JP2010166472A - Differential signal drive circuit and differential signal transmission system - Google Patents

Differential signal drive circuit and differential signal transmission system Download PDF

Info

Publication number
JP2010166472A
JP2010166472A JP2009008616A JP2009008616A JP2010166472A JP 2010166472 A JP2010166472 A JP 2010166472A JP 2009008616 A JP2009008616 A JP 2009008616A JP 2009008616 A JP2009008616 A JP 2009008616A JP 2010166472 A JP2010166472 A JP 2010166472A
Authority
JP
Japan
Prior art keywords
voltage
differential signal
current
low
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009008616A
Other languages
Japanese (ja)
Inventor
Jun Hasegawa
潤 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curious Corp
Original Assignee
Curious Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curious Corp filed Critical Curious Corp
Priority to JP2009008616A priority Critical patent/JP2010166472A/en
Publication of JP2010166472A publication Critical patent/JP2010166472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-voltage differential signal drive circuit small in circuit scale, operable at a high common voltage even if a power voltage is lowered, suppressed in reflection at an end of a transmission line, and capable of performing stable transmission. <P>SOLUTION: The low-voltage differential signal drive circuit includes: a first drive signal power source for outputting a first voltage; a second drive signal power source for outputting a second voltage different from the first voltage; and an output changeover means for distributing and outputting outputs of the respective signal power sources to first and second output terminals. The low-voltage differential signal drive circuit can be provided by forming at least either of the drive signal power sources with a resistor having a resistance value nearly equal to the characteristic impedance of a transmission line arranged between the power source and the output terminal, and a current source connected to the resistor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低電圧差動信号駆動回路の技術分野に関わり、特に低い電源電圧でも動作可能な低電圧差動信号駆動回路およびそれを用いた低電圧差動信号伝送システムに関する。   The present invention relates to a technical field of a low voltage differential signal driving circuit, and more particularly to a low voltage differential signal driving circuit operable with a low power supply voltage and a low voltage differential signal transmission system using the same.

従来から、携帯電話やデジタルカメラなどにおいてイメージセンサで発生した画像データを他の信号処理チップに高速に転送する場合などに、LVDS(Low Voltage Differential Signal)に代表される低電圧差動信号のインターフェースが用いられている。バスを構成するディジタル信号の本数を減らすことで、システムの小型軽量化を実現したり、画質に影響する不要輻射(EMI)の発生を大幅に低減することができるなどの利点があり、非常に重要な技術である。近年は扱う画像データの量も増え、ますます高速化の要求が高まっているため伝送レートがどんどん高速化し、これにより伝送線の端部における反射による波形品位の劣化が問題になってきている。このため、送信側のドライバーの出力と伝送線、および受信側の終端抵抗の各インピーダンスマッチングを考慮する必要がある。   Conventionally, an interface of a low voltage differential signal represented by LVDS (Low Voltage Differential Signal) when image data generated by an image sensor in a mobile phone or a digital camera is transferred to another signal processing chip at high speed. Is used. By reducing the number of digital signals that make up the bus, the system can be reduced in size and weight, and the generation of unwanted radiation (EMI) that affects image quality can be greatly reduced. It is an important technology. In recent years, the amount of image data to be handled has increased, and the demand for higher speed has been increasing. Therefore, the transmission rate has been increased. As a result, deterioration of waveform quality due to reflection at the end of the transmission line has become a problem. For this reason, it is necessary to consider each impedance matching of the output and transmission line of the driver on the transmitting side and the terminating resistor on the receiving side.

インピーダンスマッチングを考慮したLVDSドライバーを実現する方法が特許文献1に開示されている。図1にその回路を示すが、VDD側には電圧源(17)と、それに伝送線の特性インピーダンスに略等しい出力インピーダンスを与えるためのマッチング抵抗(12)が直列に接続されて構成された、ハイレベル出力用電圧源(11)がVHノードに接続される。同様にGND側には電圧源(18)と、伝送線の特性インピーダンスに略等しい出力インピーダンスを与えるためのマッチング抵抗(15)から構成されるローレベル出力用電圧源(14)がVLノードに接続される。VHノードとVLノードの間にはトランジスタ(12a,12b,13a,13b)からなるスイッチマトリックスがあり、出力端子OUT+とOUT−の一方をVHに、もう一方をVLに接続するように駆動される。2つの出力端子の電圧は伝送線によって受信デバイス側に伝送され、そこで終端抵抗(14)によって終端され、不図示の低電圧差動信号受信装置により受信される。   A method for realizing an LVDS driver considering impedance matching is disclosed in Patent Document 1. The circuit is shown in FIG. 1, and a voltage source (17) and a matching resistor (12) for giving an output impedance substantially equal to the characteristic impedance of the transmission line are connected in series on the VDD side. A high level output voltage source (11) is connected to the VH node. Similarly, on the GND side, a voltage source (14) composed of a voltage source (18) and a matching resistor (15) for giving an output impedance substantially equal to the characteristic impedance of the transmission line is connected to the VL node. Is done. Between the VH node and the VL node, there is a switch matrix composed of transistors (12a, 12b, 13a, 13b), which is driven so that one of the output terminals OUT + and OUT- is connected to VH and the other is connected to VL. . The voltages of the two output terminals are transmitted to the receiving device side by the transmission line, where they are terminated by the terminating resistor (14), and received by a low voltage differential signal receiving apparatus (not shown).

ところで、高速化に伴い波形品位を向上させることも重要であるが、そもそも高速化を進めるためには微細化されたプロセスを用いることがポイントになることは言うまでもない。しかし微細化に伴い電源電圧が徐々に低下する傾向にあり、それに合わせてLVDSの新しい規格が続々と出てきている。しかしその一方で、新製品の機器設計においては設計期間を短縮する、あるいは開発コストを抑えるために、従来の規格を使用したいというニーズも依然として強い。しかしながら、従来のLVDS規格は、これまでの高い電圧に合わせて制定されているため、LSI自体の電源電圧を下げようとすると、低い電源電圧でありながら相対的に高い出力電圧を出さなければならなくなる。   By the way, it is important to improve the waveform quality as the speed increases, but it goes without saying that in order to increase the speed, it is important to use a miniaturized process. However, the power supply voltage tends to gradually decrease with the miniaturization, and new standards for LVDS are emerging one after another. On the other hand, however, there is still a strong need to use a conventional standard in order to shorten the design period or reduce development costs in the design of new product equipment. However, since the conventional LVDS standard has been established in accordance with the high voltage so far, when trying to lower the power supply voltage of the LSI itself, a relatively high output voltage must be output even though the power supply voltage is low. Disappear.

例えば、SMIA規格のCCP2(Compact Camera Port)や、MIPIアライアンスが定めるCSI−1(Camera Serial Interface)などではSub−LVDSインターフェース規格が用いられているが、この規格では、差動出力の中点であるコモン電圧は標準で0.9Vと定められ、2つの差動出力はこのコモン電圧を中心に150mVの振幅で振れる。仮に電源電圧が1.8Vとすると、このコモン電圧は丁度電源電圧の中点付近に位置し好適であるが、電源電圧が例えば1.1Vなどと下がってくると、コモン電圧が電源電圧側に非常に近くなり、回路を正常に動作させるためのマージンが小さくなってくる。   For example, the Sub-LVDS interface standard is used in the CCP2 (Compact Camera Port) of the SMIA standard and the CSI-1 (Camera Serial Interface) defined by the MIPI Alliance. A certain common voltage is set to 0.9 V as a standard, and two differential outputs swing with an amplitude of 150 mV around the common voltage. If the power supply voltage is 1.8 V, this common voltage is preferably located near the midpoint of the power supply voltage. However, when the power supply voltage drops to, for example, 1.1 V, the common voltage moves to the power supply voltage side. It becomes very close, and the margin for operating the circuit normally becomes smaller.

電源電圧が1.1VでSub−LVDSドライバーを構成する場合を例にとって、図1の各ノード電圧がどのようになるかを具体的に説明する。いま、図1においてIN+に”L”、IN−に”H”を印加した時の各ノード電圧を考える。
なお、説明を簡略化するためトランジスタ(12a,12b,13a,13b)のオン抵抗はゼロの理想スイッチであるとする。IN+が”L”であるためPMOSトランジスタ(12a)がオンとなり、NMOSトランジスタ(12b)がオフするため、OUT+ノードはVHノードと接続され、OUT+ノードの電圧はVHの電圧と等しくなる。逆にIN−が”H”であるため、PMOSトランジスタ(13a)がオフ、NMOSトランジスタ(13b)がオンするため、OUT−ノードはVLノードと接続され、OUT−ノードの電圧はVLの電圧と等しくなる。
Taking the case of configuring a Sub-LVDS driver with a power supply voltage of 1.1 V as an example, how each node voltage in FIG. 1 will be described in detail. Consider each node voltage when “L” is applied to IN + and “H” is applied to IN− in FIG.
In order to simplify the explanation, it is assumed that the on-resistances of the transistors (12a, 12b, 13a, 13b) are zero ideal switches. Since IN + is “L”, the PMOS transistor (12a) is turned on and the NMOS transistor (12b) is turned off. Therefore, the OUT + node is connected to the VH node, and the voltage at the OUT + node is equal to the voltage at VH. Conversely, since IN− is “H”, the PMOS transistor (13a) is turned off and the NMOS transistor (13b) is turned on. Therefore, the OUT− node is connected to the VL node, and the voltage of the OUT− node is the voltage of VL. Will be equal.

Sub−LVDS方式ではコモン電圧が0.9Vで振幅が150mVであるため、ハイ状態を出力する場合にはVH電圧として0.9V+150mV/2=0.975V、ロー状態を出力する場合にはVL電圧として0.9V−150mV/2=0.825Vとする必要がある。このとき終端抵抗(100Ω)に流れる電流は150mAであり、電圧源(17)の出力電圧であるVH0電圧は、この電流とマッチング抵抗(12)の抵抗値で決まることになる。マッチング抵抗の値は伝送線の特性インピーダンスとマッチングさせるために、およそ50Ω前後の値にする必要があるため、VH0電圧は、VH+150mA×50Ω=1.05Vという値となる。VDDとVH0電圧の差に相当する電圧(以降Vcalと称する)は、電圧源(17)で発生することになるが、VH0電圧がVDDに関わらずSub−LVDSの規格とマッチング抵抗の値のみで決まる一定値であるため、VDD電圧が低くなると相対的にVcalは小さくなり、例えばVDD=1.1VではVcal=0.05Vという非常に小さな値とする必要がある。   In the Sub-LVDS system, the common voltage is 0.9 V and the amplitude is 150 mV. Therefore, when a high state is output, the VH voltage is 0.9 V + 150 mV / 2 = 0.975 V, and when a low state is output, the VL voltage It is necessary to set it as 0.9V-150mV / 2 = 0.825V. At this time, the current flowing through the termination resistor (100Ω) is 150 mA, and the VH0 voltage that is the output voltage of the voltage source (17) is determined by this current and the resistance value of the matching resistor (12). Since the value of the matching resistor needs to be about 50Ω in order to match the characteristic impedance of the transmission line, the VHO voltage is VH + 150 mA × 50Ω = 1.05V. A voltage corresponding to the difference between the VDD and VH0 voltages (hereinafter referred to as Vcal) is generated by the voltage source (17). However, the VH0 voltage is determined only by the Sub-LVDS standard and the matching resistance value regardless of the VDD. Since it is a fixed value that is determined, Vcal becomes relatively small when the VDD voltage becomes low. For example, when VDD = 1.1V, it is necessary to make Vcal = 0.05V very small.

ハイレベル出力用電圧源(11)の構成回路例として、図2にドレイン接方式を、図3にはソース接地方式をそれぞれ示すが、方式によってNMOS、PMOSの違いはあるがどちらの場合もVcal電圧は出力トランジスタのドレイン−ソース間電圧に相当し、Vcal電圧を小さくするということは出力トランジスタのドレイン−ソース間電圧を小さくしなければならないことを意味する。   As a configuration circuit example of the high-level output voltage source (11), FIG. 2 shows a drain contact method and FIG. 3 shows a source grounding method. There are differences between NMOS and PMOS depending on the method, but in both cases Vcal The voltage corresponds to the drain-source voltage of the output transistor, and decreasing the Vcal voltage means that the drain-source voltage of the output transistor must be decreased.

米国特許第6,867,618号明細書 US Pat. No. 6,867,618

しかしながら、ドレイン−ソース間の電位差を小さくするためには、トランジスタのサイズを大きくする必要があり、全体のLSIチップに対してドライバーの占有する面積が極端に大きくなり、チップのコストアップやチップサイズ増加に伴う実装面積増加により機器の小型化を阻害するなどの不利益が生じるという問題があった。
そこで本発明は斯かる実情に鑑み、小さい回路規模で低い電源電圧でも高いコモン電圧で動作可能な低電圧差動信号駆動回路を提供しようとするものである。
However, in order to reduce the potential difference between the drain and the source, it is necessary to increase the size of the transistor, and the area occupied by the driver with respect to the entire LSI chip becomes extremely large, increasing the cost of the chip and the chip size. There is a problem that disadvantages such as hindering downsizing of the device occur due to an increase in mounting area accompanying the increase.
In view of such circumstances, the present invention intends to provide a low voltage differential signal driving circuit capable of operating at a high common voltage even with a low power supply voltage with a small circuit scale.

以上の課題を解決するために、本第1発明は、第1の電圧を出力する第1の駆動信号電圧源と、第1の電圧とは異なる第2の電圧を出力する第2の駆動信号電圧源と、各信号電圧源の出力をそれぞれ第1および第2の出力端子に振り分けて出力する出力切り換え手段とを有する低電圧差動信号駆動装置において、少なくても一方の駆動信号電圧源は、電源端子と出力端子の間に設けられた抵抗と、その抵抗に接続された電流源とで構成することを特徴とする低電圧差動信号駆動装置である。さらには前記第1の電圧が所定の電圧値になるように電流源の電流値を調整する電流調整手段を有することを特徴とする低電圧差動信号駆動装置である。   In order to solve the above problems, the first invention provides a first drive signal voltage source that outputs a first voltage, and a second drive signal that outputs a second voltage different from the first voltage. In a low-voltage differential signal driving device having a voltage source and output switching means for distributing and outputting the output of each signal voltage source to the first and second output terminals, at least one drive signal voltage source is A low-voltage differential signal driving device comprising a resistor provided between a power supply terminal and an output terminal and a current source connected to the resistor. The low-voltage differential signal driving device further comprises current adjusting means for adjusting the current value of the current source so that the first voltage becomes a predetermined voltage value.

また本第2発明は、低電圧差動信号駆動装置と低電圧差動信号受信装置とその間を接続する伝送線からなる差動信号伝送システムにおいて、前記低電圧差動信号駆動装置は第1の電圧を出力する第1の駆動信号電源と、第2の電圧を出力する第2の駆動信号電源と、各信号電源の出力をそれぞれ第1および第2の出力端子に振り分けて出力する出力切り換え手段とを有し、前記駆動信号電圧源の少なくても一方は、電源と出力端子の間に設けられた伝送線の特性インピーダンスと略同一の抵抗値を有する抵抗と、その抵抗に接続された電流源とで構成することを特徴とする低電圧差動信号伝送システムである。   The second invention is a differential signal transmission system comprising a low voltage differential signal driving device, a low voltage differential signal receiving device, and a transmission line connecting between the low voltage differential signal driving device and the low voltage differential signal driving device. A first drive signal power supply for outputting a voltage; a second drive signal power supply for outputting a second voltage; and an output switching means for distributing the outputs of the signal power supplies to the first and second output terminals, respectively. And at least one of the drive signal voltage sources includes a resistor having a resistance value substantially the same as the characteristic impedance of the transmission line provided between the power source and the output terminal, and a current connected to the resistor. A low-voltage differential signal transmission system comprising a power source.

本発明によれば、低い電源電圧でも高いコモン電圧で動作可能で、しかも伝送信号の反射の少ない安定した伝送が可能な低電圧差動信号駆動回路を小さい回路規模で実現することが可能である。   According to the present invention, it is possible to realize a low voltage differential signal driving circuit capable of operating at a high common voltage even with a low power supply voltage and capable of stable transmission with little reflection of a transmission signal with a small circuit scale. .

従来の差動信号駆動回路を示した図である。It is the figure which showed the conventional differential signal drive circuit. ドレイン接地型電圧源の回路図である。It is a circuit diagram of a drain common type voltage source. ソース接地型電圧源の回路図である。It is a circuit diagram of a common source voltage source. 本願実施例における差動信号駆動回路を示した図である。It is the figure which showed the differential signal drive circuit in this-application Example. 電圧源と電流源の置き換えの原理を説明するための図である。It is a figure for demonstrating the principle of replacement of a voltage source and a current source. 本願実施例における電流調整回路を示した図である。It is the figure which showed the electric current adjustment circuit in an Example of this application.

以下、本発明の実施の形態について添付図面を参照して説明する。
図4に、本願実施例の回路図を示す。従来例との相違点はVDD側に配置されたハイレベル出力用電圧源(41)とその内部のみで、図中で図1と同一の符号を付した部分は同一物を表わしている。ハイレベル出力用電圧源(41)は従来例とは異なり、電源電圧VDDとVHノードの間に配置されたマッチング抵抗(12)と、VHノードとGNDの間に配置された電流源(43)から構成される。すなわち、従来は抵抗と電圧源とでハイレベル出力用電圧源(11)を構成していたが、本願実施例では抵抗と電流源とで構成している。これにより、従来は電源電圧が低くなると電圧源(17)の両端の電圧差、すなわちVcal電圧が0.05Vなどと小さくなると、その間で動作する電圧源(17)を作ることが困難であったが、本願実施例では図のようにGNDとVHの間という大きな電位差(約0.975V)の間に電流源(43)を配置することで等価な電気特性が得られるため、電源電圧が低くなった場合でも無理なくハイレベル出力用電圧源(41)を実現することができる。このように、マッチング抵抗と電圧源ではなく、マッチング抵抗と電流源でハイレベル出力用電圧源を構成することで、電源電圧が低くなった場合でもSub−LVDSドライバーをLSI内部に集積化することが容易となる。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 4 shows a circuit diagram of this embodiment. The difference from the conventional example is only the high-level output voltage source (41) arranged on the VDD side and the inside thereof. In the figure, the same reference numerals as those in FIG. Unlike the conventional example, the high-level output voltage source (41) is a matching resistor (12) disposed between the power supply voltage VDD and the VH node, and a current source (43) disposed between the VH node and GND. Consists of That is, in the prior art, the high-level output voltage source (11) is composed of a resistor and a voltage source, but in the present embodiment, it is composed of a resistor and a current source. Thus, conventionally, when the power supply voltage is lowered, the voltage difference between both ends of the voltage source (17), that is, when the Vcal voltage is reduced to 0.05 V or the like, it is difficult to make a voltage source (17) operating between them. However, in the present embodiment, as shown in the figure, an equivalent electrical characteristic can be obtained by arranging the current source (43) between a large potential difference (about 0.975 V) between GND and VH, so that the power supply voltage is low. Even in this case, the high-level output voltage source (41) can be realized without difficulty. In this way, by configuring the high-level output voltage source with the matching resistor and current source instead of the matching resistor and voltage source, the Sub-LVDS driver can be integrated inside the LSI even when the power supply voltage becomes low. Becomes easy.

図5に、電圧源と電流源の置き換えについての等価性を説明するための図を示す。(a)に一般的に広く知られている基本的な電圧源と電流源の置き換えの図を示すが、電圧値がVの電圧源と抵抗値がRの抵抗を直列に接続したものと、電流値がI=V/Rの電流源と抵抗値がRの抵抗を並列に接続したものとは等価である。次に、(a)でGNDだったものをVDDに置き換え、さらに電圧源の極性を逆にした場合が(b)である。さらに、それをトポロジーを変えずに書き換えたものが(c)である。ここから分かるように、(c)の左は図1のハイレベル出力用電圧源(11)に、また(c)の右は図4のハイレベル出力用電圧源(41)に相当する。両者は回路として電圧源を用いるか電流源を用いるかという形の違いがあるが、得られる電気特性としては等価であることが分かる。   FIG. 5 is a diagram for explaining equivalence of the replacement of the voltage source and the current source. (A) shows a diagram of the replacement of a basic voltage source and a current source that are generally well known, in which a voltage source having a voltage value of V and a resistor having a resistance value of R are connected in series; A current source having a current value of I = V / R and a resistor having a resistance value of R connected in parallel are equivalent. Next, (b) is a case where the voltage of GND in (a) is replaced with VDD and the polarity of the voltage source is reversed. Further, (c) is a rewritten version without changing the topology. As can be seen, the left of (c) corresponds to the high-level output voltage source (11) of FIG. 1, and the right of (c) corresponds to the high-level output voltage source (41) of FIG. Although both have a difference in the form of using a voltage source or a current source as a circuit, it can be seen that the obtained electrical characteristics are equivalent.

ここで、従来例で説明したように1.1Vの電源電圧でSub−LVDS方式を実現する場合にはVH0電圧としては1.05Vで、Vcal電圧は0.05Vとなるため、電圧制御の電流源で必要な電流値(Ical)は、R=50ΩとするとVcal/R=1mAとなり、この電流自体は終端抵抗を駆動するための電流(1.5mA)とは別に必要となるが、VDD=1.1Vという低い電源電圧で実現できることから全体の消費電力としてはむしろ小さくすることが可能となる。
なお、Vcal電圧はVDDに応じて変化するため、Ical電流も電源電圧に応じて調整する必要がある。
Here, as described in the conventional example, when the Sub-LVDS system is realized with the power supply voltage of 1.1V, the VH0 voltage is 1.05V and the Vcal voltage is 0.05V. The current value (Ical) required at the source is Vcal / R = 1 mA when R = 50Ω, and this current itself is required separately from the current (1.5 mA) for driving the termination resistor. Since it can be realized with a power supply voltage as low as 1.1 V, the overall power consumption can be made rather small.
Since the Vcal voltage changes according to VDD, the Ical current needs to be adjusted according to the power supply voltage.

以下、VDDに応じて適切な電流調整を行うための具体例を示す。
図6にIcal電流を調整するための回路を示す。抵抗分圧回路によってVDDの1/2に相当する電圧が、オペアンプ(63a)の非反転入力端子に入力される。オペアンプ(63a)の出力はPMOS(62a)のゲートに接続され、PMOS(62a)のソースは、オペアンプ(63a)の反転入力端子に接続されて、PMOS(62a)のソース電圧がVH0電圧の1/2に等しくなるようにフィードバックループが形成される。同様に、オペアンプ(63b)の非反転入力端子には不図示の基準電圧発生回路により発生したVH0の1/2の電圧が入力され、PMOS(62b)のソース電圧がVH0/2電圧に等しくなるようにもう一つのフィードバックループが形成される。
Hereinafter, a specific example for performing appropriate current adjustment according to VDD will be described.
FIG. 6 shows a circuit for adjusting the Ical current. A voltage corresponding to 1/2 of VDD is input to the non-inverting input terminal of the operational amplifier (63a) by the resistance voltage dividing circuit. The output of the operational amplifier (63a) is connected to the gate of the PMOS (62a), the source of the PMOS (62a) is connected to the inverting input terminal of the operational amplifier (63a), and the source voltage of the PMOS (62a) is 1 of the VH0 voltage. A feedback loop is formed to be equal to / 2. Similarly, a voltage half of VH0 generated by a reference voltage generation circuit (not shown) is input to the non-inverting input terminal of the operational amplifier (63b), and the source voltage of the PMOS (62b) becomes equal to the VH0 / 2 voltage. Thus, another feedback loop is formed.

それぞれのPMOSのソースにはそれぞれ等しい電流(Ibias)を流すように設定された定電流源(61a,61b)が接続され、ソース間には、図4のマッチング抵抗(12)と同じ抵抗値の電圧−電流変換抵抗(65)が接続される。各PMOSのソースは、それぞれVH0/2,VDD/2の電圧にフィードバック制御されるため、電圧−電流変換抵抗にはその差に比例する差電流(ΔI)が流れることになる。
ここで、ΔIは、ΔI=(VDD/2−VH0/2)/R=(Vcal/2)/Rと表され、PMOS(62a)には定電流源の電流(Ibias)からΔIを減算した電流(Ibias−ΔI)が、PMOS(62b)には定電流源の電流にΔIを加算した電流(Ibias+ΔI)がそれぞれ流れる。
Each PMOS source is connected to a constant current source (61a, 61b) set so as to pass an equal current (Ibias). Between the sources, the same resistance value as that of the matching resistor (12) in FIG. 4 is connected. A voltage-current conversion resistor (65) is connected. Since the source of each PMOS is feedback controlled to a voltage of VH0 / 2 and VDD / 2, a difference current (ΔI) proportional to the difference flows through the voltage-current conversion resistor.
Here, ΔI is expressed as ΔI = (VDD / 2−VH0 / 2) / R = (Vcal / 2) / R, and ΔI is subtracted from the current (Ibias) of the constant current source in the PMOS (62a). A current (Ibias−ΔI) flows, and a current (Ibias + ΔI) obtained by adding ΔI to the current of the constant current source flows through the PMOS (62b).

PMOS(62a)を流れる電流はNMOS(64a,64b)で構成されるカレントミラーによって折り返され、NMOS(64b)とPMOS(62b)のドレイン同士が接続されたノードで加算されるため、最終的に(Ibias+ΔI)−(Ibias−ΔI)=2×ΔI=Vcal/R の調整電流が、Icalとして出力され、NMOS(66a,66b)で構成されるカレントミラーによって折り返されて出力される。以上の図6の回路が図4で示した電流源(43)として働き、図4に示したハイレベル出力用電圧源を(41)を構成してVcalを与え、最終的にVDDに依存しない所定のVH0電圧を得ることが可能となる。   The current flowing through the PMOS (62a) is folded by a current mirror composed of NMOS (64a, 64b) and added at the node where the drains of the NMOS (64b) and PMOS (62b) are connected. An adjustment current of (Ibias + ΔI) − (Ibias−ΔI) = 2 × ΔI = Vcal / R is output as Ical, and is output by being folded back by a current mirror composed of NMOS (66a, 66b). The circuit shown in FIG. 6 functions as the current source (43) shown in FIG. 4, and the high-level output voltage source shown in FIG. 4 constitutes (41) to give Vcal, and finally does not depend on VDD. A predetermined VHO voltage can be obtained.

ここで、VHノードの電圧は0.975Vという電源電圧に近い高い電圧となるが、これに接続されるのはソースがGNDに接地されたNMOSトランジスタ(66b)のみであり、前述のドレイン−ソース間電圧の問題はなく、低い電源電圧で高いコモン電圧のLVDSドライバーを小さなサイズのトランジスタで無理なく実現できることになる。   Here, although the voltage of the VH node is a high voltage close to the power supply voltage of 0.975 V, only the NMOS transistor (66b) whose source is grounded to GND is connected to this, and the drain-source described above is connected. There is no problem of inter-voltage, and an LVDS driver having a high common voltage with a low power supply voltage can be easily realized with a small-sized transistor.

なお、本発明の差動信号駆動回路は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、本実施例ではマッチング抵抗(12)の抵抗値と、電流調整回路における電圧−電流変換抵抗(65)を等しくした場合について説明したが、マッチング抵抗よりも大きな抵抗値で電圧−電流変換して、得られた小さな電流をNMOS(65a)とNMOS(65b)のサイズ比を変えて電流増幅するように構成することで、図6に示した電流調整回路における消費電流の低減を図ることも可能である。   The differential signal driving circuit of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, in the present embodiment, the case where the resistance value of the matching resistor (12) and the voltage-current conversion resistor (65) in the current adjustment circuit are made equal is described. Thus, the current consumption of the current adjusting circuit shown in FIG. 6 can be reduced by amplifying the obtained small current by changing the size ratio of the NMOS (65a) and the NMOS (65b). Is possible.

また、本願実施例ではスイッチマトリックスを構成するトランジスタのオン抵抗がゼロであるとみなして説明したが、実際には有限の抵抗を有するため、伝送線とのインピーダンスマッチングは、マッチング抵抗の抵抗値だけでなくトランジスタのオン抵抗も考慮する必要があることは言うまでもない。   Further, in the embodiment of the present invention, the on-resistance of the transistors constituting the switch matrix is assumed to be zero, but since the actual resistance has a finite resistance, impedance matching with the transmission line is only the resistance value of the matching resistance. Needless to say, it is also necessary to consider the on-resistance of the transistor.

また、上記の電流調整は必要とされる電源電圧範囲の全てに渡って行う必要はなく、出力電圧など仕様的に許容されれば、電源電圧範囲の一部についてのみ行うようにしても構わない。   In addition, the current adjustment described above need not be performed over the entire power supply voltage range, and may be performed only for a part of the power supply voltage range as long as the output voltage and other specifications are allowed. .

さらに、本願実施例ではオペアンプを用いたが、オペアンプを用いなくても等価の回路が実現できうることや、本実施例ではアナログ的にVH0電圧とVDD電圧の差をIcal電流に変換したが、代替手段として何らかのディジタル制御で行っても同等の効果が得られることなどは当業者にとって自明であろう。   Furthermore, although the operational amplifier is used in the present embodiment, an equivalent circuit can be realized without using the operational amplifier, and in this embodiment, the difference between the VH0 voltage and the VDD voltage is converted into an Ical current in an analog manner. It will be apparent to those skilled in the art that the same effect can be obtained even if the digital control is performed as an alternative means.

11,41・・・ハイレベル出力用電圧源、16・・・ローレベル出力用電圧源、17,18・・・電圧源、12,15・・・マッチング抵抗、12a,12b,13a,13b・・・スイッチマトリックスを形成するトランジスタ、14・・・終端抵抗、43・・・電流源、61a,61b・・・定電流源、62a,62b・・・PMOSトランジスタ、63a,63b・・・オペアンプ、64a,64b,66a,66b・・・NMOSトランジスタ 11, 41... High level output voltage source, 16... Low level output voltage source, 17, 18... Voltage source, 12, 15... Matching resistor, 12 a, 12 b, 13 a, 13 b. .. Transistors forming a switch matrix, 14... Termination resistor, 43... Current source, 61a, 61b .. constant current source, 62a, 62b... PMOS transistor, 63a, 63b. 64a, 64b, 66a, 66b ... NMOS transistors

Claims (6)

第1の電圧を出力する第1の駆動信号電圧源と、第1の電圧とは異なる第2の電圧を出力する第2の駆動信号電圧源と、各信号電圧源の出力をそれぞれ第1および第2の出力端子に振り分けて出力する出力切り換え手段とを有する低電圧差動信号駆動装置において、少なくても一方の駆動信号電圧源は、電源端子と出力端子の間に設けられた抵抗と、その抵抗に接続された電流源とで構成することを特徴とする低電圧差動信号駆動装置。 A first drive signal voltage source that outputs a first voltage; a second drive signal voltage source that outputs a second voltage different from the first voltage; In the low voltage differential signal driving device having the output switching means for distributing and outputting to the second output terminal, at least one of the driving signal voltage sources includes a resistor provided between the power supply terminal and the output terminal, A low-voltage differential signal driving device comprising a current source connected to the resistor. 前記第1あるいは第2の電圧が所定の電圧値になるように前記電流源の電流値を調整する電流調整手段を有することを特徴とする請求項1記載の低電圧差動信号駆動装置   2. The low-voltage differential signal driving device according to claim 1, further comprising current adjusting means for adjusting a current value of the current source so that the first or second voltage becomes a predetermined voltage value. 前記電流調整手段は電源電圧と前記抵抗の抵抗値に基づいてその電流値を調整することを特徴とする請求項1に記載の低電圧差動信号駆動装置   2. The low voltage differential signal driving device according to claim 1, wherein the current adjusting means adjusts a current value based on a power supply voltage and a resistance value of the resistor. 低電圧差動信号駆動装置と、低電圧差動信号受信装置と、その間を接続する伝送線からなる差動信号伝送システムにおいて、前記低電圧差動信号駆動装置は第1の電圧を出力する第1の駆動信号電源と、第1の電圧とは異なる第2の電圧を出力する第2の駆動信号電源と、各信号電源の出力をそれぞれ第1および第2の出力端子に振り分けて出力する出力切り換え手段とを有し、前記駆動信号電圧源の少なくても一方は、電源と出力端子の間に設けられた伝送線の特性インピーダンスと略同一の抵抗値を有する抵抗と、その抵抗に接続された電流源とで構成することを特徴とする低電圧差動信号伝送システム。   In a differential signal transmission system comprising a low voltage differential signal driving device, a low voltage differential signal receiving device, and a transmission line connecting between the low voltage differential signal driving device, the low voltage differential signal driving device outputs a first voltage. 1 drive signal power supply, a second drive signal power supply for outputting a second voltage different from the first voltage, and an output for distributing the output of each signal power supply to the first and second output terminals, respectively. And at least one of the drive signal voltage sources is connected to a resistor having a resistance value substantially the same as the characteristic impedance of the transmission line provided between the power source and the output terminal, and the resistor. A low-voltage differential signal transmission system comprising a current source. 前記第1あるいは第2の電圧が所定の電圧値になるように前記電流源の電流値を調整する電流調整手段を有することを特徴とする請求項4記載の低電圧差動信号伝送システム   5. The low voltage differential signal transmission system according to claim 4, further comprising current adjusting means for adjusting a current value of the current source so that the first or second voltage becomes a predetermined voltage value. 前記電流調整手段は電源電圧と前記抵抗の抵抗値に基づいてその電流値を調整することを特徴とする請求項4に記載の低電圧差動信号伝送システム   5. The low voltage differential signal transmission system according to claim 4, wherein the current adjusting means adjusts a current value based on a power supply voltage and a resistance value of the resistor.
JP2009008616A 2009-01-19 2009-01-19 Differential signal drive circuit and differential signal transmission system Pending JP2010166472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008616A JP2010166472A (en) 2009-01-19 2009-01-19 Differential signal drive circuit and differential signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008616A JP2010166472A (en) 2009-01-19 2009-01-19 Differential signal drive circuit and differential signal transmission system

Publications (1)

Publication Number Publication Date
JP2010166472A true JP2010166472A (en) 2010-07-29

Family

ID=42582267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008616A Pending JP2010166472A (en) 2009-01-19 2009-01-19 Differential signal drive circuit and differential signal transmission system

Country Status (1)

Country Link
JP (1) JP2010166472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113071A (en) * 2019-04-29 2019-08-09 天津大学 A kind of low-power consumption LVDS circuit based on self-adaptive current adjusting method
CN111865295A (en) * 2019-04-24 2020-10-30 烽火通信科技股份有限公司 Low-voltage differential signal transmitter
JP2023003810A (en) * 2021-06-24 2023-01-17 東芝電波プロダクツ株式会社 Transmitter, wireless device, radar device, and gate control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865295A (en) * 2019-04-24 2020-10-30 烽火通信科技股份有限公司 Low-voltage differential signal transmitter
CN110113071A (en) * 2019-04-29 2019-08-09 天津大学 A kind of low-power consumption LVDS circuit based on self-adaptive current adjusting method
JP2023003810A (en) * 2021-06-24 2023-01-17 東芝電波プロダクツ株式会社 Transmitter, wireless device, radar device, and gate control method

Similar Documents

Publication Publication Date Title
US7528636B2 (en) Low differential output voltage circuit
US9130582B2 (en) Systems and methods for correcting an offset at an output of a digital to analog converter
JP2009152944A (en) Output driver circuit
US20040246613A1 (en) Voltage mode current-assisted pre-emphasis driver
US9083584B2 (en) Common mode modulation with current compensation
US7038502B2 (en) LVDS driver circuit and driver circuit
US8558621B2 (en) Driver amplifier circuit and communication system
CN110932714A (en) SUBLVDS-based transmission interface circuit
JP2010118860A (en) Differential output circuit, and communication device
EP1548944B1 (en) Receiving device
US10848151B1 (en) Driving systems
JP2010166472A (en) Differential signal drive circuit and differential signal transmission system
CN103684347A (en) Adjustable impedance circuit and impedance setting method
US7573298B2 (en) Signal transmission circuit, data transfer control device and electronic device
CN117200783A (en) High-speed driving circuit supporting mutual switching of LVDS transmission protocol and CML transmission protocol
JP2010130697A (en) System and method for transmitting and receiving signal
JP3753712B2 (en) Transmission equipment
JP2005303830A (en) Differential output circuit
US11476839B2 (en) LVDS driver
TWI430563B (en) Signal generating apparatus and method
KR101621844B1 (en) Low voltage differentail signal transmitter
JP3766671B2 (en) Line driver for transmitting data
JP2007325156A (en) Receiving apparatus, and transmission/reception system
US7098701B2 (en) Receiving apparatus and transmission apparatus utilizing the same
JP2018207195A (en) Circuit arrangement and electronic apparatus