TW200523884A - A recording and/or reproducing apparatus and method with a signal quality determining device and method - Google Patents

A recording and/or reproducing apparatus and method with a signal quality determining device and method Download PDF

Info

Publication number
TW200523884A
TW200523884A TW093134223A TW93134223A TW200523884A TW 200523884 A TW200523884 A TW 200523884A TW 093134223 A TW093134223 A TW 093134223A TW 93134223 A TW93134223 A TW 93134223A TW 200523884 A TW200523884 A TW 200523884A
Authority
TW
Taiwan
Prior art keywords
signal
value
radio frequency
quality
frequency signal
Prior art date
Application number
TW093134223A
Other languages
Chinese (zh)
Other versions
TWI303809B (en
Inventor
Hyun-Soo Park
Jae-Wook Lee
Jae-Seong Shim
Jung-Hyun Lee
Eing-Seob Cho
Eun-Jin Ryu
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200523884A publication Critical patent/TW200523884A/en
Application granted granted Critical
Publication of TWI303809B publication Critical patent/TWI303809B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Error Detection And Correction (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A recording and/or reproducing apparatus and method with signal quality determining device and a method thereof, with the signal quality determining device including a signal estimator determining a level corresponding to a sample value of the RF signal using binary data obtained from the RF signal and generating a selection signal corresponding to the determined level, a channel identifier classifying the sample value into a plurality of levels according to the selection signal and obtaining an average value of the sample values classified into each level, and a quality calculator outputting a signal quality value representing quality of the RF signal using each sample value output from the channel identifier and the average value of the sample values classified into each level. Accordingly, quality of an RF signal can be determined more exactly, and focus compensation, tilt compensation, detrack compensation, and recording signal optimization can be performed using the determined signal quality.

Description

2005238«^ 九、發明說明: 【發明所屬之技術領域】 本發明涉及具有訊號品質決定裝置的記錄與/或 裝置以及其方法’尤其涉及用於決定取自光碟的 (Radio Frequency,RF)訊號的品質的方法與裝置。 【先前技術】 記錄在光碟上的二進制數據能夠被一種具有接收、轉 換和分析一個反射光束之能力的記錄與/或再生裝置所再 生,例如一種能夠把來自光碟的反射光束轉換為電訊號, 對電訊號執行預定的訊號處理過程,並且再生其訊阜^穿 置。由來自光碟的反射光束轉換而得的電訊號被稱為射頻 §11?虎。由於光碟的特性和光的特性所致,即使記錄在光碟 上的數據是二進制數據(binary data),從光碟獲得的射頻訊 號也疋類比A號。因此,需要用一個二進制化處理過程把 這個類比訊號轉換成一個二進制訊號。 圖1是一個習知的二進制化裝置的方塊圖。這個習知 的二進制化裝置包括一個比較器11〇和一個低通遽波器 130。比較器Π0以低通濾波器130提供的標準值為基準把 輸入的射頻訊號二進制化而輸出二進制訊號。比較器11〇 輸出的二進制訊號被輸入至一個鎖相環(Phase L〇cked Loop, PLL)(圖中未顯示)以產生一個系統時脈(d〇ck)。在 此’射頻机號與糸統時脈並非精確同步,在射頻訊號和系 統時脈之間有一個小的相位差。這個相位差現象被稱為抖 動(jitter)。 200523獅本 圖2A和圖2B說明了使用習知的技術時所發生的抖 動。在理想情況下,系統時脈的邊緣與射頻訊號的零交點 (zero crossing point)精確重合,如圖2A所示。然而在實際 情況下’系統時脈的邊緣並非與射頻訊號的零交點重合, 所以顯然有抖動,如圖2B所示。 依照習知的技術,抖動值,也就是射頻訊號與系統時 脈之間的相位差,可以做為一種衡量尺度用於評價射頻訊 號的品質。當射頻訊號中含有大量噪音訊號時,抖動值會 更大,所以測量抖動值就可以得知射頻訊號的品質。曰 然而,隨著光碟的數據記錄密度的增加,射頻訊號的 大小已經變得更小了。因此,即使僅有少量噪音訊號會 產生較大的訊號失真,導致更大的抖動值。而且,隨著光 碟的數據記錄密度的增加,射頻訊號中包含了更多的零交 點’測量抖動值的電路的功能可能會因此而失靈。 【發明内容】 本發明提供了更加精確有效地決定具有高數據記錄密 度的高密度光碟中的訊號的訊號品質的方法和裝置。 本發明的其他目的一部分將敘述於下面的說明之中, 而其餘部分則根據說明可顯而易見,亦可透過實踐本專利 而獲悉。 為了實現上述目的,本發明提出-種決定射頻訊號品 貝的裝置,包括·一個訊號估值器、_個通道識別器和一 個品質計异器。訊號估值器根據由射頻訊號獲得的二進制 數據決定一個對應於輸入的射頻訊號的採樣值的位準,並 200523獅 c 產生個對應於所決定的位準的選 通采ί值的平均值;品質計算器根據來自 採樣值和被分類至各個位準的各個採樣 值的+均值產生代表_職品_—個峨品質數值。 的通道識別11可以包括多個平均濾、波ϋ,這些平 句遽波益分別接受被分類至每個位準的各個採樣值,並且 獲得被分類至每個位準的各個採樣值的平均值。 、此外,上述的平均滤波器可以包括—個低通遽波器。 上述的訊號品質數值可以是根據各個採樣值和賴分至每 個位準的各個採樣值的平均值計算而#的—個訊^桑比 (Signal to N〇1Se Rati〇n,SNR);也可以是根據各個採樣值和 被劃分至每個位準的各個採樣值的平均值計算而得的一個 絕對訊噪比(Absolute Signal to Noise Ration,ASNR);也可 以是根據各個採樣值和被劃分至各個位準的各個採樣值的 平均值計算而得的一個峰值絕對訊噪比(peak Signal to Noise Ration,PASNR)。上述的二進制數據也可以 由射頻訊號經過維特比(viterbi)解碼過程而得到。 為了實現上述與/或其他目的,本發明提出一種決定所 輸入的射頻訊號的品質的方法,包括:根據由射頻訊號獲 得的二進制數據決定一個對應於射頻訊號的採樣值的位 準,並且產生一個對應於所決定的位準的選擇訊號;根據 選擇訊?虎把採樣值劃分為多個位準,並且獲得每一位準的 各個採樣值的平均值;以及根據每個採樣值和被分類至每 2005238^4°° 個位準的各個採樣值的平均值計算一個代表射頻訊號品質 的訊號品質數值。 類似地,上述方法中的訊號品質數值可以是一個根據 每個採樣值和被劃分至每個位準的各個採樣值的平均值計 算而付的说噪比(SNR);也可以是一個根據每個採樣值和 被劃分至每個位準的各個採樣值的平均值計算而得的絕對 訊噪比(ASNR);也可以是一個根據每個採樣值和被劃分至 每個位準的各個採樣值的平均值計算而得的峰值絕對訊噪 比(PASNR)。 為了實現上述與/或其他目的,本發明提出一種決定射 頻訊號的品質的裝置,包括一個訊號估值器和一個品質計 算器。訊號估值器接收射頻訊號的二進制數據,並且估算 出射頻訊號的一個數值;品質計算器接收射頻訊號的估算 值,並且計算出代表此射頻訊號品質的一個訊號品質數值。 上述的訊號估值器可以包括一個預定類型的有限脈波 響應(Finite Impulse Response,FIR)濾波器。此外,上述的 訊號品質數值可以是一個根據射頻訊號和其估算值經計算 而得的SNR;也可以是一個根據射頻訊號和其估算值經計 算而得的ASNR;也可以是一個根據射頻訊號和其估算值 經計算而得的PASNR。 為了實現上述和/或其他目的,本發明提出一種決定射 頻訊號的品質的方法,包括:根據射頻訊號的二進制數據 獲取射頻訊號的估算值,以及使用射頻訊號和其估算值計 算出代表此射頻訊號品質的訊號品質數值。 20052»8«4〇c 上述的射頻訊號的估算值的獲取方法可以包括使用一 個預定類型的HR濾波器。上述的訊號品質數值可以是一 個根據射頻訊號和其估算值經計算而得的SNR;也可以是 一個根據射頻訊號和其估算值經計算而得的ASNR ;也可 以是一個根據射頻訊號和其估算值經計算而得的pASNR。 、為了實現上述與/或其他目的,本發明提出一種記錄與 /或再生I置,包括·一個訊號檢測單元用於產生代表媒體 的Λ息的一個射頻訊號,一個按照本發明的各個實施例構 建的訊號品質決定裝置,以及_個處理單元驗記錄訊息 於媒體與/或再生來自媒體的訊息。 上述的a己錄與/或再生裝置還可以包括一個處理器,用 於根據訊號品質數值執行下列處理中的一種或多種:聚焦 補償、傾斜補償、偏離執跡補償與/或記錄訊號的最佳化。 為了實現上述與/或其他目的,本發明提出一種記錄訊 息於媒體與/或再生來自媒體的訊息的方法,包括··產生代 表媒體的訊息的射頻訊號,按照本發明的各個實施例所述 的射頻虎品質決定方法決定射頻訊號的品質,以及記錄 訊號於媒體與/或再生來自媒體的訊息。 上述方法還可以包括根據訊號品質數值執行下列處理 中的一種或多種··聚焦補償、傾斜補償、偏離軌跡補償與/ 或記錄訊號的最佳化。 ▲為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 、σ 2005238°84c 【實施方式】 圖3是一種訊號品質決定裝置的方塊圖,它表達了本 發明的一個實施例。參見圖3,此種訊號品質決定裝置包 括一個訊號估值器310、一個通道識別器33〇與一個品所 計算器350。 ” 口口貝 訊號估值器310接收二進制數據,這些二進制數據由 射頻訊號按照預定方法經過二進制化而得。為了獲得高品 質的二進制數據,可以使用一個維特比解碼器57〇的輸 出,如圖6所示。也就是說,射頻訊號經過維特比解碼過 程所得的二進制數據可以用作訊號估值器31〇的輸入訊 號。然而,用作訊號估值器31〇的輸入的二進制數據也可 以=用其他各種二進制化裝置而得到。例如圖8所示的限 幅器770的輸出訊號也可以作為訊號估值器31〇的輸入。 成號估值态310包含多個延遲單元311至315和一個 選擇訊號產生器317。延遲單元311至315用於延遲輸入 的二進制數據,其延遲時間對應於射頻訊號的採樣週期。 選擇訊號產生器317產生一個選擇訊號,此選擇訊號用於 控制通道識別器330。 ' 射頻訊號的每個採樣值均被分類至多個位準。通道識 別器330按照來自訊號估值器31()的選擇訊號將射頻訊號 的採樣值分類至一個相應的位準。這些被劃分到各個位準 的採樣值的平均值就是通道識別器3%所產生的位準輸出 ‘號Θ至位準輸出訊號m。 , 選擇吼號產生器317接收來自每一個延遲單元 11 200523^4 311 315的—進制數值,用於決定射頻訊號的每個採樣值 所對應的位準,產生—個對應於所決定的位準的選擇訊 ί,並且將這個選擇訊號提供給通道識別器330。也就是 況,汛號估值器31〇用於決定一個位準值,此位準對應於 來自t遲單元%3的射頻訊號的採樣值。而且訊號估值器 31〇、迴產生一個對應於此位準的選擇訊號。開關3外根據 上述的選擇訊號把來自延遲單元333的射頻訊號採樣值饋 至平均濾波器334〜338中與它相對應的一個。 七^平均,波器334〜338產生位準輸出訊號〇至位準輸出 afl號m這些位準輸出訊號就是被分類至每個位準的射頻 訊號的各個採樣值的平均值。平觸波器辦〜现中的每 一個都可以用一個低通濾波器來實現其功能。 5 疋—個耗例,它制如何計算位準輸出訊號0 至位準輸出訊號m的數值之一。 公式1 : 先前先㈣位準侧之後的輸入訊號- 丨ί式1中的常數越大,更新之後的位準中的變化量越 使用慢地跟隨這種變化。如果把 可以改善這個個維特比解碼器’ 選擇開關340根攄夾白、i i σσ 號把位準輸出卿f擇减產生&317的選擇訊 铷出沘唬〇至位準輪出訊號m中的一個饋至口質 计鼻器350。每個位準輪出訊號分別來自平樣; 20052m4〇c 334〜338中的一個。由於位準輸出訊號〇至位準輸出訊號 m都是平均值,被分類至去除了噪音的射頻訊號的位準, 進而可以認為位準輸出訊號〇至位準輸出訊號m都是理想 的訊號。 因此,品質計算器350計算射頻訊號品質時需要使用 射頻訊號的一個採樣值和射頻訊號採樣值的一個估算值, 這個估算值就是位準輸出訊號〇至位準輸出訊號m這些訊 號中的一個。 射頻訊號的品質數值代表射頻訊號的品質。品質計算 鲁 器350可以使用各種不同的方法來計算射頻訊號的品質數 值。例如,訊號品質數值可以用一個訊噪比(SNR)來表示, 訊噪比指的是理想訊號的功率與噪音訊號的功率之間的比 值,如公式2所示。 公式2 ·· SNR=理想訊號的平方之和/噪音訊號的平方之和 在公式2中,理想訊號代表訊號的估算值,例如位準 輪出訊號0至位準輸出訊號m這些訊號中的一個;噪音訊 唬對應於訊號估算值與真實的射頻訊號採樣值之間的差 儀 值。 由於公式2包含平方運算,而執行平方運算所需的硬 體的規模較大而且複雜。因此,可以用射頻訊號的峰值振 幅來代替公式2中的理想訊號。由於射頻訊號的峰值振幅 數值很少變化,所以實際上不需要針對每個採樣值計算其 峰值振幅數值。因此,實際上不需要大量的硬體或者執行 13 2005238®4 時間。由此可見,一個PSNR可以被用作訊號的品質數值, 如公式3所示。 公式3 : PSNR=輸入訊號之峰值振幅的平方之和/嗓音訊號的 平方之和 公式3中的輸入訊號代表射頻訊號,其具有為獲取輸 入訊號峰值振幅而額外輸入到品質計算器的輸入訊號之最 大與最小數值。在圖3所示的實施例中,指定給位準〇的 數值是最小值,而指定給位準m的數值是最大值。 同樣地,只使用理想訊號的絕對值和噪音訊號的絕對 值計异所得的ASNR或只使用輸入訊號的峰值振幅的絕對 值和噪音訊號的絕對值計算所得的PASNR也可以被用作 訊號的品質數值。在這種情況下,由於不需要乘法運算, 所以只需要少量硬體,而且運算時間也減少了。 ASNR和PASNR分別由下列的公式4和公式5來表 達。 公式4 : asnr=理想訊號的絕對值之和/噪音訊號的絕對值之 和 公式5 ·· PASNR=輸入訊號的峰值振幅的 號的絕對值之和 本曰 SNR通相分貞(dB)為單位來 對數類型的單位。當—個报大的數值出現時,這個1值; 2005238®4〇c 常被轉換為以分貝(dB)為單位。因此,如果公式2至5以 分貝(dB)為單位來表達,它們就成為下列的公式6至9。 公式6 : SNR=101〇g1G(理想訊號的平方之和/噪音訊號的平方 之和) 公式7 : PSNR=1〇l〇gio(輸入訊號的峰值振幅的平方之和/嚼音 訊號的平方之和) 公式8: φ ASNR= 101〇g i 〇(理想訊號的絕對值之和/操音訊號的絕 對值之和) 公式9 ·· PASNR=l〇l〇g1()(輸入訊號的峰值振幅的絕對值之和/ 噪音訊號的絕對值之和) 如公式3、5、7、9所示,首先要獲得輸入訊號的峰值 振幅。在圖3所示的實施例中,位準〇和位準被輸入 給品質計算器350就是為了計算輸入訊號的峰值振幅。 圖4疋一個訊號品質決定裝置的方塊圖,它表達了本 發明的另一貫施例。參見圖4,圖中的訊號品質決定裝置 可以包括一個最大/最小值計算器41〇、多個延遲單元 420〜440、一個訊號估值器450和一個品質計算器46〇。 訊號估值器450使用某種預定的方法接收由射頻訊號 經二進制化而得到的二進制數據。為了獲得高品質的二^ 制數據’可以使用圖6中所示的維特比解碼器57〇的輪出 15 200523^841°° sfL號。也就疋說,射頻訊號經過維特比解碼過程所得到的 二進制數據可以用作訊號估值器450的輸入訊號。然而,' 輸入到訊號估值器450的二進制數據也可以利用其他各種 二進制化裝置而得到。例如圖8所示的限幅器77〇的輸出 訊號也可以作為訊號估值器450的輸入訊號。 ’ 訊號估值器450使用二進制數據得到一個經過估算的 射頻afl號並且輸出至品質計算器460。訊號估值器450可 以用一個有限脈波響應(FIR)濾波器構成。眾所周知,根據 射頻訊號的代碼類型,把二進制數據輸入到一個預定類型 的FIR濾波器可以得到一個經過估算的具有多個位準值的 射頻訊號。 。圖5是FIR濾波器的一個實例。參見圖5,此nR濾 波器包括多個延遲單元451〜453、多個乘法器454〜457以 及-個加法器458。延遲單元451〜453在一個系統時脈單 位延遲二進制輸入訊號。乘法器454〜457的常數al至an 是包括〇在内的實數。加法器458用於加總乘法器454〜457 的輸出。延遲單元的數量,乘法器的數量,多個乘法器 454〜457的常數al至an都可以根據射頻訊號的代碼類型 來決定。 。。參見圖4’多個延遲單元42〇〜44〇使來自於訊號估值 為、450的經過估算的射頻訊號與實際的射頻訊號同步。 品質計算器460根據來自訊號估算器45〇的經過估算 的射頻訊號以及錢過估算的_訊朗步的實際射頻訊 破’並且使用公式2〜9巾的某—個公式來計算射頻訊號的 16 20052擺‘ 品質數值。 按照公式3、5、7和9,首先要獲得輸入訊號的峰值 振幅。在圖4所示的訊號品質決定裝置中,最大/最小值計 算器410用於計算射頻訊號的最大值和最小值,計算所得 的最大值和最小值被輸入到品質計算器460。如果使用公 式3、5、7和9以外的公式來計算射頻訊號的品質數值, 則不需要最大/最小值計算器410。 圖6是一個二進制數據檢測裝置的方塊圖,它表達了 本發明的一個實施例。這個二進制數據檢測裝置包含一個 訊號品質決定裝置590。參見圖6 ’這個二進制數據檢測裝 置可以包含一個類比數位轉換器(analog-to-digital, ADC)510、一個直流(DC)偏移量補償器530、一個適應性 (adaptive) FIR濾波器550、一個維特比解碼器570,以及 一個訊號品質決定裝置590。 ADC510按照預定的週期對射頻訊號採樣並且輸出採 樣後的射頻訊號。直流(DC)偏移量補償器53〇接收來自 ADC510的經過採樣的射頻訊號並且補償一個直流(DQ偏 移值。一般說來,由於維特比解碼器57〇是以某種固定的 通道特性為前提所設計的,因此需要使用一個提供匹配作 用的FIR濾波器550來調整輸入訊號的通道特性使之與维 特比解碼器570匹配。 維特比解碼器570根據射頻訊號的位準值產生二進制 Ϊ據二從ΐ頻訊號的統計特性而論,如此產生的二進制數 嫁很/有疾差。 17 200523^84^ 圖3或者圖4所示的訊號品質決定裂置都可 6中的訊號品質決定裝置59()。錢,在這種電局中圖 由於維特比解碼器57G需要—個最佳位準值 = 生訊號的品質,最好是㈣圖3所_訊號品質: 圖7表達了本發明的另一實施例。這是―個二 據檢測裝置的方塊圖,它包含一個訊號品質決定 690。在圖7所示的二進制數據檢測裝置中,由於可以^ 來自用於匹配的FIR濾波器65〇的訊號的通道特性是^二 的,所以在這種電路佈局中,最好是使用圖4所示的訊= 品質決找置作為訊號品質決定裝置㈣,而不是圖3 ^ 3訊號品質決定裝置。然:而,如果使用圖3所示的訊號 品質決定裝置,也可以利用這種訊號品質決定裝置獲得二 ,最佳位準值並且把這個最佳位準值輸入到維特=石馬 器,這樣仍然可以得到最佳性能。 ^ 圖8表達了本發明的另一實施例。這是一個二進制數 據檢測裝置的方塊圖,它包含一個訊號品質決定裝置 790這種一進制數據檢測裝置不使用維特比解碼器,它使 用另一種二進制化裝置來檢測二進制數據。根據二進制訊 號的代碼狀態,可以使用一個能鑑別射頻訊號符號的簡單 劃分态(sheer)作為二進制化裝置,也可以使用一個具有一 種月b剔除不適合某種代碼狀態的二進制訊號的電路架構的 運算長度校正器作為二進制化裝置。圖8所示的二進制數 據檢測裝置採用了一個劃分器770。 200523884^ 在圖8所示的二進制數據檢測裝置中,可能 頻訊號的估錄為财,邮錢㈣路佈局/最好, 使用圖3所不的訊號品質決定裝置。然而 = 號品質決定裝置也能使用。 口 4所不的汛 如上所述,按照本發明的各個 定-個由來自光碟的訊號再生而得到的射頻 =中這二射頻訊號的品質能夠用於:二生 生裝置可以包含一個記錄/讀出g 1 ’:如疋-個_(pickup)、_個控 憶體3。記錄/讀出單元1垃日s q 口己 再生光碟10上㈣本㈣的各個實施例記錄/ ,似i也使用4固代表射頻訊號品質的品質計算數 ^可以執行聚焦補償、傾斜補償、偏離執 =寒最佳化,例如,在圖9所示的記錄與/或再生 裝置中就可以執行這些處理過程。 旦山可㈣下述方法來執行:使用—個微電腦測 里個不同的聚焦位置所得到的訊號的品質,並且把隹 到-個能獲得最佳品f的位置。傾斜補償、偏離執 貝以及$錄訊號的最佳化也都可以用類似的方法來執 ^而且,如果採取一種用射頻訊號的絕對值和經過估值 <的射頻_的輯值來決定射頻訊號品 質的方法,則只 而要少量的硬體和簡單的計算過程。 雖然本發明已以較佳實施例揭露如上,然其並非用以 19 200523稱 4〇< 限定本發明’任何熟習此技藝者,在不脫離本發明 和範圍内’當可作些許之更動與潤飾,因此本發明之= 範圍當視後附之申請專利範圍所界定者為準。x …隻 【圖式簡單說明】 圖1是一種習知的二進制化裝置的方塊圖。 圖2A與圖2B用於說明因使用習知技術而產生的抖 動。 圖3是一種訊號品質決定裝置的方塊圖,用於表 發明的一個實施例。 圖4是-種訊號品質決定裝置的方塊圖,用於表 · 發明的另一個實施例。 圖5是有限脈波響應(FIR)濾波器的實例之一。 圖6是一種包含一個訊號品質決定裝置的二進制 檢測裝置的方塊圖,用於表達本發明的一個實施例。 圖7是-種包含-個訊號品質決定裂置的二進制 檢測裝置的方塊圖,用於表達本發明的另一個實施例。 圖8是-種包含-個訊號品質決定裳置的二進制 檢測裝置的方塊圖,用於表達本發明的又一個實施例。 馨 圖9是一種用於實施本發明的記錄與/或再=裝置 架構不意圖。 ' 【主要元件符號說明】 110 :比較器 130 :低通濾波器 310、450 ··訊號估值器 20 2005238^4°0 311 〜315、331 〜333、420〜440、451 〜453 :延遲單 元 317 :選擇訊號發生器產生器 330 :通道識別器 334〜338 :平均濾波器 339、340 :開關 350、460 ··品質計算器 410 :最大/最小值計算器 454〜457 :乘法器 458 :加法器 510、610、710 :類比數位轉換器 530、630、730 ··直流偏移量補償器 550、650 :適應性有限脈波響應濾波器 570、670 :維特比解碼器 590、690、790 :訊號品質決定裝置 750 :有限脈波響應濾波器 770 :劃分器 1 :記錄/讀出單元 2:控制單元 3 :記憶體 10 :光碟2005238 «^ IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a recording and / or device having a signal quality determining device and a method thereof, and more particularly to a method for determining (Radio Frequency, RF) signals taken from an optical disc. Quality methods and devices. [Prior art] The binary data recorded on the optical disc can be reproduced by a recording and / or reproducing device having the ability to receive, convert, and analyze a reflected light beam, such as a type capable of converting the reflected light beam from the optical disc into an electrical signal. The telecommunication signal performs a predetermined signal processing process and regenerates its signal. The electrical signal converted from the reflected light beam from the disc is called radio frequency §11? Tiger. Due to the characteristics of the optical disc and the characteristics of the light, even if the data recorded on the optical disc is binary data, the radio frequency signal obtained from the optical disc is analogous to the A number. Therefore, a binary process is needed to convert this analog signal into a binary signal. FIG. 1 is a block diagram of a conventional binary device. This conventional binarization device includes a comparator 11 and a low-pass chirper 130. The comparator Π0 binarizes the input radio frequency signal based on the standard value provided by the low-pass filter 130 and outputs a binary signal. The binary signal output from the comparator 11 is input to a Phase Locked Loop (PLL) (not shown) to generate a system clock (dock). Here, the radio frequency signal is not exactly synchronized with the system clock, and there is a small phase difference between the radio frequency signal and the system clock. This phase difference phenomenon is called jitter. 200523 Lions Figures 2A and 2B illustrate the jitter that occurs when using conventional techniques. In an ideal case, the edges of the system clock coincide exactly with the zero crossing point of the RF signal, as shown in Figure 2A. However, in the actual situation, the edge of the system clock does not coincide with the zero-crossing point of the RF signal, so there is obviously jitter, as shown in Figure 2B. According to the conventional technology, the jitter value, which is the phase difference between the RF signal and the system clock, can be used as a measure to evaluate the quality of the RF signal. When the RF signal contains a lot of noise signals, the jitter value will be greater, so the jitter value can be measured to know the quality of the RF signal. However, as the data recording density of optical discs increases, the size of radio frequency signals has become smaller. Therefore, even a small amount of noise signal can cause large signal distortion, resulting in greater jitter value. Moreover, as the data recording density of the disc increases, the function of the circuit for measuring the jitter value in the radio frequency signal including more zero crossing points may fail. SUMMARY OF THE INVENTION The present invention provides a method and apparatus for more accurately and efficiently determining the signal quality of a signal in a high-density optical disc having a high data recording density. Part of the other objects of the present invention will be described in the following description, while the remaining part will be apparent from the description, and can also be learned through the practice of this patent. In order to achieve the above object, the present invention proposes a device for determining the radio frequency signal quality, including a signal estimator, a channel identifier, and a quality differentiator. The signal estimator determines a level corresponding to the sampling value of the input radio frequency signal according to the binary data obtained from the radio frequency signal, and 200523 lion c generates an average value of the gated value corresponding to the determined level; The quality calculator generates a representative _ job product _ a quality value based on the + mean value from the sampled value and each sampled value classified to each level. The channel identification 11 may include a plurality of average filters and waves. These flat sentences and wave benefits respectively accept each sample value classified to each level, and obtain the average value of each sample value classified to each level. . In addition, the above-mentioned averaging filter may include a low-pass chirper. The above-mentioned signal quality value can be calculated based on the average value of each sample value and the average value of each sample value to each level. A signal ^ Sum (Signal to No. 1Se RatiOn, SNR); also It can be an absolute signal-to-noise ratio (ASNR) calculated based on the average of each sample value and each sample value divided to each level; it can also be based on each sample value and A peak absolute signal-to-noise ratio (PASNR) calculated from an average of each sample value to each level. The above binary data can also be obtained from the RF signal through a viterbi decoding process. In order to achieve the above and / or other objectives, the present invention provides a method for determining the quality of an input radio frequency signal, including: determining a level of a sampling value corresponding to a radio frequency signal according to binary data obtained from the radio frequency signal, and generating a A selection signal corresponding to the determined level; according to the selection signal, the sampling value is divided into a plurality of levels, and an average value of each sampling value of each level is obtained; and according to each sampling value and being classified to An average value of each sample value of 2005238 ^ 4 °° levels is used to calculate a signal quality value representing the RF signal quality. Similarly, the signal quality value in the above method may be a speech-to-noise ratio (SNR) calculated based on each sample value and the average value of each sample value divided to each level; or it may be a Absolute signal-to-noise ratio (ASNR) calculated from the average of each sample value and each sample value divided to each level; it can also be a sample based on each sample value and each sample divided to each level The peak absolute signal-to-noise ratio (PASNR) calculated from the average of the values. In order to achieve the above and / or other objectives, the present invention proposes a device for determining the quality of a radio frequency signal, including a signal estimator and a quality calculator. The signal estimator receives the binary data of the RF signal and estimates a value of the RF signal. The quality calculator receives the estimated value of the RF signal and calculates a signal quality value that represents the quality of the RF signal. The aforementioned signal estimator may include a predetermined type of Finite Impulse Response (FIR) filter. In addition, the above signal quality value may be an SNR calculated from the RF signal and its estimated value; it may also be an ASNR calculated from the RF signal and its estimated value; or it may be an RF signal and The estimated value is the calculated PASNR. In order to achieve the above and / or other objectives, the present invention proposes a method for determining the quality of a radio frequency signal, which includes: obtaining an estimated value of a radio frequency signal based on the binary data of the radio frequency signal, and using the radio frequency signal and its estimated value to calculate a representative radio frequency signal. Quality signal quality value. 20052 »8« 4〇c The above method of obtaining the estimated value of the radio frequency signal may include using a predetermined type of HR filter. The above signal quality value can be an SNR calculated from the RF signal and its estimated value; it can also be an ASNR calculated from the RF signal and its estimated value; or it can be an RF signal and its estimated value The calculated pASNR. In order to achieve the above and / or other objectives, the present invention proposes a recording and / or reproduction device, including a signal detection unit for generating a radio frequency signal representing the media's information, and a structure constructed in accordance with various embodiments of the present invention. The signal quality determining device and the _ processing unit check and record messages in the media and / or reproduce messages from the media. The above-mentioned a recording and / or reproducing apparatus may further include a processor for performing one or more of the following processes according to the signal quality value: focus compensation, tilt compensation, off-track compensation, and / or the optimal recording signal. Into. In order to achieve the above and / or other objectives, the present invention proposes a method for recording information in a medium and / or regenerating a message from a medium, including: generating a radio frequency signal representing a message of the medium, according to various embodiments of the present invention. The RF tiger quality determination method determines the quality of the RF signal, and records the signal in the media and / or reproduces messages from the media. The above method may further include performing one or more of the following processes according to the signal quality value: focus compensation, tilt compensation, off-track compensation, and / or optimization of the recording signal. ▲ In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are described below in detail with the accompanying drawings as follows. Σ 2005238 ° 84c [Embodiment] Fig. 3 is a block diagram of a signal quality determining device, which illustrates an embodiment of the present invention. Referring to Fig. 3, this signal quality determining device includes a signal estimator 310, a channel identifier 33, and a product calculator 350. The Houbei signal estimator 310 receives binary data. These binary data are obtained by binarizing the RF signal according to a predetermined method. In order to obtain high-quality binary data, you can use the output of a Viterbi decoder 57, as shown in the figure. As shown in Figure 6. That is, the binary data obtained from the Viterbi decoding process of the RF signal can be used as the input signal of the signal estimator 31〇. However, the binary data used as the input of the signal estimator 31〇 can also be = Obtained by using various other binarization devices. For example, the output signal of the limiter 770 shown in FIG. 8 can also be used as the input of the signal estimator 31. The numbered evaluation state 310 includes multiple delay units 311 to 315 and The selection signal generator 317. The delay units 311 to 315 are used to delay the input binary data, and the delay time corresponds to the sampling period of the RF signal. The selection signal generator 317 generates a selection signal, which is used to control the channel identifier 330 . 'Each sample of the RF signal is classified into multiple levels. The channel identifier 330 The selection signal of the valuer 31 () classifies the sampled value of the RF signal to a corresponding level. The average value of the sampled values divided into each level is the level output 'No. Θ generated by the channel identifier 3% To the level output signal m., The selection roar generator 317 receives a decimal value from each delay unit 11 200523 ^ 4 311 315, which is used to determine the level corresponding to each sample value of the radio frequency signal, and generates- A selection signal corresponding to the determined level is provided to the channel identifier 330. That is, the flood number estimator 31 is used to determine a level value, which corresponds to the The sampling value of the radio frequency signal of the delay unit% 3. Moreover, the signal estimator 31, generates a selection signal corresponding to this level. The outside of the switch 3 samples the radio frequency signal from the delay unit 333 according to the selection signal described above. It is fed to the corresponding one of the average filters 334 ~ 338. On average, the wave filters 334 ~ 338 generate level output signals 0 to level output afl numbers m. These level output signals are classified into each bit quasi- The average value of the various sampling values of the RF signal. Each of the flat wave receivers can use a low-pass filter to achieve its function. 5 Example: how to calculate the level output signal 0 to one of the values of the level output signal m. Formula 1: Previously, the input signal after the level side-the larger the constant in Equation 1, the slower the change in the level after updating is used This change. If you can improve this Viterbi decoder's selection switch 340, you can clip the white, ii σσ, the level output output f is selected and subtracted & 317 the selection signal is displayed, and the level is rounded. One of the output signals m is fed to the mouth quality meter nose device 350. The output signal of each level wheel is from a flat sample; one of 20052m4〇c 334 ~ 338. Since the level output signal 0 to the level output signal m are average values, they are classified to the level of the radio frequency signal from which noise is removed, and it can be considered that the level output signal 0 to the level output signal m are all ideal signals. Therefore, the quality calculator 350 needs to use a sampling value of the RF signal and an estimated value of the sampling value of the RF signal when calculating the quality of the RF signal. This estimated value is one of the signals of the level output signal 0 to the level output signal m. The quality value of the RF signal represents the quality of the RF signal. Quality calculation The router 350 may use various methods to calculate the quality value of the RF signal. For example, the signal quality value can be expressed by a signal-to-noise ratio (SNR). The signal-to-noise ratio refers to the ratio between the power of an ideal signal and the power of a noise signal, as shown in Equation 2. Equation 2 ·· SNR = Sum of the square of the ideal signal / Sum of the square of the noise signal In Equation 2, the ideal signal represents the estimated value of the signal, such as the level wheel output signal 0 to the level output signal m. ; The noise signal corresponds to the difference between the estimated signal value and the actual RF signal sample value. Since Equation 2 contains a square operation, the hardware required to perform the square operation is large and complex. Therefore, the peak amplitude of the RF signal can be used instead of the ideal signal in Equation 2. Since the peak amplitude value of an RF signal rarely changes, it is not actually necessary to calculate the peak amplitude value for each sample value. Therefore, no substantial hardware or execution time is required. It can be seen that a PSNR can be used as the signal quality value, as shown in Equation 3. Equation 3: PSNR = sum of the square of the peak amplitude of the input signal / sum of the square of the voice signal The input signal in Equation 3 represents a radio frequency signal, which has an input signal that is additionally input to the quality calculator to obtain the peak amplitude of the input signal. Maximum and minimum values. In the embodiment shown in Fig. 3, the value assigned to the level 0 is the minimum value, and the value assigned to the level m is the maximum value. Similarly, the ASNR calculated using only the absolute value of the ideal signal and the absolute value of the noise signal or the PASNR calculated using only the absolute value of the peak amplitude of the input signal and the absolute value of the noise signal can also be used as the signal quality Value. In this case, since multiplication is not required, only a small amount of hardware is required, and the operation time is reduced. ASNR and PASNR are expressed by the following formulas 4 and 5, respectively. Equation 4: asnr = Sum of the absolute value of the ideal signal / Sum of the absolute value of the noise signal Formula 5 · PASNR = Sum of the absolute value of the number of the peak amplitude of the input signal Comes in units of log type. When a large number appears, this value is 1; 2005238®4 ° c is often converted into decibels (dB). Therefore, if Equations 2 to 5 are expressed in decibels (dB), they become Equations 6 to 9 below. Equation 6: SNR = 101〇g1G (sum of square of ideal signal / sum of square of noise signal) Equation 7: PSNR = 1〇l〇gio (sum of square of peak amplitude of input signal / square of chewing signal Sum) Equation 8: φ ASNR = 101〇gi 〇 (sum of the absolute value of the ideal signal / sum of the absolute signal value) Equation 9 ·· PASNR = 10〇l g1 () (the peak amplitude of the input signal Sum of Absolute Values / Sum of Absolute Values of Noise Signals) As shown in Equations 3, 5, 7, and 9, the peak amplitude of the input signal must first be obtained. In the embodiment shown in FIG. 3, the level 0 and the level are input to the quality calculator 350 to calculate the peak amplitude of the input signal. Fig. 4 is a block diagram of a signal quality determining device, which illustrates another embodiment of the present invention. Referring to FIG. 4, the signal quality determining device in the figure may include a maximum / minimum calculator 41o, a plurality of delay units 420-440, a signal estimator 450, and a quality calculator 46o. The signal estimator 450 receives the binary data obtained by binarizing the radio frequency signal using a predetermined method. In order to obtain high-quality binary data ', the Viterbi decoder 57 shown in Figure 6 can be used. 15 200523 ^ 841 °° sfL. That is to say, the binary data obtained by the Viterbi decoding process of the radio frequency signal can be used as the input signal of the signal estimator 450. However, the binary data input to the signal estimator 450 can also be obtained by using various other binarization devices. For example, the output signal of the limiter 770 shown in FIG. 8 can also be used as the input signal of the signal estimator 450. The signal estimator 450 uses the binary data to obtain an estimated RF afl number and outputs it to the quality calculator 460. The signal estimator 450 may be constructed using a finite pulse wave response (FIR) filter. It is well known that inputting binary data into a predetermined type of FIR filter can obtain an estimated RF signal with multiple levels according to the code type of the RF signal. . Figure 5 is an example of a FIR filter. Referring to FIG. 5, the nR filter includes a plurality of delay units 451 to 453, a plurality of multipliers 454 to 457, and an adder 458. The delay units 451 to 453 delay the binary input signal in one system clock unit. The constants al to an of the multipliers 454 to 457 are real numbers including 0. The adder 458 is used to add up the outputs of the multipliers 454 to 457. The number of delay units, the number of multipliers, and the constants al to an of multiple multipliers 454 to 457 can be determined according to the code type of the RF signal. . . Referring to FIG. 4 ', a plurality of delay units 42 ~ 44o synchronize the estimated RF signal from the signal with an estimated value of 450 with the actual RF signal. The quality calculator 460 calculates the RF signal based on the estimated RF signal from the signal estimator 45 and the estimated RF signal of _Xunlangbu ’s actual RF signal, and uses one of the formulas 2-9. 20052 Pendulum 'quality value. According to Equations 3, 5, 7, and 9, the peak amplitude of the input signal is first obtained. In the signal quality determining device shown in FIG. 4, the maximum / minimum calculator 410 is used to calculate the maximum and minimum values of the RF signal, and the calculated maximum and minimum values are input to the quality calculator 460. If formulas other than formulas 3, 5, 7, and 9 are used to calculate the quality value of the RF signal, the maximum / minimum calculator 410 is not required. Fig. 6 is a block diagram of a binary data detection device, which illustrates an embodiment of the present invention. This binary data detection device includes a signal quality determination device 590. See FIG. 6 'This binary data detection device may include an analog-to-digital (ADC) 510, a direct current (DC) offset compensator 530, an adaptive FIR filter 550, A Viterbi decoder 570 and a signal quality determining device 590. The ADC 510 samples the RF signal according to a predetermined period and outputs the sampled RF signal. The direct current (DC) offset compensator 53 receives the sampled RF signal from the ADC 510 and compensates a direct current (DQ offset value. Generally, since the Viterbi decoder 57 is based on a certain channel characteristic, Based on the premise, it is necessary to use a matching FIR filter 550 to adjust the channel characteristics of the input signal to match the Viterbi decoder 570. The Viterbi decoder 570 generates binary data according to the level of the RF signal. In terms of the statistical characteristics of the audio signal, the binary numbers thus generated are very poor. 17 200523 ^ 84 ^ The signal quality determination device shown in Figure 3 or Figure 4 can be used in the signal quality determination device in Figure 6. 59 (). Qian, in this kind of electric bureau, because the Viterbi decoder 57G needs an optimal level value = the quality of the signal, it is best to see the figure 3_ Signal quality: Figure 7 expresses the invention Another embodiment of this. This is a block diagram of a binary data detection device, which contains a signal quality determination 690. In the binary data detection device shown in Figure 7, since the FIR filter 65 can be used for matching 〇 The channel characteristics of the signal are two, so in this circuit layout, it is best to use the signal quality determination device shown in Figure 4 as the signal quality determination device, rather than the signal quality determination device shown in Figure 3 ^ 3. However, if you use the signal quality determination device shown in Figure 3, you can also use this signal quality determination device to obtain the two, the best level value, and enter this best level value into the Witte = stone horse, so The best performance can still be obtained. ^ FIG. 8 illustrates another embodiment of the present invention. This is a block diagram of a binary data detection device, which includes a signal quality determination device 790 such a primary data detection device does not use Witte Than the decoder, it uses another binary device to detect binary data. According to the code state of the binary signal, a simple sheer that can identify the radio frequency signal symbol can be used as the binary device, or one with a month b As a binarization device, an arithmetic length corrector of a circuit architecture that excludes binary signals that are not suitable for a certain code state. The binary data detection device shown in Fig. 8 uses a divider 770. 200523884 ^ In the binary data detection device shown in Fig. 8, the possible frequency signal is estimated to be rich. The signal quality determining device is not required. However, the signal quality determining device can also be used. As mentioned above, according to the invention, according to the present invention, one RF signal obtained from the signal reproduction from the optical disc is equal to the two. The quality of the radio frequency signal can be used: the second-generation device can include a recording / reading g 1 ′: such as a _ (pickup), _ a memory control unit 3. The recording / reading unit 1 can be reproduced by the sq mouth The various embodiments recorded on the optical disc 10 /, i also use the 4 quality calculation number representing the quality of the RF signal ^ can perform focus compensation, tilt compensation, deviation enforcement = cold optimization, for example, as shown in Figure 9 These processes can be performed in the recording and / or reproducing apparatus shown. Danshan can perform the following methods: use a microcomputer to measure the quality of the signal obtained at different focus positions, and set it to a position where the best product f can be obtained. Tilt compensation, deviation, and optimization of the recording signal can also be performed in a similar manner ^ Moreover, if an absolute value of the RF signal and an estimated value of the RF_ are used to determine the RF The signal quality method requires only a small amount of hardware and a simple calculation process. Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to be used as a 194023, which is 40. < Limiting the present invention 'Any person skilled in the art, without departing from the present invention and scope,' may make some changes and Retouching, therefore, the scope of the present invention shall be defined by the scope of the attached patent application. x… only [Schematic description] Figure 1 is a block diagram of a conventional binary device. Figures 2A and 2B are used to explain the jitter caused by using a conventional technique. Fig. 3 is a block diagram of a signal quality determining device for showing an embodiment of the invention. Fig. 4 is a block diagram of a signal quality determining device for expressing another embodiment of the invention. Figure 5 is one example of a finite pulse wave response (FIR) filter. FIG. 6 is a block diagram of a binary detection device including a signal quality determination device, for expressing an embodiment of the present invention. FIG. 7 is a block diagram of a binary detection device including a signal quality determination split, which is used to express another embodiment of the present invention. FIG. 8 is a block diagram of a binary detection device including a signal quality determining device, which is used to express still another embodiment of the present invention. Figure 9 is a diagram of a recording and / or re-device architecture for implementing the present invention is not intended. '' [Description of main component symbols] 110: Comparator 130: Low-pass filter 310, 450 ... Signal estimator 20 2005238 ^ 4 ° 0 311 to 315, 331 to 333, 420 to 440, 451 to 453: delay unit 317: Selection signal generator 330: Channel identifier 334 to 338: Average filter 339, 340: Switches 350, 460Quality calculator 410: Maximum / minimum calculator 454 to 457: Multiplier 458: Addition 510, 610, 710: Analog digital converters 530, 630, 730 ... DC offset compensators 550, 650: Adaptive finite pulse wave response filters 570, 670: Viterbi decoders 590, 690, 790: Signal quality determining device 750: Finite pulse wave response filter 770: Divider 1: Recording / reading unit 2: Control unit 3: Memory 10: Optical disc

21twenty one

Claims (1)

20052^884^ 十、申請專利範圍: 1·一種射頻訊號品質決定裝置,包括: 一訊號估值器,用以根據從一射頻訊號所得的二進制 數據決定一對應於輸入的該射頻訊號的一採樣值的位準, 並且產生一對應於所決定的位準的選擇訊號; 一通道識別器,用以根據上述選擇訊號將採樣值分類 至多個位準,並且獲取被分類至每個位準的各採樣值的平 均值;以及 一品質計算器,用以根據上述通道識別器所輸出的每 個採樣值和被分類至每個位準的各採樣值的平均值計算一 代表射頻訊號品質的訊號品質數值。 2·如申請專利範圍第1項所述的射頻訊號品質決定裝 置,其中所述的通道識別器包括多個平均濾波器,這些平 均濾波器分別用以接收被分類至各位準的各採樣值,並且 獲取被分類至各位準的各採樣值的平均值。 3·如申請專利範圍第2項所述的射頻訊號品質決定裝 置,其中所述的平均濾波器包括一低通濾波器。 、 4·如申請專利範圍第!項所述的射頻訊號品質決定穿 訊號品錄值是根據每悔樣值和被分類 (SNR)。準的值的平均值計算所得的—信噪比 5.如申請專利範圍第丨項所述的射 置’其中所述的訊號品質數值是根據= 至各位準的這些採樣值的平均值計算 22 200523^88^ (ASNR) 〇 6·如申請專利範圍第1項所述的射頻訊號品質決定裝 置,其中所述的訊號品質數值是根據每個採樣值和被分類 至各位準的這些採樣值的平均值計算所得的一峰值' 噪比(PASNR)。 7·如申請專利範圍第丨項所述的射頻訊號品質決定裝 置,其中所述的二進制數據是由所述的射頻訊號經過維特 比解碼過程所得。 、 8·種決疋輸入射頻訊號的訊號品質的方法,包括· 根據從射頻訊號所得的二進制數據決定一對應於射頻 吼號的一採樣值的位準,並且產生一對應於所決定的位準 的選擇訊號; 根據上述選擇訊號將採樣值分類至多個位準,並且獲 取被分類至每個位準的各採樣值的平均值;以及 & 根據各採樣值和被分類至每個位準的這些採樣值的平 均值計算一代表射頻訊號品質的訊號品質數值。 9·如申晴專利範圍第§項所述的決定輸入射頻訊號的 訊號品質的方法,其中所述的訊號品質數值是根據各採樣 值和被分類至各位準的這些採樣值的平均值計算所得的一 信噪比(SNR)。 1〇·如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法,其中所述的訊號品質數值是根據各採 樣值和被分類至各位準的這些採樣值的平均值計算所得的 一絕對信噪比(ASNR)。 23 2005238^4^ 11. 如申請專利範㈣8項所述的決定輸人射頻訊號 的訊號品質的方法,其中所述的訊號品質數值是根據各採 樣值和被分類至各位準的這些採樣值的平均值計算所得的 一峰值絕對信噪比(PASNRj。 12. 如申請專利範圍第8項所述的決錢人射頻訊號 的訊號品質的方法’其中所述的二進制數據是由所述的射 頻訊號經過維特比解碼過程所得。 13. —種射頻訊號品質決定裝置,包括·· 二訊號估值H,祕接收—賴訊號的二進制數據並 且估算此射頻訊號的一個數值;以及 :口口質計鼻器,用於接收上述的射頻訊號的估算值和 訊號,並且計算代表此射頻訊號的品質 14.^申請專利翻第13項所述的射頻訊號品質決定 響應的==的訊號估值11包括1定麵的有限脈波 =中請專利範圍第13項所述的射頻訊號品質決定 料佶Γ t所賴訊號品f數錢根__射頻訊號的 估异值和所述的射頻訊號計算所得的—㈣tb(s 二二^的訊號品質數值是根據所述的射頻訊號的 (αΓνΓ) 射頻訊號計算所得的-絕對信嚼比 Π.如申請專利範圍第13項所述的射頻訊號品質決定 24 20052^884^ 表=,其中所述的訊號品質數值是根據所述的射頻訊號的 估算值和所述的射頻訊號計算所得的一峰值絕對信噪比 (PASNR)。 、口 ” 18.如申請專利範圍第13項所述的射頻訊號品質決定 裝置,其中所述的二進制數據是由所述的射頻訊號經過維 特比解碼過程所得。 19·一種決定射頻訊號的訊號品質的方法,包括: 根據此射頻訊號的二進制數據獲取此射頻訊號的估算 值;以及 根據上述的射頻訊號的估算值和上述的射頻訊號計算 代表此射頻訊號的品質的一訊號品質數值。 20·如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法,其中所述的射頻訊號的估算值的獲取方法 包括使用一種預定類型的有限脈波響應(FIR)濾波器來獲 取射頻訊號的估算值。 21·如申請專利範圍第19項所述的決定射頻訊號的訊 就品質的方法,其中所述的訊號品質數值是根據所述的射 頻訊號的估算值和所述的射頻訊號計算所得的一信噪比 (SNR) 〇 22·如申請專利範圍第19項所述的決定射頻訊號的訊 號品質的方法’其中所述的訊號品質數值是根據所述的射 頻訊號的估算值和所述的射頻訊號計算所得的一絕對信噪 比(ASNR) 〇 23·如申請專利範圍第η項所述的決定射頻訊號的訊 25 200523884^ 5虎口口貝的方法’其中所述的訊號品質數值是根據所述的射 頻訊號的估算值和所述的射頻訊號計算所得的一峰值絕對 信嗓比(PASNR)。 口 如申請專利範圍第19項所述的決定射頻訊號的訊 號口^貝的方法,其中所述的二進制數據是由所述的射頻訊 號經過維特比解碼過程所得。 25·—種記錄與/或再生裝置,包括: 一訊號檢測單元,用於產生一射頻訊號,此射頻訊號 用於代表一媒體的訊息; 如申请專利範圍第1項所述的射頻訊號品質決定裝 置;以及 —處理單元,用於記錄訊息於媒體與/或再生來自媒體 的訊息。 26·如申請專利範圍第25項所述的記錄與域再生裝 置’更包括-處理n,驗根據訊號品質數值執行下列處 理中的-種或多種:聚焦補償、傾斜補償、偏離執跡補償 與/或記錄訊號的最佳化。 27·—種e己錄與/或再生裝置,包括·· -訊號檢測單元,用於產生—射頻訊號,此射頻訊號 用於代表一媒體的訊息; -如申請專機圍第13項所述的軸訊號品質決定 裝置;以及 -處理車7G’驗記雜息於顧與/或再生來自媒體 的訊息。 26 2005238^4^ 28·如申請專利範圍第27項所述的記錄與/或再生裝 置,更包括一處理器,用於根據訊號品質數值執行下列處 理中的一種或多種··聚焦補償、傾斜補償、偏離執跡補償 與/或記錄訊號的最佳化。 29· —種記錄訊息於媒體與/或再生來自媒體的訊息的 方法,包括: 產生一射頻訊號,此射頻訊號用於代表所述媒體的訊 息; 使用如申請專利範圍第8項所述的決定輸入射頻訊號 的訊號品質的方法來決定此輸入射頻訊號的訊號品質;以 及 、 記錄訊息於媒體與/或再生來自媒體的訊息。 30·如專利申請範圍第29項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,更包括根據訊號品質數值 執行下列處理中的一種或多種:聚焦補償、傾斜補償、偏 離軌跡補償與/或記錄訊號的最佳化。 31·如專利申請範圍第29項所述的記錄訊息於媒體與/ 或再生來自媒體的§凡息的方法,其中的訊號品質數值是一 絕對信噪比(ASNR),而且此絕對信噪比(ASNR)的計算只 限於使用每個採樣值的絕對值和被分類至每個位準的各採 樣值的平均值。 32· —種記錄訊息於媒體與/或再生來自媒體的訊息的 方法,包括: ^ 產生一射頻訊號,此射頻訊號用於代表所述媒體的訊 27 200523 8Mifd〇c 息; 使用如專利申請範圍第19項所述的決定射頻訊號的 訊號品質的方法來決定此輸入射頻訊號的訊號品質;以及 記錄訊息於媒體與/或再生來自媒體的訊息。 33·如專利申請範圍第32項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,更包括根據所述的訊號品 質數值執行下列處理中的一種或多種··聚焦補償、傾斜補 償、偏離執跡補償與/或記錄訊號的最佳化。 樣值的平均值20052 ^ 884 ^ 10. Scope of patent application: 1. A radio frequency signal quality determination device, including: a signal estimator for determining a sample corresponding to the input radio frequency signal according to the binary data obtained from a radio frequency signal Value level, and generates a selection signal corresponding to the determined level; a channel identifier for classifying the sampled value into multiple levels based on the selection signal, and acquiring each of the levels classified to each level An average value of the sample values; and a quality calculator for calculating a signal quality representing the quality of the RF signal based on the average value of each sample value output by the channel identifier and each sample value classified to each level Value. 2. The RF signal quality determining device according to item 1 of the scope of patent application, wherein the channel identifier includes a plurality of average filters, and these average filters are respectively used to receive each sample value classified to each standard. And obtain the average value of each sampling value classified to each standard. 3. The RF signal quality determining device according to item 2 of the scope of patent application, wherein said average filter includes a low-pass filter. 4, 4th if the scope of patent application! The quality of the RF signal described in the item determines the value of the signal is based on the sample value and classification (SNR). The average value of the standard values is calculated—the signal-to-noise ratio 5. The perforation as described in item 丨 of the scope of the patent application, where the signal quality value is calculated based on the average of these sample values 200523 ^ 88 ^ (ASNR) 〇6. The RF signal quality determination device according to item 1 of the scope of patent application, wherein the signal quality value is based on each sample value and the sample values classified to each standard. A peak-to-noise ratio (PASNR) calculated from the average. 7. The RF signal quality determining device according to item 丨 of the patent application scope, wherein said binary data is obtained by said RF signal through a Viterbi decoding process. 8. A method for determining the signal quality of an input radio frequency signal, including: determining a level corresponding to a sample value of a radio frequency roar based on binary data obtained from the radio frequency signal, and generating a level corresponding to the determined level A selection signal according to the above selection signal; classify the sampling values into multiple levels according to the above selection signal, and obtain the average value of each sampling value classified to each level; and & based on each sampling value and the classification classified to each level The average of these sample values calculates a signal quality value that represents the quality of the RF signal. 9. The method for determining the signal quality of an input radio frequency signal as described in item § of the Shen Qing patent range, wherein the signal quality value is calculated based on the average value of each sample value and the sample values that are classified to each standard A signal-to-noise ratio (SNR). 10. The method for determining the signal quality of an input radio frequency signal as described in item 8 of the scope of the patent application, wherein the signal quality value is calculated based on the average value of each sample value and the sample values classified to each standard. An absolute signal-to-noise ratio (ASNR). 23 2005238 ^ 4 ^ 11. The method for determining the signal quality of an input radio frequency signal as described in item 8 of the patent application, wherein the signal quality value is based on each sample value and these sample values classified to each standard. A peak absolute signal-to-noise ratio (PASNRj. Calculated according to the average value) 12. The method of signal quality of a radio frequency signal of a money maker as described in item 8 of the scope of patent application, wherein said binary data is obtained by said radio frequency signal Resulted from the Viterbi decoding process. 13. A radio frequency signal quality determination device, including two signal estimates H, secret reception—the binary data of the Lai signal and an estimate of the value of the radio frequency signal; and: Device for receiving the above-mentioned estimated value and signal of the radio frequency signal, and calculating the quality of the radio frequency signal representing the quality of the radio frequency signal. Fixed surface pulse = RF signal quality as described in item 13 of the patent scope of the patent. T t depends on the signal f number of money __ the estimated value of the RF signal and the Calculated from the radio frequency signal of ㈣tb (s 222) The signal quality value is calculated based on the radio frequency signal (αΓνΓ) of the radio frequency signal-absolute signal ratio Π. As described in item 13 of the scope of patent application RF signal quality decision 24 20052 ^ 884 ^ Table =, where the signal quality value is a peak absolute signal-to-noise ratio (PASNR) calculated based on the estimated value of the RF signal and the RF signal. "18. The RF signal quality determining device according to item 13 of the scope of patent application, wherein said binary data is obtained by said RF signal through a Viterbi decoding process. 19. A method for determining the signal quality of a RF signal , Including: obtaining the estimated value of the radio frequency signal based on the binary data of the radio frequency signal; and calculating a signal quality value representing the quality of the radio frequency signal based on the estimated value of the radio frequency signal and the aforementioned radio frequency signal. The method for determining the signal quality of a radio frequency signal according to the scope item 19, wherein the estimated value of the radio frequency signal is obtained The obtaining method includes using a predetermined type of finite pulse response (FIR) filter to obtain an estimated value of the radio frequency signal. 21. The method for determining the signal quality of a radio frequency signal according to item 19 of the patent application scope, wherein The signal quality value of is a signal-to-noise ratio (SNR) calculated according to the estimated value of the radio frequency signal and the radio frequency signal. 22 · The signal quality of the radio frequency signal is determined as described in item 19 of the scope of patent application. Method 'wherein the signal quality value is an absolute signal-to-noise ratio (ASNR) calculated based on the estimated value of the radio frequency signal and the radio frequency signal. 23. Decision as described in item η of the scope of patent application RF signal 25 200523884 ^ 5 Hukou mouth shell method 'wherein the signal quality value is a peak absolute signal-to-noise ratio (PASNR) calculated based on the estimated value of the RF signal and the RF signal. The method for determining a signal of a radio frequency signal as described in item 19 of the scope of patent application, wherein said binary data is obtained by said radio frequency signal through a Viterbi decoding process. 25 · —A recording and / or reproducing device including: a signal detection unit for generating a radio frequency signal, the radio frequency signal is used to represent a message of a medium; the quality of the radio frequency signal is determined according to item 1 of the scope of patent application A device; and a processing unit for recording information on the media and / or reproducing messages from the media. 26. The recording and domain reproduction device described in item 25 of the scope of the patent application, further includes-processing n, and performing one or more of the following processing according to the signal quality value: focus compensation, tilt compensation, deviation tracking compensation And / or optimization of recording signals. 27 · —an e-recording and / or reproducing device, including a signal detection unit for generating—a radio frequency signal, which is used to represent a media message; Axle signal quality determination device; and-processing vehicle 7G 'check record to garner and / or reproduce messages from the media. 26 2005238 ^ 4 ^ 28. The recording and / or reproducing device as described in item 27 of the scope of patent application, further comprising a processor for performing one or more of the following processes according to the signal quality value: focus compensation, tilt Compensation, deviation compensation, and / or optimization of recorded signals. 29 · —A method for recording information in a medium and / or reproducing a message from a medium, including: generating a radio frequency signal, the radio frequency signal is used to represent the message of the medium; using the decision described in item 8 of the scope of patent application The method of inputting the signal quality of the RF signal to determine the signal quality of the input RF signal; and, recording the message in the media and / or reproducing the message from the media. 30. The method for recording information on media and / or reproducing information from media as described in item 29 of the scope of patent application, further comprising performing one or more of the following processes according to the signal quality value: focus compensation, tilt compensation, off-track Optimization of compensation and / or recording signals. 31. The method of recording information to the media and / or reproducing information from the media as described in item 29 of the scope of the patent application, wherein the signal quality value is an absolute signal-to-noise ratio (ASNR), and the absolute signal-to-noise ratio The calculation of (ASNR) is limited to using the absolute value of each sample value and the average value of each sample value classified to each level. 32 · —A method for recording information in the media and / or reproducing information from the media, including: ^ generating a radio frequency signal, the radio frequency signal is used to represent the information of the media 27 200523 8Mifd〇c information; use as patent application scope The method for determining the signal quality of a radio frequency signal as described in item 19 to determine the signal quality of the input radio frequency signal; and recording and / or reproducing messages from the media. 33. The method of recording information to a medium and / or reproducing a message from a medium as described in item 32 of the scope of patent application, further comprising performing one or more of the following processes according to the signal quality value: focus compensation, tilt Compensation, deviation compensation, and / or optimization of recorded signals. Sample mean 34·如專利申睛範圍第μ項所述的記錄訊息於媒體與/ 或再生來自媒體的訊息的方法,其中的訊號品質數值是一 絕對信噪比(ASNR),而且此絕對信噪比(ASNR)的計算只 限於使用每個採樣值的絕對值和被分類至每個位準的各採34. The method of recording information to the media and / or reproducing information from the media as described in item μ of the patent application scope, wherein the signal quality value is an absolute signal-to-noise ratio (ASNR), and (ASNR) calculations are limited to the use of the absolute value of each sample value and each sample classified to each level. 2828
TW093134223A 2003-11-11 2004-11-10 A recording and/or reproducing apparatus and method with a signal quality determining device and method TWI303809B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030079595 2003-11-11
KR1020040064227A KR101029070B1 (en) 2003-11-11 2004-08-16 Apparatus and method of determining quality of signal

Publications (2)

Publication Number Publication Date
TW200523884A true TW200523884A (en) 2005-07-16
TWI303809B TWI303809B (en) 2008-12-01

Family

ID=37245433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093134223A TWI303809B (en) 2003-11-11 2004-11-10 A recording and/or reproducing apparatus and method with a signal quality determining device and method

Country Status (5)

Country Link
KR (1) KR101029070B1 (en)
CN (1) CN1868154B (en)
HK (1) HK1099426A1 (en)
MY (1) MY150263A (en)
TW (1) TWI303809B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578839B2 (en) * 1995-07-18 2004-10-20 三菱電機株式会社 Digital receiver
CN100382152C (en) * 1997-06-05 2008-04-16 松下电器产业株式会社 Optical disk apparatus and method for setting control parameters
JP3564291B2 (en) * 1998-03-05 2004-09-08 松下電器産業株式会社 Optical disk recording device
US7082566B2 (en) * 2001-11-09 2006-07-25 Kabushiki Kaisha Toshiba Signal quality evaluation method, information recording/reproducing system, and recording compensation method

Also Published As

Publication number Publication date
HK1099426A1 (en) 2007-08-10
KR20050045809A (en) 2005-05-17
TWI303809B (en) 2008-12-01
MY150263A (en) 2013-12-31
CN1868154A (en) 2006-11-22
CN1868154B (en) 2012-01-25
KR101029070B1 (en) 2011-04-18

Similar Documents

Publication Publication Date Title
JP2006252645A (en) Jitter detector
JP2000306340A (en) Clock-reproducing apparatus
JPH0944983A (en) Recorded information reproducing device
JPH09213007A (en) Data reproducing device
US20060193307A1 (en) Recorded information reproduction device
TWI238385B (en) Apparatus for reproducing data from optical storage medium using multiple detector
US7477584B2 (en) Recording and/or reproducing apparatus and method with a signal quality determining device and method
US6781938B2 (en) Expected value generation unit and a data reproduction apparatus
KR100982510B1 (en) Device and method of measuring signal quality
TW200523884A (en) A recording and/or reproducing apparatus and method with a signal quality determining device and method
CN112687247B (en) Audio alignment method and device, electronic equipment and storage medium
JP5153827B2 (en) Signal characteristic determining apparatus, signal characteristic determining method, and recording medium
WO2008102951A1 (en) Jitter measuring apparatus and method, signal period measuring apparatus and method, and optical disk player
KR20070082504A (en) Input signal quality estimation apparatus and method, and optical disc drive thereof
US8456975B2 (en) Phase error detection apparatus, phase error detection method, and reproduction apparatus
US7443932B2 (en) Method and apparatus for adjusting data recorded on optical disc
JP3781163B2 (en) Playback device
JP2001319427A (en) Information reproducing device
JP4541816B2 (en) Playback device
KR20080078499A (en) Apparatus and method for measuring jitter, apparatus and method for measuring signal period, and optical disc reproducing apparatus
JP2000163889A (en) Clock regenerating device
JP2001126396A (en) Offset detecting method and offset detector
JP2002074844A (en) Information reproducing apparatus
JPH07288549A (en) Automatic gain control system
JP2005025937A (en) Playback device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees