TWI308443B - Channel estimation enhanced lms equalizer - Google Patents
Channel estimation enhanced lms equalizer Download PDFInfo
- Publication number
- TWI308443B TWI308443B TW95109061A TW95109061A TWI308443B TW I308443 B TWI308443 B TW I308443B TW 95109061 A TW95109061 A TW 95109061A TW 95109061 A TW95109061 A TW 95109061A TW I308443 B TWI308443 B TW I308443B
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- filter
- tap coefficient
- vector
- equalizer
- Prior art date
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Filters That Use Time-Delay Elements (AREA)
Description
1308443 δ(ΤΤ2Γ^- 年月日修正替換頁 九、發明說明: ~ - 【發明領域】 本發明係有關無線通信系統。更特別是,本發明係有 關頻道評估強化LMS等化器。 【背景】 5周整適應濾波器之濾波係數方法之一係為LMS(最小 均方)演算法。LMS濾波器中,濾波器係數係以LMS濾波 器實際輸A及參考值間之誤差絲礎被麟。該誤差係被 回饋以更新濾波器係數,而該被更新濾波器係數係以步長 及誤差為基礎被產生,其係被重複更新直到收斂為止。 因為收斂速度不能趕上快速改變頻道,所以若使用小 步長,則快速改變頻道中之LMS等化器(或正規 LMS(NLMS)等化器)效能係被降級。使用大步長可增加收斂 速度,因而可強化LMS等化器效能。然而,使用大步長可 能產生超額錯誤調整誤差。因此,追蹤能力及錯誤調整誤 差之間係具有置換關係。大步長追縱頻道較佳。然而,小 步長降低錯誤調整誤差較佳。因此,步長被設定來最佳化 總效肖b ’但LMS肩鼻法實施通常會產生次佳收斂時間。1308443 δ(ΤΤ2Γ^- 年月日日修正 replacement page IX, invention description: ~ - [Technical Field] The present invention relates to a wireless communication system. More particularly, the present invention relates to a channel evaluation enhanced LMS equalizer. One of the five-week adaptive filter filter coefficients is the LMS (Least Mean Square) algorithm. In the LMS filter, the filter coefficients are based on the error between the LMS filter and the reference value. The error is fed back to update the filter coefficients, and the updated filter coefficients are generated based on the step size and the error, which are repeatedly updated until convergence. Because the convergence speed cannot catch up with changing the channel quickly, With a small step size, the LMS equalizer (or normal LMS (NLMS) equalizer) in the fast change channel is degraded. Using a large step size increases the convergence speed and thus enhances the LMS equalizer performance. The use of large steps may result in excessive error adjustment errors. Therefore, there is a permutation relationship between the tracking ability and the error adjustment error. The large step tracking channel is better. However, the small step is long. Error adjustment error preferred. Thus, the step size is set to optimize the overall efficiency Shaw b 'but the shoulder nasal embodiment LMS method often produces suboptimal convergence time.
Griffith演算法係以不需誤差信號但需參考信號及資料 向量乘積預測值之先驗知識之LMS演算法適應為基礎。 因此,預測不需限制先前技術即可執行頻道評估。 【發明内容】 本發明係有關使用頻道評估之一強化等化器。依據本 發明’頻道評估之定標版本係被當作用於實施Griffith演算 1308443 法之被傳送信號及被接收信號乘積之預測平均行為。本發 明亦使用事先或酬頻道評估來克服存在於隨時間改變頻 道中之LMS演算法祕巾之延制題。因此,本發明可促 成小步長使用達成以大步長之相同追蹤能力。未來某時點 之頻道評估係被用於更新等化减波ϋ分接點係數Ϊ此; 以預測,波器來實施。可#代是,因騎濾波器分接點係The Griffith algorithm is based on the LMS algorithm adaptation that does not require an error signal but requires a priori knowledge of the signal and data vector product prediction values. Therefore, it is predicted that channel estimation can be performed without limiting the prior art. SUMMARY OF THE INVENTION The present invention relates to the use of one of the channel evaluation enhancement intensifiers. The scaled version of the 'channel evaluation according to the present invention is taken as the predicted average behavior for the product of the transmitted signal and the received signal used to implement the Griffith calculus 1308443 method. The present invention also uses advance or reward channel evaluation to overcome the extension of the LMS algorithm secrets that exist in changing channels over time. Thus, the present invention can facilitate the use of small step sizes to achieve the same tracking capability in large steps. The channel evaluation at a certain point in the future is used to update the equalization denoising and decimation point coefficient. This is implemented by prediction and wave. Can be #代是, because of the riding filter tap point system
數產生器輸人資料被延遲,所以延遲可被引進輸入資料至 據波器分接點絲產生H,其使頻道評估触職波器分 接點係數產生器之預測。 “ ° 【較佳實施例之詳細說明】 本發明特性可被併入積體電路(1C)或被配置於包含多 互連組件中之電路中。 、、本發明提供可維純好⑽雜Τ較佳追蹤高行動性 頻道之-等化||(纽是適紐紐。Grifflth演算法係 被設計允許無誤差錄(軸天線_以拒絕干擾之脈 =),但賴知被魏域倾概信縣積之 為時使用_⑽演算法。通常,接收器處並不知此被預 為。依據本發明,該行為係被評估,而該評估係被用 ΓΓ鮮法。雜本發批—實_,頻道評估 本储當倾觸信號及被接收信縣積之預測 Γ知引示序軸入傳輸中(如藉由將被接收 仏虎”已知引不信號相關聯),則可輕易獲得頻道評估。 2明亦使用事先或預_道評估來克服存在於隨 間改史頻道中之lms演算法變異中之延·題,藉此促成 7 1308443 ^ 12 3 0 - 年月日修正替換頁 小步長使騎成以大步長之相同追雜力。依據本發明, 未來某時點之頻道評估係被用於更料化器濾波器分接點 ,數此可以預峨波II來實施。可替代是,因為對遽波 盗分接點係數產生器輸人資料被延遲,所以延遲可被引進 輸入資料至舰器分接關數產生器,其使頻道評估類似 對滤波器分接點係數產生器之預測。依據漏⑨NLMS 法更料化⑽綠之滤波器分 接點係數係可被重寫如下:The number generator input data is delayed, so the delay can be introduced into the input data to the filter tap to generate H, which allows the channel to evaluate the prediction of the contact wave coefficient generator. "° Detailed Description of the Preferred Embodiments] The characteristics of the present invention can be incorporated into an integrated circuit (1C) or configured in a circuit including a plurality of interconnected components. The present invention provides a dimensionally good (10) hybrid Good tracking of high mobility channels - equalization | | (New is the New Zealand. The Griffflth algorithm is designed to allow error-free recording (axis antenna _ to reject the pulse =), but Lai Zhi is known by Wei domain The county accumulates the _(10) algorithm. Usually, the receiver does not know that this is pre-determined. According to the invention, the behavior is evaluated, and the evaluation is used in the fresh method. The channel evaluation unit can easily obtain the channel when the dumping signal is received and the received prediction of the county is known to lead the transmission into the transmission (for example, by associating the received signal with the receiving tiger). Evaluation. 2 Ming also uses pre- or pre-evaluation to overcome the delay in the lms algorithm variation in the channel of change, which leads to the 7 1308443 ^ 12 3 0 - year and day correction replacement page small The step size makes the rider the same as the big step. According to the invention, the frequency of the future point The evaluation system is used for the more normalizer filter tapping point, which can be implemented by pre-chopping II. Alternatively, since the input data of the chopping sprite coefficient generator is delayed, the delay can be Introduce the input data to the ship tap-off generator, which makes the channel evaluation similar to the prediction of the filter tap coefficient generator. According to the leakage 9NLMS method, the (10) green filter tap coefficient can be weighted. Write as follows:
<0kxk)H 方程式(1) 其中誤差信號4=(1+力-狀,a為漏朗子,w為等化器遽 波器分接點係數’尤為等化器滤j皮器中之輸人資料向量,y 為等化賊波ϋ輸出,·ν =為,e為亂碼雜,而下標k意 指第k重複。<0kxk)H Equation (1) where the error signal 4 = (1 + force - shape, a is the leaking Lang, w is the equalizer chopper tap coefficient - especially in the equalizer filter The human data vector, y is the equalized thief wave output, · ν = is, e is garbled, and the subscript k means the kth repetition.
記註乘積yC=eq_deSCram,且使心@及引示信號 P={l+j} ’方程式(1)可被重寫如下: ^ = cmk^ + fi[p{ckXk)H -ykCt{Ckxk^\ 方程式(2)Note the product yC=eq_deSCram, and make the heart @ and the pilot signal P={l+j} 'The equation (1) can be rewritten as follows: ^ = cmk^ + fi[p{ckXk)H -ykCt{Ckxk^ \ Equation (2)
sym — vec 方程式(2)可被重寫如下: wk = aw^ + β(ρ. sym^vec11 - eq_descram sym vecHΊ — 方程式(3) 依據發明之NLMS演算法強化係藉由以下其預期取代 方程式(3)之()左項來達成: wk = ocwk^ + β{Ε{ρ - sym_vecH} — eq descram symSym — vec Equation (2) can be rewritten as follows: wk = aw^ + β(ρ. sym^vec11 - eq_descram sym vecHΊ – Equation (3) The NLMS algorithm enhancement according to the invention is replaced by the following expected equation ( 3) The left term of () is reached: wk = ocwk^ + β{Ε{ρ - sym_vecH} — eq descram sym
方程式(4) 1308443Equation (4) 1308443
__從頻道評估被近似。只要引示 被傳达,该預測項將產生益 此,頻道評估可取代方程:;=例中之頻道脈衝響應。因 用=非僅計算頻道評估來取代預測。若頻 二奸?日讀頻道狀態評估取代,則附加效能改良 可被貫施。此補償NLMS演算法中既存之延遲。如上述, 該預測可藉由被放解化^絲前方之延遲來實施。__ is evaluated from the channel evaluation. As long as the citation is communicated, the prediction will be of interest, and the channel evaluation can replace the equation:; = the channel impulse response in the example. Replace the forecast with a = not only calculated channel estimate. If the frequency of the traitor is replaced by the day-to-day channel status assessment, additional performance improvements can be applied. This compensates for the existing delay in the NLMS algorithm. As described above, this prediction can be implemented by the delay in front of the disintegration.
第1圖為依據本發明之等化器i⑻方塊圖。等化器⑽ 係包含-等化器舰器⑽,—頻道評估器112,一渡波器 分接點係數產生器n4及一乘法器110。等化器刚可選擇 性進-步包含一延遲緩衝器谢,—信號組合器搬及一向 下採樣器108。 數位化樣本132,134係被饋入信號組合器1〇2。本發 明可被擴充使用多天線來接收分集。如樣本132,134之多 樣本流係可經由多天線從被接收信號被產生,而多樣本流 132 ’ 134係被信號組合器搬多路傳送以產生一被組合樣 本流136。應注意,第1圖描繪來自兩接收天線之兩樣本流 132,134例(無圖示),但僅一或兩個以上樣本流視天線配 置而定被產生。若僅一樣本流被產生,則不需信號組合器 102,而樣本流被直接饋入延遲緩衝器1〇4及頻道評估器 112。信號組合器1〇2可替代地僅内插樣本132,134來產 生一樣本流136。 被組合樣本136係被饋入延遲緩衝器1〇4及頻道評估 器112。延遲缓衝器104可於輸出被延遲組合樣本139至等 1308443 . 化器濾波器106之前儲存被組合樣本130以延遲一預定時 間區間。此使頻道評估類似對濾、波器分接點係數產生器之 預測。可替代是,樣本136可被直接饋送至等化器濾波器 觸。等化器攄波器1〇6可使用被濾波器分接點係數產生器 1Η更新之舰&分接點魏148來處理該被延遲組合樣本 138並輸出被濾波樣本14〇。 若採樣速率大於晶片速率或多樣本流被產生,則被濾、 • 140可藉由向下採樣器⑽被向下採樣,藉此向下 採樣器108產生晶片速率資料。較佳是,樣本132,134係 以兩倍晶片速率被產生。例如,若兩樣本流以兩倍晶片速 率被產生’則下採樣器⑽藉由四⑷之因子向下採樣被淚 波樣本140。 " 心被向下採樣樣本142接著藉由乘法器、11〇將該被向下 採樣樣本142乘上亂碼157之共輛被解擾亂。該被解擾亂 濾波樣本144係從等化_ 1〇〇被輸出藉由其他下游組件處 _ S ’且亦被回饋至遽波器分接點係數產生器ιΐ4。 ▲作為輸入之頻道評估n 112可接收被組合樣本136及 車乂佳引不序歹i 52並輸出一頻道評估i5〇。頻道評估可藉由 ❹任何先前技術方法來產生。當引示信號被包含於被接 收心遽%,该引不信號知識係可強化頻道評估。 〜慮,分接點係數產生11 114可產生被用赠波等化 -慮波為106中之被組合樣本138之濾波器分接點係數 ^。慮波器分接點係數產生器114當作輸入,被解亂石馬濟 波樣本144,分接延遲線146中之樣本狀態向量,頻道評估 10 1308443 器112所產生之頻道評估150,一步長參數μ154及一漏洩 參數α 156。 第2圖為等化器濾波器ι〇6之詳細方塊圖。等化器濾 波器106包含一分接延遲線2〇2及一向量内乘積乘法器 204。被延遲組合樣本138係被移入分接延遲線2〇2,而向 量内乘積乘法器204係計算被移入分接延遲線之樣本狀態 向里146及複合濾、波器分接點係數Mg之向量内乘積。該 向量内乘積係從等化器濾波器106被輸出為被濾波樣本 140。 第3圖為濾波器分接點係數產生器114之詳細方塊 圖。;慮波器分接點係數產生器114係包含一第一共幸厄單元 302,一第二共軛單元3〇4,一第一乘法器3〇6,一加法器 308,一第二乘法器310,一向量範數平方產生器32〇,一 除法器314及一迴路濾波器311。頻道評估器112所產生之 頻道評估150係被饋送至第一共軛單元3〇2以產生頻道評 估332之共輛。等化器濾波器1〇6之分接延遲線2犯中之 樣本狀態向量146係被饋送至第二共軛單元3〇4以產生狀 態向量334之共輛。狀態向量334及藉擾亂遽波樣本144 係被乘上第-乘法器3〇6。第—乘法器施係為可產生向量 信號之純量向量乘法器3G5。第—乘法器鄕之輸出挪 係藉由加法器308被擷取自頻道評估332之共軛以產生未 定標修正項338,其對應方程式(4)中之 (E{p. sym—vecH) — eq—descram. sym—vecH )項 狀態向量146亦被饋送至向量範數平方產生器32〇以 1308443 計算狀態向量340之向量範數平方。步長參數,係藉由 除法器314被除以狀態向量34〇之向量範數平方以產生定 標因子342(也就是方程式(4)中之幻。定標因子如係藉由 第二乘法器310被乘上未定標修正項338以產生定標修正 項3私。定標修正項344係被饋送至迴路濾'波器3ιι以被添 加至先前重複遽波器分接點係數以產生被更新滤波器分接 點係數148。 迴路濾波器311係包含一加法器312,一延遲單元 及-乘法器316。遽波器分接點係數148係被儲存於延遲單 疋训中被用於下-重複當作先前遽波器分接點係數。被 延遲濾波器分接點係數346係被乘上漏洩參數α 156以產 生定標先誠波齡接點雜348,而奴標先_波器分 接點係數348係藉由加法器312被添加定標修正項344以 產生濾波器分接點係數148。 依據本發明之效能改__示於第4圖作為模擬結 果。該模擬係针對10dB之信號雜訊比(SIR),正交移相鍵 控(QPSK)霞,财而VA12G舰之—接收天線,及第 三代高速下鏈封包存取(HSDPA)固定參考頻道(FRC)測試 被配置。該模擬顯示本發明高行動性頻道(12〇kph行動速度) 之優點。2dB以上效能改良係被實現。 第5圖為依據本發明執行被接收信號等化處理5〇〇之 流程圖。樣本係被產生自被接收信號(步驟502)。樣本係於 轉送该樣本至等化器濾波器之前被暫時儲存於延遲緩衝器 中以延遲樣本—段預定期間(步驟504)。頻道評估係以該樣 12 1308443 97. 12.-30=- 年月曰修正替換頁 本為基礎被產生(步驟506)。被延遲緩衝器延遲之樣本係藉 由荨化益滤波益處理以產生被;慮波樣本(步驟。亂碼丘 軛係被乘上該被濾波樣本以產生解亂碼濾波樣本(步驟 51〇)。新濾波器分接點係數係使用該頻道評估被產生(步驟 512)。 第6圖為依據本發明產生濾波器分接點係數處理6〇〇 流程圖。頻道評估之共軛係被產生(步驟602)。被移入等化 器濾波器之分接延遲線中之樣本狀態向量共軛係被乘上解 擾亂濾波樣本(步驟604)。乘法結果係被扣除自頻道評估之 共軛係以產生未定標修正項(步驟606)。定標因子係藉由步 長除以被移入分接延遲線中之樣本狀態向量之向量範數平 方被產生(步驟608)。定標向量係被乘上該未定標修正項以 產生定標修正項(步驟610)。該定標修正項係被添加至先前 重複之濾波器分接點係數以產生被更新濾波器分接點係數 (步驟612)。 雖然本發明之特性及元件被以特定組合說明於較佳實 施例中’但各特性及元件係不需較佳實施例之其他特性及 元件’或有或無本發明其他特性及元件之各種組合中被單 獨使用。 13Figure 1 is a block diagram of an equalizer i (8) in accordance with the present invention. The equalizer (10) includes an equalizer ship (10), a channel evaluator 112, a ferrite tap coefficient generator n4 and a multiplier 110. The equalizer just selects the step-by-step to include a delay buffer, and the signal combiner moves to the downsampler 108. The digitized samples 132, 134 are fed into the signal combiner 1〇2. The present invention can be extended to use multiple antennas to receive diversity. As many samples of the sample 132, 134 can be generated from the received signal via multiple antennas, the multi-sample stream 132' 134 is multiplexed by the signal combiner to produce a combined sample stream 136. It should be noted that Figure 1 depicts two sample streams 132, 134 (not shown) from two receive antennas, but only one or more sample flow depends on the antenna configuration. If only the same stream is generated, the signal combiner 102 is not needed and the sample stream is fed directly into the delay buffer 〇4 and the channel evaluator 112. Signal combiner 1 可 2 can alternatively interpolate samples 132, 134 to produce the same stream 136. The combined samples 136 are fed into the delay buffer 1〇4 and the channel evaluator 112. The delay buffer 104 may store the combined samples 130 for a predetermined time interval before the output is delayed by the combined samples 139 to 1308443. This allows the channel evaluation to be similar to the prediction of the filter and filter tap coefficient generator. Alternatively, sample 136 can be fed directly to the equalizer filter. The equalizer chopper 1〇6 can process the delayed combined sample 138 and output the filtered sample 14〇 using the filter & tap point 148 updated by the filter tap coefficient generator 1Η. If the sampling rate is greater than the wafer rate or a multi-sample stream is generated, then filtered, 140 can be downsampled by the downsampler (10), whereby the downsampler 108 generates the wafer rate data. Preferably, samples 132, 134 are produced at twice the wafer rate. For example, if the two sample streams are generated at twice the wafer rate' then the downsampler (10) downsamples the tear sample 140 by a factor of four (4). " The heart is downsampled by the sample 142 and then multiplied by the multiplier, 11 乘 the downsampled sample 142 by the garbled 157. The descrambled filtered samples 144 are output from the equalization _ 1 藉 by other downstream components _ S ' and are also fed back to the chopper tap coefficient generator ι 4 . ▲ As the input channel evaluation n 112 can receive the combined sample 136 and the car 引 引 引 i 52 and output a channel evaluation i5 〇. Channel evaluation can be generated by any prior art method. When the pilot signal is included in the received heart rate, the signal-free knowledge system can enhance the channel assessment. ~, the tap coefficient generation 11 114 can be generated by the equalization of the gift wave - the filter is the filter tap coefficient ^ of the combined sample 138 in 106. The filter tap coefficient generator 114 acts as an input, is unblocked by the Shimaji wave sample 144, taps the sample state vector in the delay line 146, and the channel evaluation 10 1308443 generates a channel evaluation 150, a one-step parameter μ154 And a leakage parameter α 156. Figure 2 is a detailed block diagram of the equalizer filter ι〇6. The equalizer filter 106 includes a tap delay line 2〇2 and an intra-vector product multiplier 204. The delayed combination sample 138 is shifted into the tap delay line 2〇2, and the vector multiplication multiplier 204 calculates the vector of the sample state inward 146 and the composite filter and the filter tap coefficient Mg that are shifted into the tap delay line. Internal product. The intra-vector product is output from the equalizer filter 106 as a filtered sample 140. Figure 3 is a detailed block diagram of the filter tap coefficient generator 114. The filter tap coefficient generator 114 includes a first co-fortunate unit 302, a second conjugate unit 3〇4, a first multiplier 3〇6, an adder 308, and a second multiplication. The device 310, a vector norm square generator 32A, a divider 314 and a loop filter 311. The channel estimate 150 generated by the channel evaluator 112 is fed to the first conjugate unit 3〇2 to generate a common vehicle for the channel evaluation 332. The sample state vector 146 of the taper delay line 2 of the equalizer filter 1〇6 is fed to the second conjugate unit 3〇4 to generate a common vehicle of the state vector 334. The state vector 334 and the scrambled chop sample 144 are multiplied by the first-multiplier 3〇6. The first-multiplier is implemented as a scalar vector multiplier 3G5 that produces a vector signal. The output of the first-multiplier 挪 is taken from the conjugate of the channel evaluation 332 by the adder 308 to generate an uncorrected correction 338 corresponding to (E{p. sym-vecH) in equation (4). The eq-descram.sym-vecH) term state vector 146 is also fed to the vector norm square generator 32 to calculate the vector norm square of the state vector 340 with 1308443. The step size parameter is obtained by dividing the vector norm square of the state vector 34 by the divider 314 to generate a scaling factor 342 (that is, the magic in equation (4). The scaling factor is obtained by the second multiplier 310 is multiplied by the uncalibrated correction item 338 to generate the calibration correction item 3. The calibration correction item 344 is fed to the loop filter '3' to be added to the previous repeat chopper tap coefficient to produce an update. The filter tap coefficient 148. The loop filter 311 includes an adder 312, a delay unit and a multiplier 316. The chopper tap coefficient 148 is stored in the delay single training and is used for the lower- Repeat as the previous chopper tap coefficient. The delayed filter tap coefficient 346 is multiplied by the leakage parameter α 156 to generate the calibration first wave age contact 348, and the slave first _ waver The contact coefficient 348 is added with a scaling correction term 344 by the adder 312 to generate a filter tap coefficient 148. The performance improvement according to the present invention is shown in Fig. 4 as a simulation result. The simulation is for 10 dB. Signal Noise Ratio (SIR), Quadrature Phase Shift Keying (QPSK) Xia, Cai VA12G Ship - Receive Antenna, and Third Generation High Speed Downlink Packet Access (HSDPA) Fixed Reference Channel (FRC) test is configured. This simulation shows the advantages of the high mobility channel (12 〇 kph action speed) of the present invention. Figure 5 is a flow chart showing the process of equalizing the received signal according to the present invention. The sample is generated from the received signal (step 502). The sample is transferred to the equalizer filter. It has been temporarily stored in the delay buffer to delay the sample-segment predetermined period (step 504). The channel evaluation is generated based on the sample 12 1308443 97. 12.-30=-year month correction replacement page (step 506) The sample delayed by the buffer delay is processed by the 滤波 益 滤波 filter to generate the escaping sample (step garbled yoke yoke is multiplied by the filtered sample to generate a garbled code filtered sample (step 51 〇 The new filter tap coefficient is generated using the channel evaluation (step 512). Figure 6 is a flow chart for generating filter tap coefficient processing according to the present invention. The conjugate system for channel evaluation is generated. (step 602). The sample state vector conjugate in the tapped delay line of the equalizer filter is multiplied by the descrambled filtered sample (step 604). The multiplication result is subtracted from the conjugate of the channel estimate to produce an uncorrected correction term ( Step 606) The scaling factor is generated by dividing the step size by the vector norm square of the sample state vector moved into the tap delay line (step 608). The scaling vector is multiplied by the uncalibrated correction term to A scaling correction term is generated (step 610). The scaling correction term is added to the previously repeated filter tap coefficient to produce updated filter tap coefficient (step 612). The features and elements of the present invention are described in the preferred embodiments in a particular combination 'but the various features and elements do not require other features and elements of the preferred embodiments' or with or without other features and combinations of elements of the invention. Used separately. 13
"V 1308443 - 【圖式簡單說明】 第1圖為依據本發明之等化器方塊圖。 第2圖為第1圖之等化器濾波器方塊圖。 第3圖為第1圖之濾波器分接點係數產生器方塊圖。 第4圖顯示與先前技術NLMS等化器相較之效能改良模 擬結果。 第5圖為依據本發明執行被接收信號等化處理流程圖。 0 第6圖為依據本發明產生濾波器分接點係數處理流程圖。 【主要元件符號說明】 110、204、306、310、316 乘法器 106等化器濾波器 136、138 組合樣本 142向下採樣樣本 146樣本狀態向量 148濾波器分接點係數 φ 150頻道評估 w等化器 154步長參數μ 156漏洩參數〇c 308、312加法器 311迴路濾波器 340除法器 342定標因子 QPSK正交移相鍵控 LMS (最小均方)演算法 14"V 1308443 - [Simplified illustration of the drawings] Fig. 1 is a block diagram of an equalizer according to the present invention. Figure 2 is a block diagram of the equalizer filter of Figure 1. Figure 3 is a block diagram of the filter tap coefficient generator of Figure 1. Figure 4 shows the results of performance improvement simulations compared to prior art NLMS equalizers. Figure 5 is a flow chart showing the process of equalizing the received signal in accordance with the present invention. 0 Figure 6 is a flow chart showing the processing of the filter tap point coefficients in accordance with the present invention. [Major component symbol description] 110, 204, 306, 310, 316 multiplier 106 equalizer filter 136, 138 combined sample 142 downsampled sample 146 sample state vector 148 filter tap coefficient φ 150 channel evaluation w, etc. 154 step parameter μ 156 leakage parameter 〇 c 308, 312 adder 311 loop filter 340 divider 342 calibration factor QPSK quadrature phase shift keying LMS (least mean square) algorithm 14
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66310205P | 2005-03-18 | 2005-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200704049A TW200704049A (en) | 2007-01-16 |
TWI308443B true TWI308443B (en) | 2009-04-01 |
Family
ID=39624313
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95109061A TWI308443B (en) | 2005-03-18 | 2006-03-16 | Channel estimation enhanced lms equalizer |
TW95137934A TWI393395B (en) | 2005-03-18 | 2006-03-16 | Normalized least mean square (nlms) equalizer and method for performing equalization on received signals |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95137934A TWI393395B (en) | 2005-03-18 | 2006-03-16 | Normalized least mean square (nlms) equalizer and method for performing equalization on received signals |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101218750A (en) |
TW (2) | TWI308443B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895489B (en) * | 2009-05-20 | 2013-05-08 | 中兴通讯股份有限公司 | Filtering method and device for channel estimation |
CN108574459B (en) * | 2017-03-14 | 2022-04-01 | 南京理工大学 | Efficient time domain broadband beam forming circuit and method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608862B1 (en) * | 1999-08-20 | 2003-08-19 | Ericsson, Inc. | Method and apparatus for computing prefilter coefficients |
US6618433B1 (en) * | 2000-08-04 | 2003-09-09 | Intel Corporation | Family of linear multi-user detectors (MUDs) |
-
2006
- 2006-03-16 TW TW95109061A patent/TWI308443B/en not_active IP Right Cessation
- 2006-03-16 TW TW95137934A patent/TWI393395B/en not_active IP Right Cessation
- 2006-03-16 CN CNA200680008667XA patent/CN101218750A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI393395B (en) | 2013-04-11 |
CN101218750A (en) | 2008-07-09 |
TW200704049A (en) | 2007-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI296475B (en) | Adaptive equalizer with a dual-mode active taps mask generator and a pilot reference signal amplitude control unit | |
KR100447201B1 (en) | Channel equalizer and digital TV receiver using for the same | |
US7630433B2 (en) | Channel estimation enhanced LMS equalizer | |
EP0894368A1 (en) | Method and apparatus for interference decorrelation in time and space | |
JP4865764B2 (en) | Receiver and method thereof | |
KR100606790B1 (en) | channel equalizer using multi antenna | |
TWI308443B (en) | Channel estimation enhanced lms equalizer | |
CN101216552B (en) | Phase difference estimation method and apparatus | |
US20040141469A1 (en) | Rake receiver for operating in FDD and TDD modes | |
JP2003536317A (en) | Method and receiver for reducing the effects of interference | |
US6674819B2 (en) | Channel estimation by phase multiplexed complementary sequences | |
US6661854B2 (en) | Channel estimation by time multiplexed complementary sequences | |
JP2007143106A (en) | Receiver, receiving circuit, receiving method, and reception program | |
JP2007135002A (en) | Receiver | |
JP2989732B2 (en) | Frequency offset compensation circuit | |
US20020110199A1 (en) | Method for noise energy estimation in TDMA systems | |
JP3866049B2 (en) | Time-space equalization apparatus and equalization method | |
JP2008042720A (en) | Radio equipment | |
JP4009143B2 (en) | Delay profile measuring apparatus and delay profile measuring method | |
KR101426165B1 (en) | Method and apparatus for digital on-channel relay using multiple reception antennas | |
JP3418967B2 (en) | Adaptive equalizer | |
JP2569902B2 (en) | Interference wave canceller | |
JPH05292139A (en) | Receiver estimating maximum likelihood series | |
JP3231249B2 (en) | Channel estimator | |
JPH05292138A (en) | Receiver estimating maximum likelihood series |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |