TWI303809B - A recording and/or reproducing apparatus and method with a signal quality determining device and method - Google Patents

A recording and/or reproducing apparatus and method with a signal quality determining device and method Download PDF

Info

Publication number
TWI303809B
TWI303809B TW093134223A TW93134223A TWI303809B TW I303809 B TWI303809 B TW I303809B TW 093134223 A TW093134223 A TW 093134223A TW 93134223 A TW93134223 A TW 93134223A TW I303809 B TWI303809 B TW I303809B
Authority
TW
Taiwan
Prior art keywords
signal
value
quality
signal quality
determining
Prior art date
Application number
TW093134223A
Other languages
Chinese (zh)
Other versions
TW200523884A (en
Inventor
Hyun-Soo Park
Jae-Wook Lee
Jae-Seong Shim
Jung-Hyun Lee
Eing-Seob Cho
Eun-Jin Ryu
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200523884A publication Critical patent/TW200523884A/en
Application granted granted Critical
Publication of TWI303809B publication Critical patent/TWI303809B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Error Detection And Correction (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

I3038(^°pifd〇c 九、發明說明: 【發明所屬之技術領域】 本發明涉及具有訊號品質決定裝置的記錄與/或再生 裝置以及其方法,尤其涉及用於決定取自光碟的射頻 (Radio Frequency,RF)訊號的品質的方法與裝置。 【先前技術】 記錄在光碟上的二進制數據能夠被一種具有接收、轉 換和分析一個反射光束之能力的記錄與/或再生裝置所再 生,例如一種能夠把來自光碟的反射光束轉換為電訊號, 對電訊號執行預定的訊號處理過程,並且再生JL訊自的穿 置。由來自光碟的反射光束轉換而得的電訊號被稱為射頻 訊號。由於光碟的特性和光的特性所致,即使記錄在光碟 上的數據是二進制數據(binary data),從光碟獲得的射頻訊 號也疋類比亂5虎。因此’需要用一個二進制化處理過程把 這個類比訊號轉換成一個二進制訊號。 圖1是一個習知的二進制化裝置的方塊圖。這個習知 的一進制化裝置包括一個比較器110和一個低通濾波器 130。比較器110以低通濾波器130提供的標準值為基準把 輸入的射頻訊號二進制化而輸出二進制訊號。比較器 輸出的一進制訊號被輸入至一個鎖相環(phase Locked Loop,PLL)(圖中未顯示)以產生一個系統時脈(ci〇ck)。在 此,射頻δίΐ ί虎與糸統時脈並非精確同步,在射頻訊號和系 統時脈之間有一個小的相位差。這個相位差現象被稱為抖 動(jitter)。 I3038^^°pifd〇c 圖2A和® 2B說明了使用習知的技術時所發生的抖 動。在理想情況下,系統時脈的邊緣與射頻訊號的零交點 (zerocrossingpoint)精確重合’如圖2A所示。然而在實際 情況下,系統時脈的邊緣並非與射頻訊號的零交點重合二 所以顯然有抖動,如圖2B所示。 7 口 依照習知的技術,抖動值,也就是射頻訊號與系統時 脈之間的相位差,可以做為一種衡量尺度用於評價射頻訊 號的品質。當射頻訊號中含有大量噪音訊號時,抖動值會 更大,所以測量抖動值就可以得知射頻訊號的品質。 然而,隨著光碟的數據記錄密度的增加,射頻訊號的 大小已經變得更小了。因此,即使僅有少量噪音訊號也會 產生較大的訊號失真,導致更大的抖動值。而且,隨著光 碟的數據記錄密度的增加,射頻訊號中包含了更多的零交 點,測量抖動值的電路的功能可能會因此而失翁。 【發明内容】 孤 本發明提供了更加精確有效地決定具有高數據記錄密 度的高密度光碟中的訊號的訊號品質的方法和裝置。 本發明的其他目的一部分將敘述於下面的說明之中, 而其餘部分則根據說明可顯而易見,亦可透過實踐本專利 而獲悉。 ^為了貫現上述目的,本發明提出一種決定射頻訊號品 質的,置,包括:一個訊號估值器、一個逾道識別器和一 個品質計算器。訊號估值器根據由射頻訊號獲得的二進制 數據決定一個對應於輸入的射頻訊號的採樣值的位準,並 1303809%疏。 且產生-個對應於所決定的位準的選擇訊號;通道識別哭 根,選擇峨把採樣值分類至多條準,並且獲得被分^ 至每個位準的各個採樣值的平均值;品質計算器根據來自 通道識別H的每娜健和被分魅各個位準的各個採樣 值的平均值產生代表射頻訊號品質的一個訊號品質數值: 上述的通道識別H可以包括㈣平均·^,、這些平 均遽波H分麟受被分類至每恤準的各娜樣值,並且 獲得被分類至每個位準的各個採樣值的平均值。 、此外’上述的平均遽波器可以包括一個低通遽波器。 上述的訊號品質數值可以是根據各個採樣值和被劃分至每 個位準的各個採樣值的平均值計算而得的—個訊噪比 (Signal to Noise Ration,SNR);也可以是根據各個採樣值和 被劃分至每餘準的各個雜值的平均料算而得的一個 絕對訊噪比(Absolute Signal to Noise Ration,ASNR);也可 以是根據各讎樣值和被齡至各條準的各個採樣值的 平均值計算而得的—個峰值絕對訊噪比(ρ^I3038 (^°pifd〇c IX, invention description: [Technical Field] The present invention relates to a recording and/or reproducing apparatus having a signal quality determining apparatus and a method thereof, and more particularly to determining a radio frequency taken from a disc (Radio Frequency, RF) Method and apparatus for quality of signals. [Prior Art] Binary data recorded on a disc can be reproduced by a recording and/or reproducing apparatus having the ability to receive, convert and analyze a reflected beam, for example, Converting the reflected beam from the optical disc into a signal, performing a predetermined signal processing process on the electrical signal, and regenerating the JL signal. The electrical signal converted from the reflected beam from the optical disc is called an RF signal. The characteristics of the light and the characteristics of light, even if the data recorded on the disc is binary data, the RF signal obtained from the disc is similar to the chaos. Therefore, 'this need to use a binarization process to convert this analog signal Into a binary signal. Figure 1 is a block diagram of a conventional binarization device. The conventional singularization device includes a comparator 110 and a low pass filter 130. The comparator 110 binarizes the input RF signal and outputs a binary signal based on the standard value provided by the low pass filter 130. The output semaphore signal is input to a phase locked loop (PLL) (not shown) to generate a system clock (ci〇ck). Here, the RF δίΐ 虎 tiger and the system clock Not exactly synchronous, there is a small phase difference between the RF signal and the system clock. This phase difference phenomenon is called jitter. I3038^^°pifd〇c Figure 2A and ® 2B illustrate the use of conventional The jitter that occurs during the technology. Ideally, the edge of the system clock exactly coincides with the zero crossing point of the RF signal, as shown in Figure 2A. However, in actual situations, the edge of the system clock is not related to the RF signal. The zero crossing point coincides with two, so there is obviously jitter, as shown in Figure 2B. 7 According to the known technique, the jitter value, that is, the phase difference between the RF signal and the system clock, can be used as a measure. It is used to evaluate the quality of RF signals. When the RF signal contains a lot of noise signals, the jitter value will be larger, so the jitter value can be used to know the quality of the RF signal. However, as the data recording density of the CD increases, the RF The size of the signal has become smaller. Therefore, even a small amount of noise signal will cause a large signal distortion, resulting in a larger jitter value. Moreover, as the data recording density of the optical disc increases, the RF signal is included. With more zero-crossing points, the function of the circuit for measuring the jitter value may be lost. [Invention] The invention provides a more accurate and efficient determination of the signal quality of signals in high-density optical discs with high data recording densities. Method and apparatus. The other objects of the present invention will be described in the following description, and the rest will be apparent from the description and may be learned by practicing the patent. In order to achieve the above object, the present invention provides a method for determining the quality of an RF signal, including: a signal estimator, a channel identifier, and a quality calculator. The signal estimator determines a level corresponding to the sampled value of the input RF signal based on the binary data obtained by the RF signal, and is 1303809% sparse. And generating a selection signal corresponding to the determined level; the channel identifies the crying root, selecting 峨 classifying the sampled value into a plurality of levels, and obtaining an average value of each sample value divided into each level; quality calculation The device generates a signal quality value representative of the quality of the radio frequency signal according to the average value of each sample value from each of the channel identification H and each level of the de-emphasis: the above channel identification H may include (4) average · ^, these averages The chopping H is divided into the values of each sample that are classified into each of the shirts, and the average value of each sample value classified to each level is obtained. Further, the above average chopper may include a low pass chopper. The above signal quality value may be calculated as a signal to noise ratio (SNR) according to each sample value and an average value of each sample value divided into each level; or may be based on each sample The value is an Absolute Signal to Noise Ration (ASNR) calculated from the average of each of the miscellaneous values of each margin; or it can be based on each sample value and age to each The average value of each sampled value is calculated as a peak absolute signal-to-noise ratio (ρ^

Signal to Noise Ration,PASNR)。上述的二進制數據也可以 由射頻訊號經過維特比(viterbi)解碼過程而得到。 為了實現上述與/或其他目的,本發明提出一種決定所 輸入的射頻訊號的品質的方法’包括:根據由射頻訊號獲 得的二進制數據決定-個對應於射頻訊號的採樣值的位 準’並且產生-麵應於所蚊的鱗的辦訊號;根據 選擇訊號把採樣值劃分為多個位準,並且獲得每一位準的 各個採樣值的平均值;以及根縣_健和被分類至每 I30380^°pifdoc 個位準的各個採樣值的平均值計算一個代表射頻訊號品質 的訊號品質數值。 類似地,上述方法中的訊號品質數值可以是一個根據 每個採樣值和被劃分至每個位準的各個採樣值的平均值計 算而得的訊噪比(SNR);也可以是一個根據每個採樣值和 被劃分至每個位準的各個採樣值的平均值計算而得的絕對 訊噪比(A SNR);也可以是一個根據每個採樣值和被劃分至 每個位準的各個採樣值的平均值計算而得的峰值絕對訊噪 比(PASNR)。 為了實現上述與/或其他目的,本發明提出一種決定射 頻訊號的品質的裝置,包括一個訊號估值器和一個品質計 算器。訊號估值器接收射頻訊號的二進制數據,並且估算 出射頻訊號的一個數值;品質計算器接收射頻訊號的估算 值,並且計算出代表此射頻訊號品質的一個訊號品質數值。 上述的訊號估值器可以包括一個預定類型的有限脈波 響應(Finite Impulse Response, FIR)濾波器。此外,上述的 §fL號品質數值可以是一個根據射頻訊號和其估算值經計算 而得的SNR;也可以是一個根據射頻訊號和其估算值經計 算而得的ASNR;也可以是一個根據射頻訊號和其估算值 經計算而得的PASNR。 為了實現上述和/或其他目的,本發明提出一種決定射 頻訊號的品質的方法,包括:根據射頻訊號的二進制數據 獲取射頻訊號的估算值,以及使用射頻訊號和其估算值計 鼻出代表此射頻訊號品質的訊號品質數值。 I303809^fd〇c ^述的射頻訊號的估算值的獲取方法可以包括使用一 個預定類型的FIR濾、波器。上述的訊號品質數值可以是一 甸艮據_訊號和其估算值崎算而㈣觀·,也可以是 =固根據__和其估算值經計算而得的asnr;也可 乂疋個根據射頻訊號和其估算值經計算而得的 為了實現上述與/或其他目的,本發明提出一種記錄與 ,二再生裝置,包括:一個訊號檢測單元用於產生代表媒體 奢孔二的個射頻汛號,一個按照本發明的各個實施例構 =號品質決定裝置,以及—個處理單元用於記錄訊息 於媒體與/或再生來自媒體的訊息。 上述的記錄與/或再生裝置還可以包括―個處理器,用 、' =據訊號品質數值執行下列處理中的—種或多種:聚焦 補仏傾=補償、偏離執跡補償與/或記錄訊號的最佳化。 自访實現上述與/或其他目的,本發明提出—種記錄訊 =於媒體與/或再生來自媒體的訊息的方法,包括··產生代 2體的訊息的射頻訊號,按照本發明的各個實施例所述 …、頻魏品質決定方法決定軸喊的品質,以及記錄 汛號於媒體與/或再生來自媒體的訊息。 ” 述方法還了以包括根據汛號品質數值執行下列處理 、種或夕種·聚焦補償、傾斜補償、偏離執 或記錄訊號的最佳化。 只/、 為讓本發明之上述和其他目的、特徵和優點能更明顯 ,下文特舉較佳實施例,並配合所附圖式,作詳細說 啊如下。 Ι3038Θ^〇ρί^〇〇 【實施方式】 圖3是一種訊號品質決定裝置的方塊圖,它表達了本 發明的一個實施例。參見圖3,此種訊號品質決定裝置包 括一個訊號估值器310、一個通道識別器mo與一個品質 計算器350。 ' 以利用其他各種二進制化裝置而制。例如圖8所示的限 幅器770 #輸出訊號也可以作為訊號估值器31()的輸入。 訊號估值器310包含多個延遲單元311至315和一個 訊號估值器310接收二進制數據,這些二進制數據由 射頻訊號按照預定方法經過二進制化而得。為了獲得高品 質的二進制數據,可以使用一個維特比解碼器57〇的輸 出,如圖6所示。也就是說,射頻訊號經過維特比解碼過 程所得的二進制數據可以用作訊號估值器31〇的輸入訊 唬。然而,用作訊號估值器31〇的輸入的二進制數據也可 延遲單元311至315用於延遲輸入Signal to Noise Ration, PASNR). The above binary data can also be obtained by the RF signal passing through the Viterbi decoding process. In order to achieve the above and/or other objects, the present invention provides a method for determining the quality of an input radio frequency signal 'including: determining a level corresponding to a sample value of the radio frequency signal based on binary data obtained from the radio frequency signal and generating - the signal should be applied to the scale of the mosquito; the sampled value is divided into multiple levels according to the selection signal, and the average value of each sample value is obtained; and the root county is classified into each I30380. The average of each sample value in the ^°pifdoc level calculates a signal quality value that represents the quality of the RF signal. Similarly, the signal quality value in the above method may be a signal-to-noise ratio (SNR) calculated from each sample value and an average value of each sample value divided into each level; or may be one according to each The absolute signal-to-noise ratio (A SNR) calculated from the average of each sampled value and the average of each sampled value divided into each level; or a single one based on each sampled value and divided into each level The peak absolute signal-to-noise ratio (PASNR) calculated from the average of the sampled values. In order to achieve the above and/or other objects, the present invention provides an apparatus for determining the quality of a radio frequency signal, comprising a signal estimator and a quality calculator. The signal estimator receives the binary data of the RF signal and estimates a value of the RF signal; the quality calculator receives the estimated value of the RF signal and calculates a signal quality value representative of the quality of the RF signal. The signal estimator described above may include a predetermined type of Finite Impulse Response (FIR) filter. In addition, the above §fL quality value may be an SNR calculated according to the RF signal and its estimated value; or may be an ASNR calculated according to the RF signal and its estimated value; or may be a RF based The calculated PASNR of the signal and its estimate. In order to achieve the above and/or other objects, the present invention provides a method for determining the quality of an RF signal, comprising: obtaining an estimate of the RF signal based on the binary data of the RF signal, and using the RF signal and its estimate to represent the RF. Signal quality value of the signal quality. The method for obtaining the estimated value of the RF signal described in I303809^fd〇c can include using a predetermined type of FIR filter and wave filter. The above signal quality value may be a sensation according to the _ signal and its estimated value (4) view, or may be = solid according to __ and its estimated value obtained by calculation of asnr; The signal and its estimated value are calculated. To achieve the above and/or other purposes, the present invention provides a recording and reproducing apparatus, comprising: a signal detecting unit for generating a radio frequency nickname representing the media luxury hole 2, A method according to various embodiments of the present invention, and a processing unit for recording a message to the media and/or reproducing a message from the media. The above recording and/or reproducing apparatus may further comprise a processor for performing one or more of the following processing with the signal quality value: focus compensation = compensation, deviation from the tracking compensation and/or recording signal Optimization. The self-interview achieves the above and/or other objects, and the present invention provides a method for recording information on a medium and/or reproducing a message from a medium, including: generating a radio frequency signal of a 2-body message, in accordance with various implementations of the present invention As described in the example, the frequency quality determination method determines the quality of the axis, and records the nickname in the media and/or regenerates the message from the media. The method further includes performing the following processing, species or evening focus compensation, tilt compensation, deviation, or recording signal optimization based on the nickname quality value. Only /, for the above and other purposes of the present invention, The features and advantages will be more apparent. The preferred embodiment will be described below, and the detailed description will be made as follows. Ι3038Θ^〇ρί^〇〇[Embodiment] FIG. 3 is a block diagram of a signal quality determining device. It expresses an embodiment of the present invention. Referring to Figure 3, such signal quality determining means includes a signal estimator 310, a channel identifier mo and a quality calculator 350. 'To utilize various other binarization devices For example, the limiter 770 # output signal shown in Figure 8 can also be used as an input to the signal estimator 31(). The signal estimator 310 includes a plurality of delay units 311 to 315 and a signal estimator 310 to receive the binary. Data, which is obtained by binarizing the RF signal according to a predetermined method. To obtain high quality binary data, a Viterbi decoder 57 can be used. The output is shown in Figure 6. That is, the binary data obtained by the Viterbi decoding process of the RF signal can be used as the input signal of the signal estimator 31. However, it is used as the input of the signal estimator 31〇. Binary data can also delay units 311 through 315 for delayed input

選擇訊號產生器317。延: 的二進制數據,其延遲時 選擇訊號產生器317產生 控制通道識別器330。 I30380^°pifd〇c 311〜315的二進制數值,用於決定射頻訊號的每個採樣值 所對應的位準,產生一個對應於所決定的位準的選擇訊 號’並且將這個選擇訊號提供給通道識別器33〇。也就是 說,訊號估值器310用於決定一個位準值,此位準對應於 來自延遲單元333的射頻訊號的採樣值。而且訊號估值器 310還產生一個對應於此位準的選擇訊號。開關339根據 上述的選擇訊號把來自延遲單元333的射頻訊號採樣值饋 至平均滤波器334〜338中與它相對應的一個。The signal generator 317 is selected. The binary data of the delay: the delay selection signal generator 317 generates the control channel identifier 330. The binary value of I30380^°pifd〇c 311~315 is used to determine the level corresponding to each sample value of the RF signal, generate a selection signal corresponding to the determined level' and provide the selection signal to the channel. The recognizer 33〇. That is, the signal estimator 310 is operative to determine a level value that corresponds to the sampled value of the RF signal from the delay unit 333. Moreover, the signal estimator 310 also generates a selection signal corresponding to this level. The switch 339 feeds the RF signal sample value from the delay unit 333 to the corresponding one of the averaging filters 334 to 338 based on the above selection signal.

平均濾波器334〜338產生位準輸出訊號〇至位準輸出 几號m這些位準輸出訊號就是被分類至每個位準的射頻 吼唬的各個採樣值的平均值。平均濾波器334〜338中的每 一個都可以用一個低通濾波器來實現其功能。 公式1是一個範例,它說明如何計算位準輸出訊號〇 至位準輸出訊號m的數值之一。 公式1 : 先前準=先前的鮮+(輯之㈣輸入犯The averaging filters 334 338 338 generate a level output signal 〇 to a level output number m. These level output signals are the average of the respective sample values of the radio frequency 分类 classified into each level. Each of the averaging filters 334-338 can be implemented with a low pass filter. Equation 1 is an example of how to calculate one of the values of the level output signal 〇 to the level output signal m. Formula 1: Previous Quasi = Previous Fresh + (Section (4) Input Penalty

公式1中的常數越大’更新之後的位準中的變化量 t。從岐更新之後的位準緩慢地賴這 使用公式1計算得出的轉錢人到― 如;· 可以改善這轉特轉碼n的-項絲。解碼益 選擇開關34G根據來自選擇訊號產生器317 7虎把位準輸出訊號0至位ψ 1 _ , ' — 輸出訊#bm中的一個饋至品〕 冲…5〇。母個位準輸出訊號分別來自平均濾波; 12 I30380^〇pifdoc 334〜338中的-個。由於位準輸出 =,被分類至去除了噪音的射頻訊 為位準輪出訊號〇至位準輸出 的訊號。 疋往心 因此’品質計算器35〇計算射頻訊號品質時需 ,頻訊號的—個採樣值和賴訊聽樣值的-個估算值,The larger the constant in Equation 1, the amount of change t in the level after the update. The level after the update is slowly dependent on the transferor calculated using Equation 1 to: -; can improve the - item of the transcode n. The decoding benefit selection switch 34G rushes ...5 from the selection signal generator 317 7 to the level output signal 0 to the bit ψ 1 _ , ' - the output message #bm is fed to the product. The mother level output signals are from the average filter; 12 I30380^〇pifdoc 334~338. Because of the level output =, the RF signal that is classified into the noise-removed signal is the signal that is output from the level to the level. Therefore, the quality calculator 35〇 needs to calculate the RF signal quality, the - sample value of the frequency signal and the estimated value of the hearing sample value.

^個估算值就是位準輸出訊號G至位準輸出訊號^此 號中的一個。 '^二A 射頻訊號的品質數值代表射頻訊號的品質。品質計管 器350可以制各種抑的方絲計算射雜號的品質^ 值。例如,成號品質數值可以用一個訊噪比(SNr)來表示, 訊噪比指的是理想訊號的功率與噪音訊號的功率之間 值,如公式2所示。 的比 公式2 : S N R=理想訊號的平方之和/噪音訊號的平方之和 在公式2中,理想訊號代表訊號的估算值,例如位準 輪出訊號0至位準輸出訊號m這些訊號中的一個;α桑音气 號對應於§fl號估异值與真實的射頻訊號採樣值之間"的差 值0 由於公式2包含平方運算,而執行平方運算所需的硬 體的規模較大而且複雜。因此,可以用射頻訊號的峰值振 巾馬來代替公式2中的理想訊號。由於射頻訊號的峰值振^ 數值很少變化,所以實際上不需要針對每個採樣值計^ 峰值振幅數值。因此,實際上不需要大量的硬體或者 13 130380940^^ 時間。由此可ι,-個PSNR可以被用作訊號的品質數值, 如公式3所示。 公式3 : PSNR=輸入訊號之峰值振幅的平方之和/噪音訊號的 平方之和 公式3中的輸入訊號代表射頻訊號,其具有為獲取輸 入訊,峰值振幅而額外輸入到品質計算器的輪入訊^之最 大與最小數值。在圖3所示的實施例中,指定給位準〇的 數值是最小值,而指定給位準m的數值是最大值。 同樣地,只使用理想訊號的絕對值和噪音訊號的絕對 值計算所得的A S N R或只使用輸入訊號的峰值振幅的絕對 值和噪音訊號的絕對值計算所得的PASNR也可以被用作 訊號的品質數值。在這種情況下,由於不需要乘法運算, 所以只需要少量硬體,而且運算時間也減少了。 ASNR和PASNR分別由下列的公式4和公式5來表 達。 公式4 : A S N R=理想訊號的絕對值之和/噪音訊號的絕對值之 和 公式5 : PASNR=輸入訊號的峰值振幅的絕對值之和/嗓音訊 號的絕對值之和 SNR通常用分貝(dB)為单位來表達其數值,這是一種 對數類型的單位。當一個彳艮大的數值出現時,這個數值通 Ι30380^〇ρ^ 常被轉換為以分貝(dB)為單位。因此,如果公式2至5以 分貝(dB)為單位來表達,它們就成為下列的公式6至9。 公式6 : SNR=101〇g1G(理想訊號的平方之和/噪音訊號的平方 之和) 公式7 : PSNR=1〇l〇gio(輸入訊號的峰值振幅的平方之和/噪音 訊號的平方之和) 公式8: · ASNR= 101〇g 1〇(理想訊號的絕對值之和/噪音訊號的絕 對值之和) 公式9: . PASNR= 1 〇l〇gl()(輸入訊號的峰值振幅的絕對值之和/ 噪音訊號的絕對值之和) 如公式3、5、7、9所示,首先要獲得輸入訊號的峰值 振幅。在圖3所示的實施例中,位準〇和位準m也被輸入 給品質計算器350就是為了計算輸入訊號的峰值振幅。 圖4是一個訊號品質決定裝置的方塊圖,它表達了本 β 發明的另一實施例。參見圖4,圖中的訊號品質決定裝置 可以包括一個最大/最小值計算器41〇、多個延遲單元 420〜440、一個訊號估值器450和一個品質計算哭460。 成號估值器450使用某種預定的方法接收由射頻訊號 經二進制化而得到的二進制數據。為了獲得高品質的二^ 制數據,可以使用圖6中所示的維特比解碼器57〇的&出 15 130380940^°° 訊號。也就是說,射頻訊號經過維特比解碼過程所得到的 一進制數據可以用作訊號估值器450的輸入訊號。然而,' 輸入到訊號估值器450的二進制數據也可以利用其:各種 二進制化裝置而得到。例如圖8所示的限幅器77〇的輸出 訊號也可以作為訊號估值器450的輸入訊號。 , 訊號估值器450使用二進制數據得到一個經過估算的 射頻訊號並且輸出至品質計算器460。訊號估值器450可 以用一個有限脈波響應(FIR)濾波器構成。眾所周知,根據 射頻訊號的代碼類型,把二進制數據輸入到一個預定類型 的FIR濾波為可以得到一個經過估算的具有多個位準值的 射頻訊號。 圖5是FIR濾波器的一個實例。參見圖5,此FIR滤 波态包括多個延遲單元451〜453、多個乘法器454〜457以 及一個加法器458。延遲單元451〜453在一個系統時脈單 位延遲二進制輸入訊號。乘法器454〜457的常數al至如 疋包括0在内的實數。加法器458用於加總乘法器454〜457 的輸出。延遲單元的數量,乘法器的數量,多個乘法器 454〜457的常數al至an都可以根據射頻訊號的代碼類型 來決定。 參見圖4,多個延遲單元420〜440使來自於訊號估值 器450的經過估算的射頻訊號與實際的射頻訊號同步。 品質計算器460根據來自訊號估算器450的經過估算 的射―頻訊號以及與經過估算的射頻訊號同步的實際射頻訊 號,並且使用公式2〜9中的某一個公式來計算射頻訊號的 16 I3O380^°pifd〇c 品質數值。 按照公式3、5、7和9 ’首先要獲得輸入訊號的峰值 振幅。在圖4所示的訊號品質決定裝置中,最大/最小值計 算器410用於計算射頻訊號的最大值和最小值,計算所得 的最大值和最小值被輸入到品質計算器460。如果使用公 式3、5、7和9以外的公式來計算射頻訊號的品質數值, 則不需要最大/最小值計算器410。 圖6是一個二進制數據檢測裝置的方塊圖,它表達了 本發明的一個實施例。這個二進制數據檢測裝置包含一個 訊號品質決定裝置590。參見圖6,這個二進制數據檢測裝 置可以包含一個類比數位轉換器(anal〇g_t〇_digi賊 ADC)510、一個直流(DC)偏移量補償器53()、一個適應性 (adaptive) FIR濾波器550、一個維特比解碼器57〇,以及 一個訊號品質決定裝置590。 ADC51G按照預定的週期對射頻訊號採樣並且輸出採 樣後的射頻訊號。直流(DC)偏移量補償器53〇接收 ADC510的經過採樣的射頻訊號並且補償一個吉油^ The estimated value is one of the level output signal G to the level output signal ^. The quality value of the '^2A RF signal represents the quality of the RF signal. The quality meter 350 can be used to calculate the quality of the number of the squares. For example, the quality value of the number can be expressed by a signal-to-noise ratio (SNr), which is the value between the power of the ideal signal and the power of the noise signal, as shown in Equation 2. Ratio 2: SNR = sum of the squares of the ideal signals / the sum of the squares of the noise signals. In Equation 2, the ideal signal represents the estimated value of the signal, such as the level 0 signal to the level output signal m. One; the alpha sang horn corresponds to the difference between the §fl estimator and the actual RF signal sample value. Since Equation 2 contains a square operation, the hardware required to perform the squaring operation is larger. And complicated. Therefore, the peak signal of the RF signal can be used instead of the ideal signal in Equation 2. Since the peak value of the RF signal rarely changes, there is virtually no need to calculate the peak amplitude value for each sample value. Therefore, a large amount of hardware or 13 130380940^^ time is not actually required. Thus, the PSNR can be used as the quality value of the signal, as shown in Equation 3. Equation 3: PSNR = sum of the squares of the peak amplitudes of the input signals / the sum of the squares of the noise signals. The input signal in Equation 3 represents the RF signal, which has the additional input to the quality calculator for the input signal, peak amplitude. The maximum and minimum values of the signal ^. In the embodiment shown in Fig. 3, the value assigned to the level 是 is the minimum value, and the value assigned to the level m is the maximum value. Similarly, the PASNR calculated using only the absolute value of the ideal signal and the absolute value of the noise signal or the absolute value of the peak amplitude of the input signal and the absolute value of the noise signal can also be used as the quality value of the signal. . In this case, since no multiplication operation is required, only a small amount of hardware is required, and the operation time is also reduced. ASNR and PASNR are expressed by Equation 4 and Equation 5, respectively, below. Equation 4: ASNR = sum of absolute values of ideal signals / sum of absolute values of noise signals Equation 5: PASNR = sum of absolute values of peak amplitudes of input signals / sum of absolute values of arpeggio signals SNR is usually in decibels (dB) The unit is used to express its value, which is a unit of logarithmic type. When a large value appears, this value is usually converted to decibels (dB) by 30380^〇ρ^. Therefore, if Equations 2 to 5 are expressed in decibels (dB), they become the following Equations 6 to 9. Equation 6: SNR=101〇g1G (sum of squares of ideal signals/square of noise signal) Equation 7: PSNR=1〇l〇gio (sum of the square of the peak amplitude of the input signal/sum of the square of the noise signal Equation 8: · ASNR = 101〇g 1〇 (sum of the absolute value of the ideal signal / the sum of the absolute values of the noise signal) Equation 9: . PASNR = 1 〇l〇gl() (absolute of the peak amplitude of the input signal) The sum of the values / the sum of the absolute values of the noise signals. As shown in Equations 3, 5, 7, and 9, the peak amplitude of the input signal is first obtained. In the embodiment shown in Fig. 3, the level 〇 and level m are also input to the quality calculator 350 in order to calculate the peak amplitude of the input signal. Figure 4 is a block diagram of a signal quality determining apparatus which expresses another embodiment of the present invention. Referring to Fig. 4, the signal quality determining apparatus in the figure may include a maximum/minimum value calculator 41, a plurality of delay units 420 to 440, a signal estimator 450, and a quality calculation cry 460. The number estimator 450 receives the binary data obtained by binarization of the RF signal using some predetermined method. In order to obtain high-quality binary data, the & 15 130380940^° signal of the Viterbi decoder 57 shown in Fig. 6 can be used. That is to say, the binary data obtained by the Viterbi decoding process of the RF signal can be used as the input signal of the signal estimator 450. However, the binary data input to the signal estimator 450 can also be obtained using it: various binarization devices. For example, the output signal of the limiter 77A shown in Fig. 8 can also be used as the input signal of the signal estimator 450. The signal estimator 450 uses the binary data to obtain an estimated RF signal and outputs it to the quality calculator 460. The signal estimator 450 can be constructed with a finite pulse wave response (FIR) filter. It is well known that, depending on the type of the RF signal, the binary data is input to a predetermined type of FIR filter to obtain an estimated RF signal having a plurality of levels. Fig. 5 is an example of an FIR filter. Referring to Fig. 5, the FIR filter state includes a plurality of delay units 451 to 453, a plurality of multipliers 454 to 457, and an adder 458. Delay units 451 through 453 delay binary input signals in a system clock unit. The constant a1 of the multipliers 454 to 457 is a real number such as 0. Adder 458 is used to sum the outputs of multipliers 454-457. The number of delay units, the number of multipliers, and the constants a1 to an of the plurality of multipliers 454 to 457 can be determined according to the code type of the RF signal. Referring to Figure 4, a plurality of delay units 420-440 synchronize the estimated RF signals from signal estimator 450 with the actual RF signals. The quality calculator 460 calculates the RF signal of the 16 I3O380 based on the estimated radio frequency signal from the signal estimator 450 and the actual radio frequency signal synchronized with the estimated radio frequency signal, and using one of the formulas 2-9. °pifd〇c Quality value. The peak amplitude of the input signal is first obtained according to Equations 3, 5, 7, and 9. In the signal quality determining apparatus shown in Fig. 4, the maximum/minimum value calculator 410 is used to calculate the maximum value and the minimum value of the radio frequency signal, and the calculated maximum value and minimum value are input to the quality calculator 460. If the formula other than Equations 3, 5, 7, and 9 is used to calculate the quality value of the RF signal, the maximum/minimum calculator 410 is not required. Figure 6 is a block diagram of a binary data detecting apparatus which expresses an embodiment of the present invention. This binary data detecting means includes a signal quality determining means 590. Referring to FIG. 6, the binary data detecting apparatus may include an analog-to-digital converter (anal〇g_t〇_digi thief ADC) 510, a direct current (DC) offset compensator 53 (), and an adaptive FIR filter. The device 550, a Viterbi decoder 57A, and a signal quality determining device 590. The ADC 51G samples the RF signal according to a predetermined period and outputs the sampled RF signal. A direct current (DC) offset compensator 53 receives the sampled RF signal of the ADC 510 and compensates for a yoke

特比解竭器570匹配。 維特比解碼器570根據射頻訊號 數據。從紐瓶切缺_ 據⑶訊號的統計特性而論 的位準值產生二進制 如此產生的二進制數 17 I30380^〇 pif.doc 圖3或者圖4所示的訊號品質決定裝置都可以作為圖 6中的訊號品質決定裝置590。然而,在這種電路佈局中, 由於維特比解碼器570需要一個最佳位準值,所以,為了 改善再生訊號的品質,最好是使用圖3所示的訊號品質決 定裝置。 ' 圖7表達了本發明的另一實施例。這是一個二進制數 據檢測裝置的方塊圖,它包含一個訊號品質決定裝置 690。在圖7所示的二進制數據檢測裝置中,由於可以認為 來自用於匹配的FIR濾波器650的訊號的通道特性是固^ 的,所以在這種電路佈局中,最好是使用圖4所示的訊號 品質決定裝置作為訊號品質決定裝置69〇,而不是圖3所 不的訊號品質決定裝置。然而,如果使用圖3所示的訊號 品質決定裝置,也可以利用這種訊號品質決定裝置獲得一 個最佳位準值並且把這個最佳位準值輸入到維特比解碼 器,這樣仍然可以得到最佳性能。 圖8表達了本發明的另一實施例。這是一個二進制數 據檢測裝置的方塊圖,它包含一個訊號品質決定裝置 790。這種二進制數據檢測裝置不使用維特比解碼器,它使 用另一種二進制化裝置來檢測二進制數據。根據二進制訊 號的代碼狀態,可以使用一個能鑑別射頻訊號符號的簡單 劃分器(slicer)作為二進制化裝置,也可以使用一個具有一 種能剔除不適合某種代碼狀態的二進制訊號的電路架構的 運算長度校正器作為二進制化裝置。圖8所示的二進制數 據檢測裝置採用了一個劃分器770。 I3038094〇pifd〇c 在圖8所不的二進制數據檢測裳置中处 頻訊號的估值較為精確,所以在 ,求射 使用圖3所示的訊號品質決定裳置。,° ,取好是 號品質決定裝置也能使用。 “、、、,圖4所示的訊 定-:士:Ϊ光=3明的各個實施例’可以精確地決 因此,亡種射猫/走私U再生而得到的射頻訊號的品質。 因此’延種射頻訊號的品質能夠用於 【 9,ϋ種⑽生裝置的方塊圖。參見圖 !,二如是-個讀取頭(piekup)、—個控制單/2 ==The special depletion device 570 is matched. Viterbi decoder 570 is based on radio frequency signal data. From the blank bottle _ According to the statistical characteristics of the (3) signal, the level value produces the binary number thus generated. 17 I30380^〇pif.doc The signal quality determining device shown in Figure 3 or Figure 4 can be used as Figure 6 The signal quality determining device 590. However, in this circuit layout, since the Viterbi decoder 570 requires an optimum level value, in order to improve the quality of the reproduced signal, it is preferable to use the signal quality decision device shown in Fig. 3. Figure 7 shows another embodiment of the invention. This is a block diagram of a binary data detection device that includes a signal quality determining device 690. In the binary data detecting apparatus shown in FIG. 7, since the channel characteristic of the signal from the matching FIR filter 650 can be considered to be fixed, in this circuit layout, it is preferable to use FIG. The signal quality determining device is used as the signal quality determining device 69 instead of the signal quality determining device shown in FIG. However, if the signal quality determining device shown in FIG. 3 is used, it is also possible to obtain an optimum level value by using the signal quality determining device and input the optimal level value to the Viterbi decoder, so that the most Good performance. Figure 8 illustrates another embodiment of the invention. This is a block diagram of a binary data detection device that includes a signal quality determining device 790. This binary data detecting device does not use a Viterbi decoder, which uses another binarization device to detect binary data. Depending on the code status of the binary signal, a simple slicer that can identify the RF signal symbol can be used as a binarization device, or an operation length correction with a circuit architecture that can eliminate binary signals that are not suitable for a certain code state can be used. As a binarization device. The binary data detecting apparatus shown in Fig. 8 employs a divider 770. I3038094〇pifd〇c The value of the frequency signal is more accurate in the binary data detection and display in Figure 8. Therefore, the signal quality determined by the signal quality shown in Figure 3 is determined. , °, take the good quality control device can also be used. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The quality of the extended RF signal can be used for the block diagram of [9] (10) device. See figure!, the second is - a read head (piekup), a control list / 2 ==

憶體3。記錄/讀出輩开】0 1U 再生光碟10上的數據。*务明的各個實施例記錄/ ,似地I使用一個代表射頻訊號品質的品質計算數 及==^聚焦補償、傾斜補償、偏離軌跡補償,以 ί ft5虎的敢佳化,例如’在圖9所示的記錄與/或再生 裝置中就可以執行這些處理過程。 ^補射_下財縣執行:麵—舰電腦測 里由^個不同的聚焦位置所得到的訊號的品質,並且把焦 點调^到-個能獲得最佳品質的位置。傾斜補償、偏離執 跡補償以及記錄訊號的最佳化也都可以用類似的方法來執 订。而且,如果採取一種用射頻訊號的絕對值和經過估值 後的射頻訊號的絕對值來決定射頻訊號品質的方法,則只 需要少量的硬體和簡單的計算過程。 雖然本發明已以較佳實施例揭露如上,然其並非用以 19 I3038094〇piw〇c 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是一種習知的二進制化裝置的方塊圖。 圖2A與圖2B用於說明因使用習知技術而產生的抖 動0 圖3是一種訊號品質決定裝置的方塊圖,用於表達 發明的一個實施例。 、 圖4是一種訊號品質決定裝置的方塊圖,用於表 發明的另一個實施例。 圖5是有限脈波響應(FIR)濾波器的實例之一。 含一個訊號品質決定襄置的二進制數據 置的方塊圖’用於表達本發明的—個實施例。 圖7是-種包含-個訊號品質決定裳 檢測裝置的方塊圖,表達本發明的另_崎=數據 圖8是-種包含-個訊號品質決定裳置的 檢測錢=,^於錢本發_又—_施例 架構=圖疋。實施本㈣的記錄與/或再生襄置的 【主要元件符號說明】 110 :比較器 130 :低通濾波器 310、450 ·•訊號估值器 20 13 03 80 分0pif d〇c 311 〜315、331 〜333、420〜440、451 〜453 :延遲單 317 :選擇訊號發生器產生器 330 :通道識別器 334〜338 :平均濾波器 339、340 ··開關 350、460 :品質計算器 410 :最大/最小值計算器 454〜457 :乘法器 458 :加法器 510、610、710 :類比數位轉換器 530、630、730 :直流偏移量補償器 550、650 :適應性有限脈波響應濾波器 570、670 ··維特比解碼器 590、690、790 :訊號品質決定裝置 750 :有限脈波響應濾波器 770 :劃分器 1 :記錄/讀出單元 2:控制單元 3 :記憶體 10 :光碟 21Recalling body 3. Record/read generation] 0 1U Reproduces the data on the disc 10. * The various embodiments of the record record /, I use a quality calculation number representing the quality of the RF signal and ==^ focus compensation, tilt compensation, off-track compensation, to ί ft5 tiger's dare, such as 'in the figure These processes can be performed in the recording and/or reproducing apparatus shown in FIG. ^ 补射_下财县Execution: Face-to-ship computer measurement The quality of the signal obtained by ^ different focus positions, and the focus is adjusted to a position where the best quality can be obtained. Tilt compensation, off-track compensation, and optimization of recorded signals can all be performed in a similar manner. Moreover, if a method of determining the quality of the RF signal using the absolute value of the RF signal and the absolute value of the RF signal after the evaluation is used, only a small amount of hardware and a simple calculation process are required. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention to the invention, and it is possible to make some changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a conventional binarization apparatus. 2A and 2B are diagrams for explaining the jitter generated by the use of the conventional technique. Fig. 3 is a block diagram of a signal quality determining apparatus for expressing an embodiment of the invention. 4 is a block diagram of a signal quality determining apparatus for illustrating another embodiment of the invention. Figure 5 is one example of a finite pulse wave response (FIR) filter. A block diagram of a binary data set containing a signal quality decision is used to express an embodiment of the present invention. Figure 7 is a block diagram of a signal-detecting device for detecting a hair quality, and the other data representing the present invention is shown in Figure 8 as a test for the quality of the signal. _又—_Example structure=图疋. [Main component symbol description] of the recording and/or reproducing device of the present invention (4) 110: Comparator 130: low-pass filter 310, 450 • Signal estimator 20 13 03 80 points 0pif d〇c 311 ~ 315, 331 to 333, 420 to 440, 451 to 453: delay single 317: selection signal generator generator 330: channel identifiers 334 to 338: averaging filters 339, 340 · · switches 350, 460: quality calculator 410: maximum /minimum calculators 454 to 457: multiplier 458: adders 510, 610, 710: analog-to-digital converters 530, 630, 730: DC offset compensators 550, 650: adaptive finite pulse response filter 570 670 · Viterbi decoder 590, 690, 790: signal quality determining device 750: finite pulse wave response filter 770: divider 1: recording/reading unit 2: control unit 3: memory 10: optical disk 21

Claims (1)

!3〇38〇9 修正本 修正日期:97年8月15日 十、申請專利範圍: 1·一種射頻訊號品質決定襞置,包括: -訊號估值n,用錄據從—射頻峨崎的 數據決定-對應於輸入的該射頻訊號的一採樣值的位準, 並且產生一對應於所決定的位準的選擇訊號; 一通道識別器,用以根據上述選擇訊號將採樣值分類 至夕個位準,並且獲取被分類至每個位準的各採 均值;以及 t 一品質計算器,用以根據上述通道識別器所輸出的每 個採樣值和被分類至每個位準的各採樣值的平均值計算一 代表射頻訊號品質的訊號品質數值。 2·如申請專利範圍第1項所述的射頻訊號品質決定裝 置,其中所述的通道識別器包括多個平均濾、波器,這些平 均濾波器分別用以接收被分類至各位準的各採樣值,並且 獲取被分類至各位準的各採樣值的平均值。 3·如申請專利範圍第2項所述的射頻訊號品質決定裝 置,其中所述的平均濾波器包括一低通濾波器。 4·如申請專利範圍第1項所述的射頻訊號品質決定裝 置,其中所述的訊號品質數值是根據每個採樣值和被分類 至各位準的這些採樣值的平均值計算所得的一信噪比 (SNR) 〇 5.如申請專利範圍第1項所述的射頻訊號品質決定裝 置,其中所述的訊號品質數值是根據每個採樣值和被分類 至各位準的這些採樣值的平均值計算所得的一絕對信噪比 22!3〇38〇9 Amendment of this amendment date: August 15, 1997 X. Patent application scope: 1. A radio frequency signal quality decision device, including: - Signal evaluation n, with the record from - RF Miyazaki Determining a level corresponding to a sampled value of the input RF signal, and generating a selection signal corresponding to the determined level; a channel identifier for classifying the sampled value according to the selection signal to the evening Leveling, and obtaining each of the average values classified to each level; and t-quality calculator for each sample value outputted by the channel identifier and each sample value classified to each level The average value is calculated as a signal quality value representing the quality of the RF signal. 2. The radio frequency signal quality determining apparatus according to claim 1, wherein the channel identifier comprises a plurality of averaging filters and waves, and the averaging filters are respectively configured to receive the samples classified to the respective standards. The value, and the average value of each sample value classified to each other is obtained. 3. The RF signal quality determining device of claim 2, wherein the averaging filter comprises a low pass filter. 4. The radio frequency signal quality determining apparatus according to claim 1, wherein the signal quality value is a signal noise calculated according to an average value of each sampled value and the sampled values classified to each other. (RF) 〇 5. The radio frequency signal quality determining apparatus according to claim 1, wherein the signal quality value is calculated based on each sample value and an average value of the sample values classified to each other. The resulting absolute signal to noise ratio 22 (ASNR) ο 置,A巾1項所述的咖碱品質決定筆 至各位準的 j值—個祕值和被分類 噪比_NR) 的平均值計算所得的—峰值絕對信 詈,^1巾料利範圍第1項所述的射頻減品質決定裝 L 所述的二進制數據是由所述的射頻訊號經過 比解碼過程所得。 、、寻 8·一種決定輪入射頻訊號的訊號品質的方法,包括: 根據從射頻訊號所得的二進制數據決定一對應於射頻 訊號的一採樣值的位準,並且產生一對應於所決定的位準 的選擇訊號; 根據上述選擇訊號將採樣值分類至多個位準,並且獲 取被分類至每個位準的各採樣值的平均值;以及 根據各採樣值和被分類至每個位準的這些採樣值的平 均值計算一代表射頻訊號品質的訊號品質數值。 9·如申請專利範圍第8項所述的決定輸入射頻訊號的 訊號品質的方法,其中所述的訊號品質數值是根據各採樣 值和被分類至各位準的這些採樣值的平均值計异所得的一 信噪比(SNR)。 10·如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法,其中所述的訊號品質數值是根據各採 樣值和被分類至各位準的這些採樣值的平均值計算所得的 一絕對信噪比(ASNR)。 23 13〇3靴_ 〕 • ' ' . ; ; i Π·如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法,其中所述的訊號品質數值是根據各採 樣值和被分類至各位準的這些採樣值的平均值計算所得的 一峰值絕對信噪比(PASNR)。 12·如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法,其中所述的二進制數據是由所述的射 頻訊號經過維特比解碼過程所得。 13·—種射頻訊號品質決定裝置,包括: 一訊號估值器,用於接收一射頻訊號的二進制數據並 且估算此射頻訊號的一個數值;一最大/最小值計算器,其 接收所述的射頻訊號並計算所述的射頻訊號的一最大值和 一最小值;以及 一品質計算器,用於接收所述的射頻訊號的估算值, 所述的射頻訊號,所述的射頻訊號的最大值和所述的射頻 訊號的最小值,並且使用所述的射頻訊號的估算值,所述 的射頻訊號,所述的射頻訊號的最大值和所述的射頻訊號 的最小值以計算代表所述射頻訊號的品質的一訊號品質數 值。 14·如申請專利範圍第13項所述的射頻訊號品質決定 裝置,其中所述的訊號估值器包括一預定類型的有限脈波 響應(FIR)濾波器。 15·如申請專利範圍第13項所述的射頻訊號品質決定 裝置,其中所述的訊號品質數值是根據所述的射頻訊號的 估算值和所述的射頻訊號計算所得的一信嗓比(SNR)。 24 16·如申請專利範園第13項所述的射頻訊號品質決定 裝置,其中所述的訊號品質數值是根據所述的射頻訊號的 估算值和所述的射頻訊號計算所得的一絕對信嗓比 (ASNR) 〇 17·如申請專利範圍第13項所述的射頻訊號品質決定 裝置,其中所述的訊號品質數值是根據所述的射頻訊號的 估算值和所述的射頻訊號計算所得的一峰值絕對信噪比 (PASNR) 〇 18·如申請專利範圍第13項所述的射頻訊號品質決定 裝置,其中所述的二進制數據是由所述的射頻訊號經過維 特比解碼過程所得。 19.一種決定射頻訊號的訊號品質的方法,包括: 根據所述射頻訊號的二進制數據獲取所述射頻訊號的 估算值; 計算所述射頻訊號的一最大值和一最小值; 根據所述射頻訊號的估算值,所述射頻訊號,所述射 頻訊號的最大值和所述射頻訊號的最小值以計算代表所述 射頻訊號的品質的一訊號品質數值。 20·如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法,其中所述的射頻訊號的估算值的獲取方法 包括使用一種預定類型的有限脈波響應(F1R)濾波器來獲 取射頻訊號的估算值。 21·如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法,其中所述的訊號品質數值是根據所述的射 25 Ι3_ϋ 2頁訊號的估算值和所述的射頻訊號計算所得的一信噪比 〇 22.如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法,其中所述的訊號品質數值是根據所述的射 頻訊號的估算值和所述的射頻訊號計算所得的一絕對传# 比(ASNR)。 "本 口口 23·如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法,其中所述的訊號品質數值是根據所述的射 頻訊號的估算值和所述的射頻訊號計算所得的一蜂值絕對 信噪比(PASNR)。 24·如申請專利範圍第19項所述的決定射頻訊號的訊 琥品質的方法,其中所述的二進制數據是由所述的射頻訊 號經過維特比解碼過程所得。 25·—種記錄與/或再生裝置,包括·· 一訊號檢測單元,用於產生一射頻訊號,此射頻訊號 用於代表一媒體的訊息; 一如申請專利範圍第1項所述的射頻訊號品質決定裝 置;以及 一處理單元,用於記錄訊息於媒體與/或再生來自媒體 的訊息。 26·如申請專利範圍第25項所述的記錄與/或再生裝 置,更包括一處理器,用於根據訊號品質數值執行下列處 理中的一種或多種:聚焦補償、傾斜補償、偏離執跡補償 與/或記錄訊號的最佳化。 26 27·—種記錄與/或再生裝置,包括: -訊號檢測單元,用於產生-射賴號,此射頻訊號 用於代表一媒體的訊息; -如申請專利範圍第13項所述的射頻訊號品質決定 裝置;以及 〆處理單7G ’用於記錄訊息於魏與/或再生來自媒體 的訊息。 28·如申咕專利範圍苐27項所述的記錄與/或再生裝 置,更包括一處理器,用於根據訊號品質數值執行下列處 理中的-種或多種:聚焦補償、傾斜補償、偏離軌跡補償 與/或記錄訊號的最佳化。 29. —種記錄訊息於媒體與/或再生來自媒體的訊息的 方法,包括·· 產生一射頻訊號,此射頻訊號用於代表所述媒體的訊 息; 使用如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法來決定此輸入射頻訊號的訊號品質;以 及 、 記錄訊息於媒體與/或再生來自媒體的訊息。 、30·如專利申請範圍第29項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,更包括根據訊號品質數值 執行下列處理中的一種或多種··聚焦補償、傾斜補償、偏 離執跡補償與/或記錄訊號的最佳化。 31·如專利申請範圍第29項所述的記錄訊息於媒體與/ 27(ASNR) ο, the quality of the alkaloids described in item 1 of the A towel determines the average value of the j-value of the pen to the standard - the secret value and the classified noise ratio _NR) - the peak absolute signal, ^1 The binary data described in the radio frequency depreciation determination device described in item 1 of the scope of the towel is obtained by the radio frequency signal through the ratio decoding process. And a method for determining the quality of the signal of the RF signal, comprising: determining a level corresponding to a sample value of the RF signal based on the binary data obtained from the RF signal, and generating a corresponding bit corresponding to the determined value a quasi-selection signal; classifying the sampled values into a plurality of levels according to the selection signal, and obtaining an average value of each sampled value classified to each level; and according to each sampled value and the ones classified to each level The average of the sampled values calculates a signal quality value that represents the quality of the RF signal. 9. The method for determining the signal quality of an input RF signal as described in claim 8 of the patent application, wherein the signal quality value is calculated based on each sampled value and an average value of the sampled values classified to the respective standards. A signal to noise ratio (SNR). 10. The method for determining the signal quality of an input RF signal as described in claim 8 of the patent application, wherein the signal quality value is calculated based on each sampled value and an average of the sampled values classified to the respective standards. An absolute signal to noise ratio (ASNR). 23 13〇3靴_ 〕 • ' ' . ; ; i Π · The method of determining the signal quality of the input RF signal as described in item 8 of the patent application, wherein the signal quality value is based on each sample value and A peak-to-peak absolute signal-to-noise ratio (PASNR) calculated from the average of these sampled values. 12. The method of determining the quality of an input RF signal as recited in claim 8 wherein said binary data is obtained by said Viterbi decoding process. 13. The RF signal quality determining device comprises: a signal estimator for receiving binary data of an RF signal and estimating a value of the RF signal; and a maximum/minimum calculator receiving the RF And calculating a maximum value and a minimum value of the RF signal; and a quality calculator for receiving the estimated value of the RF signal, the RF signal, and the maximum value of the RF signal The minimum value of the radio frequency signal, and using the estimated value of the radio frequency signal, the radio frequency signal, the maximum value of the radio frequency signal, and the minimum value of the radio frequency signal to calculate the representative radio frequency signal The quality of a signal quality value. 14. The RF signal quality determining apparatus of claim 13, wherein the signal estimator comprises a predetermined type of finite impulse response (FIR) filter. The RF signal quality determining device according to claim 13, wherein the signal quality value is a signal-to-noise ratio (SNR) calculated according to the estimated value of the RF signal and the RF signal. ). 24 16 . The RF signal quality determining device according to claim 13 , wherein the signal quality value is an absolute signal calculated according to the estimated value of the RF signal and the RF signal. The radio frequency signal quality determining apparatus according to claim 13, wherein the signal quality value is calculated based on the estimated value of the radio frequency signal and the radio frequency signal. The peak signal-to-noise ratio (PASNR) 〇18. The radio frequency signal quality determining apparatus according to claim 13, wherein the binary data is obtained by the Viterbi decoding process by the radio frequency signal. A method for determining a signal quality of an RF signal, comprising: obtaining an estimated value of the RF signal according to binary data of the RF signal; calculating a maximum value and a minimum value of the RF signal; The estimated value, the RF signal, the maximum value of the RF signal, and the minimum value of the RF signal to calculate a signal quality value representative of the quality of the RF signal. 20. The method of determining the signal quality of an RF signal as described in claim 19, wherein the method for obtaining an estimate of the RF signal comprises using a predetermined type of finite pulse wave response (F1R) filter to obtain Estimated value of the RF signal. 21. The method for determining the signal quality of an RF signal according to claim 19, wherein the signal quality value is calculated according to the estimated value of the 25 Ι3_ϋ 2 page signal and the RF signal. A signal-to-noise ratio 〇 22. The method for determining the signal quality of an RF signal according to claim 19, wherein the signal quality value is based on the estimated value of the RF signal and the RF signal Calculate the resulting absolute pass ratio (ASNR). "本口口23. The method for determining the signal quality of an RF signal as described in claim 19, wherein the signal quality value is calculated based on the estimated value of the RF signal and the RF signal. The resulting one is the absolute signal to noise ratio (PASNR). 24. The method of determining the quality of an RF signal as recited in claim 19, wherein said binary data is obtained by said Vit. A recording and/or reproducing device, comprising: a signal detecting unit for generating an RF signal, the RF signal being used to represent a message of a medium; and the RF signal as described in claim 1 a quality determining device; and a processing unit for recording messages to the media and/or reproducing messages from the media. 26. The recording and/or reproducing apparatus of claim 25, further comprising a processor for performing one or more of the following processing based on the signal quality value: focus compensation, tilt compensation, offset deviation compensation And / or record the optimization of the signal. 26 27·- Recording and/or reproducing device, comprising: - a signal detecting unit for generating a - shooting signal, the RF signal is used to represent a message of a medium; - a radio frequency as claimed in claim 13 The signal quality determining device; and the processing unit 7G' is used to record messages in Wei and/or regenerate messages from the media. 28. The recording and/or reproducing apparatus of claim 27, further comprising a processor for performing one or more of the following processing based on the signal quality value: focus compensation, tilt compensation, off-track Optimization of compensation and / or recording signals. 29. A method of recording information in a medium and/or reproducing a message from a media, comprising: generating an RF signal, the RF signal being used to represent a message of the media; using a method as described in claim 8 Determining the signal quality of the input RF signal to determine the signal quality of the input RF signal; and, recording the message to the media and/or reproducing the message from the media. 30. The method for recording information in the media and/or reproducing information from the media as described in claim 29 of the patent application scope, and further comprising performing one or more of the following processing according to the signal quality value: · focus compensation, tilt compensation, Deviation from the pursuit of compensation and / or recording signal optimization. 31. Record the information as described in item 29 of the patent application on the media and / 27 或再生來自媒體的訊息的方法,其中的訊號品質數值是一 絕對信噪比(ASNR),而且此絕對信噪比(ASNR)的計算只 限於使用每個採樣值的絕對值和被分類至每個位準的各採 樣值的平均值。 32· —種記錄訊息於媒體與/或再生來自媒體的訊息的 方法,包括: 產生一射頻訊號,此射頻訊號用於代表所述媒體的訊 息; 使用如專利申請範圍第19項所述的決定射頻訊號的 訊號品質的方法來決定此輸入射頻訊號的訊號品質;以及 記錄訊息於媒體與/或再生來自媒體的訊息。 33·如專利申請範圍第32項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,更包括根據所述的訊號品 質數值執行下列處理中的一種或多種:聚焦補償、傾斜補 償、偏離軌跡補償與/或記錄訊號的最佳化。 34·如專利申請範圍第32項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,其中的訊號品質數值是一 絕對信噪比(ASNR),而且此絕對信噪比(ASNR)的計算只 限於使用每個採樣值的絕對值和被分類至每個位準的各採 樣值的平均值。 28Or a method of reproducing a message from a medium, wherein the signal quality value is an absolute signal to noise ratio (ASNR), and the calculation of the absolute signal to noise ratio (ASNR) is limited to using the absolute value of each sample value and is classified into each The average of each sampled value. 32. A method of recording information in a medium and/or reproducing a message from a media, comprising: generating an RF signal for representing a message of the media; using a decision as set forth in claim 19 of the scope of the patent application The signal quality of the RF signal determines the signal quality of the input RF signal; and records the message to the media and/or regenerates the message from the media. 33. The method of recording information in a medium and/or reproducing a message from a media as described in claim 32 of the patent application, further comprising performing one or more of the following processing according to the signal quality value: focus compensation, tilt compensation Off-track compensation and/or optimization of recorded signals. 34. A method of recording information in a medium and/or reproducing a message from a medium as recited in claim 32, wherein the signal quality value is an absolute signal to noise ratio (ASNR) and the absolute signal to noise ratio (ASNR) The calculation is limited to using the absolute value of each sampled value and the average of each sampled value classified to each level. 28
TW093134223A 2003-11-11 2004-11-10 A recording and/or reproducing apparatus and method with a signal quality determining device and method TWI303809B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030079595 2003-11-11
KR1020040064227A KR101029070B1 (en) 2003-11-11 2004-08-16 Apparatus and method of determining quality of signal

Publications (2)

Publication Number Publication Date
TW200523884A TW200523884A (en) 2005-07-16
TWI303809B true TWI303809B (en) 2008-12-01

Family

ID=37245433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093134223A TWI303809B (en) 2003-11-11 2004-11-10 A recording and/or reproducing apparatus and method with a signal quality determining device and method

Country Status (5)

Country Link
KR (1) KR101029070B1 (en)
CN (1) CN1868154B (en)
HK (1) HK1099426A1 (en)
MY (1) MY150263A (en)
TW (1) TWI303809B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578839B2 (en) * 1995-07-18 2004-10-20 三菱電機株式会社 Digital receiver
CN100382152C (en) * 1997-06-05 2008-04-16 松下电器产业株式会社 Optical disk apparatus and method for setting control parameters
JP3564291B2 (en) * 1998-03-05 2004-09-08 松下電器産業株式会社 Optical disk recording device
US7082566B2 (en) * 2001-11-09 2006-07-25 Kabushiki Kaisha Toshiba Signal quality evaluation method, information recording/reproducing system, and recording compensation method

Also Published As

Publication number Publication date
HK1099426A1 (en) 2007-08-10
TW200523884A (en) 2005-07-16
KR20050045809A (en) 2005-05-17
MY150263A (en) 2013-12-31
CN1868154A (en) 2006-11-22
CN1868154B (en) 2012-01-25
KR101029070B1 (en) 2011-04-18

Similar Documents

Publication Publication Date Title
JP3450922B2 (en) Digital signal reproduction device
JP3233485B2 (en) Digital signal detection circuit
US7852728B2 (en) Digital signal reproducing apparatus
JP2006252645A (en) Jitter detector
US5848040A (en) Data reproducing apparatus and method
JP2002197660A (en) Recording state detecting device and information recorder and reproducer provided with the same
JP3572047B2 (en) Optical disk apparatus and optical disk reproducing method
TWI303809B (en) A recording and/or reproducing apparatus and method with a signal quality determining device and method
US7477584B2 (en) Recording and/or reproducing apparatus and method with a signal quality determining device and method
JP2003187533A (en) Expected value generating unit and data reproducing device
JPH09245440A (en) Method and equipment for signal reproduction
US6654413B2 (en) Phase synchronization method for extended partial response, and phase synchronization circuit and read channel circuit using this method
JP2007506216A (en) Apparatus and method for measuring signal characteristics
JP3840048B2 (en) Information reproducing apparatus or information recording medium evaluation method, information recording medium satisfying a predetermined evaluation criterion, and information reproducing apparatus reproducing an information recording medium satisfying a predetermined evaluation criterion
US8270273B2 (en) Calibration circuit and method thereof for data recovery
US8456975B2 (en) Phase error detection apparatus, phase error detection method, and reproduction apparatus
JP4804268B2 (en) Digital PLL circuit and data reproducing apparatus
WO2008102951A1 (en) Jitter measuring apparatus and method, signal period measuring apparatus and method, and optical disk player
US7443932B2 (en) Method and apparatus for adjusting data recorded on optical disc
JPH08195037A (en) Evaluation device for optical disk and recorded information reproducing device
JP3781163B2 (en) Playback device
JP2007042235A (en) Digital data reproducing device
JP3994987B2 (en) Playback device
JP2010225271A (en) Signal characteristics determination device, signal characteristics determination method, and recording medium
JPH04183042A (en) Digital information detector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees