1247440 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種發光二極體元件及其製造方法,尤 係關於一種能產生中間色光或白色光線之發光二極體 元件及其製造方法。 【先前技術】 由於發光二極體(light emitting diode;LED)有體積小、 發光效率高及壽命長等優點,因此被認為是次世代綠色節 能照明的最佳光源。另外液晶顯示幕的快速發展及全彩螢 幕的流行趨勢,使白光系發光二極體除了應用於指示燈及 大型顯示幕等用途外,更切入廣大之消費性電子產品,例 如:手機及PDA。 目前發光二極體之種類可依照其所使用之半導體材料來 分類,例如:GaAs、GaAsl-xPx或GaP等系列。此外,若 在GaAsl-χΡχ、GaP系列半導體材料中摻雜氮原子,則可 以產生不同顏色之光線。一般而言,發光二極體所發出之 光線具有單色性波長之特性,至於該波長之長短係根據可 發光之電子轉移過程中的能量變化而定,目前實際上使用 之波長包含紅外光、紅光、綠光、黃光及藍光等。在人體 視覺中,可藉由紅、綠、藍三種不同顏色光的感應而產生 多種顏色的感覺,因此稱紅、綠、藍三色為光的「三原色」。 右將、、、工綠、藍二種不同波長之發光二極體光源鄰接配 置,將可因為混光而得到白光(—。。及其它中間色 (neutral c〇ior)之顏色光。美國專利第5,奶,〇7〇號揭露 H:\HU\LGC\A34276\96323\96323.doc 1247440 採用鄰接不同之光源做為顯示裝置,其中每一像素係由一 、、、光源 I光源以及兩綠光源之二極體所組成。上述利 用不同波長之發光二極體混光所產生的白光因係整合不同 電性之發光二極體所構成,必須分別以適合之驅動電路控 制,而在系統設計上較為複雜。 另外美國專利第6,614,179號揭露以發光二極體產生藍 光’该藍光會激發磷光劑(phosphor)而產生黃光,藉由 兩種互補色(C〇mplementary C〇1〇r )光源混光後形成白光, 其中藍光波長為420nm〜490nm,以及黃色磷光劑係由 {[(Y,Gd)Sm](AlGa)0:Ce}所組成。但此方式所產生的白光對 於物體真實色彩的表現較差,亦即色溫度( temperature)較高而致使演色性(c〇1〇r rendering匕心义) 不佳。 此外以曰本住友電工所發展的硒化鋅(ZnSe )白光發光 二極體元件而言,仍是利用兩互補色光線來產生白光。該 發光一極體元件係在砸化鋅基板上成長一蟲晶層,其主要 發光結構是由週期表上II-VI族材料之所組成,例如:硒化 辞録/石西化鋅(ZnCdSe/ZnSe)之量子井(quantumwell), 在表入正向電流後’該;g;子井部分會發射出藍光,互補色 光線則係利用摻雜的栖化鋅基板做為螢光材料所產生。在 美國專利第6,337,536號中揭露該摻雜物可以為埃(j)、氯 (C1)、溴(B〇、銘(A1)、鎵(Ga)及銦(In)等。利用 自身活化(Self-activated ; SA)的發光機制,使基板在照 射短波長光線後會發射中心波長在55〇nm到650nm之寬光 H:\HU\LGC\A34276\96323\96323.doc 1247440 譜的螢光。當晶片被施加電流後,量子井磊晶層可發出藍 光,部分藍光經有摻雜之碰化鋅基板吸收後會產生紅黃 光。兩種光線經過混光後,會使晶片本身呈現白光體。此 一方法亦是利用兩色互補的方式來產生白光,適用於產生 較低色溫的白光。相較美國專利第6,614,179號及第 6,3 37,536號兩者,前者缺乏紅光區域波長之光線,而後者 係缺乏綠光區域波長之光線,因此在演色性上皆不易被提 高。 因此若要發展一高演色性的白光,必須藉由控制或調整 光源出光線中所含各色光之比例,使其與自然光之組成比 例相近,則其所呈現物體的色彩能較為逼真。另在螢光材 料的研發上’目前的方法皆以釔鋁石榴石晶體(化學式: XdAsBJO!2 )的組成成分為研發重點,如YAG螢光體結構 中之 Y3(Al3Al2)〇12、(Y3-xCex)Al5012、(Y2 9Tb0.05)Al5〇12、 及(丫2.95-/以.。5〇^)(八15_1^313)012等,希望藉由兩種以上之 螢光體的混合來產生較高演色性的白光發光二極體。此 外,不同平均顆粒尺寸()的螢光體亦會造成發光波長 及發光強度的不同。 綜上所述,市場上亟需要一種與自然光之組成比例相近 之發光元件,其擁有較佳之發光效率及亮度。 【發明内容】 本發明之目的係提供一種產生中間色光之發光二極體元 件及其製造方法,其係利用三原色混光原理來產生白光及 其他中間色光。由半導體螢光材料及光致發光螢光體吸收 H: \H U\LGC\A34276\96323\96323. doc 1247440 叙光兀件產生之初始顏色光線,從而激發出異於該初始顏 色光線之兩種不同光譜帶的螢光光線,混合前述所有光線 就能形成中間色光源之發光二極體元件。 本發明之另一目的係提供一種色溫較低之白光發光二極 體元件及其製造方法,藉由調整至少兩種不同螢光物質之 比例,而產生如粉紅(pink )、帶紫色之粉紅光(purplish pink) 等白光系中間色光源。 為達上述目的,本發明揭示一種產生中間色光之發光二 極體元件及其製造方法,該發光二極體元件包含一發光二 極體晶片、一半導體螢光材料及一光致發光螢光體。該半 導體螢光材料及光致發光螢光體會吸收該發光二極體晶片 發出之初始顏色光線’並分別發出波長彼此相異且不同於 該初始顏色光線之螢光光線。該螢光光線會與初始顏色光 線混合,使得該發光二極體元件形成為一白色或其他中間 色光源。 該初始顏色光線係由氮化物系(InGaA1N )半導體之發光 二極體或硒化辞(ZnSe)系之發光二極體產生,尤其以氮化 物系半導體之發光二極體為較佳。 该光致發光螢光體係由鈽(Cerium)致活(activate)的 釔鋁石榴石螢光體(Yttrium Aluminum Garnet; YAG)所 構成’又該半導體螢光材料機螢光體係由砸化鋅(ZnSe )、 硒鎘化鋅(ZnCdSe)及硒化鋅/硒鎘化鋅等具摻雜或不具 摻雜之化合物材料所組成,其中尤以鋁摻雜之硒化鋅為較 佳0 H:\HU\LGC\A34276\96323\96323.doc 1247440 該發光二極體元件之製造方法係先提供一可發出初始顏 色光線之發光二極體晶片,其中該發光二極體晶片係固定 及電性連結於一作為支撐載體之導線架或基板上。將 導體螢光材料及光致發光螢光體置於該初始顏色光可照射 之處,以激發異於該初始顏色光線之兩種不同光譜帶的螢 光光線線,混合前述所有光線就能形成中間色光源之發光 一極體7G件。另外,可覆蓋一模構件於該發光二極體晶片 上,而該半導體螢光材料及光致發光螢光體係分佈於該模 構件内部或塗佈於其表面。 【實施方式】 在半導體螢光材料之研發領域上,已發現有許多的 材料可以光致發光產生波長在偏紅光區域的光譜 帶。如碲化辞(ZnTe )、碲化鎘(CdTe )、碲化鋅録 (ZnCdTe )、石西化鋅編(ZnCdSe )、石西化録(CdSe ) 及具摻雜之硒化鋅等。圖1係以波長484nm的藍光 激發銘摻雜之硒化辞之發光光譜圖,由圖可知被激發 出主峰波長在610 nm左右之燈紅色光,又光譜半高 寬(Full Width HalfMaximum; FWHM)約為 125nm。 在關於光致發光螢光體之研發領域上,活化的石權 石螢光體(garnet phosphor)可吸收光線而產生波長 在偏綠光區域的光譜帶。圖2係以波長45 7nm的藍 光激發鈽致活之釔鋁石榴石螢光體之發光光譜圖。由 圖2可知其被激發出主峰波長在55〇nm左右之綠色 光’又光譜半高寬約為135nm。另外,以波長457rim H:\HU\LGC\A34276\96323\96323.doc 1247440 的^光同時激發鋁摻雜之硒化鋅及鈽致活之釔鋁石 田石螢光體可得到具三原色主峰波長之光譜圖,如圖 3所不。利用紅、藍及綠三原色混光原理可產生白光及 其他中間色光’本發明即以上述兩種螢光材料及螢光體吸 收啦光一極體晶片發出之初始顏色光線,並分別發出波 長彼此相異且不同於該初始顏色光線之螢光光線。該螢光 光線會與初始顏色光線混合,使得該發光二極體元件形成 為一白色或其他中間色光源。 圖4係本發明之白光系發光二極體發光裝置之示意圖。 發光一極體元件4〇主要包含固定於導線架(lad frame ) 43杯型構造處之發光二極體晶片(die) 42,該晶片42藉 由金屬導線45分別與導線架43之陰極43a及陽極4讣電 性相連,其可以是一硒化辞系或氮化物系發光二極體。不 同光譜帶之半導體螢光材料411 (以春代表)及光致發光勞 光體412 (以▲代表)同時盛裝於該杯型構造處,因此當晶 片42接收外部電力供應會發出初始顏色光線,覆蓋於四周 之半導體螢光材料411及光致發光螢光體412會被初始顏 色光線激發,並產生異於該初始顏色光線之螢光光線。該 初始顏色光線與該兩種不同光譜帶的螢光光線會混合為一 白光光線,最後該白光光線會穿透模構件44而射出,使得 該發光二極體元件40成為一白色或其他中間色光源。 光致發光螢光體4丨2係一石榴石系螢光體,可由一般化 學式ΑββαΜ所表示。該石榴石系螢光體可包含鈽致活 之釔鋁石榴石螢光體(AALOaCe),其中釔(γ)可以錙 H:\HU\LGC\A34276\96323\96323.doc -10- 1247440 (Lu)、銃(Sc)、鑭(La)、釓(Gd)、釤(Sm)、鈽(Ce)等 兀素來部份取代;鋁(A1 )則可以銦(In )、鎵(Ga )所部 伤取代;飾係作為活化劑(activator )。另外,亦可由一般 式(Yi-aGdOKAli.bGaOOaCe〔 0幺aSl,OSbSl〕所示鈽致活 之&紹石榴石系螢光體所構成;或者選自一般式 (RebrSmrMAlbsGaJOhCe〔 OSrd,OSsSl〕所表示之螢光 體’其中Re則係自釔、釓中所選出的至少一種化學元素; 或者可選自一般式(Y1-p_q_rGdpCeqSmr)3(A1bsGas)5〇i2 所表 不之螢光體,其中 0SPS0.8、0.003<q<0.2、0.0039復08 及 OSs^i。該光致發光螢光體412之顆粒平均直徑小於5〇微 米,甚至是介於1微米到20微米間之奈米尺寸。 另外’半導體螢光材料411可以由硫化辞(ZnS )、硒化 鋅(ZnSe)、碲化鋅(ZnTe)、硫化鎘(cdS)、硒化鎘(CdSe)、 石西化辞錦(ZnCdSe )、碲化鎘(cdTe )、碲化鋅鎘(ZnCdTe)、 碑化鈹(BeTe)、砸化鉛(PbSe )、氮化鋁銦鎵(AlInGaN )、 磷化鎵(GaP )、砷磷化鎵(GaAsP )、砷化銦鋁鎵 (AlGalnAs )、磷化鋁鎵銦(A1GaInP )、磷化銦鎵(InGap )、 磷化銦鋁(ΙηΑΙΡ)等半導體之本質(intdnsic)材料及其 具摻雜雜質(dopant)之材料中之至少一者所構成。該半 導體螢光材料411,亦可由前述半導體材料以不同組成比例 所形成的化合物、混合物或堆疊為多磊晶層結構之型式中 之至少—者所組成。可以將氣、m呂、鎵及銦作為 掺雜雜質或活化劑,以增進半導體螢光材料411之發光效 率,及改變其所產生螢光光線之主峰波長。 H:\HU\LGC\A34276\96323\96323.doc -11 - 1247440 如圖5所示,營光物質51亦可分佈於模構件μ内。於 壓模(m〇ldmg )製程時,將鋁摻雜之 、 杉雊之硒化辞5 1 1及鈽致 活之紀鋁石榴石螢弁舻 體5 1 2與環氧樹脂混合成壓模膠 (m〇ldlnge°mp_d),並-同注射人膠體成型之模具内, 如此就能形成如圖5之發光二極體元件50。作為半導體榮 光材料之1呂摻雜之則匕_川及作為光致發光螢光體之 鈽致活之紀!呂石權石勞光體512會被晶片_出之初 始顏色光線所激發’並產生異於該初始顏色光線之螢光光 線。該初始顏色⑽與該兩種不同光譜帶的螢光光線會混 合為一白光系光線。 圖6係本發明之再_白光系發光二極體元件之示意圖。 相較於上述各圖中針腳(pin)型式之封裝外觀,圖6所示 係一表面黏著(SMD )型式之發光二極體元件6〇。晶片62 固定於絕緣層63c表面之n型導電銅箔63b上,並藉由金 屬導線65與P型導電銅箔63a電性相連,其中p型導電銅 箔63a、N型導電銅箔63b及絕緣層63c構成具有電路之基 板63。半導體螢光材料611及光致發光螢光體612可依序 塗佈或堆疊在晶片62表面,然後才覆蓋透明之模構件64 於基板63上方。另外,半導體螢光材料611及光致發光螢 光體612亦可採沈積製程直接形成於晶片62上表面。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 H:\HU\LGC\A34276\96323\96323.doc -12- 1247440 替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 鋁摻雜之硒化鋅 圖1係以波長484nm的藍光激發 之發光光譜圖; 圖2係以波長45 7nm的藍光激發鈽致活 G f呂石 權石螢光體之發光光譜圖; 圖3係以波長45 7nm的藍光同時激發鋁摻 " 不床石西 化辞及鈽致活之釔鋁石榴石螢光體之發光光譜圖· 圖4係本發明之發光二極體元件之剖面結構示意圖· 圖5係本發明之另一發光二極體元件之剖面結立 發光 圖6係本發明之再一 圖。 【主要元件符號說明】 極體元件之剖面結構示意 40 發光二極體元件 43 導線架 43b 陽極 45 金屬導線 51 螢光物質 60 發光二極體元件 63 基板 63b N型導電銅箔 64 模構件 411 半導體螢光材料 42 晶片 43a 陰極 44 模構件 50發光二極體元件 54 模構件 62 晶片 63a P型導電銅箔 63c 絕緣層 65金屬導線 412光致發光螢光體 H:\HU\LGC\A34276\96323\96323.doc -13- 1247440 511 鋁摻雜之硒化鋅 512 鈽致活之釔鋁石榴石螢光體611 半導體螢光材料 612 光致發光螢光體BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting diode element and a method of fabricating the same, and more particularly to a light-emitting diode element capable of producing intermediate or white light and a method of fabricating the same. [Prior Art] Since the light emitting diode (LED) has the advantages of small size, high luminous efficiency, and long life, it is considered to be the best light source for the next generation of green energy-saving lighting. In addition, the rapid development of liquid crystal display screens and the trend of full-color screens make the white light-emitting diodes not only be used for indicator lights and large display screens, but also into consumer electronics such as mobile phones and PDAs. At present, the types of light-emitting diodes can be classified according to the semiconductor materials used, such as GaAs, GaAsl-xPx or GaP series. In addition, if a GaAs1-χΡχ, GaP series semiconductor material is doped with a nitrogen atom, light of different colors can be produced. In general, the light emitted by the light-emitting diode has a monochromatic wavelength characteristic, and the length of the wavelength is determined according to the energy change in the electron transfer process of the illuminable light, and the wavelength actually used currently includes infrared light, Red, green, yellow and blue. In human vision, multiple colors of red, green, and blue can be used to induce multiple colors. Therefore, red, green, and blue colors are called "three primary colors." Right, ,, work green, blue, two different wavelengths of light-emitting diode light source adjacent to the configuration, will be able to get white light (-.. and other intermediate color (neutral c〇ior) color light due to light mixing. US patent 5, milk, 〇7 揭 reveal H:\HU\LGC\A34276\96323\96323.doc 1247440 Use a different adjacent light source as a display device, where each pixel is composed of a light source, a light source, and two green lights. The light source is composed of a diode. The white light generated by the light-emitting diodes mixed with different wavelengths is formed by integrating different electrical light-emitting diodes, and must be controlled by a suitable driving circuit, respectively, in system design. Further, U.S. Patent No. 6,614,179 discloses the generation of blue light by a light-emitting diode which emits a phosphor to produce yellow light by two complementary colors (C〇mplementary C〇1〇r After the light source is mixed, white light is formed, wherein the blue light wavelength is 420 nm to 490 nm, and the yellow phosphor is composed of {[(Y, Gd)Sm](AlGa)0:Ce}. However, the white light generated by this method is for the object. The performance of real colors is poor, That is, the color temperature is high and the color rendering property (c〇1〇r rendering) is not good. In addition, the zinc selenide (ZnSe) white light emitting diode element developed by Sumitomo Electric Industries Co., Ltd. The two complementary color rays are still used to generate white light. The light emitting body element is formed on the zinc telluride substrate to grow a worm layer, and the main light emitting structure is composed of the II-VI material of the periodic table, for example: Selenization terminology/quantum well of ZnCdSe/ZnSe, after the forward current is generated, the g; the part of the well will emit blue light, and the complementary color light will be doped. The zinc substrate is produced as a fluorescent material. It is disclosed in U.S. Patent No. 6,337,536 that the dopant may be angstrom (j), chlorine (C1), bromine (B 〇, Ming (A1), gallium (Ga), and Indium (In), etc.. Using the self-activated (SA) luminescence mechanism, the substrate emits wide light with a center wavelength of 55〇nm to 650nm after irradiating short-wavelength light H:\HU\LGC\A34276\ 96323\96323.doc 1247440 Spectral fluorescence. When the wafer is applied with current, the quantum well epitaxial layer can When the blue light is emitted, some blue light will be red-yellow after being absorbed by the doped zinc-plated substrate. After the two kinds of light are mixed, the wafer itself will appear as a white light body. This method also uses two colors to complement each other. Produces white light, which is suitable for producing white light of lower color temperature. Compared with U.S. Patent Nos. 6,614,179 and 6,37,536, the former lacks light of a red wavelength region, while the latter lacks light of a green region wavelength. Therefore, it is not easy to improve in color rendering. Therefore, in order to develop a high color rendering white light, it is necessary to control or adjust the proportion of the light contained in the light source to be similar to the composition ratio of the natural light, and the color of the object presented can be more realistic. In addition, in the development of fluorescent materials, the current methods are based on the composition of yttrium aluminum garnet crystals (chemical formula: XdAsBJO! 2), such as Y3 (Al3Al2) 〇12, (Y3) in the YAG phosphor structure. -xCex)Al5012, (Y2 9Tb0.05)Al5〇12, and (丫2.95-/..5〇^)(八15_1^313)012, etc., it is hoped that by mixing two or more kinds of phosphors A white light emitting diode that produces higher color rendering. In addition, phosphors of different average particle sizes () also cause differences in emission wavelength and luminous intensity. In summary, there is a need in the market for a light-emitting element that is similar in composition to natural light, which has better luminous efficiency and brightness. SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting diode element that produces intermediate color light and a method of fabricating the same that utilizes the principle of three primary color mixing to produce white light and other intermediate color light. Absorbed by semiconductor fluorescent material and photoluminescence phosphor H: \HU\LGC\A34276\96323\96323. doc 1247440 The initial color light produced by the light-emitting element, which excites two kinds of light different from the initial color Fluorescent light of different spectral bands, mixing all of the aforementioned light to form a light-emitting diode element of the intermediate color light source. Another object of the present invention is to provide a white light emitting diode element having a lower color temperature and a method of manufacturing the same, which can produce a pink color such as pink or purple by adjusting the ratio of at least two different fluorescent substances. (purplish pink) A white light intermediate light source. In order to achieve the above object, the present invention discloses a light emitting diode device for generating intermediate color light, and a method for fabricating the same, the light emitting diode device comprising a light emitting diode chip, a semiconductor fluorescent material and a photoluminescence phosphor . The semiconductor phosphor material and the photoluminescent phosphor absorb the initial color light emitted by the LED chip and emit fluorescent light having wavelengths different from each other and different from the initial color light. The fluorescent light is mixed with the initial color light such that the light emitting diode element is formed as a white or other intermediate color light source. The initial color light is generated by a light-emitting diode of a nitride-based (InGaA1N) semiconductor or a light-emitting diode of a selenide-based (ZnSe) type, and particularly preferably a light-emitting diode of a nitride-based semiconductor. The photoluminescence phosphor system is composed of Cerium activated Yttrium Aluminum Garnet (YAG), and the semiconductor fluorescent material machine fluorescent system is made of zinc telluride (ZnSe). , zinc selenide cadmium (ZnCdSe) and zinc selenide / selenium cadmium zinc and other compound materials with or without doping, especially aluminum-doped zinc selenide is better 0 H: \ HU \ LGC\A34276\96323\96323.doc 1247440 The method for manufacturing the LED component first provides a light emitting diode chip capable of emitting an initial color light, wherein the LED chip is fixedly and electrically connected to the LED chip. As a support carrier on the lead frame or substrate. Locating the conductor phosphor material and the photoluminescent phosphor at a position where the initial color light can be irradiated to excite a fluorescent light ray line of two different spectral bands different from the initial color light, and mixing all the light rays to form The light source of the intermediate color light source is a 7G piece. Alternatively, a mold member may be coated on the light emitting diode wafer, and the semiconductor phosphor material and the photoluminescence phosphor system may be distributed inside the mold member or coated on the surface thereof. [Embodiment] In the field of research and development of semiconductor fluorescent materials, many materials have been found to photoluminescence to generate a spectral band having a wavelength in a reddish light region. Such as 碲 辞 ( (ZnTe), cadmium telluride (CdTe), zinc telluride (ZnCdTe), ZnCdSe (ZnCdSe), Shixihualu (CdSe) and doped zinc selenide. Fig. 1 is an illuminating spectrum of a selenium-enhanced eutectic with a blue light with a wavelength of 484 nm. It can be seen that the red light with a main peak wavelength of about 610 nm and the full width and width of the spectrum (FWHM) are excited. It is about 125 nm. In the field of research and development of photoluminescent phosphors, the activated garnet phosphor absorbs light to produce a spectral band of wavelengths in the greenish region. Fig. 2 is a luminescence spectrum of a yttrium aluminum garnet phosphor activated by blue light having a wavelength of 45 7 nm. It can be seen from Fig. 2 that the green light having a main peak wavelength of about 55 Å is excited, and the spectral half-height width is about 135 nm. In addition, the wavelength of 457 rim H:\HU\LGC\A34276\96323\96323.doc 1247440 can simultaneously excite aluminum-doped zinc selenide and bismuth-activated yttrium aluminum feldspar phosphor to obtain the spectrum of the main peak wavelength of the three primary colors. Figure, as shown in Figure 3. The white light and other intermediate color light can be generated by using the red, blue and green light mixing principle. The present invention absorbs the initial color light emitted by the light-emitting body wafer by the above two kinds of fluorescent materials and the phosphor, and emits wavelengths respectively. Different from the fluorescent light of the initial color light. The fluorescent light is mixed with the original color light such that the light emitting diode element is formed as a white or other intermediate color light source. 4 is a schematic view of a white light-emitting diode light-emitting device of the present invention. The light-emitting diode element 4〇 mainly comprises a light-emitting diode die 42 fixed to a 43-cup type of a lad frame, and the wafer 42 is respectively connected to the cathode 43a of the lead frame 43 by the metal wire 45 and The anode 4 is electrically connected, and it may be a selenization system or a nitride-based light-emitting diode. Semiconductor phosphor materials 411 (represented by spring) and photoluminescent light bodies 412 (represented by ▲) of different spectral bands are simultaneously contained in the cup-type configuration, so that when the wafer 42 receives an external power supply, an initial color light is emitted. The surrounding semiconductor phosphor material 411 and the photoluminescent phosphor 412 are excited by the initial color light and produce a fluorescent light different from the initial color light. The initial color light and the fluorescent light of the two different spectral bands are mixed into a white light, and finally the white light passes through the mold member 44 to be emitted, so that the light emitting diode element 40 becomes a white or other intermediate color light source. . The photoluminescence phosphor 4丨2 is a garnet-based phosphor which can be represented by the general chemical formula ΑββαΜ. The garnet-based phosphor may comprise a cerium-activated yttrium aluminum garnet phosphor (AALOaCe), wherein 钇(γ) may be 锱H:\HU\LGC\A34276\96323\96323.doc -10- 1247440 (Lu) , 铳 (Sc), 镧 (La), 釓 (Gd), 钐 (Sm), 钸 (Ce) and other halogens are partially substituted; aluminum (A1) can be injured by indium (In ), gallium (Ga) Replacement; the system acts as an activator. Alternatively, it may be composed of a general formula (Yi-aGdOKAli.bGaOOaCe[0幺aSl, OSbSl], a succulent & s garnet-based phosphor; or a general formula (RebrSmrMAlbsGaJOhCe[OSrd, OSsSl] a phosphor represented by 'where Re is at least one chemical element selected from ruthenium and osmium; or may be selected from a phosphor of the general formula (Y1-p_q_rGdpCeqSmr)3(A1bsGas)5〇i2, wherein 0 SPS 0.8, 0.003 < q < 0.2, 0.0039 complex 08 and OSs ^ i. The photoluminescence phosphor 412 has an average particle diameter of less than 5 μm, and even a nanometer size between 1 μm and 20 μm. In addition, the 'semiconductor fluorescent material 411 can be composed of sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium sulfide (cdS), cadmium selenide (CdSe), and cadmium (ZnCdSe). Cadmium telluride (cdTe), cadmium telluride (ZnCdTe), BeTe, Bec, PbSe, AlInGaN, GaP, GaAs (GaAsP), indium aluminum gallium arsenide (AlGalnAs), aluminum gallium indium phosphide (A1GaInP), indium gallium phosphide (InGap), indium phosphide (Ιη) And constituting at least one of an intrinsic material of a semiconductor and a material having a doped dopant thereof. The semiconductor fluorescent material 411 may also be a compound formed by the semiconductor material in different composition ratios. The mixture or the stack is composed of at least one of a plurality of epitaxial layer structures. Gas, mlu, gallium, and indium may be used as doping impurities or activators to enhance the luminous efficiency of the semiconductor fluorescent material 411, and to change The main peak wavelength of the fluorescent light generated by it. H:\HU\LGC\A34276\96323\96323.doc -11 - 1247440 As shown in Fig. 5, the camping material 51 can also be distributed in the mold member μ. (m〇ldmg) process, the aluminum doped, cedar selenium 5 1 1 and 钸 活 纪 纪 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝 铝〇ldlnge°mp_d), and in the same mold as the injection gel, can form the light-emitting diode element 50 as shown in Fig. 5. As a semiconductor glory material, the 1st doping is 匕_川 and as a light-induced The radiance of the fluorescent body is alive! Lu Shiquan Shi Luguang 512 will be crystal The sheet _ is emitted by the initial color ray and produces a fluorescent ray that is different from the initial color ray. The initial color (10) and the luminescence of the two different spectral bands are mixed into a white light. A schematic diagram of a white light-emitting diode component of the invention. A surface mount (SMD) type of light-emitting diode element 6 is shown in Fig. 6, as compared to the package appearance of the pin type in the above figures. The wafer 62 is fixed on the n-type conductive copper foil 63b on the surface of the insulating layer 63c, and is electrically connected to the P-type conductive copper foil 63a by a metal wire 65, wherein the p-type conductive copper foil 63a, the N-type conductive copper foil 63b and the insulation The layer 63c constitutes a substrate 63 having a circuit. The semiconductor phosphor material 611 and the photoluminescent phosphor 612 may be sequentially coated or stacked on the surface of the wafer 62 before the transparent mold member 64 is over the substrate 63. In addition, the semiconductor phosphor material 611 and the photoluminescence phosphor 612 can also be directly formed on the upper surface of the wafer 62 by a deposition process. The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should not be limited to those disclosed in the embodiments, but should include various substitutions and modifications without departing from the invention, and are as follows. The scope of the patent application is covered. [Simple description of the diagram] Aluminum-doped zinc selenide Figure 1 is an illuminating spectrum of blue light excited by a wavelength of 484 nm; Figure 2 is an illuminating spectrum of a living-active G f Luishi stone phosphor excited by blue light with a wavelength of 45 7 nm; Fig. 3 is a luminescence spectrum of a yttrium aluminum garnet phosphor excited by a blue light having a wavelength of 45 7 nm and simultaneously excited with aluminum; and Fig. 4 is a schematic cross-sectional structure of the light-emitting diode element of the present invention. Figure 5 is a cross-sectional elevational illumination of another light-emitting diode element of the present invention. Figure 6 is still another view of the present invention. [Description of main component symbols] Cross-sectional structure of the polar body component 40 Light-emitting diode element 43 Lead frame 43b Anode 45 Metal wire 51 Fluorescent substance 60 Light-emitting diode element 63 Substrate 63b N-type conductive copper foil 64 Mold member 411 Semiconductor Fluorescent material 42 Wafer 43a Cathode 44 Mold member 50 Light-emitting diode element 54 Mold member 62 Wafer 63a P-type conductive copper foil 63c Insulation layer 65 Metal wire 412 Photoluminescence phosphor H:\HU\LGC\A34276\96323 \96323.doc -13- 1247440 511 Aluminum-doped zinc selenide 512 钸 activating yttrium aluminum garnet phosphor 611 semiconductor fluorescent material 612 photoluminescence phosphor
Η: \HU\LGC\A3 4276\963 23\96323 .doc -14-Η: \HU\LGC\A3 4276\963 23\96323 .doc -14-