TWI305984B - Differential signaling transmission circuit - Google Patents

Differential signaling transmission circuit Download PDF

Info

Publication number
TWI305984B
TWI305984B TW92121163A TW92121163A TWI305984B TW I305984 B TWI305984 B TW I305984B TW 92121163 A TW92121163 A TW 92121163A TW 92121163 A TW92121163 A TW 92121163A TW I305984 B TWI305984 B TW I305984B
Authority
TW
Taiwan
Prior art keywords
current
circuit
doc
control terminal
signal
Prior art date
Application number
TW92121163A
Other languages
Chinese (zh)
Other versions
TW200414727A (en
Inventor
Lim Shao-Jen
Wei Sen-Jung
Original Assignee
Media Reality Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Media Reality Technologies Inc filed Critical Media Reality Technologies Inc
Publication of TW200414727A publication Critical patent/TW200414727A/en
Application granted granted Critical
Publication of TWI305984B publication Critical patent/TWI305984B/en

Links

Description

1305984 玖、發明說明: 【發明所屬之技術領域】 本發明優先於美國臨時專利_ 0 π , 月案第 6〇/399,71 1號,其於 2002年8月1曰申請備荦,苴庐 竹“+ 喊為「具有已改善之匹配特 政的低電壓差動信號驅動器」。 本發明係與導電結構上的信號傳送有關。 【先前技術】 人們經常需要以一種方式傳送資料信號,該方式能在功 率请耗相對較少的情況下提供相對較快的傳送速度。許多 此等應用中使用了諸如低電壓差動信號—ν〇ΐί— 祕⑽㈣signalmg ; LVDS)等的差動信號模式。抑制一差 動方案中固有的共模雜訊允許實施時具有低電塵消耗,且 一LVDS應用中的低電壓擺動允許高速傳送。而且,用於此 等系統的驅動器可在互補金屬氧化物半導體 (complementary metal-oxide-semiconductor ; CMOS)或金屬 氧化物半導體(MOS)中實施,此程序可提供較低的靜態功 率消耗。 差動信號電路可用於驅動諸如雙絞電纜等成對的或不成 對的傳送線路、帶狀電纜中的導體或一電路板上的並聯跡 線差動彳5號糸統也傾向於產生相對較小的雜訊(電磁干擾 (electromagnetic interference 或「EMI」),干擾其他裝置或 信號線路。差動信號及LVDS的應用包括影像傳送(如在一 數位相機中或一相機與一主機之間)、視頻影像傳送(如從一1305984 玖, invention description: [Technical field to which the invention pertains] The present invention takes precedence over the US provisional patent _ 0 π , the monthly case No. 6/399,71 1 , which was filed on August 1, 2002, 苴庐Bamboo "+ shouts as "a low-voltage differential signal driver with an improved matching ethics." The invention relates to signal transmission on a conductive structure. [Prior Art] It is often necessary to transmit a data signal in a manner that provides a relatively fast transfer speed in the case where the power consumption is relatively small. Many of these applications use differential signal modes such as low voltage differential signals - ν〇ΐί - secret (10) (four) signalmg; LVDS). Suppressing common mode noise inherent in a differential scheme allows for low dust consumption when implemented, and low voltage swing in an LVDS application allows for high speed transmission. Moreover, drivers for such systems can be implemented in complementary metal-oxide-semiconductor (CMOS) or metal-oxide-semiconductor (MOS), which provides lower static power consumption. The differential signal circuit can be used to drive paired or unpaired transmission lines such as twisted pair cables, conductors in ribbon cables, or parallel trace differentials on a circuit board. Small noise (electromagnetic interference ("EMI") that interferes with other devices or signal lines. Applications for differential signals and LVDS include image transmission (such as in a digital camera or between a camera and a host), Video image transmission (such as from one

O:\87\87182.DOC 1305984 主機電腦或處理器至一顯示螢幕(諸如一膝上型電腦或一 平板顯示裝置中)或在一數米距離上)及資料的其他高速傳 送(如一高速磁片儲存介面)。 總之,一低電壓差動信號方案可提供諸多好處,如較少 的功率消耗、發出的腿較低、良好的共模雜訊抑制、費 用較低的電纜介面及簡化的發射器設 ⑽s輸人/輸出介面的結構,其說明這—方案的低電 終端阻抗及低電壓擺動。定義LVDS傳送方案的文檔包括 ANSI/TIA/EIA-644標準、IEEE i596·3標準(可延伸的—致性 介面LVDS或「SCI_LVDS」)及其後來的修訂版本。 圖2顯示一LVDS驅動器電路之一實施方案。在此電路 中’使用N通道M0S場效電曰曰曰體(仏1(1_价如transis^r; FET)NP1、NP2、NS1及NS2經-負載1〇使用切換電流。為 回應改變信號狀態的該等輸入信號SN及sp,此等四電晶體 起到電流引導單元的作用,用於切換一驅動電流(藉由電流 源CSR1提供)的方向,並向該電阻負載提供—差動輪出信 號從3亥負載返回的電流傳送至電流槽CSK1。 圖3顯不包括二數位反相器的一電路,該反相器可用於從 單個數位彳§號處為圖2之電路產生輸入信號81^與sp。 圖4為圖2之電路的示意圖,其對先前實際上怎樣實施電 流源CSR1與電流槽CSK1做了說明(其中,cmc表示一電流 鏡电路)為保持一所需的偏移電壓,圖4中的驅動器電路 包括由三調節操作放大器(〇pamP)(X卜X2及X3)、二串聯電 阻益R2、R3及電流來源與切換電晶體單元pc卜NC1組成的O:\87\87182.DOC 1305984 Host computer or processor to a display screen (such as in a laptop or a flat panel display device) or at a distance of a few meters) and other high-speed transmission of data (such as a high-speed magnetic Slice storage interface). In summary, a low voltage differential signaling solution offers many benefits such as less power consumption, lower leg firing, good common mode noise rejection, lower cost cable interface, and simplified transmitter design (10)s. The structure of the /output interface, which illustrates the low electrical termination impedance and low voltage swing of this scheme. The documentation defining the LVDS transmission scheme includes the ANSI/TIA/EIA-644 standard, the IEEE i596.3 standard (Extensible Interface LVDS or "SCI_LVDS") and subsequent revisions. Figure 2 shows an embodiment of an LVDS driver circuit. In this circuit, 'use N-channel MOS field-effect 曰曰曰 body (仏1 (1_valent as transis^r; FET) NP1, NP2, NS1, and NS2 via - load 1〇 use switching current. The input signals SN and sp of the state, the four transistors function as a current guiding unit for switching the direction of a driving current (provided by the current source CSR1) and providing a differential wheel to the resistive load The current returned by the signal from the 3 hp load is transferred to the current sink CSK1. Figure 3 shows a circuit that does not include a two-digit inverter that can be used to generate an input signal for the circuit of Figure 2 from a single digit §§ ^ and sp. Fig. 4 is a schematic diagram of the circuit of Fig. 2, which illustrates how the current source CSR1 and the current slot CSK1 are actually implemented (where cmc represents a current mirror circuit) to maintain a desired offset voltage. The driver circuit in FIG. 4 comprises a three-regulated operational amplifier (〇pamP) (Xb X2 and X3), two series resistors R2, R3, and a current source and a switching transistor unit pcb NC1.

O:\87\87182.DOC 1305984 一仿效(mimicking)電路。 圖5顯示一替代LVDS驅動器電路,其中,一偏移電壓VQff 係在一對串聯源-端電阻器R4與R5之間施加。圖6顯示一電 路,其可用於產生類比差動信號,以驅動圖5之電路,且圖 7為圖5之電路的示意圖,其對先前實際上怎樣利用一特定 電流鏡組態來實施電流源CSP與電流槽CSN做了說明。 【發明内容】 此處所用術語「示範」僅表示一範例,並非必須表示一 較佳或較優值或實例。 當採用N井方法實施圖2或圖4中顯示的一 LVDS驅動器電 路時,該等電晶體NP 1及NP2可能會遭受基座效應(body effects)的影響。因此,與具有可比較尺寸之類似組態設定 的PM0S的電阻值相比,此等電晶體的有效「ON」電阻值 可相對較高。電晶體NP1與NP2上所得的該等電壓降可迫使 該電源電位(VDD)要求的最低值大於所需值。 圖4所示之LVDS驅動器電路的另一缺陷可因該等操作放 大器X2與X3的回饋迴路中固有的偏移而引起。作為此等偏 移的後果,該「仿效」電晶體PC0與電流源PC 1匹配,及該 「仿效」電晶體NC0與電流槽NC1匹配可能不足以確保傳遞 至電流槽NC 1的電流與電流源PC 1提供的電流之間的匹 配。相反,從該驅動器的正極端子流出至該負載的電流(及 從該負載流入該驅動器的負極端子的電流)可藉由該等電 流切換電晶體NP1、NP2、NS1、NS2的該等「ON」電阻值 及負載R1的電阻值來定義。因此,當「仿效」電晶體ΝΡ0 1305984 與電流切換電晶體NP1與NP2之任一之間,或「仿效」電晶 體NS0與電流切換電晶體NS1與NS2之任一之間出現不匹配 時,該電路可能容易受到R1上電壓降的較大變化的影響。 此外,由於施加至該等驅動器輸入的該等SN與信號升 降-人數的不匹配,圖3所示使用傳統單端數位控制電路的一 驅動器可能遭受定時失真的影響。 圖7忒明另一 LVDS驅動器電路。圖7所示一驅動器電路沒 有利用—仿效電路而是試圖利用二電阻器R4與R5及一電 壓調即XI來直接設定一輸出共模電壓。施加於該驅動器 =該等控制信號為(例如)圖6所示—差動控制信號產生器 提供的類比信號(在此情況下,卯=32、33且沾=^、料)。 為減少圖7中電路的功率消耗,並減少負載R1的載入,可 能需要使用相對較大值的有效電阻(即,與Rl的有效電阻值 相比)來實施R4與R5。然而,當所有該等電流切換電晶體 (^ PS2、NS1、NS2)均關閉時,雖,然此電路的輸出共模 =堅可良好疋義’但當R4與以的沉(直流)電阻值或大於電 机源csp的電阻值或大於電流槽CSN的電阻值時,該驅動器 :能遇到-問題(如該實際輸出共模電壓可能改變)。例如°, 當⑴在電流源CSP與電流槽CSN之間存在電流不匹配及⑺ 電流源CSP與電流槽CSN為短通道電流源時,此情況即可發 生。 圖8證明圖7之—範例,其中顯示各種元件的有效電阻ό 具體不範值。在此範例中可瞭解到,該實際輸出共㈣ 不僅错由參考電位Vref來設定’而且亦藉由該軌道電位㈥O:\87\87182.DOC 1305984 A mimicking circuit. Figure 5 shows an alternative LVDS driver circuit in which an offset voltage VQff is applied between a pair of series source-to-terminal resistors R4 and R5. 6 shows a circuit that can be used to generate an analog differential signal to drive the circuit of FIG. 5, and FIG. 7 is a schematic diagram of the circuit of FIG. 5, which is how the current current source is actually implemented using a particular current mirror configuration. The CSP and the current tank CSN are described. The term "exemplary" is used herein to mean an example only and does not necessarily represent a preferred or preferred value or example. When an N-well method is used to implement an LVDS driver circuit as shown in Figure 2 or Figure 4, the transistors NP 1 and NP2 may be subject to body effects. Therefore, the effective "ON" resistance of these transistors can be relatively high compared to the resistance values of PM0S with similar configuration settings of comparable sizes. The resulting voltage drops across transistors NP1 and NP2 can force the minimum value required for the power supply potential (VDD) to be greater than the desired value. Another drawback of the LVDS driver circuit shown in Figure 4 can be caused by the inherent offsets in the feedback loops of the operational amplifiers X2 and X3. As a consequence of such offsets, the "Imitation" transistor PC0 matches the current source PC1, and the "Imitation" transistor NC0 matches the current tank NC1 may not be sufficient to ensure the current and current source delivered to the current slot NC1. The match between the currents provided by PC 1. Conversely, the current flowing from the positive terminal of the driver to the load (and the current flowing from the load to the negative terminal of the driver) can be switched "ON" by the current switching transistors NP1, NP2, NS1, NS2. The resistance value and the resistance value of the load R1 are defined. Therefore, when there is a mismatch between "Imitation" transistor ΝΡ0 1305984 and either of the current switching transistors NP1 and NP2, or between "Imitation" transistor NS0 and any of the current switching transistors NS1 and NS2, The circuit may be susceptible to large variations in the voltage drop across R1. In addition, a driver using a conventional single-ended digital control circuit as shown in Figure 3 may suffer from timing distortion due to the mismatch between the SNs applied to the driver inputs and the signal rise-downs. Figure 7 illustrates another LVDS driver circuit. A driver circuit shown in Figure 7 does not utilize the emulation circuit but attempts to directly set an output common-mode voltage using two resistors R4 and R5 and a voltage regulator, XI. Applied to the driver = the control signals are, for example, analog signals provided by the differential control signal generator as shown in Fig. 6 (in this case, 卯 = 32, 33 and = = ^, material). To reduce the power consumption of the circuit in Figure 7 and reduce the loading of load R1, it may be necessary to implement R4 and R5 using a relatively large value of the effective resistance (i.e., compared to the effective resistance of Rl). However, when all of the current switching transistors (^PS2, NS1, NS2) are turned off, although the output common mode of the circuit is good, it is good, but when the R4 and sink (DC) resistance values are Or greater than the resistance value of the motor source csp or greater than the resistance value of the current slot CSN, the driver: can encounter - problem (such as the actual output common mode voltage may change). For example, °, when (1) there is a current mismatch between the current source CSP and the current tank CSN and (7) the current source CSP and the current tank CSN are short-channel current sources, this can occur. Figure 8 illustrates the example of Figure 7, which shows the effective resistance of various components, specifically not the norm. In this example, it can be seen that the actual output (4) is not only set by the reference potential Vref but also by the orbital potential (six)

0:V87\87 丨 82.DOC 1305984 p〇tentiai)VDD來設定。為減少在此_電路中%或V⑽D對該 輸出共模電壓的影響,必須減少以與以的電阻值,此狀況 可能會造成輸出電阻Ri的負載及/或該驅動器電路的功率 消耗增加。此外’減少⑽以的電阻可造成流經以與以 的電流增加。為處理電流的增加,此情況可能需要加寬^ 與R5 ’從而導致晶片區域的增加。 本文揭#的本發明的-些具體實施例可用於解決上述一 或多個問題。然而,不應把此等問題的解決方案當作是本 發明的-特徵、目的或其他限制。不管任何此等問題存在 與否或解決方案如何,本發明的具體實施例均適用,並且 本發明的範圍僅如已發佈的本專利的該等申請專利範 定義。 【實施方式】 圖9顯示依據本發明之一項具體實施例的一驅動器電路 的示意圖,該電路使用了 PM0S(PS1、卩叫與麵⑽(聰、 NS2)電晶體。在一範例性具體實施例中,此等四電晶體的 主體係作為開關與各電源執道連接(即ps 1與的主體與 Vdd連接,且NS1與NS2的主體與Vss連接)。也需要電晶體 PS1能夠與PS2匹配,且電晶體NS1能夠與NS2匹配。 忒驅動器電路亦包括一偏壓或控制電路丨丨〇。此電路包 括.電晶體PC0與NC0,其分別複製電流源電晶體PC1與電 流槽電晶體NC1,·電晶體PS0與NS0,其分別複製電流切換 電晶體PS1/2與NS1/2 ;以及電阻R2與R3,其串聯複製負載 R1 ’且在其接合處定義一偏移電壓V〇ff。 1305984 由於有該已複製的電流路徑,流經PC0的電流等於流經 NC0的電流,且因此流經PC 1的電流可與流經NC 1的電流相 匹配。換言之,從該驅動器的正極端子流出至該負載R1的 電流可與從該負載R1流入該負極端子的電流匹配,從而產 生較少的EMI。對於此驅動器,輸出共模電壓係藉由該複 製電流路徑(PC0、PS0、R2、R3、NS0、NC0)及一比較器(該 回饋操作放大器XI)來良好定義。回饋操作放大器XI將一參 考電壓Vref與該偏移電壓VQff比較,並偏壓該等電流消耗電 晶體NC0、NC1,以維持此等電壓的等值性。回饋操作放大 器XI可自該驅動器電路的該等電流路徑外部(或另外獨立 於該等電流路徑)的一節點處接收參考電壓Vref。例如,回 饋操作放大器XI可自諸如一帶隙參考信號產生器等的一參 考電路處接收此電位。回饋操作放大器XI可為跨導型 (transconductive),從而使得該偏移電壓節點不受負載。因 而,可應用如圖9所示之電路實施方案以確保該偏移電壓 VQff與該輸出共模電壓值均等於參考電壓Vref。 需要電晶體PC0與PC1匹配良好。同樣需要電晶體NC0與 NC 1匹配良好。一對相鄰電路元件間的一致性可藉由(如在 一勉刻過程中)在其間構造一或多個虛擬元件來提高。因 此,圖9之電路中電晶體的匹配(如PC0與PC1,以及NC0與 NC1)可藉由在構造過程中,在此等電晶體之間及/或周圍增 加虛擬電晶體來提高。圖1 〇說明圖9之驅動器電路的實施方 案,該電路包括虛擬單元NC2、NC3、NC4、PC2、PC3與 PC4,其係在NC0與NC1之間及周圍,以及PC0與PC1之間及 % 1305984 周圍並列構造。 在另一實施方案中,虛擬單元可用於提高電流切換電晶 體PS1與PS2之間及/或電流切換電晶體NS1與NS2之間的匹 配。然而應該注意的是,增加虛擬元件會減少可利用的晶 片區域(或反而增加電路尺寸)。0: V87\87 丨 82.DOC 1305984 p〇tentiai) VDD to set. In order to reduce the effect of % or V(10)D on the output common-mode voltage in this _circuit, it is necessary to reduce the resistance value with which the load of the output resistor Ri and/or the power consumption of the driver circuit may increase. Furthermore, reducing the resistance by (10) can cause an increase in the current flowing through it. In order to handle the increase in current, this situation may require widening of ^ and R5' resulting in an increase in the area of the wafer. Some specific embodiments of the invention disclosed herein may be used to solve one or more of the problems set forth above. However, the solution to such problems should not be considered as a feature, an object, or other limitation of the invention. The specific embodiments of the present invention are applicable regardless of the existence or solution of any such problems, and the scope of the present invention is only as defined in the patents of the issued patents. [Embodiment] FIG. 9 shows a schematic diagram of a driver circuit using PMOS (PS1, squeak and face (10) (Cong, NS2) transistors in accordance with an embodiment of the present invention. In an exemplary implementation In the example, the main system of the four transistors is connected as a switch to each power source (ie, the body of ps 1 and Vdd are connected, and the body of NS1 and NS2 is connected to Vss). It is also required that the transistor PS1 can be matched with PS2. The transistor NS1 can be matched with the NS 2. The 忒 driver circuit also includes a bias or control circuit 丨丨〇. The circuit includes transistors PC0 and NC0, which respectively replicate the current source transistor PC1 and the current slot transistor NC1, • Transistors PS0 and NS0, which respectively replicate current switching transistors PS1/2 and NS1/2; and resistors R2 and R3, which replicate the load R1' in series and define an offset voltage V〇ff at its junction. 1305984 With this replicated current path, the current flowing through PC0 is equal to the current flowing through NC0, and thus the current flowing through PC 1 can match the current flowing through NC 1. In other words, from the positive terminal of the driver to the Load R1 The current can be matched to the current flowing from the load R1 into the negative terminal, thereby generating less EMI. For this driver, the output common mode voltage is based on the replica current path (PC0, PS0, R2, R3, NS0, NC0). And a comparator (the feedback operational amplifier XI) is well defined. The feedback operational amplifier XI compares a reference voltage Vref with the offset voltage VQff and biases the current consuming transistors NC0, NC1 to maintain the voltages The feedback operational amplifier XI can receive the reference voltage Vref from a node external to the current path of the driver circuit (or otherwise independent of the current paths). For example, the feedback operational amplifier XI can be self-contained such as a bandgap This potential is received at a reference circuit of a reference signal generator, etc. The feedback operational amplifier XI can be transconductive such that the offset voltage node is unloaded. Thus, a circuit implementation as shown in FIG. 9 can be applied. The solution is to ensure that the offset voltage VQff and the output common mode voltage value are both equal to the reference voltage Vref. It is required that the transistor PC0 and PC1 are well matched. The body NC0 is well matched with the NC 1. The consistency between a pair of adjacent circuit elements can be improved by constructing one or more dummy elements therebetween (e.g., during an engraving process). Crystal matching (such as PC0 and PC1, and NC0 and NC1) can be improved by adding dummy transistors between and/or around the transistors during construction. Figure 1 illustrates the driver circuit of Figure 9. In an embodiment, the circuit includes virtual cells NC2, NC3, NC4, PC2, PC3, and PC4, which are arranged side by side between and around NC0 and NC1, and between PC0 and PC1 and around %1305984. In another embodiment, the dummy cells can be used to increase the match between the current switching transistors OP1 and PS2 and/or between the current switching transistors NS1 and NS2. It should be noted, however, that adding dummy components reduces the area of the available wafer (or instead increases the circuit size).

在如圖9或圖10所示驅動器電路的另一實施方案中,實施 複製電晶體PC0、PS0、NS0及NC0,使得其通道寬度值為 電晶體PCI、PS1、NS1及NC1之各自電晶體的一普通分數 (1 /K)。在此情況下,(R2 + R3)的電阻值係實施為R1之電阻 值的一公倍數(K)。為確保流經PC0與NC0的該已複製電流 實質上等於流經PC1與NC1的該驅動器電流的一分數 (1/K),可將上述虛擬單元並列放置,如電晶體PC0與PC1 及/或電晶體NC0與NC1。 在這一實施方案中,可能需要各虛擬電晶體的一或多個 尺寸能與該鄰近電晶體的各自尺寸匹配。在該虛擬單元係 位於不同尺寸的二電晶體之間的情況下,可能需要該虛擬# 單元的一或多個尺寸為該等周邊電晶體之各自尺寸的算術 或幾何平均值。或者,可選擇虛擬單元在具有載流電晶體 之位置交替變化的尺寸,以符合或接近於與該等載流電晶 體之結合處的特定算術或幾何級數。 電阻R2、R3可實施為相連的電阻器或主動元件(如 MOSFET),以提供固定(或二擇一地可控制及/或補償)電 阻。儘管其他實施方案亦可,但通常R2與R3會實施為具有 相同的電阻。在圖9或圖10所示一電路的一替代實施方案 O:\87\87182.DOC -12- 1305984 體現已說明的該驅動器電路(或僅該㈣或該電流切換 電流路徑)的其他元件的一晶片包括外部電阻可與之福合 (且例如’可依需選擇並改變)的接針,以料w、R3。 如圖9及1〇所示,在一電流鏡組態中,電晶體PC5係搞合 至電晶體PC0與PC1(且有可能輪合至虛擬單元)。也可使用 其他已知的電流鏡組態,如而son共射共基放大器或修改 的麵電流鏡(如Sed_ Smith在牛津大學出版㈣9 i年 弟3版中所著「微電子電路」一文之所示 圖說明依據本發明之另—項具體實施例的_驅動器電 路,其包括一控制電路120。此驅動器電路包括二對 rs(PS1、PS2)與刪卿卜職_,其主體可分別 二正極與負極電源軌道連接。為使電阻負載R1上具有一所 需的差動輸出電壓,可實施此,In another embodiment of the driver circuit as shown in FIG. 9 or FIG. 10, the replica transistors PC0, PS0, NS0, and NC0 are implemented such that their channel width values are the respective transistors of the transistors PCI, PS1, NS1, and NC1. A normal score (1 / K). In this case, the resistance value of (R2 + R3) is implemented as a common multiple (K) of the resistance value of R1. To ensure that the replicated current flowing through PC0 and NC0 is substantially equal to a fraction (1/K) of the driver current flowing through PC1 and NC1, the dummy cells can be placed side by side, such as transistors PC0 and PC1 and/or Transistors NC0 and NC1. In this embodiment, it may be desirable for one or more dimensions of each dummy transistor to match the respective dimensions of the adjacent transistors. Where the virtual cell is between two different sized transistors, it may be desirable for one or more dimensions of the imaginary cell to be an arithmetic or geometric mean of the respective dimensions of the peripheral transistors. Alternatively, the dimensions of the dummy cells alternately at locations with current carrying transistors may be selected to conform to or approximate a particular arithmetic or geometric progression at the junction with the current carrying transistors. Resistors R2, R3 can be implemented as connected resistors or active components (such as MOSFETs) to provide a fixed (or alternatively controllable and/or compensated) resistance. Although other embodiments are possible, R2 and R3 are typically implemented to have the same electrical resistance. An alternative embodiment of a circuit shown in Figure 9 or Figure 10 is O:\87\87182.DOC -12- 1305984 embodying the other components of the driver circuit (or only the (four) or the current switching current path) A wafer includes pins that are externally compliant (and can be selected and changed, for example, as needed) to feed w, R3. As shown in Figures 9 and 1B, in a current mirror configuration, the transistor PC5 is coupled to the transistors PC0 and PC1 (and possibly to the virtual unit). Other known current mirror configurations can also be used, such as the singular cascode amplifier or the modified surface current mirror (eg, Sed_ Smith published in Oxford University (4) 9 i, 3rd edition, "Microelectronic Circuits" The figure shows a _driver circuit according to another embodiment of the present invention, which includes a control circuit 120. The driver circuit includes two pairs of rs (PS1, PS2) and a deletion _ _, the main body of which can be two The positive pole is connected to the negative power supply rail. To achieve a desired differential output voltage on the resistive load R1, this can be implemented,

產生-驅動電流,該電流传等於電4,源電晶體pci 中與=複製的一偏壓電路(如圖4中一仿效電路 路⑽吏用)來定義該輪出共模電屡不同’圖11之控制電I 摔作(此處為— I在此:一回饋迴路來使電流槽電晶體⑽偏 反。在此電路的至少一此竇 ^ 阻R1的载入 ’、’(列如)為減少負載電 大。儘管心方;與:5的該等尺寸與所需之尺寸-樣 相同的電阻。=但通常R4_會實施為具有 所示-:,=少—複製的偏㈣路,也可實施圖U 少。 传與圖4或圖9所示一電路相比功率消耗減Generating a drive current that is equal to the power 4, and a bias circuit in the source transistor pci and the replica (as shown in Figure 4, an emulation circuit (10)) to define the round-trip common mode power is different. The control electric I of Figure 11 falls (here is - I here: a feedback loop to reverse the current slot transistor (10). In this circuit, at least one of the sinus resistors R1 is loaded ', ' (column In order to reduce the load power, although the heart; and the size of 5: the same size as the required size - = but usually R4_ will be implemented with the shown -:, = less - copy bias (four) The road can also be implemented with less U. The power consumption is reduced compared with the circuit shown in Figure 4 or Figure 9.

O:\87\S7182.DOC -13- 1305984 广疋刼作放大器x i的組態’以比較一參考電壓 :的-共模《。操作放大,X1可自該驅動器電二 卜部(或另外獨立於該等電流路徑)的—節O:\87\S7182.DOC -13- 1305984 The configuration of the amplifier x i is used to compare a reference voltage: - common mode. Operational amplification, X1 can be derived from the driver's electrical section (or otherwise independent of the current path)

參考電壓I例如,操作放大器X1可自諸如_帶隙I 生盗等的-參考電路處接收此電位。操作放大器幻可為跨 導型,從而使得觀察到的該電壓節點不受負载。因此 :放大XI將厌4與汉5之間節點處的電壓調節至該輸出參 =電壓W藉由控制電流槽NC1來間接設定該輸出共模電 =利用幻’、則_、_115所形成的該回饋迴 士優點’可實施圖u之電路’使得傳遞至電流槽⑽的 電““動保持與自電流源pci接收到的電流相等。 電曰曰體PC5可用上述另一電流鏡組態來取代。同樣,可如 上=加虛擬單元,以改善成對的該等電流切換電晶體(如 PS 1與PS2)之間的匹配。 圖9、1〇及11中顯示的該等電流切換電晶體PS1、NS1、 M2與NS2可藉由施加至其間極端子(或「控制電極」)的輸 入信號SN與SP來控制。此等輸人信論㈣可為藉由圖二 所不一對稱控制信號產生器提供的互補性軌道至軌道产 號。-輸入資料信號DT1與一互補信號DTm均藉 脈信號CK1及相同互補信號㈤⑽取樣的方法可雄保續 等輸出信號SP與SN具有相等的上升及下降次數。(每 互補信號DTIN與CK1N可藉由(例如)使信號〇τι與⑶之一 的該對應信號通過一數位反相器而獲得。)因此,圖9、忉 及U中顯示的一驅動器電路的脈衝寬度可得到保持。Reference Voltage I For example, the operational amplifier X1 can receive this potential from a reference circuit such as a bandgap I. The operational amplifier can be transposed so that the observed voltage node is unloaded. Therefore: the amplification XI adjusts the voltage at the node between the anatomy 4 and the erection 5 to the output parameter = voltage W by indirectly setting the output common mode power by controlling the current slot NC1 = using illusion ', then _, _115 The feedback sergeant advantage 'the circuit of Figure u can be implemented' such that the electrical "transmission" delivered to the current sink (10) is equal to the current received from the current source pci. The electrical body PC5 can be replaced with another current mirror configuration as described above. Similarly, a dummy cell can be added as above to improve the matching between the pair of current switching transistors (e.g., PS 1 and PS 2). The current switching transistors PS1, NS1, M2 and NS2 shown in Figures 9, 1 and 11 can be controlled by input signals SN and SP applied to their terminals (or "control electrodes"). These input beliefs (4) may be complementary orbital to orbital quantities provided by the symmetric control signal generators of Figure 2. - The input data signal DT1 and a complementary signal DTm are both sampled by the pulse signal CK1 and the same complementary signal (5) (10). The output signals SP and SN have equal rise and fall times. (Each complementary signal DTIN and CK1N can be obtained by, for example, passing the corresponding signal of one of the signals 〇τι and (3) through a digital inverter.) Therefore, a driver circuit shown in FIGS. 9, 忉 and U The pulse width can be maintained.

O:\87\871S2.DOC -14- 1305984 圖12顯示包括二相同控制單 J虿路,可用於如本文 所述向一驅動器電路提供軌道 、 主軌道控制信號(如圖2、4、 5 7或9至11所示由於上弁爲 、升及下降次數並不匹配,故此 專控制單以會遭受卫作·失真的影響。只要_中說 1 月的該等二相同軌道至軌道控制單元為-對稱佈置,即可 貫施該電路,以產生具有相箄 、百相等上升及下降次數的信號SP與 SN ’使得開啟及關閉信號的。 构』出ie動益的脈衝寬度得以 保持。 即使在互補信號imN相對於資料信號DT1延遲或互補信 號ck1N相對料脈信號CK1延遲的情況下,也可操作此電 路。即使情況如此,只要該等二控制單元的該等元件能夠 匹配,即可實施該電路,以便該等信號^舆sn具有相等的 上升及下降次數。 在圖丨2之電路中,當信號CK1較低(即當該等類比開關 P2/N2與P6/N6處於開啟狀態)時,電晶體p3、N3、p7&N7 的該等閘極有可能處於浮動狀態。此狀況可導致反相器 P3/N3與P7/N7具有不穩定或浪費的操作。圖13顯示此電路 的另一實施方案,可用於避免此種狀況發生。當該等類比 開關P2/N2與?6^6處於開啟狀態時,此實施方案包括處於 關閉狀態的類比開關P2A/N2A與P6A/N6A,反之亦然。因 此可避免電晶體P3、N3、P7與N7的浮動閘極狀態。圖14顯 示此電路的一時序圖範例,其中信號CK1N相對於信號cki 延遲。特別是,此範例顯示二資料值在相鄰時脈週期之間 變化’其後在相鄰時脈週期之間無資料值變化,接下來為 0:\g7«7182.D0C -15- 1305984 另一資料值變化。可以看到,如不考慮引入的該等資料值, 信號SP與SN可具有相等的上升及下降次數。 圖15顯示圖13之電路的一變化,其中省略了該等反相器 P1A/N1A與P5A/N5A。當在反相器P1/N^p5/N5上增加該 等負載可以接受的情況下,此電路可適用。此外,在如圖 12、13或15所示之電路的某些應用中,儘管該等輸出信號 可能並非嚴格的軌道至軌道類型,仍可接受直接從該等類 比開關的該等輸出端子(即P2m2W6/N6_極端子)獲得 此等輸出信號。在此情況下,可以省略該等反相器贿3、 P4/N4、P7/N7及 P8/N8。 與傳統的輸出驅動器及控制 电崎相比,依據本發明某兰 具體實施例的輸出驅動器及該控制電路的操作可產生數種 好處。如上述,從如圖9、1G所示的_驅動器電路的該正極 端子處流出的電流與流人負極端子的電流之間的匹配,可 使發出的麵減少。此電流值的匹配可歸因於_、^中顯 示的該回饋迴路及虛擬單元。圖u中❹㈣局不需採用 另外的複製電晶體及虛擬單元亦可保證定義的—輸出共模 電壓’因而消耗的功率較少。與圖4所示電路不同於 該輸出電阻器R1增加負載,圖u ‘、'、 、、° ·%Η動态中的該蓉 與R5值可以盡可能地大。因此 施此電路。另—方面,與圖3所_,、的電路區域内實 力方面,與圖3所不-控制電路相反 13及丨5中說明的兩個相同的軌道至軌道控 圖、 動圖9、之任一圖中所示一驅動器;路::可用於: 該等輸出信號不會因為上升及下降次 、别入’使仔 纸的不匹配而遭受工O:\87\871S2.DOC -14- 1305984 Figure 12 shows the same control single J circuit, which can be used to provide track, main track control signals to a driver circuit as described herein (Figures 2, 4, 5 7 Or 9 to 11 because the number of ups, downs, and drops does not match, so the special control will suffer from the influence of the guard and distortion. As long as the _ said that the same track to track control unit in January is - a symmetric arrangement, that is, the circuit can be applied to generate signals SP and SN' having a number of equal and hundreds of equal rise and fall times so that the signal is turned on and off. The pulse width of the structure is maintained. The circuit can also be operated in the case where the complementary signal imN is delayed relative to the data signal DT1 or the complementary signal ck1N is delayed relative to the pulse signal CK1. Even if this is the case, the elements can be implemented as long as the elements of the two control units can match a circuit such that the signals have equal rise and fall times. In the circuit of Figure 2, when the signal CK1 is low (ie, when the analog switches P2/N2 and P6/N6 are on), Transistor The gates of p3, N3, p7 & N7 are likely to be in a floating state. This condition can result in unstable or wasted operation of inverters P3/N3 and P7/N7. Figure 13 shows another embodiment of this circuit. This can be used to avoid this situation. When the analog switches P2/N2 and ?6^6 are in the on state, this embodiment includes the analog switches P2A/N2A and P6A/N6A in the off state, and vice versa. The floating gate state of transistors P3, N3, P7 and N7 can be avoided. Figure 14 shows an example of a timing diagram for this circuit in which signal CK1N is delayed relative to signal cki. In particular, this example shows that the two data values are adjacent. The change between the pulse periods' then there is no data value change between adjacent clock cycles, followed by 0:\g7«7182.D0C -15- 1305984 Another data value change. It can be seen that if not introduced The data values SP and SN may have equal rise and fall times. Figure 15 shows a variation of the circuit of Figure 13, in which the inverters P1A/N1A and P5A/N5A are omitted. In the case where the load is increased on P1/N^p5/N5, This circuit is applicable. In addition, in some applications of the circuit as shown in Figures 12, 13 or 15, although the output signals may not be of a strict track-to-track type, it is acceptable to directly from the analog switches. The output terminals (ie P2m2W6/N6_ terminals) obtain these output signals. In this case, the inverters 3, P4/N4, P7/N7 and P8/N8 can be omitted. With the traditional output driver In contrast to controlling the electric bass, the output driver and the operation of the control circuit in accordance with a particular embodiment of the present invention can provide several benefits. As described above, the matching between the current flowing from the positive terminal of the _driver circuit shown in Figs. 9 and 1G and the current flowing through the negative terminal can reduce the surface to be emitted. The matching of this current value can be attributed to the feedback loop and virtual unit shown in _, ^. In Figure u, the ❹(4) office does not need to use additional replica transistors and virtual cells to ensure that the defined-output common-mode voltage' consumes less power. The circuit shown in Fig. 4 is different from the output resistor R1 to increase the load, and the values of the R1 and R5 in the graph u ‘, ', , , °·%Η can be as large as possible. Therefore, this circuit is applied. On the other hand, with respect to the strength of the circuit area in Fig. 3, the same track-to-orbit control diagram and motion diagram 9 as those described in Fig. 3 are not opposite to the control circuit 13 and 丨5. A driver is shown in the figure; the road:: can be used for: The output signals will not be affected by the rise and fall times, and the other is not allowed to make the paper mismatch.

O:\87\87182.DOC -16- 1305984 真㈣響。然而如以上指出’不應籠統地將特定 :實她例或實施方案的此等潛在好處當作本發明的要求 :,制,本發明的範圍僅藉由所發佈的該等巾請專利範圍 /疋義。而且’除了本文中清楚說明或提到的元件外,在 某些情況(如並未特別主張需要觀3裝置的例子)下,本發 明可使用主動元件(如雙極電晶體、異質接面裝置、金 緣半導體場效電晶體(metal.insulatGr_semie()ndu咖咖 transistor ; MISFET)、及/或其他電流控制裝幻來實 【圖式簡單說明】 圖1說明一 LVDS輸入/輸出介面之一範例; 圖2顯示一 LVDS驅動器電路; 圖3顯示與圖2之該驅動器電路使用的一數位控制電路; 圖4顯不包括一仿效電路的—lvds驅動器電路; 圖5顯示一 LVDS驅動器電路; 圖6顯不與圖5之該驅動器電路使用的一類比差動控制作 號產生器; 11 圖7顯示圖5之該驅動器電路的一實施方案; 圖8顯示圖7之該驅動器電路的一模型; 圖9顯示依據本發明之-項具體實施例的-電路; 圖10顯示圖9之電路的—實施方案; ⑽圖U為依據本發明之-項替代具體實施例的-輪出驅動 器佈局的方塊圖; 圖12玩明依據本發明之—項具體實施例的—信號產生器O:\87\87182.DOC -16- 1305984 True (four) rings. However, as indicated above, 'the specific potential benefits of a particular example or implementation should not be taken as a general requirement of the invention: the scope of the invention is only by the scope of the issued patents/ Derogatory. Moreover, the present invention may use active components (e.g., bipolar transistors, heterojunction devices, in some cases (e.g., without specifically claiming the need for a device), in addition to the elements explicitly described or referenced herein. , Jinyuan semiconductor field effect transistor (metal.insulatGr_semie () ndu coffee coffee transistor; MISFET), and / or other current control device magical [simplified schematic] Figure 1 illustrates an example of an LVDS input / output interface Figure 2 shows an LVDS driver circuit; Figure 3 shows a digital control circuit used with the driver circuit of Figure 2; Figure 4 shows the -lvds driver circuit of an emulation circuit; Figure 5 shows an LVDS driver circuit; An analog output control generator that is not used with the driver circuit of FIG. 5; FIG. 7 shows an embodiment of the driver circuit of FIG. 5; FIG. 8 shows a model of the driver circuit of FIG. 9 shows a circuit according to a specific embodiment of the present invention; FIG. 10 shows an embodiment of the circuit of FIG. 9; (10) FIG. 5 shows an embodiment of the present invention in accordance with an embodiment of the present invention. Administration of a block diagram; FIG. 12 according to the present invention play out - of specific embodiments of the - signal generator

O:\87\87182.DOC ,17- 1305984 電路; 圖13顯示圖12之電路的一實施方案; 圖14顯示圖13之電路的時序圖;以及 圖15顯示圖13之電路的一實施方案。 【圖式代表符號說明】 CK1 時脈信號 CK1N 互補信號 CMC 電流鏡電路 CSK1、CSN 電流槽 CSR1 ' CSP 電流源 DC 直流電 DTI 資料信號 DT1N 互補信號 N1、N3、N4、N5、N7、N8 反相器 N2、N6 類比開關 NCO 仿效電晶體 NCI 電流源 NC2、NC3、NC4 虛擬單元 NP1、NP2、NS1、NS2 電晶體 PI 、 P3 、 P4 、 P5 、 P7 、 P8 反相器 P2 ' P6 類比開關 PCO 仿效電晶體 PCI 電流源 PC2、PC3、PC4 虛擬早元 '182.DOC - 18 -O:\87\87182.DOC, 17-1305984 circuit; Figure 13 shows an embodiment of the circuit of Figure 12; Figure 14 shows a timing diagram of the circuit of Figure 13; and Figure 15 shows an embodiment of the circuit of Figure 13. [Description of Symbols] CK1 Clock Signal CK1N Complementary Signal CMC Current Mirror Circuit CSK1, CSN Current Slot CSR1 ' CSP Current Source DC DC DTI Data Signal DT1N Complementary Signal N1, N3, N4, N5, N7, N8 Inverter N2, N6 analog switch NCO emulation transistor NCI current source NC2, NC3, NC4 virtual unit NP1, NP2, NS1, NS2 transistor PI, P3, P4, P5, P7, P8 inverter P2 ' P6 analog switch PCO Crystal PCI current source PC2, PC3, PC4 virtual early element '182.DOC - 18 -

O:\87\87182.DOC 1305984 PC5 電晶體 PS1 、 PS2 電晶體 R1 - R5 電阻 SN、SP 輸入信號 V〇d ' Vgnd ' Vss 電壓 Voff 偏移電壓 Vref 參考電壓 XI、X2、X3 操作放大器 110 、 120 控制電路 O:\87\87182.DOC -19-O:\87\87182.DOC 1305984 PC5 transistor PS1, PS2 transistor R1 - R5 resistor SN, SP input signal V〇d ' Vgnd ' Vss voltage Voff offset voltage Vref reference voltage XI, X2, X3 operational amplifier 110, 120 control circuit O:\87\87182.DOC -19-

Claims (1)

利申請案 替換本|7年 拾、申請專利範圍: 種用於#號傳輪的電路,該電路包括: -電流源; 〃有一電流控制端子的電流槽; /具有-對輸出節點的電流引導電路,該電流引導電 路係配置為自該電流源接收電流並將電流傳遞至該電流 槽’且該電流引導電路組態係設^為向橫跨該等輸出節 ”連接的負載提供一差動信號;以及 <包括一電壓調節器的控制電路’該電壓調節器組態 係設定為依據-參考電壓與一偏移電壓之間的一比較: 產生一已調節電壓, f中,該電流槽的該電流控制端子係配置為接收該已 調節電壓。 2·如申請專㈣圍第1項之信號傳輸電路,其中,該電产 導電路包括二開關,各開關均具有-輸入節點:該:輪 出印點之-’且其組態設定為依據該輸入節點處的一電 位向各輸出節點提供電流或自該輪出節點接收電流。 3.如申請專利範圍第2項之信號傳輸電路,其中,該電流 導電路的每-開關均包括一第一電晶體及一第二:日 體,以及 日曰 其中,各開關的該第一電晶體級態係設定且配置為導 電電机,以回應各輸入節點處的一高電位,及實質上為 非導電性,以回應各輸入節點處的—低電位,以及 其中,各開關的該第二電晶體組態係設定且配置為導 87182-970104.doc .賴頁丨 4. 傳輸電路,其中,該電流引 第一電晶體及一第二電晶 如申請專利範圍第2項之信號 導電路的每一開關均包括— 體,以及 其中,各第一電晶體均為一 PM〇s電晶體,且各第二電 晶體均為一 NMOS電晶體。 5. 如申請專利範圍第4項之信號傳輸電路,其中,每—該等 第一電晶體係、配置為自該電流源接收電流,並且其中, 母一該等第二電晶體係配置為使電流傳遞至該電流槽。 6. 如申請專利範圍第!項之信號傳輸電路,該控制電路進一 步包括一電晶體,該電晶體係在一電流鏡組態中耦合至 該電流源的一電流控制端子。 7·如申請專利範圍第i項之信號傳輸電路,其中,該電壓調 節器為一操作放大器。 8. 如申請專利範圍第1項之信號傳輸電路,該控制電路進一 步包括一對串聯電阻,其中,該電壓調節器係配置為自 該對電阻間的該接合處獲得該偏移電壓。 9. 如申請專利範圍第1項之信號傳輸電路,其中,該對電阻 的各外部節點係導電性耦合至該電流引導電路的各自該 等輸出節點之一。 10. 如申請專利範圍第!項之信號傳輸電路,該控制電路進一 步包括一複製電流槽,該複製電流槽具有一電流控制端 子,其導電性耦合至該電流槽的該電流控制端子,以及 871S2-970104.doc β 正替換頁 —複製電流源。 u.如申請專利範圍第10項之信號傳輸電路,該控制電路進 步括電體,該電晶體係在一電流鏡組態中耗合 至該電流源的一電流控制端子。 α如申請專利範圍第10項之信號傳輸電路,其中,該電壓 調節器為一操作放大器。 13.如申請專利範圍第1〇項之信號傳輸電路其中,該複製 電流源具有一通道寬度,其比該電流源之一通道寬度小 一第一比例,以及 其中’該複製電流槽具有一通道寬度,其比該電流槽 之一通道寬度小該第一比例。 M.如申請專利範圍第1〇項之信號傳輸電路,其中,該電路 包括至少一虛擬電晶體, 其中’該至少一虛擬電晶體係位於從以下位置所組成 群組中所選擇的一位置:該電流源旁、該電流槽旁、該 複製電流源旁、該複製電流槽旁、該電流源與該複製電 流源之間以及該電流槽與該複製電流槽之間。 15. 如申請專利範圍第1〇項之信號傳輸電路,其中,該控制 電路進一步包括一第一複製電流切換電晶體及一第二複 製電流切換電晶體, 其中,該第一複製電流切換電晶體係配置為自該複製 電流源接收電流,且該第二複製電流切換電晶體係配置 為使電流傳遞至該複製電流槽。 16. 如申請專利範圍第15項之信號傳輸電路’其中,該第一 87182-970104.docReplacement of this application | 7 years picking, patent application scope: a circuit for the #号 transmission, the circuit includes: - current source; 电流 a current slot of a current control terminal; / with - current guide to the output node a circuit, the current directing circuit configured to receive current from the current source and to pass current to the current slot 'and the current directing circuit configuration is configured to provide a differential to a load connected across the output sections And a control circuit comprising a voltage regulator configured to compare a reference voltage to an offset voltage: generating an adjusted voltage, f, the current slot The current control terminal is configured to receive the adjusted voltage. 2. The signal transmission circuit of the first item of claim 4, wherein the electric production circuit comprises two switches, each of which has an input node: Roll out the print-' and its configuration is set to supply current to each output node or receive current from the output node according to a potential at the input node. 3. As claimed in item 2 a signal transmission circuit, wherein each switch of the current conducting circuit comprises a first transistor and a second: a body, and a day, wherein the first transistor level of each switch is set and configured to be conductive a motor responsive to a high potential at each input node and substantially non-conductive to respond to a low potential at each input node, and wherein the second transistor configuration of each switch is configured and configured The transmission circuit, wherein the current leads the first transistor and a second transistor, each switch of the signal guiding circuit of claim 2 includes: And wherein each of the first transistors is a PM〇s transistor, and each of the second transistors is an NMOS transistor. 5. The signal transmission circuit of claim 4, wherein each And a first electro-optic system configured to receive current from the current source, and wherein the second electro-optic system is configured to pass current to the current sink. 6. Signal transmission as claimed in the scope of claim Circuit, the The circuit further includes a transistor coupled to a current control terminal of the current source in a current mirror configuration. 7. The signal transmission circuit of claim i, wherein the voltage regulator 8. An operational amplifier. 8. The signal transmission circuit of claim 1, wherein the control circuit further comprises a pair of series resistors, wherein the voltage regulator is configured to obtain the bias from the junction between the pair of resistors 9. The signal transmission circuit of claim 1, wherein each external node of the pair of resistors is electrically coupled to one of the respective output nodes of the current steering circuit. The signal transmission circuit of the item: the control circuit further comprising a replica current slot having a current control terminal electrically coupled to the current control terminal of the current slot, and the 871S2-970104.doc β positive Replace Page—Copy current source. U. The signal transmission circuit of claim 10, wherein the control circuit further comprises an electrical body system that is consuming a current control terminal of the current source in a current mirror configuration. α is the signal transmission circuit of claim 10, wherein the voltage regulator is an operational amplifier. 13. The signal transmission circuit of claim 1, wherein the replica current source has a channel width that is less than a channel width of the current source by a first ratio, and wherein the replica current slot has a channel The width, which is smaller than the channel width of one of the current slots, is the first ratio. M. The signal transmission circuit of claim 1, wherein the circuit comprises at least one virtual transistor, wherein 'the at least one virtual electro-crystal system is located at a selected one of the group consisting of: Next to the current source, next to the current tank, next to the replica current source, next to the replica current tank, between the current source and the replica current source, and between the current sink and the replica current sink. 15. The signal transmission circuit of claim 1, wherein the control circuit further comprises a first replica current switching transistor and a second replica current switching transistor, wherein the first replica current switching transistor The system is configured to receive current from the replica current source, and the second replica current switching transistor system is configured to pass current to the replica current sink. 16. The signal transmission circuit as claimed in claim 15 wherein the first 87182-970104.doc 1(更)i替換頁 複製電流切換電晶體為一 PM〇s電晶體,以及 其中,該第二複製電流切換電晶體為一丽0S電晶體。 17·如中請專利範圍第15項之信號傳輸電路,其中,該控制 電路進一步包括一對串聯電阻, 其中’該第一複製電流切換電晶體係導電性麵合至該 對電阻的一外部節點,以及 其中,該第二複製電流切換電晶體係導電性搞合至該 對電阻的另一外部節點。 18. 如申請專利範圍第17項之信號傳輸電路,其中,該電壓 調節器係配置為自該對電阻間的該接合處獲得該偏移電 壓。 19. 如申請專利範圍第1至18項之任一項之信號傳輸電路,其 中,該電路係具體體現在一積體電路中。 20. 如申請專利範圍第項之任一項之信號傳輸電路,其 進-步包括-顯示面板,其配置為接收該差動信號。 21· —種控制信號產生器,其包括: 一第一控制單元’其包括: -第-反相器’其配置為反轉一資料信號,以及 -第-類比開關,其包括一輸入端子、一輸出端子、 一第一控制端子及一第二控制端子;以及 一第一控制單元,其包括: -第二反相器’其配置為反轉該資料信號之 號,以及 裯15 第二類比開關,其包括一輸入端子 輪出端 子 87182-970104.doc 150598¾ 更./玉替換頁f ·· -—>«·· I 一第一控制端子及一第二控制端子; 其中,該第一類比開關係配置為接收位於該輪入端子 處的該已反轉資料信號,並且其中,該第二類比開關係 配置為接收位於該輸入端子處的該已反轉互補資料信號 ,以及 其中該第一類比開關係配置為接收位於該第一控制端 子處的一時脈信號及位於該第二控制端子處的該時脈信 號之一互補信號,並且其中,該第二類比開關係配置為 接收位於該第一控制端子處的一時脈信號及位於該第二 控制端子處的該時脈信號之一互補信號,以及 其中,當該第一控制端子係處於一高電位且該第二控 制端子係處於一低電位時,該第一類比開關之組態係設 定為具有一封閉狀態,並且當該第一控制端子係處於一 低電位且該第二控制端子係處於一高電位時,該第一類 比開關之組態係設定為具有一開放狀態,以及 其中,當該第一控制端子係處於一高電位且該第二控 制端子係處於一低電位時,該第二類比開關之組態係設 定為具有一封閉狀態,並且當該第一控制端子係處於一 低電位且該第二控制端子係處於一高電位時,該第二類 比開關之組態係設定為具有一開放狀態。 22.如申請專利範圍第21項之控制信號產生器,其進一步包 括一第三反相器,其配置為接收該資料信號並產生該互 補資料信號,以及一第四反相器,其配置為接收該時脈 就並產生该互補時脈信號。 87182-970104.doc 23. —種低電壓差動信號驅動器,包括用於實施如申請專利 範圍第1至18項之任一項之信號傳輸的電路。 87182-970104.doc {nJ 130598牟121163號專利申請案 中文圖式替換本(96年1月) 拾壹、圖式: 画一1 (more) i replacement page The replica current switching transistor is a PM 〇s transistor, and wherein the second replica current switching transistor is a NMOS transistor. The signal transmission circuit of claim 15, wherein the control circuit further comprises a pair of series resistors, wherein 'the first replica current switching transistor system is electrically coupled to an external node of the pair of resistors And wherein the second replica current switching transistor system is electrically coupled to another external node of the pair of resistors. 18. The signal transmission circuit of claim 17, wherein the voltage regulator is configured to obtain the offset voltage from the junction between the pair of resistors. 19. The signal transmission circuit of any one of claims 1 to 18, wherein the circuit is embodied in an integrated circuit. 20. The signal transmission circuit of any of the preceding claims, further comprising: a display panel configured to receive the differential signal. A control signal generator comprising: a first control unit comprising: - a first-inverter configured to invert a data signal, and a - analog-to-digital switch comprising an input terminal, An output terminal, a first control terminal and a second control terminal; and a first control unit comprising: - a second inverter 'configured to reverse the number of the data signal, and a second analogy The switch includes an input terminal wheel terminal 87182-970104.doc 1505983⁄4. / jade replacement page f ·· ->«·· I a first control terminal and a second control terminal; wherein, the first An analogy relationship configured to receive the inverted data signal at the wheeled terminal, and wherein the second analog relationship is configured to receive the inverted complementary data signal at the input terminal, and wherein the a class of open relationship configured to receive a clock signal at the first control terminal and a complementary signal of the clock signal at the second control terminal, and wherein the second analogy The system is configured to receive a clock signal at the first control terminal and a complementary signal of the clock signal at the second control terminal, and wherein when the first control terminal is at a high potential and the first When the two control terminals are at a low potential, the configuration of the first analog switch is set to have a closed state, and when the first control terminal is at a low potential and the second control terminal is at a high potential The configuration of the first analog switch is set to have an open state, and wherein the second analog switch is when the first control terminal is at a high potential and the second control terminal is at a low potential The configuration system is configured to have a closed state, and when the first control terminal is at a low potential and the second control terminal is at a high potential, the configuration of the second analog switch is set to have an open state . 22. The control signal generator of claim 21, further comprising a third inverter configured to receive the data signal and generate the complementary data signal, and a fourth inverter configured to The clock is received and the complementary clock signal is generated. 87182-970104.doc 23. A low voltage differential signal driver comprising circuitry for performing signal transmission as claimed in any one of claims 1 to 18. 87182-970104.doc {nJ 130598牟121163 Patent Application Chinese Illustration Replacement (January 1996) Pickup, Drawing: Painting One 3.3mA -►· Zo=50 ohm •· 87182-960105.doc 1305984 國23.3mA -►· Zo=50 ohm •· 87182-960105.doc 1305984 Country 2 CSR1 醒3CSR1 wake up 3 87182-960105.doc 130598487182-960105.doc 1305984 87182-960105.doc 1305984 I- nr ΛΗΙ87182-960105.doc 1305984 I- nr ΛΗΙ 87182-960105.doc -4- 1305984 J87182-960105.doc -4- 1305984 J 87182-960105.doc 130598487182-960105.doc 1305984 87182-960105.doc 1305984 画887182-960105.doc 1305984 Painting 8 VDD 3.6V 87182-960105.doc 1305984 画9VDD 3.6V 87182-960105.doc 1305984 Drawing 9 87182-960105.doc 130598487182-960105.doc 1305984 87182-960105.doc87182-960105.doc 1305984 ii , ι : ^1305984 ii , ι : ^ 87182-960105.doc -10- 1305984 J J Π···' DT1N §Lt- CKl P6〒 CK2 DT5 P5 DTI δ i CK5 P2 CKl DTI PI 画12 N7 P7 Li N3 P3 lSf8 P8 Ll N4 P4 SP SN 琴 87182-960105.doc -11 - 1305984 J182 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 960105.doc -11 - 1305984 J !Si8 s r-d N4 P4 H 1113 SP SN 1 87182-960105.doc -12- 1305984!Si8 s r-d N4 P4 H 1113 SP SN 1 87182-960105.doc -12- 1305984 87182-960105.doc _ 13_ I130598487182-960105.doc _ 13_ I1305984 DTI CK1 CK2 SP 攀DTI CK1 CK2 SP climbing DTI 2 87182-960105.doc •14-DTI 2 87182-960105.doc • 14-
TW92121163A 2002-08-01 2003-08-01 Differential signaling transmission circuit TWI305984B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39971102P 2002-08-01 2002-08-01

Publications (2)

Publication Number Publication Date
TW200414727A TW200414727A (en) 2004-08-01
TWI305984B true TWI305984B (en) 2009-02-01

Family

ID=45071270

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92121163A TWI305984B (en) 2002-08-01 2003-08-01 Differential signaling transmission circuit

Country Status (1)

Country Link
TW (1) TWI305984B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475395B (en) * 2011-09-28 2015-03-01 Htc Corp Hand-held electrical apparatus and data transmission method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475395B (en) * 2011-09-28 2015-03-01 Htc Corp Hand-held electrical apparatus and data transmission method thereof

Also Published As

Publication number Publication date
TW200414727A (en) 2004-08-01

Similar Documents

Publication Publication Date Title
JP3202728B2 (en) LVDS driver for backplane application
JP2555379B2 (en) TTL / CMOS compatible input buffer with Schmitt trigger
US7528636B2 (en) Low differential output voltage circuit
US7164307B2 (en) Bias generator for body bias
JP2001175340A (en) Potential generation circuit
JPH07297678A (en) Cmos termination resistance circuit
CN106209098B (en) Digital-to-analog converter
US7038502B2 (en) LVDS driver circuit and driver circuit
TWI343703B (en) Low power differential signaling transmitter
JP2004350273A (en) Voltage mode current-assisted pre-emphasis driver
US7236045B2 (en) Bias generator for body bias
US7071739B1 (en) Termination sense-and-match differential driver
US9203381B2 (en) Current mode logic latch
US7336780B2 (en) Differential signaling transmission circuit
JP2023505821A (en) Duty cycle correction circuit and its application
US8988106B2 (en) Voltage mode driver with current booster (VMDCB)
TWI305984B (en) Differential signaling transmission circuit
JP2005303830A (en) Differential output circuit
JP2010017013A (en) Charge pump circuit
US7514877B2 (en) Display panel driving circuit
US6975168B2 (en) Drive circuit
JP3423217B2 (en) Voltage limiting circuit for integrated circuits
JP2010166472A (en) Differential signal drive circuit and differential signal transmission system
JP5469967B2 (en) Audio system
JP2005020111A (en) Cmos analog switch circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees