TWI303111B - Light emitting diode device and manufacturing method thereof - Google Patents

Light emitting diode device and manufacturing method thereof Download PDF

Info

Publication number
TWI303111B
TWI303111B TW94101516A TW94101516A TWI303111B TW I303111 B TWI303111 B TW I303111B TW 94101516 A TW94101516 A TW 94101516A TW 94101516 A TW94101516 A TW 94101516A TW I303111 B TWI303111 B TW I303111B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
diode element
bismuth
element according
Prior art date
Application number
TW94101516A
Other languages
Chinese (zh)
Other versions
TW200627662A (en
Inventor
Shih Hsiung Chan
Jian Shihn Tsang
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW94101516A priority Critical patent/TWI303111B/en
Priority to KR20050084050A priority patent/KR100698711B1/en
Publication of TW200627662A publication Critical patent/TW200627662A/en
Application granted granted Critical
Publication of TWI303111B publication Critical patent/TWI303111B/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

1303111 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種發光二極體元件及其製造方法,尤 係關於一種包含銪致活之驗土族氧化物、銪致活石夕酸鹽、 銪致活準矽酸鹽或銪致活過氧磷酸鹽螢光材料的發光二極 體元件及其製造方法。 【先前技術】 由於發光二極體(light emitting diode;LED)有體積小、 發光效率咼及壽命長等優點,因此被認為是次世代綠色節 此妝明的最佳光源。另外液晶顯示幕的快速發展及全彩螢 幕的流行趨勢,使白光系發光二極體除了應用於指示燈及 大型顯示幕等用途外,更切入廣大之消費性電子產品,例 如:手機及PDA。 目鈾發光二極體之種類可依照其所使用之半導體材料來 为類’例如:GaAs、GaAsl_xPx或GaP等系列。此外,若 在GaASl-xpx、GaP系列半導體材料中摻雜氮原子,則可 以產生不同顏色之光線。一般而言,發光二極體所發出之 光線具有單色性波長之特性,至於該波長之長短係根據可 發光之電子轉移過程中的能量變化而定,目前實際上使用 之波長包含紅外光、紅光、綠光、黃光及藍光等。在人體 視覺中’可藉由紅、綠、藍三種不同顏色光的感應而產生 多種顏色的感覺,因此稱紅、綠、藍三色為光的「三原色」。 右將紅、綠、藍三種不同波長之發光二極體光源鄰接配 置將可因為混光而知到白光(white color )及其它中間色 H:\HU\LGC\A34276\97639\97639.doc l3〇3lli (neutral color)之顏色光。美國專利第5,995,〇7〇號揭露 採用鄰接不同之光源做為顯示裝置,其中每一像素係由一 紅光源、一藍光源以及兩綠光源之二極體所組成。上述利 用不同波長之發光二極體混光所產生的白光因係整合不同 電性之發光二極體所構成,必須分別以適合之驅動電路控 制,而在系統設計上較為複雜。 另外美國專利第6,614,179號揭露以發光二極體產生藍 光’該藍光會激發磷光劑(ph〇sph〇r)而產生黃光,藉由 兩種互補色(complementary c〇1〇r )光源混光後形成白光, 其中藍光波長為420nm〜490nm,以及黃色鱗光劑係由 {[(Y,Gd)Sm](AlGa)0:Ce}所組成。但此方式所產生的白光對 於物體真實色彩的表現較差,亦即色溫度(c〇1〇r temperature)較高而致使演色性(c〇1〇r咖如㈣ 不佳。 此外以日本住友電工所發展的碼化辞(zngje)白光發光 二極體元件而言,仍是利用兩互補色光線來產生白光。該 發光二極體元件係在硒化鋅基板上成長一磊晶層,其主要 發光結構是由週期表上n-VI族材料所組成,例如:硒化辞 鎘/硒化辞(ZnCdSe/ZnSe)之量子井(quantumwell),其 在灌入正向電流後,該量子井部分會發射出藍光,互補色 光線則係利用摻雜的础化鋅基板做為螢光材料所產生。在 美國專利第6,337,536號中揭露該摻雜物可以為織(^、氯 (C1)、漠(Br)、铭(A1)、鎵(Ga)及銦(in)等。利用 自身活化(Self-activated; SA)的發光機制,使基板在照 H:\HU\LGC\A34276\97639\97639.doc 1303111 射短波長光線後會發射中心波長在5^〇nm到65〇nm之寬光 譜的榮光。當晶片被施加電流後,量子井蟲晶層可發出藍 光,部分藍光經有摻雜之硒化辞基板吸收後會產生紅黃 光。兩種光線經過混光後,會使晶片本身呈現白光體。此 -方法亦是利用兩色互補的方式來產生白《,適用於產生 較低色溫的白光。相較美國專利第6,614,179號及第 6’337,536號兩者’前者缺乏紅光區域波長之光線,而後者 φ 係缺乏綠光區域波長之光線,因此在演色性上皆不易被提 南。 因此若要發展一高演色性的白光,必須藉由控制或調整 光源發出光線中所含各色光之比例,使其與自然光之組成 比例相近,則其所呈現物體的色彩能較為逼真。另在螢光 材料的研發上,目前的方法皆以釔鋁石榴石晶體(化學式: X^AsBOOu)的組成成分為研發重點,如YAG螢光體結構 中之 y3(ai3ai2)〇12、(Y3_xCex)Al5〇i2、⑺〇5)Ai办2、 _ 及(YHhCeo.wGdaXAh-bGaOOi2等,希望藉由兩種以上之 螢光體的混合來產生較高演色性的白光發光二極體。此 外,不同平均顆粒尺寸(d5〇)的榮光體亦會造成發光波長 及發光強度的不同。除鈽致活之釔鋁石榴石晶體外,另有 德國 Tddonic Optoelectronics GMBH 等公司在 PCT 國際專 利申凊案WO 02/054502中所揭露的螢光材料,其化學式如 下所示:(2-x-y)Sr0 x(Ba,Ca)0 (1_a_b_c部i〇2 ap2〇5 bA吨 cB2〇3 dGe〇2:yEu〜可藉由改變勞光材料之成份而調整色 溫,或者可加入紅色螢光材料Y(v,P,Si)〇4$u等來調整色 H:\HU\LGC\A34276\97639\97639.doc 1303111 度座標。 紅上所述,市場上亟需要一種與自然光之組成比例相近 之發光元件,其擁有較佳之發光效率及亮度。 【發明内容】 本發明之目的係提供一種發光二極體元件及其製造方 法,其係利用半導體螢光材料吸收發光二極體晶片產生之 光,而發出波長異於該發光二極體晶片所發光線之螢光光 線,最後混合發光二極體晶片所發出的光線及螢光光線以 形成一多波長之發光二極體元件。 本發明之另一目的係藉由改變半導體螢光材料之組成比 例而產生如粉紅(pink )或帶紫色之粉紅光(purpnsh pg ) 等白光系之中間色光源。 為達上述目的,本發明揭示一種發光二極體元件及其製 造方法’該發光二極體元件包含一能產生初始顏色光之發 光二極體晶片及-的螢光材料。該螢光材料係由—销致活 之鹼土族氧化物、一銪致活矽酸鹽、—銪致活準矽酸鹽及 一銪致活過氧磷酸鹽中至少-種化合物所組成,且會吸收 部分該初始顏色光’並釋出異於該初始顏色光之螢光光 線。該初始顏色光與該不同波長頻譜之營光光線會混合為 一白光系光線,且會自該發光二極體元件射出而成為白色 發光源。 另外’可以改變螢光材料中不同化合物之組成比例,而 產生其他白光系中間色光線。 該發光二極體晶片可以是氮化物系(InGaAiN)半導體之 H:\HU\LGC\A34276\97639\97639.doc 1303111 發光二極體或砸化鋅(ZnSe)系之發光二極體,尤其以氮 化物糸半導體之發光二極體為較佳。 該銪致活之鹼土族氧化物係以氧化鎂(Mg〇 )、氧化約 (CaO )、氧化銷(SrO )及氧化鋇(BaO )其中至少一種物 質為主體,其活化劑(activator )為二價銪Eu2+。 该銪致活石夕酸鹽之主體化學式為A2Si〇4,其中A係選自 鳃、飼、鋇、鎂(Mg )、辞(Zn )及鎘(Cd )中至少一者。 該銪致活準矽酸鹽之主體化學式為ASi03,其中A係選自 勰、鈣、鋇、鎂、鋅及鎘中至少一者。 該銪致活過氧構酸鹽之主體化學式為(Ai x yBxCy)2p2〇7, 其中A係選自懿、約、鎖、鎮、辞及鑛中至少一者;b係 選自銪、錳(Μη )、鉬(Mo )及鈽(Ce )中至少一者; C係選自銪、鐘、鉬及鈽中至少一者。 該發光二極體元件之製造方法係先提供一可發出初始光 線之初始光源,其中該初始光源係將一發光二極體晶片固 定及電性連結於一支撐載體上。該支撐載體可為一導線架 或基板。然後覆蓋一模構件於該初始光源上,及使一螢光 材料置於該初始光線可照射之處,該螢光材料係由一銪致 活之鹼土族氧化物、一銪致活矽酸鹽、一銪致活準石夕酸鹽 及一銷致活過氧鱗酸鹽中至少一種化合物所組成。藉由該 螢光材料吸收一部分該初始光線後,就能產生波長相異之 螢光,而混合該初始光線及螢光即可使該發光二極體元件 成為一多波長光源。 【實施方式】 H:\HU\LGC\A34276\97639\97639.doc 1303111 在氧化物、矽酸鹽、準矽酸鹽、及過氧磷酸鹽的材料領 域上,已發現有許多的材料其本體經過成份改變及活化劑 致活後,會改變其吸收光譜及螢光光譜。圖1(a)〜1(b)所示 係以波長為455 nm的藍光發光二極體晶片激發銪致活的準 矽酸鳃鋇的發光光譜圖。由圖1(a)可知銪致活的氧化鳃鋇 發出光線之主峰波長在540 nm左右。然藉由改變銪、鋰及 鋇的成分比例可調整其發出光線之主峰波長,如圖丨(b)所 示’當增加銪的成分並降低鋇的成分比值時,其所發出光 線之主峰波長係在565nm左右。 本發明所提供的發光二極體元件主要包含有發光二極體 晶片及螢光材料,其中該螢光材料即可以採用圖丨(a)及丨(b) 中所揭露之銪致活的氧化鋰鋇粉末。當發光二極體晶片發 出初始光線時,例如:藍光或紫外光等,銪致活的準矽酸 銷鎖勞光材料會吸收其中一部分光線並產生不同波長或波 長李父長之螢光光線。再藉由混光而使發光二極體元件成為 一多波長光源。上述螢光材料係由銪致活的鹼土族氧化 物銪致活的驗土族石夕酸鹽、銪致活的驗土族準石夕酸鹽及 過氧4酸鹽的材料所組成,藉由吸收發光二極體晶片所發 出的°卩分光線,會產生一種以上不同波長之光線,藉由將 不同光譜帶之光線混合以產生白光系光線。 Θ 係本兔明之發光二極體元件之剖面示意圖。發光二 極體元件20主要包含固定於導線架(lead frame) 23杯型 構k處之發光元件之晶片(chip ) 22,該晶片22藉由金屬 導線25分別與導線架23之陰極23a及陽極23b電性相連。 H^HU\LGaA34276V97639\97639.doc 1303111 該晶片22係一種氮化物系半導體之發光二極體。於該杯型 構造處為能發出不同光譜帶光線之螢光材料2丨填滿,因此 當晶片22接收外部電力供應會發出初始光線,覆蓋於其四 周之螢光材料21會被初始光線激發,並因而產生光譜帶異 於該初始光線之螢光光線。該初始光線與該螢光光線會混 合為一白光系光線,最後該白光系光線會穿透模構件24而 射出。 螢光材料21的主體(host)係由一銪致活之鹼土族氧化 物、一銪致活矽酸鹽、一銪致活準矽酸鹽及一銪致活過氧 磷酸鹽中至少一種化合物所組成。 銪致活之鹼土族氧化物可以選自氧化鎂(Mg〇)、氧化鈣 (CaO)、氧化銷(Sr0)、氧化鋇(Ba〇)、氧化鎂詞銷鋇 ((Mg,Ca,Sr,Ba)0)、氧化鎮銷鋇((Mg,Sr,Ba)〇)、氧化詞 錄鋇((Ca,Sr,Ba)0 )及氧化鳃鋇((Sr,Ba)〇 )中至少一種物 質所組成。並且是使用二價銪Eu2+作為活化劑,因此該銪 致活之驗土族氧化物螢光材料可以是二價銪致活之氧化鎮 飼銷鋇((Mgr,Cax,Sry,Baz)0:sEu2+)、二價銪致活之氧化鎮 鳃鋇((Mga,Sfb5Bae)0:SEu2+)、二價銪致活之氧化鋰鋇((知土 8η)〇:3Ειι2+)’ 其中 〇^(^13,(^丄1^,^,4^卜又必須滿足 條件(r+x+y+z+s)=l,(a+b + c + s)=l 及(i+j + s)=1。 銪致活矽酸鹽之主體化學式為AjiO4,其中A係選自 鳃、鈣、鋇、鎂、辞及鎘中至少一者。另外,該銪致活矽 酸鹽的螢光材料可具有摻雜雜質,其摻雜雜質係選自氣 (F)、氯(C1)、漠(Br)、峨(!)、磷(p)、硫(s)及氮 H:\HU\LGC\A34276\97639\97639.doc -11 - ΐ3〇3ΐιι 中至少一者。若主體係由矽酸鈣锶鋇所組成,其化學式為 (Sr2-x-yBaxCay)Si04,其中X及y僅需要滿足下列一組關係 式:OSxSO.8, 0$y$〇.8; 〇Sx$0.5, O^y^O.3; 〇·5 S xS 0· 7,0.2^ y $ 〇· 5 〇1303111 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode element and a method of manufacturing the same, and more particularly to an earth-sparing oxide containing barium-activated earthworms A light-emitting diode element which is a living peroxyphosphate fluorescent material and a method for producing the same. [Prior Art] Since the light emitting diode (LED) has the advantages of small size, luminous efficiency, and long life, it is considered to be the best light source for the next generation of green festivals. In addition, the rapid development of liquid crystal display screens and the trend of full-color screens make the white light-emitting diodes not only be used for indicator lights and large display screens, but also into consumer electronics such as mobile phones and PDAs. The type of uranium light-emitting diode can be classified according to the semiconductor material used therein, for example, GaAs, GaAsl_xPx or GaP. In addition, if a nitrogen atom is doped in the GaAS1-xpx or GaP series semiconductor materials, light of different colors can be produced. In general, the light emitted by the light-emitting diode has a monochromatic wavelength characteristic, and the length of the wavelength is determined according to the energy change in the electron transfer process of the illuminable light, and the wavelength actually used currently includes infrared light, Red, green, yellow and blue. In human vision, 'the three colors of red, green, and blue are called "three primary colors" by the sensing of three different colors of red, green, and blue. Right, the red, green, and blue LEDs with different wavelengths will be adjacent to each other. White color and other intermediate colors will be known because of the light mixing. H:\HU\LGC\A34276\97639\97639.doc l3〇 3lli (neutral color) color light. U.S. Patent No. 5,995, issued to U.S. Patent No. 5,995, the disclosure of which is incorporated herein by reference. The white light generated by the above-mentioned light-emitting diodes mixed with different wavelengths is composed of different light-emitting diodes, and must be controlled by a suitable driving circuit, which is complicated in system design. In addition, U.S. Patent No. 6,614,179 discloses the generation of blue light by a light-emitting diode which emits a phosphor (ph〇sph〇r) to produce yellow light, which is mixed by two complementary color (complementary c〇1〇r) sources. Thereafter, white light is formed, wherein the blue light wavelength is 420 nm to 490 nm, and the yellow scale light is composed of {[(Y, Gd)Sm](AlGa)0:Ce}. However, the white light produced by this method has a poor performance on the true color of the object, that is, the color temperature (c〇1〇r temperature) is high, resulting in color rendering (c〇1〇r coffee is as good as (4). In addition, the Japanese Sumitomo Electric In the developed zigje white light emitting diode element, two complementary color rays are still used to generate white light. The light emitting diode element is grown on the zinc selenide substrate to form an epitaxial layer, which is mainly The light-emitting structure is composed of n-VI materials on the periodic table, for example, a quantum well of cadmium/selenium (ZnCdSe/ZnSe), which is filled with a forward current. The blue light is emitted, and the complementary color light is generated by using a doped chemical zinc substrate as a fluorescent material. It is disclosed in U.S. Patent No. 6,337,536 that the dopant can be woven (^, chlorine (C1), desert (Br), Ming (A1), gallium (Ga), and indium (in), etc. Using the self-activated (SA) luminescence mechanism, the substrate is illuminated at H:\HU\LGC\A34276\97639\97639 .doc 1303111 A short spectrum of light with a center wavelength between 5^〇nm and 65〇nm Rongguang. When the wafer is applied with current, the quantum well layer can emit blue light, and some of the blue light will be red-yellow after being absorbed by the doped selenium substrate. After the two kinds of light are mixed, the wafer itself will be rendered. White light body. This method also uses two colors to complement the white color, which is suitable for white light with lower color temperature. Compared with US Patent Nos. 6,614,179 and 6'337,536, the former lacks red light. The light of the regional wavelength, while the latter φ is the light lacking the wavelength of the green light region, so it is not easy to be promoted in color rendering. Therefore, in order to develop a high color rendering white light, it is necessary to control or adjust the light source to emit light. The ratio of the light of each color is similar to the composition ratio of natural light, so the color of the object presented is more realistic. In the development of fluorescent materials, the current method is yttrium aluminum garnet crystal (chemical formula: X^ The composition of AsBOOu) is the focus of research and development, such as y3 (ai3ai2) 〇 12, (Y3_xCex) Al5 〇 i2, (7) 〇 5) Ai 2, _ and (YHhCeo.wGdaXAh-bGaOOi2, etc. in the YAG phosphor structure borrow A white color light-emitting diode having a higher color rendering property is produced by mixing two or more kinds of phosphors. In addition, glory bodies having different average particle sizes (d5〇) also cause different wavelengths of light emission and intensity of light emission. In addition to the living yttrium aluminum garnet crystal, there is also a fluorescent material disclosed in PCT International Patent Application No. WO 02/054502 by the company Tddonic Optoelectronics GMBH, Germany, which has the chemical formula as follows: (2-xy)Sr0 x( Ba,Ca)0 (1_a_b_c part i〇2 ap2〇5 bA ton cB2〇3 dGe〇2:yEu~ The color temperature can be adjusted by changing the composition of the light-emitting material, or the red fluorescent material Y (v, P can be added) ,Si)〇4$u, etc. to adjust the color H:\HU\LGC\A34276\97639\97639.doc 1303111 degrees coordinates. As mentioned above, there is a need in the market for a light-emitting element that is similar in composition to natural light, which has better luminous efficiency and brightness. SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting diode element and a method of fabricating the same that utilizes a semiconductor fluorescent material to absorb light generated by a light-emitting diode wafer, and emits a wavelength different from that of the light-emitting diode wafer. The fluorescent light of the illuminating line finally mixes the light and the fluorescent light emitted by the illuminating diode chip to form a multi-wavelength illuminating diode element. Another object of the present invention is to produce a white light intermediate light source such as pink or purpnsh pg by changing the composition ratio of the semiconductor phosphor material. In order to achieve the above object, the present invention discloses a light-emitting diode element and a method of fabricating the same. The light-emitting diode element comprises a light-emitting diode chip capable of generating an initial color light and a fluorescent material. The fluorescent material is composed of at least one compound selected from the group consisting of an alkaline earth oxide, a living bismuth citrate, a bismuth active bismuth citrate and a hydrazine peroxy phosphate. A portion of the initial color light will be absorbed and a fluorescent light different from the initial color light will be released. The initial color light and the camping light of the different wavelength spectrum are mixed into a white light source, and are emitted from the light emitting diode element to become a white light source. In addition, the composition ratio of different compounds in the fluorescent material can be changed to produce other white light intermediate color rays. The light emitting diode chip may be a nitride (InGaAiN) semiconductor H:\HU\LGC\A34276\97639\97639.doc 1303111 light emitting diode or zinc telluride (ZnSe) light emitting diode, especially A light-emitting diode of a nitride-based semiconductor is preferred. The alkaline earth oxide of the bismuth is mainly composed of at least one of magnesium oxide (Mg〇), oxidized about (CaO), oxidized pin (SrO) and barium oxide (BaO), and the activator is two. The price is 2+Eu2+. The main chemical formula of the bismuth active oxalate is A2Si〇4, wherein the A is selected from at least one of lanthanum, feed, strontium, magnesium (Mg), di (Zn) and cadmium (Cd). The main chemical formula of the bismuth bismuth citrate is ASi03, wherein the A is selected from at least one of strontium, calcium, barium, magnesium, zinc and cadmium. The main chemical formula of the bismuth-activated peroxyacid salt is (Ai x yBxCy) 2p2〇7, wherein the A is selected from at least one of hydrazine, about, lock, town, rhetoric and ore; b is selected from the group consisting of strontium and manganese. At least one of (Μη), molybdenum (Mo), and cerium (Ce); the C system is selected from at least one of lanthanum, bell, molybdenum, and cerium. The method of fabricating the LED device first provides an initial source that emits an initial light source, wherein the initial source is a fixed and electrically bonded photodiode wafer to a support carrier. The support carrier can be a lead frame or a substrate. And then covering a mold member on the initial light source, and placing a fluorescent material in the place where the initial light can be irradiated, the fluorescent material being a live alkaline earth oxide, a bismuth active citrate And consisting of at least one compound of a living peroxoate and a pin-activated peroxoate. After the fluorescent material absorbs a portion of the initial light, a wavelength of different fluorescent light can be generated, and the initial light and the fluorescent light can be mixed to make the light emitting diode element a multi-wavelength light source. [Embodiment] H:\HU\LGC\A34276\97639\97639.doc 1303111 In the field of materials of oxides, citrates, metasilicates, and peroxyphosphates, many materials have been found After the composition changes and the activator is activated, it will change its absorption spectrum and fluorescence spectrum. Fig. 1(a) to 1(b) are diagrams showing the luminescence spectra of ruthenium-activated bismuth bismuth citrate excited by a blue light-emitting diode wafer having a wavelength of 455 nm. It can be seen from Fig. 1(a) that the main peak of the erbium-activated cerium oxide emits light at a wavelength of about 540 nm. However, by changing the composition ratio of yttrium, lithium and ytterbium, the wavelength of the main peak of the emitted light can be adjusted, as shown in Fig. 丨(b), 'when the composition of yttrium is increased and the ratio of yttrium is decreased, the main peak wavelength of the emitted light is It is around 565 nm. The light emitting diode device provided by the invention mainly comprises a light emitting diode chip and a fluorescent material, wherein the fluorescent material can be activated by oxidation of the crucible disclosed in (a) and (b). Lithium strontium powder. When the illuminating diode chip emits initial light, such as blue light or ultraviolet light, the bismuth-activated quasi-citric acid pin-locking material absorbs a part of the light and generates fluorescent light of different wavelengths or wavelengths. The light-emitting diode element is then made into a multi-wavelength light source by mixing light. The above-mentioned fluorescent material is composed of a material of the soil-killing class of earthworms, which is activated by the actinic alkaline earth oxide, and the materials of the soil-tested quasi-salt and the peroxyacid salt. The light emitted by the light-emitting diode wafer generates light of more than one different wavelength by mixing light of different spectral bands to produce white light. Θ A schematic cross-sectional view of the light-emitting diode component of the present invention. The light-emitting diode element 20 mainly comprises a chip 22 of a light-emitting element fixed at a lead frame 23 cup type k, and the wafer 22 is respectively connected to the cathode 23a and the anode of the lead frame 23 by the metal wire 25 23b is electrically connected. H^HU\LGaA34276V97639\97639.doc 1303111 The wafer 22 is a light-emitting diode of a nitride-based semiconductor. The phosphor material 2丨 which can emit light of different spectral bands is filled in the cup type structure, so when the wafer 22 receives the external power supply, the initial light is emitted, and the fluorescent material 21 covering the periphery thereof is excited by the initial light. And thus producing a fluorescent light having a spectral band different from the initial light. The initial light and the fluorescent light are mixed into a white light, and finally the white light is transmitted through the mold member 24. The host of the fluorescent material 21 is composed of at least one compound of a living alkaline earth oxide, a bismuth active citrate, a bismuth active bismuth citrate and a bismuth active peroxy phosphate. Composed of. The alkaline earth oxide of barium can be selected from the group consisting of magnesium oxide (Mg〇), calcium oxide (CaO), oxidized pin (Sr0), barium oxide (Ba〇), and magnesium oxide (Mg, Ca, Sr, Ba) 0), oxidized pin 钡 ((Mg, Sr, Ba) 〇), oxidized words 钡 ((Ca, Sr, Ba) 0) and yttrium oxide ((Sr, Ba) 〇) at least one substance Composed of. And the use of divalent europium Eu2+ as an activator, so the earthworm-derived family oxide phosphor material can be a divalent europium-activated oxidized town feed pin ((Mgr, Cax, Sry, Baz) 0: sEu2+ ), the oxidized sputum ((Mga, Sfb5Bae) 0: SEu 2+), the divalent bismuth-induced oxidized lithium lanthanum ((Minute 8 η) 〇: 3Ε ιι2+)' where 〇^(^13, (^丄1^,^,4^b must satisfy the condition (r+x+y+z+s)=l, (a+b + c + s)=l and (i+j + s)=1 The main chemical formula of the active bismuth citrate is AjiO4, wherein the A is selected from at least one of strontium, calcium, strontium, magnesium, cadmium and cadmium. In addition, the fluorescent material of the bismuth citrate can be incorporated. Impurity impurities, the doping impurities are selected from the group consisting of gas (F), chlorine (C1), desert (Br), strontium (!), phosphorus (p), sulfur (s) and nitrogen H: \HU\LGC\A34276\ 97639\97639.doc -11 - ΐ3〇3ΐιι at least one. If the main system consists of calcium lanthanum citrate, its chemical formula is (Sr2-x-yBaxCay)Si04, where X and y only need to satisfy the following group Relational expression: OSxSO.8, 0$y$〇.8; 〇Sx$0.5, O^y^O.3; 〇·5 S xS 0· 7,0.2^ y $ 〇· 5 〇

銪致活準矽酸鹽之主體化學式為ASi〇3,其中A係選自 勰、鈣、鋇、鎂、辞及鎘中至少一者。該銪致活準矽酸鹽的 螢光材料可具有摻雜雜質,其摻雜雜質係選自氟、氣、溴、 碘、磷、硫及氮中至少一者。若主體係由準矽酸鈣锶鋇所 組成,其化學式為(Sr^^yBaxCaDSiO3,其中x及y僅需要 滿足下列某一組關係:〇. 8,〇$ 〇. 8 ; 5, 〇SyS0.3 ; 0·5$χ$〇·7,〇_2$y$〇 5。 銪致活過氧磷酸鹽之主體化學式為(Ai xyBxCy)2P2〇7,其 中A係選自總、約、鋇、鎂、鋅及編中至少一者;B係選 自銪、錳、銦及鈽中至少-者;C係選自箱、錳、銦及鈽 中至少-者。該銪致活過氧磷酸鹽的螢光材料可具有摻雜 雜質,其摻雜雜質係選自氟、氯、漠、碘、磷、硫及氮中 至少-者。若主體係由過氧磷酸錄韻所組成,其化學式 為UUxMny)2P2+z〇7,其中x、yAzf要滿足下列各 : 0.03^x^〇.〇8, 0.06^ y^〇>16, 〇^z^〇>〇5〇 當然該螢光材料2 1亦可由l彳+、4丨 力J由上述材料以不同比例所組成 的化合物或混合物中之至少一 u 種化式存在,因此該種螢光 材料2 1可以被激發出一種 禋以上不冋光譜帶之螢光光線。 如圖2所示,可先將粉狀 人y$ 營先材料21與液態膠體混 a,然後再以點膠、塗佈、 J AI,麗等方法將混合後之 H:\HU\LGC\A34276\97639\97639.doc -12- 1303111 螢光材料21黏膠填充於導線架23之杯型構^产 圖3係本發明之發光二極體元件另一較 一 1土题&例之剖面 示意圖,其中銪致活之螢光材料3 1係分佈 %揭構件34内。 可於壓模(molding)製程時,將該螢光材 u %竹31與環氧谢 脂混合之壓模膠(molding compound ) —同注射入κ 如此就能形成如圖3之發光裝置3〇。 、、内 圖4係本發明之一白光系發光二極體元立 、不思圖。相The main chemical formula of the bismuth bismuth citrate is ASi 〇 3, wherein the A is selected from at least one of strontium, calcium, barium, magnesium, and cadmium. The fluorescent material of the bismuth bismuth phthalate may have doping impurities selected from at least one of fluorine, gas, bromine, iodine, phosphorus, sulfur, and nitrogen. If the main system consists of calcium bismuth citrate, the chemical formula is (Sr^^yBaxCaDSiO3, where x and y only need to satisfy one of the following groups: 〇. 8, 〇$ 〇. 8 ; 5, 〇SyS0. 3; 0·5$χ$〇·7,〇_2$y$〇5. The main chemical formula of the active peroxyphosphate is (Ai xyBxCy)2P2〇7, where A is selected from total, about, and At least one of magnesium, zinc and sulphur; B is at least one selected from the group consisting of bismuth, manganese, indium and bismuth; and C is selected from at least one of tank, manganese, indium and bismuth. The fluorescent material of the salt may have doping impurities, and the doping impurities are selected from at least ones of fluorine, chlorine, desert, iodine, phosphorus, sulfur and nitrogen. If the main system consists of peroxyphosphoric acid, its chemical formula For UUxMny) 2P2+z〇7, where x and yAzf are to satisfy the following: 0.03^x^〇.〇8, 0.06^ y^〇>16, 〇^z^〇>〇5〇of course the fluorescent The material 2 1 may also be formed by at least one of a compound or a mixture of the above materials in different ratios, so that the fluorescent material 21 can be excited by a ruthenium or more. Fluorescent light . As shown in Fig. 2, the powdery human y$ camping material 21 can be mixed with the liquid colloid first, and then the mixed H:\HU\LGC\ by dispensing, coating, J AI, 丽, etc. A34276\97639\97639.doc -12- 1303111 The phosphor material 21 is filled with the cup holder of the lead frame 23. FIG. 3 is another light-emitting diode element of the present invention. A schematic cross-sectional view in which the fluorescing fluorescent material 31 is distributed within the component 34. In the molding process, the molding compound of the fluorescent material u% bamboo 31 and the epoxy resin is injected into the κ so that the light-emitting device of FIG. 3 can be formed. . 4, FIG. 4 is a white light-emitting diode of the present invention, which is not considered. phase

較於上述各圖中針腳(pin)型式之封裝外觀,圖4係—表 面黏著(SMD)型式之發光二極體元 :表 日日片42固定 於絕緣層43c表面,並藉由金屬導線型導電銅落… 和N型導電㈣43b電性相連,其中p型導電㈣…, 型導電銅箱43b及絕緣層43c構成具有電路之基板μ。且 有銪致活之驗土族㈣酸鹽、銪致活料鹽、銪致活㈣ 酸鹽或銪致活過氧磷酸鹽中至少一種之螢光材料層川可 先沈積在晶片42表面’例如:銪致活之切酸錄鋇,之後 再將具有不同螢光材料之螢弁姑 實尤材枓層412塗佈於螢光材料 層411及晶片4 2表面,例如· 1歹J如·銪致活之準矽酸鈣鳃鋇,然 後才形成透明之模構件44认# , 、不苒仔44於基板43上方。當然,螢光材 料層411及412内之螢井好柯 京尤材科亦可混合於模構件44之原始 材料内,於壓模製程時—同 门,主射入杈具内。亦即將螢光材 料層411及412之螢光絡金p 尤物與松構件44之膠體混合後形成膠 餅’於壓模(molding)時狀# > 时勝餌受熱液化後,會灌注於模具 之膠道内’隶後固化形成握 風技構件44。另外也可將粉狀之銪 致活之螢光材料與液態勝轉 ^體先行混合並形成薄膜,並將薄 H:\HU\LGC\A34276\97639\97639.doc '13- 1303111 膜放置在晶片42表面上,再使薄膜接受適當能量後,融化 並附著於晶粒42之表面上。 本發明除了可運用於上述之實施例外,並可採側向發光 _ 之封裝型式加以應用,如圖5之發光二極體元件5〇立體圖 所不。發光二極體元件5〇之兩側陰極5丨及陽極呈現l 形彎折狀,中間有模構件53將晶片及銪致活之鹼土族準矽 酸鹽、銪致活矽酸鹽、銪致活準矽酸鹽或銪致活過氧磷酸 φ 鹽中至少一種螢光材料(圖未示出)包覆住,混合後之白 光系光線將透過菱形窗面54由側向發射出來。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 月離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 • 圖1(a)〜丨②)係以波長為455 nm的藍光發光二極體晶 片激發銪致活的準矽酸勰鋇的發光光譜圖; 圖2係本發明發光二極體元件之第一實施例之示意圖; 圖3係本發明發光二極體元件之第二實施例之示意圖; 圖4係本發明發光二極體元件之第三實施例之示意圖; 以及 圖5係本發明發光二極體元件之第四實施例之示意圖。 【主要元件符號說明】 2〇 發光二極體元件 21螢光材料 H:\HU\LGC\A34276\97639\97639.doc -14- 1303111 22 晶片 23 導線架 23a 陰極 23b 陽極 24 模構件 25 金屬導線 30 發光二極體元件 31 螢光材料 34 模構件 40 發光二極體元件 42 晶片 43 基板 43a P型導電銅箔 43b N型導電銅箔 43c 絕緣層 44 模構件 45 金屬導線 411 、412 螢光材料 50 發光二極體元件 51 陰極 52 陽極 53 模構件 54 菱形窗面 H:\HU\LGC\A34276\97639\97639.doc -15-Compared with the package appearance of the pin type in the above figures, FIG. 4 is a surface-adhesive (SMD) type of light-emitting diode element: the surface day 42 is fixed on the surface of the insulating layer 43c, and is formed by a metal wire type. The conductive copper is electrically connected to the N-type conductive (four) 43b, wherein the p-type conductive (four)..., the conductive copper case 43b and the insulating layer 43c constitute a substrate μ having a circuit. And a fluorescent material layer of at least one of the earthworms (4) acid salt, the barium salt, the barium activic acid salt or the barium activic acid salt may be deposited on the surface of the wafer 42, for example. : 铕 活 之 切 钡 钡 钡 钡 钡 钡 钡 钡 钡 钡 钡 钡 钡 钡 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 The activated calcium bismuth citrate is formed, and then the transparent mold member 44 is recognized, and the scorpion 44 is above the substrate 43. Of course, the wells in the phosphor layers 411 and 412 can also be mixed in the original material of the mold member 44. During the molding process, the same door and the main injection into the cookware. That is, the phosphors of the phosphor layers 411 and 412 are mixed with the colloid of the loose member 44 to form a rubber cake. When the mold is heated, the bait is poured into the mold. The inside of the rubber channel is solidified to form a gripping skill member 44. In addition, the powdery bismuth-activated fluorescent material can be first mixed with the liquid-spinning body to form a film, and the thin H:\HU\LGC\A34276\97639\97639.doc '13- 1303111 film is placed on the film. On the surface of the wafer 42, after the film receives appropriate energy, it melts and adheres to the surface of the die 42. The present invention can be applied in addition to the above-described implementations, and can be applied to a package type of lateral illumination, such as the perspective view of the light-emitting diode element of Fig. 5. The cathode 5 丨 and the anode on both sides of the light-emitting diode element 5 are bent in an l-shape, and the mold member 53 in the middle is used to atomize the wafer and the alkali-alkaline bismuth citrate, bismuth citrate, and At least one fluorescent material (not shown) of the living peroxyphosphate or cerium-activated peroxyphosphoric acid φ salt is coated, and the mixed white light rays are emitted laterally through the diamond window 54. The technical contents and technical features of the present invention have been disclosed as above, but those skilled in the art can still make various alternatives and modifications to the present invention based on the teachings and disclosures of the present invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS: Figure 1 (a) ~ 丨 2) is an illuminating spectrum of bismuth bismuth bismuth citrate excited by a blue light emitting diode wafer having a wavelength of 455 nm; 3 is a schematic view of a second embodiment of a light-emitting diode element of the present invention; FIG. 4 is a schematic view showing a third embodiment of the light-emitting diode element of the present invention; 5 is a schematic view of a fourth embodiment of the light-emitting diode element of the present invention. [Description of main component symbols] 2〇Light-emitting diode element 21 fluorescent material H:\HU\LGC\A34276\97639\97639.doc -14- 1303111 22 Wafer 23 Lead frame 23a Cathode 23b Anode 24 Mold member 25 Metal wire 30 light-emitting diode element 31 fluorescent material 34 mold member 40 light-emitting diode element 42 wafer 43 substrate 43a P-type conductive copper foil 43b N-type conductive copper foil 43c insulating layer 44 mold member 45 metal wire 411, 412 fluorescent material 50 Light-emitting diode element 51 Cathode 52 Anode 53 Mold member 54 Diamond window H:\HU\LGC\A34276\97639\97639.doc -15-

Claims (1)

13031111303111 十、申請專利範圍:X. The scope of application for patents: 曰修(更)正本 第094101516號專利申請案 中文申請專利範圍替換本(97年5月) 一種發光二極體元件,包含: Ίχ光一極體晶片’能產生初始光線,以及 蛋光材料,該螢光材料係由一銪致活之驗土族氧化 物與摻雜雜質所組成,會吸收一部分該初始光線以發射出 波長相異之螢光光線,其中該摻雜雜質係選自氟、氯、演、 破、磷、硫及氮中至少一者;曰修(more)本本本094101516 Patent Application Chinese Patent Application Renewal (June 1997) A light-emitting diode component comprising: a phosphorescent wafer wafer capable of generating initial light, and egg light material, The fluorescent material is composed of a living earth oxide and doping impurities, and absorbs a part of the initial light to emit fluorescent light having a different wavelength, wherein the doping impurity is selected from fluorine, chlorine, At least one of acting, breaking, phosphorus, sulfur and nitrogen; 藉由混合該初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 2·根據請求項丨之發光二極體元件,其中該銪致活之鹼土族 氧化物之主體係由氧化鎂(Mg0)、氧化鈣(Ca0)、氧 化釔(SrO )、氧化鋇(Ba〇 )、氧化鎂鈣鳃鋇 ((Mg,Ca,Sr,Ba)0)、氧化鎂鋰鎮((Mg,Sr,Ba)〇)、氧 化鈣鳃鋇((Ca,Sr,Ba)〇)及氧化錕鋇((Sr,Ba)〇)之銪致 活之驗土族氧化物中至少一者所組成。The light emitting diode element is a multi-wavelength light source by mixing the initial light and the fluorescent light. 2. The luminescent diode component according to the claim ,, wherein the main system of the bismuth-activated alkaline earth oxide consists of magnesium oxide (Mg0), calcium oxide (Ca0), strontium oxide (SrO), and cerium oxide (Ba〇). ), magnesium oxide calcium strontium ((Mg, Ca, Sr, Ba) 0), magnesium oxide lithium ((Mg, Sr, Ba) 〇), calcium oxide strontium ((Ca, Sr, Ba) 及) and At least one of the oxides of the earthworms activated by cerium oxide ((Sr, Ba) cerium). 3·根據請求項i之發光二極體元件,其中該銪致活驗土族氧 化物係以二價銪(Eu2+)作為活化劑。 根據請求項2之發光二極體元件,其中該_料係選自 所述銪致活之驗土族氧化物,並以不同組成比例所形成的 化合物及混合物中之至少—種形式存在。 根據請求項1之發光二極體元件,其中該銪致活之驗土族 氧化物的螢光材料可以Η —伊 乂疋一知銪致活之氧化鎂鈣鳃鋇 ((Mgr,Ca為,叫〇咖2+)、二價銪致活之氧化鎂銘鋇 ((Mga’ b’ ae)〇.SEu )、二價銪致活之氧化鋰鋇((叫, [.\HU\LGC\A34276\97639\97639.doc 1303111 Srj)〇:sEu2+),化學式中a、b、c、i、j、r、s、x、yh 必須滿足下列關係式及等式:,啦i、 (r+X+y+Z+s)=l、(a+b+c+s)==1 及(i+j + s)=l。 6. —種發光二極體元件,包含: 一發光二極體晶片,能產生初始光線;以及 一勞光材料,該螢光材料係由至少一銪致活矽酸鹽與 按雜雜質所組成,會吸收一部分該初始光線以發射出波長3. The luminescent diode element according to claim i, wherein the bismuth-based bio-organic oxide system uses divalent europium (Eu2+) as an activator. A light-emitting diode element according to claim 2, wherein the material is selected from the earth-killing earth oxides of the earthworms, and is present in at least one of a compound and a mixture formed in different composition ratios. According to the light-emitting diode element of claim 1, wherein the fluorescent material of the earth-removing earth oxide of the earthworm can be activated, the magnesium oxide calcium strontium (Mgr, Ca is called 〇 2+ 2+), 二 铕 铕 之 氧化 氧化 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( \97639\97639.doc 1303111 Srj)〇:sEu2+), in the chemical formula a, b, c, i, j, r, s, x, yh must satisfy the following relations and equations:, i, (r+X +y+Z+s)=l, (a+b+c+s)==1 and (i+j + s)=l. 6. A light-emitting diode element comprising: a light-emitting diode a wafer capable of generating initial light; and a glazing material consisting of at least one bismuth citrate and impurity-containing impurities, absorbing a portion of the initial ray to emit a wavelength 相異之螢光光線,其中該摻雜雜質係選自氯、溴、碘、磷、 硫及氮中至少一者; 藉由混合該初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 7 ·根據請求項6之發光二極體元件,其中該銪致活矽酸鹽之 主體化學式為AjiO4,該化學式中A係選自鋰、鈣、鋇、 鎂、鋅及鎘中至少一者。 8 ·根據請求項6之發光二極體元件,其中該銪致活矽酸鹽之 主體係由矽酸鈣鳃鋇所組成,其化學式為 (Si^x_yBaxcay)si〇4,該化學式中X及y僅需要滿足下列一 組 ®SS:〇$XS〇.8,〇$y$〇8;〇‘X$〇5,〇$y$〇3; 0.5 ^ 0·7,0·2 g y ^ 0.5。 9· 一種發光二極體元件,包含: 一發光二極體晶片,能產生初始光線;以及 一螢光材料,該螢光材料係由至少一銪致活準矽酸鹽 與接雜雜質所組成,會吸收一部分該初始光線以發射出波 長相異之螢光光線,其中該摻雜雜質係選自氟、氯、溴、 639. doc H:\HU\LGC\A34276\97639\97< -2 - 1303111 碘、猶、硫及氮中至少一者; 藉由混合該初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 10. —種發光二極體元件,包含: 一發光二極體晶片,能產生初始光線;以及 一螢光材料,該螢光材料係由至少一銪致活準矽酸蹄 所組成,會吸收一部分該初始光線以發射出波長相異之螢 光光線; 藉由混合該初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 11·根據請求項9或10之發光二極體元件,其中該銪致活準矽 酸鹽之主體化學式為ASi〇3,該化學式中A係選自锶、鈣、 鋇、鎂、辞及録中至少一者。 !2·根據請求項9或10之發光二極體元件,其中該銪致活準矽 酉欠鹽之主體係由準矽酸鈣鳃鋇所組成,其化學式為 (Sr2_x-yBaxCay)Si〇3,該化學式中乂及y僅需要滿足下列一 組關係式·〇$χ^ο.8,ο^γ^〇8;〇^χ^〇5,〇^0〇3; 〇·5 $ X $ 〇 7,0.2 g y g 〇·5。 13· 一種發光二極體元件,包含: 一發光二極體晶片,能產生初始光線;以及 一螢光材料,該螢光材料係由至少一銪致活過氧磷酸 鹽與摻雜雜質所組成,會吸收一部分該初始光線以發射出 波長相異之螢光光線,其中該摻雜雜質係選自氟、氯、溴、 蛾、♦、硫及氮中至少一者; H:\HU\LGC\A34276\97639\97639.doc 1303111 藉由混合該初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 14· 一種發光二極體元件,包含: 一發光二極體晶片,能產生初始光線;以及 一螢光材料,該螢光材料係甴至少一銪致活過氧嶙酸 鹽所組成,會吸收一部分該初始光線以發射出波長相異之 螢光光線; 藉由混合该初始光線及螢光光線使該發光二極體元件 成為一多波長光源。 1 5 ·根據请求項13或14之發光二極體元件,其中該銪致活過氧 磷酸鹽之主體係由過氧磷酸锶銪錳所組成,其化學式為 (Al_x-yBxCy)2P2〇7,該化學式中:A係選自|思、約、鋇、 鎮、鋅及鎘中至少一者;3係選自銪、錳、鉬及鈽中至少 一者;C係選自銪、猛、|目及飾中至少一者。 16. 根據請求項13或14之發光二極體元件,其中該銪致活過氡 磷酸鹽之主體係由過氧磷酸鋰銪錳所組成,其化學式為 (Sr〗_x_yEux]VIny)2P2+z07 ’該化學式中x、乂及z需要滿足下列 各關係·· 0.03$ 0.08,〇.〇6$ 0.16,〇$ 〇 〇5。 17. 根據請求項1、6、9、10、13或14之發光二極體元件,其 另包含一可固定該發光二極體晶片之導線架。 18. 根據請求項1、6、9、10、13或14之發光二極體元件,其 中該發光二極體元件係侧面發光之元件。 19·根據請求項1、6、9、10、13或14之發光二極體元件,其 另包含_可固定該發光二極體晶片之基板。 [.\HU\LGC\A34276\97639\97639.doc -4- 1303111 2 〇.根據請求項1、6、9、1 〇、 中混光後之多波長光線係 線0 1 3或14之發光—極體元件’其 白光及白光系中間色中一種光 21. 22. 根據請求項Η或10之發先二極體元件,其中該螢光材料 係直接覆蓋於該發光二極體晶片表面。 根據請求項卜6或10之發光二極體元件,其另包含一包覆a different fluorescent light, wherein the doping impurity is selected from at least one of chlorine, bromine, iodine, phosphorus, sulfur, and nitrogen; and the light emitting diode element is formed by mixing the initial light and the fluorescent light Multi-wavelength light source. The light-emitting diode element according to claim 6, wherein the main chemical formula of the bismuth active citrate is AjiO4, wherein the A system is selected from at least one of lithium, calcium, barium, magnesium, zinc and cadmium. 8. The light-emitting diode element according to claim 6, wherein the main system of the bismuth active bismuth citrate is composed of calcium lanthanum citrate, and the chemical formula is (Si^x_yBaxcay) si 〇 4, wherein X and y only need to meet the following set of ®SS: 〇$XS〇.8, 〇$y$〇8; 〇'X$〇5, 〇$y$〇3; 0.5 ^ 0·7,0·2 gy ^ 0.5 . 9. A light-emitting diode device comprising: a light-emitting diode chip capable of generating initial light; and a fluorescent material consisting of at least one bismuth-activated meta- citrate and impurity A portion of the initial light is absorbed to emit a fluorescent light of a different wavelength, wherein the doping impurity is selected from the group consisting of fluorine, chlorine, and bromine, 639. doc H:\HU\LGC\A34276\97639\97<-2 - 1303111 at least one of iodine, helium, sulfur, and nitrogen; the light-emitting diode element is a multi-wavelength light source by mixing the initial light and the fluorescent light. 10. A light-emitting diode component comprising: a light-emitting diode chip capable of generating initial light; and a fluorescent material consisting of at least one active bismuth acid hoof A portion of the initial light emits a fluorescent light having a different wavelength; and the light emitting diode element is a multi-wavelength light source by mixing the initial light and the fluorescent light. The light-emitting diode element according to claim 9 or 10, wherein the main chemical formula of the bismuth activator is ASi〇3, wherein the system A is selected from the group consisting of strontium, calcium, barium, magnesium, and remarks At least one of them. 2. The light-emitting diode element according to claim 9 or 10, wherein the main system of the bismuth-killing salt is composed of calcium bismuth citrate, and the chemical formula is (Sr2_x-yBaxCay)Si〇3 In the chemical formula, 乂 and y only need to satisfy the following set of relations: 〇$χ^ο.8, ο^γ^〇8; 〇^χ^〇5, 〇^0〇3; 〇·5 $ X $ 〇 7, 0.2 gyg 〇·5. 13. A light-emitting diode device comprising: a light-emitting diode wafer capable of generating initial light; and a fluorescent material consisting of at least one bismuth-activated peroxy phosphate and doped impurities And absorbing a portion of the initial light to emit fluorescent light having a different wavelength, wherein the doping impurity is selected from at least one of fluorine, chlorine, bromine, moth, ♦, sulfur, and nitrogen; H:\HU\LGC \A34276\97639\97639.doc 1303111 The light-emitting diode element is made into a multi-wavelength light source by mixing the initial light and the fluorescent light. 14. A light-emitting diode component comprising: a light-emitting diode chip capable of generating initial light; and a phosphor material comprising at least one active peroxometalate that absorbs A portion of the initial light emits a fluorescent light having a different wavelength; and the light emitting diode element is a multi-wavelength light source by mixing the initial light and the fluorescent light. The light-emitting diode element according to claim 13 or 14, wherein the main system of the bismuth-activated peroxyphosphate is composed of manganese lanthanum oxyphosphate having a chemical formula of (Al_x-yBxCy)2P2〇7, In the formula: A is selected from at least one of: Si, about, yttrium, town, zinc, and cadmium; 3 is selected from at least one of lanthanum, manganese, molybdenum, and lanthanum; At least one of the eyes and ornaments. 16. The light-emitting diode element according to claim 13 or 14, wherein the main system of the bismuth-activated bismuth phosphate consists of lithium perovskite bismuth manganese, the chemical formula of which is (Sr〗_x_yEux]VIny)2P2+z07 'In this chemical formula, x, 乂, and z need to satisfy the following relationships. · 0.03$ 0.08, 〇.〇6$ 0.16, 〇$ 〇〇5. 17. The light emitting diode device of claim 1, 6, 9, 10, 13 or 14 further comprising a lead frame for fixing the light emitting diode chip. 18. A light-emitting diode element according to claim 1, 6, 9, 10, 13 or 14, wherein the light-emitting diode element is an element that emits light from the side. 19. The light-emitting diode element according to claim 1, 6, 9, 10, 13 or 14, further comprising a substrate capable of fixing the light-emitting diode wafer. [.\HU\LGC\A34276\97639\97639.doc -4- 1303111 2 〇. According to the request, 1, 6, 9, 1 〇, the multi-wavelength ray line 0 1 3 or 14 after the light is mixed A polar body element 'a light in a white light and a white light intermediate color. 21. 22. The first diode element according to claim 3 or 10, wherein the fluorescent material directly covers the surface of the light emitting diode wafer. According to the light-emitting diode component of claim 6 or 10, the package further comprises a cladding •亥毛光—極體晶片之模構件,該螢光材料係分佈於該模構 件内。 23 ·根據明求項丨丨之發光二極體元件,其中該螢光材料係直接 覆蓋於該發光二極體晶片表面。 24·根據請求項15之發光二極體元件,其中該螢光材料係直接 覆蓋於該發光二極體晶片表面。 25. 根據請求項16之發光二極體元件,其中該螢光材料係直接 覆蓋於該發光二極體晶片表面。 26. 根據明求項丨丨之發光二極體元件,其另包含一包覆該發光 二極體晶片之模構件,該螢光材料係分佈於該模構件内。 27·根據請求項15之發光二極體元件,其另包含一包覆該發光 一極體B曰片之模構件,該螢光材料係分佈於該模構件内。 I根據請求項16之發光二極體元件,其另包含-包覆該發光 一極體曰曰片之模構件,該螢光材料係分佈於該模構件内。 29· -種發光二極體元件之製造方法,其包含下列步驟: 口定並電性連結一發光二極體晶片於一支撐載體上; 以及 將赏光材料置於該發光二極體晶片發出光線可照射 [AHU\LGC\A34276\97639\97639.doc 1303111 到之處,該榮光材料係由一銪致活 ^ 蛛土族氧化物盥第一 按雜雜貝、一銷致活發酸趨盘裳_ /、 ,、弗—摻雜雜質、一銪致活準 矽酸鹽及一銪致活過氧磷酸鹽 ^ b 斤 芏/ 一種銪致活化合物 所組成,其中該弟一摻雜雜質係選 & 、’、、目氟 '氯、溴、埃、磷、 硫及氮中至少一者及第二摻雜雜質 貝係坻自虱、溴、碘、磷、 硫及氮中至少一者; 藉由使該發光二極體晶片發射 知耵出初始光線以激發該銪 致活驗土族氧化物的螢光材料產生螢光光線,混合該初始 光線及螢光光線後使該發光二極體元件成為—多波長光 源0 30·根據請求項29之發光二極體元件之製造方法’其中該鎖致 活之鹼土族氧化物之主體係由氧化鎂(Mg〇)、氧化約 (CaO)、氧化(Sr〇)、氧化鋇(㈣)、氧化鎮約 ㈣((Mg,Ca,Sr,Ba)0)、氧化鎂銷鋇((Mg,Sr,Ba)〇)、 氧化約銷鋇((Ca,Sr,Ba)0)及氧化銘領((Sr,Ba)〇)之鎖 致活之鹼土族氧化物中至少一者所組成。 31. 根據請求項29之發光二極體元件之製造方法,其中該螢光 材料係選自所述銪致活之鹼土族氧化物,並以不同組成比 例所形成的化合物及混合物中之至少一種形式存在。 32. 根據請求項29項之發光二極體元件之製造方法,其中該銪 致活之鹼土族氧化物螢光材料可以是二價銪致活之氧化 鎮妈銷鋇((Mgr,Cax,Sry,Baz)〇:sEu2+)、二價銪致活之氧 化鎂鳃鋇((Mga5Srb,Bae)0:sEu2+)、二價銪致活之氧化锶 鎖((Bai5 Srj)0:sEu2+),化學式中 a、b、c、i、j、r、s、 H \HU\LGC\A34276\97639\97639 d〇c 1303111 乂、7及2必須滿足下列關係式及等式:0$(3^,(:,丨山1^,:^,:/,:2) € 1、(r+x+y+z+s)=l、(a+b+c+s)=l 及(i+j + spl。 33.根據請求項29項之發光二極體元件之製造方法,其中該銪 致活驗土族氧化物、銪致活石夕酸鹽、銪致活準石夕酸鹽及銪 致活過氧磷酸鹽的螢光材料係以二價銪(Eu2+)作為活化 劑0• The glare-forms of the polar body wafer, the fluorescent material being distributed within the mold member. 23. The light-emitting diode component according to the invention, wherein the phosphor material directly covers the surface of the light-emitting diode wafer. The light-emitting diode element according to claim 15, wherein the fluorescent material directly covers the surface of the light-emitting diode wafer. 25. The light emitting diode component of claim 16, wherein the phosphor material directly overlies the surface of the light emitting diode wafer. 26. The light emitting diode device according to the invention, further comprising a mold member covering the light emitting diode chip, the fluorescent material being distributed in the mold member. The light-emitting diode element according to claim 15, further comprising a mold member covering the light-emitting diode B, wherein the fluorescent material is distributed in the mold member. I. The light-emitting diode component of claim 16, further comprising - a mold member encasing the light-emitting one-pole wafer, the fluorescent material being distributed within the mold member. A method of manufacturing a light-emitting diode element, comprising the steps of: electrically and electrically connecting a light-emitting diode chip on a support carrier; and placing a light-receiving material on the light-emitting diode chip to emit light It can be irradiated [AHU\LGC\A34276\97639\97639.doc 1303111 Wherever it goes, the glory material is made by a glimpse of the ^ arachnid oxide 盥 盥 盥 盥 盥 盥 盥 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 /,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, At least one of -, ',, fluoro" chlorine, bromine, arsenic, phosphorus, sulfur, and nitrogen, and at least one of the second doping impurities, at least one of argon, bromine, iodine, phosphorus, sulfur, and nitrogen; The fluorescent light is generated by causing the light-emitting diode wafer to emit a fluorescent material that excites the initial light to excite the active earth oxide, and the initial light and the fluorescent light are mixed to make the light-emitting diode element - multi-wavelength light source 0 30. LED according to claim 29 The manufacturing method of the component 'the main system of the lock-activated alkaline earth oxide is composed of magnesium oxide (Mg 〇), oxidized about (CaO), oxidized (Sr〇), cerium oxide ((iv)), oxidized town (four) (( Mg, Ca, Sr, Ba) 0), Magnesium oxide pin 钡 ((Mg, Sr, Ba) 〇), oxidized about pin 钡 ((Ca, Sr, Ba) 0) and oxidized Ming collar ((Sr, Ba) 〇) The lock-activated alkaline earth oxide consists of at least one of them. 31. The method of producing a light-emitting diode element according to claim 29, wherein the fluorescent material is selected from the group consisting of at least one of a compound and a mixture of the cerium-activated alkaline earth oxide and formed in different composition ratios. Form exists. 32. The method of fabricating a light-emitting diode element according to claim 29, wherein the bismuth-activated alkaline earth oxide fluorescent material is a oxidized granule of divalent strontium (Mgr, Cax, Sry) , Baz) 〇: sEu2+), bivalent strontium-activated magnesium oxide strontium ((Mga5Srb, Bae) 0: sEu2+), bivalent strontium-activated oxidative hydrazine ((Bai5 Srj) 0: sEu 2+), in the chemical formula a, b, c, i, j, r, s, H \HU\LGC\A34276\97639\97639 d〇c 1303111 乂, 7 and 2 must satisfy the following relationship and equation: 0$(3^,( :,丨山1^,:^,:/,:2) € 1, (r+x+y+z+s)=l, (a+b+c+s)=l and (i+j + The method for producing a light-emitting diode element according to claim 29, wherein the living earth oxide, the strontium, the living salt, the bismuth and the bismuth The phosphorescent material of oxyphosphate is based on divalent europium (Eu2+) as the activator. 3 4 _根據睛求項2 9之發光二極體元件之製造方法,其中該销致 活矽酸鹽之主體化學式為AjiCU,該化學式中A係選自 錯、辑、鋇、鎮、鋅及録中至少一者。 35·根據請求項29之發光二極體元件之製造方法,其中該銪致 /舌石夕酸鹽之主體係由石夕酸約銀鋇所組成,其化學式為 (Sr2-x_yBaxCay)Si04,該化學式中乂及y僅需要滿足下列一 組關係式:O^xSO.8, 0gyg0 8; 〇$χ$〇 5, 3 ; 〇.5$ 0.7,0.2$ 0.5。 36. 根據請求項29之發光二極體元件之製造方法,其中該銪致 活準矽酸鹽之主體化學式為ASi〇3,該化學式中A係選自 鳃、鈣、鋇、鎂、鋅及鎘中至少一者。 37. 根據請求項29之發光二極體元件之製造方法,i中該銷致 活一夕酸鹽的營光材料可具有換雜雜質,該捧雜雜質係選 自氟、氯、溴、碘、磷、硫及氮中至少—者。 38. 根據請求項29之發光二極體元件之製造方法,其中該鎖致 活準石夕酸鹽之主體係由準石夕酸㈣鋇所組成,其化學式為 ㈣―”BaxCay)Si〇3,該化學式中认y僅需要滿足下列一 組關係式:ow〇.8,〇W;〇^〇5〇¥〇3; IVHU\LGC\A34276\97639\97639.doc -7- Ι3031Π 0.5 $ 0·7,0.2S 〇·5。 3 9·根據請求項29之發光二極體元件之製造方法,其中該鎖致 活過氧稱酸鹽之主體係由過氧磷酸錯銪猛所組成,其化學 式為(AwBxCy)2P207,該化學式中:a係選自锶、舞、 鋇、鎮、鋅及鑛中至少一者,B係選自銪、|孟、|目及鈽中 至少一者;C係選自銪、錳、鉬及鈽中至少一者。 40·根據請求項29之發光二極體元件之製造方法,其中該鎖致 活過氧構酸鹽的螢光材料可具有摻雜雜質,其摻雜雜質係 遙自氟、氯、>臭、硬、鱗 '硫及I中至少一者。 41·根據請求項29之發光二極體元件之製造方法,其中該銪致 活過氧磷酸鹽之主體係由過氧磷酸锶銪錳所組成,其化學 式為(8Γι_χ_γΕιιχΜ%)2Ρ2+ζ〇7,其中χ、7及z需要滿足下列各 關係· 0.03^x^0.08,〇.〇6$y$〇.i6, 42·根據清求項29之發光二極體元件之製造方法,其中該支撐 載體係一導線架。 43, 根據請求項29之發光二極體元件之製造方法,其中該支撐 載體係一基板。 44. 根據請求項29之發光二極體元件之製造方法,其中混光後 之多波長光線係白光及白光系中間色中一種光線。 45·根據請求項29之發光二極體元件之製造方法,其中該螢光 材料係直接覆蓋於該發光二極體晶片表面。 46.根據請求項29之發光二極體元件之製造方法,其另包含覆 蓋一模構件在«光二極體晶片及支標载體上之步驟。 47·根據請求項46之發光二極體元件之製造方法,其十該發光 H:\HU\LGC\A34276\97639\97639.doc .1303111 材料係分佈於該模構件内。 48. 根據請求項29之發光二極體元件之勢 咬乃决,其中該技朵 材料為粉狀且與液態膠體先行混合,紗 ^ + …、俊再以點膠、塗 佈、印刷及㈣中-種方式將混合後之榮光材料置於 光二極體晶片表面。 % 49. 根據請求項29之發光二極體元件之製造方法,其中該榮光 材料包含螢光粉,其與膠體形成— 化且經壓模後形成一模構件。 50. 根據請求項29之發光二極體元件之製造方法,其中該榮光 材料包含粉狀顆粒,其舆液態膠體先行混合並形成薄膜’ 該薄膜接受適當能量後,融化並附著於該發光二極體晶片 表面。 51. 根據請求項46之發光二極體元件之製造方法,其中該導線 架可使該發光二極體元件形成側面發光之元件。3 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ At least one of the records. 35. The method of producing a light-emitting diode element according to claim 29, wherein the main system of the bismuth/salt acid salt is composed of a silver sulphate, and the chemical formula is (Sr2-x_yBaxCay)Si04. In the chemical formula, 乂 and y only need to satisfy the following set of relations: O^xSO.8, 0gyg0 8; 〇$χ$〇5, 3 ; 〇.5$ 0.7, 0.2$ 0.5. The method for producing a light-emitting diode element according to claim 29, wherein the main chemical formula of the bismuth activator is ASi〇3, wherein the system A is selected from the group consisting of strontium, calcium, barium, magnesium, zinc and At least one of cadmium. 37. The method of fabricating a light-emitting diode element according to claim 29, wherein the camping material of the pin-activated acid salt has a impurity, the impurity selected from the group consisting of fluorine, chlorine, bromine, and iodine. At least one of phosphorus, sulfur and nitrogen. 38. The method of producing a light-emitting diode element according to claim 29, wherein the main system of the lock-activated quasi-salt acid salt is composed of quasi-lithic acid (tetra) ruthenium, and the chemical formula is (4) - "BaxCay" Si〇3 In the chemical formula, y only needs to satisfy the following set of relations: ow〇.8, 〇W; 〇^〇5〇¥〇3; IVHU\LGC\A34276\97639\97639.doc -7- Ι3031Π 0.5 $ 0 7. The method of manufacturing a light-emitting diode element according to claim 29, wherein the main system of the lock-activated peroxyacid salt is composed of peroxyphosphoric acid. The chemical formula is (AwBxCy) 2P207, wherein: a is selected from at least one of 锶, dance, 钡, 镇, zinc, and ore, and B is at least one selected from the group consisting of 铕, 孟, 目, and ;; C And a method for producing a light-emitting diode element according to claim 29, wherein the fluorescent material of the lock-activated peroxyacid salt may have doping impurities The doping impurity is at least one of fluorine, chlorine, > odor, hard, scale, sulfur, and I. 41. The method of manufacturing the light-emitting diode element according to claim 29, The main system of the bismuth-activated peroxyphosphate is composed of bismuth manganese peroxyphosphate, and its chemical formula is (8Γι_χ_γΕιιχΜ%) 2Ρ2+ζ〇7, wherein χ, 7 and z need to satisfy the following relationships: 0.03^x ^0.08,〇.〇6$y$〇.i6, 42. The method of manufacturing the light-emitting diode element according to claim 29, wherein the support carrier is a lead frame. 43. The light-emitting diode according to claim 29. A method of manufacturing a body member, wherein the support carrier is a substrate. 44. The method of fabricating a light-emitting diode device according to claim 29, wherein the multi-wavelength light after the light mixing is one of a white light and a white light intermediate color. The method of manufacturing a light-emitting diode element according to claim 29, wherein the fluorescent material directly covers the surface of the light-emitting diode wafer. 46. The method of manufacturing the light-emitting diode element according to claim 29, further comprising The step of covering a module member on the photodiode wafer and the support carrier. 47. The method for manufacturing the light-emitting diode element according to claim 46, wherein the illumination H:\HU\LGC\A34276\97639\ 97639.doc .1303111 Material Fraction In the mold member. 48. According to claim 29, the potential of the light-emitting diode element is determined, wherein the technical material is powdered and mixed with the liquid colloid, the yarn is ^ + ..., and then dispensed, Coating, printing, and (4) medium-sized method of placing the mixed glare material on the surface of the photodiode wafer. The method of manufacturing the luminescent diode element according to claim 29, wherein the glare material comprises phosphor powder, It forms a mold with the colloid and forms a mold member after compression molding. 50. The method of fabricating a light-emitting diode element according to claim 29, wherein the luminescent material comprises powdery particles, and the liquid colloid is first mixed and formed into a film. After the film receives appropriate energy, it melts and adheres to the light-emitting diode. Body wafer surface. The method of fabricating a light-emitting diode element according to claim 46, wherein the lead frame allows the light-emitting diode element to form a side-emitting element. H:\HU\LGC\A34276\97639\97639.docH:\HU\LGC\A34276\97639\97639.doc
TW94101516A 2005-01-19 2005-01-19 Light emitting diode device and manufacturing method thereof TWI303111B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW94101516A TWI303111B (en) 2005-01-19 2005-01-19 Light emitting diode device and manufacturing method thereof
KR20050084050A KR100698711B1 (en) 2005-01-19 2005-09-09 Light emitting diode device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94101516A TWI303111B (en) 2005-01-19 2005-01-19 Light emitting diode device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200627662A TW200627662A (en) 2006-08-01
TWI303111B true TWI303111B (en) 2008-11-11

Family

ID=37174442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101516A TWI303111B (en) 2005-01-19 2005-01-19 Light emitting diode device and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR100698711B1 (en)
TW (1) TWI303111B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846482B1 (en) * 2007-01-17 2008-07-17 삼성전기주식회사 A red phosphor and a light emitting device comprising the same
US7998526B2 (en) 2009-12-01 2011-08-16 Bridgelux, Inc. Method and system for dynamic in-situ phosphor mixing and jetting
TWI467812B (en) * 2012-08-16 2015-01-01 Univ Nat Formosa White light emitting diode device
CN113314652B (en) * 2020-02-26 2022-07-01 抱朴科技股份有限公司 LED element and lighting device using the same
TWI738228B (en) * 2020-02-26 2021-09-01 丁肇誠 Led element and illumination apparatus using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410266B (en) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
JP3749243B2 (en) * 2001-09-03 2006-02-22 松下電器産業株式会社 Semiconductor light emitting device, light emitting apparatus, and method for manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
TW200627662A (en) 2006-08-01
KR100698711B1 (en) 2007-03-23
KR20060084346A (en) 2006-07-24

Similar Documents

Publication Publication Date Title
KR101395432B1 (en) White led device
US7026755B2 (en) Deep red phosphor for general illumination applications
EP1802728B1 (en) Phosphor and light emitting device using the same
JP4072632B2 (en) Light emitting device and light emitting method
US7573072B2 (en) Phosphor and blends thereof for use in LEDs
US7382033B2 (en) Luminescent body and optical device including the same
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
US7884382B2 (en) Rules for efficient light sources using phosphor converted LEDs
US7088038B2 (en) Green phosphor for general illumination applications
JP4896129B2 (en) Light emitting device and alkaline earth metal sulfide phosphor for the same
JP4868685B2 (en) Phosphor
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
TW200814377A (en) LED lighting arrangement including light emitting phosphor
JP2006524425A (en) White semiconductor light emitting device
US20130015461A1 (en) Light-emitting Device Capable of Producing White Light And Light Mixing Method For Producing White Light With Same
TWI303111B (en) Light emitting diode device and manufacturing method thereof
JP3707446B2 (en) White light emitting device
JP4221950B2 (en) Phosphor
JP2002118292A (en) Semiconductor light-emitting device
TWI242893B (en) White light-emitting apparatus
JP2009073914A (en) Green light emitting phosphor and light emitting module using the same
JP3702863B2 (en) White light emitting device
KR100672972B1 (en) White diode
CN1841794B (en) Light emitting diode assembly and process for producing the same
TWI247440B (en) LED device emitting neutral color light and manufacture method thereof