on the second detection signal. 23. The device of claim 22, wherein the first comparison unit comprises: an external storage unit operative to store the external code in response to the first detection signal; and a logic unit for comparing the error Storing the stored portion code and the DLL code to determine whether the device of the first comparison message 2d: item 23 is triggered in a binary state, wherein the storage unit includes a plurality of temporary storage: each of the storage units can be stored One bit, and then the external code is sequentially stored in one unit. 25. The device of claim 24, wherein the logic unit comprises _--a plurality of mutually exclusive or (XO-cut, each of which is used to execute the mother bit of the code and stored in the plurality of registers) The 1 H686-980713.doc 1316720 logic of the external code - the corresponding bit - ship operation '· and the corresponding one - the logic is used to perform a NAND operation on the output signal of the plurality of XOR gates, and The first comparison signal is outputted by the device. 26. The device of claim 22, wherein the second comparison unit comprises: the storage unit * for storing the external code in response to the second detection signal; And logic 70, which is used to compare the stored external code and the DLL code in the storage unit, so as to determine whether the second comparison signal is triggered by the two states. The apparatus of 26, wherein the storage unit includes a plurality of temporary storage units, is capable of storing one bit, and sequentially storing the external horse with a bit as a soap level. , wherein the logical unit includes:, a plurality of mutually exclusive or (X〇R) questions, each Executing -x〇R operation of each bit of the DLL code corresponding to one of the external codes stored in the corresponding register of the plurality of registers; and logic gate for performing the plurality of bits The NAND operation of the output signal of x闭r is closed, and the second comparison signal is output. 29. The device of claim 22 is loaded with And use the -i Luo Jingu a # #辑问问位 to start the ODT enable signal. 30. If the device of claim 22, Fuzhong 兮 田 咕 咕 ', 中 亥 启用 旎 旎 旎 旎 旎 旎 旎 旎 旎 旎Comparing the signal, and using the _i arro short for ^ i , the low level to cancel the ODT enable signal. 3]. The device of claim 22, wherein the instant resident responds to the 114686-980713.doc 1316720 DLL The device of claim 22, wherein the enable signal generating unit comprises: a rising drive unit for outputting a power voltage as the first response signal 〇DT enable signal; a drop drive unit, And outputting a ground voltage as the 〇DT enable signal in response to the second comparison signal; a synchronization unit for synchronizing the 〇DT enable signal with the DLL clock signal; and a latch unit 3. The device for latching the 〇 DT enable signal. 3 3. The device of claim 32, wherein the synchronization unit comprises: a first inverter for inverting the dll clock signal to turn out a reverse a phase DLL clock signal; a first PMOS transistor having a gate receiving the inverted dLL clock signal and a source-no-pole between the power voltage terminal and a first node And a first NMOS transistor having a gate receiving the DLL clock signal and a source _ drain path between the second node and the ground voltage terminal, respectively The rising drive unit and the lower drive unit are coupled to the first node and the second node. 34. The apparatus of claim 33, wherein the rising drive unit comprises: - a second inverter 'for inverting the first comparison signal; and - a second PMOS transistor having - receiving the second Inverter - the idle pole of the output signal and - the source-drain path of the 114686-980713.doc 1316720 between the first node and a third node. The unit includes a second, wherein the third node is connected to the drop drive unit 35. The device of claim 34, wherein the drop drive receives a source NOMS transistor between the second ratio and the second NOMS The crystal has a gate with a k-number and a second-node and the second-pole path. 3. The apparatus of claim 34, wherein the latch unit comprises: ^ an inverter latch having a second inverter for inverting an L number at the third node And a third inverter for inverting an output signal of one of the second inverters to output the inverted signal to the second inverter; and a fourth inverter The output signal of the second inverter is inverted 'to output the ODT enable signal. 3 7. A method of controlling a die built-in terminating resistor (1) dT), the method comprising: a resetting step of initiating a first reset signal in response to an external reset signal and starting after a predetermined time a second reset signal; a dll clock counting step that counts the number of toggles of a DLL clock signal from a preset value in response to the first reset signal, and outputs the counted double The number of state triggers is a DLL code; an external clock counting step that counts the number of the two-state triggers of an external clock signal from a preset value in response to the second reset signal and rounds up the count The number of toggles is an external code; and - a comparison step, which is in response to a DT command signal, by comparing H4686-9807l3.doc 1316720. The external code and the DLL code determine one of the ODT enable signals The logic level is generated to generate the ODT enable signal, and the logic level of the 0DT enable signal is determined based on the comparison result. 38. The method of claim 37, wherein in the resetting step, the predetermined time is set by modeling a delay time between the DLL clock signal and the external clock signal. 39. The method of claim 37, wherein in the comparing step, the external code is stored in a plurality of temporary stores $ when the ODT command signal is converted, and the stored external code is substantially the same as the muscle code Time shifts the ODT enable signal. The ODT is enabled and turned into a start, and the ODT is enabled to be converted to a stop 40_, as in the method of claim 37, wherein the comparison step signal is used in the same state as one of the rise edges of the ODT command signal. * /, in the state of the comparison step signal and one of the ODT command signals falling. 114686-980713.doc114686-980713.doc
TW095136280A 2005-09-29 2006-09-29 Apparatus and method for controlling on die termination TWI316720B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050090953 2005-09-29
KR1020060049027A KR100761359B1 (en) 2005-09-29 2006-05-30 On-die termination control circuit and method

Publications (2)

Publication Number Publication Date
TW200721195A TW200721195A (en) 2007-06-01
TWI316720B true TWI316720B (en) 2009-11-01

Family

ID=37959477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095136280A TWI316720B (en) 2005-09-29 2006-09-29 Apparatus and method for controlling on die termination

Country Status (3)

Country Link
KR (1) KR100761359B1 (en)
CN (1) CN1941629B (en)
TW (1) TWI316720B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929846B1 (en) 2007-10-23 2009-12-04 주식회사 하이닉스반도체 On Die Termination Control Circuit
KR100921832B1 (en) * 2008-03-03 2009-10-16 주식회사 하이닉스반도체 On Die Termination controlling circuit of semiconductor memory device
KR100929833B1 (en) * 2008-04-02 2009-12-07 주식회사 하이닉스반도체 Output Enable Signal Generation Circuit and Generation Method
KR100949276B1 (en) * 2008-09-08 2010-03-25 주식회사 하이닉스반도체 Termination tuning circuit and semiconductor memory device including the same
KR101043722B1 (en) 2010-02-04 2011-06-27 주식회사 하이닉스반도체 Latency control circuit and semiconductor memory device including the same
US10153014B1 (en) 2017-08-17 2018-12-11 Micron Technology, Inc. DQS-offset and read-RTT-disable edge control
CN113808634B (en) * 2020-06-11 2024-02-27 华邦电子股份有限公司 Delay phase-locked loop device and updating method thereof
CN115599196A (en) * 2021-07-09 2023-01-13 长鑫存储技术有限公司(Cn) Enable control circuit and semiconductor memory

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468728B1 (en) * 2002-04-19 2005-01-29 삼성전자주식회사 On-chip terminator, Control circuit there-of and Control method there-of in semiconductor integrated circuit
KR100502408B1 (en) * 2002-06-21 2005-07-19 삼성전자주식회사 Memory system for controlling power-up sequence of memory device embedding active termination and the method of power-up and initialization thereof
KR100464437B1 (en) * 2002-11-20 2004-12-31 삼성전자주식회사 On-Die Termination circuit and method for reducing on-chip DC current and memory system including memory device having the same
KR100506976B1 (en) * 2003-01-03 2005-08-09 삼성전자주식회사 synchronous semiconductor memory device having on die termination circuit
KR100528164B1 (en) * 2004-02-13 2005-11-15 주식회사 하이닉스반도체 On die termination mode transfer circuit in semiconductor memory device and its method
KR100670674B1 (en) * 2005-06-30 2007-01-17 주식회사 하이닉스반도체 Semiconductor memory deivce

Also Published As

Publication number Publication date
KR100761359B1 (en) 2007-09-27
KR20070036635A (en) 2007-04-03
TW200721195A (en) 2007-06-01
CN1941629A (en) 2007-04-04
CN1941629B (en) 2010-05-12

Similar Documents

Publication Publication Date Title
TWI316720B (en) Apparatus and method for controlling on die termination
TWI305650B (en) Device for controlling on die termination
TWI326084B (en) Synchronous dynamic random access memory integrated circuit semiconductor memory with reset function and method of resetting a memory without powering down the memory
JP4290537B2 (en) Semiconductor device
US7365564B2 (en) Apparatus and method for controlling on die termination
US7512033B2 (en) Apparatus and method for controlling clock signal in semiconductor memory device
US7579861B2 (en) Impedance-controlled pseudo-open drain output driver circuit and method for driving the same
CN110770832B (en) Command Signal Clock Gating
US20100054073A1 (en) Semiconductor memory device
JP2011119632A (en) Impedance adjusting device
US20130113517A1 (en) Impedance control circuit and semiconductor device including the same
TWI469156B (en) Clock control circuit and a semiconductor memory apparatus having the same
US8023339B2 (en) Pipe latch circuit and semiconductor memory device using the same
JP2000163968A (en) Semiconductor integrated circuit device
TW200845028A (en) ZQ calibration controller and method for ZQ calibration
US20150226825A1 (en) Semiconductor device
KR101679036B1 (en) Circuit and Method for controlling on-die termination latency clocks
TW200949854A (en) Duty correction circuit
JP2010183243A (en) Semiconductor device
TWI287359B (en) Delay locked loop
TW201117227A (en) Semiconductor device and method for operating the same
JP2010193291A (en) Impedance adjustment circuit and semiconductor device including the same
JPH10177058A (en) Integrated circuit having speed detector
US7800397B2 (en) On-die termination circuit of semiconductor memory apparatus
US7916560B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees