TWI302598B - Measurement system - Google Patents

Measurement system Download PDF

Info

Publication number
TWI302598B
TWI302598B TW95142983A TW95142983A TWI302598B TW I302598 B TWI302598 B TW I302598B TW 95142983 A TW95142983 A TW 95142983A TW 95142983 A TW95142983 A TW 95142983A TW I302598 B TWI302598 B TW I302598B
Authority
TW
Taiwan
Prior art keywords
signal
processing
measurement system
processing unit
predetermined
Prior art date
Application number
TW95142983A
Other languages
Chinese (zh)
Other versions
TW200823434A (en
Inventor
Pie Yau Chien
Hua Tang Liu
Hui-Qing Chen
Yin-Long Luo
Song Li
Hai-Hua Chen
Ling-Ben Yu
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW95142983A priority Critical patent/TWI302598B/en
Publication of TW200823434A publication Critical patent/TW200823434A/en
Application granted granted Critical
Publication of TWI302598B publication Critical patent/TWI302598B/en

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

1302598 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種測量系統,特別是有關於一種利 用雷射進行距離之量測之測量系統。 【先前技術】 雷射相位測距系統之測距精度可達到亳米級。在無搭 _ 配辅助物件(例如:稜鏡)之情況下,雷射相位測距系統 之測距能力可達幾十米至幾百米。在搭配輔助物件(棱鏡) 之情況下,其測距能力可以達幾百米甚至幾千米。由此可 知,雷射相位測距系統為一種可應用在多數量測市場(例 如··工程建築、交通系統、房地產、家居DIY、工業自動 化等各個領域)之強大測距工具。此外,雷射相位測距系統 製作成掌上型產品,並且利用普通的驗性電池進行供電’ 如此以便於日常生活上之使用。 Φ 由此可知,以雷射相位方式進行測距已經是一種相當 成熟的技術,其主要方式係對於雷射光進行訊號調變,並 且利用通過雷射光走過之相位信息量來計算實際距離。以 下將針對不同的雷射相位測距技術分別提出說明。 於第一習知技術中已知相關單雷射光發射器和雙雷射 光接收裝置技術。由雷射光發射器所發出之雷射光係通過 分光鏡進行分光,其中,主光路的光束射出後打在目標= 上後反射至主接收裝置,副光路之光束通過系統内部的反 射而由副接收裝置所接收,在比較主接收裝置、副接收袭 0757-A21591 TWF(N2);E0106036;ALEXL)N η 1302598 置所接收到之兩路訊號下,便可得到目標物之距離。然而, 此技術的缺點在於:主接收裝置、副接收裝置之相位特性 無法完全一致,除了在隨溫度變化、長時期之使用時間下, 主接收裝置、副接收裝置亦無法維持其穩定性之外,主接 收裝置、副接收裝置之偏壓也不一樣。上述問題均會影響 所測得之相位資訊的準確度。 於第二習知技術中已知相關雙雷射光發射器和單雷射 0 光接收裝置技術,其缺點在於無法達到兩雷射發光器之一 致性。 於第三習知技術中已知相關雙雷射光發射器和雙雷射 光接收裝置技術,其主要透過抵消方式來解決前述技術的 問題。經由每一發光器所發出之光束均由兩接收裝置所同 時接收,如此使得每組頻率點具有四次的測量,再經由於 不同頻率點之組合下,便可以增加測量的次數。然而,此 方式除了增加系統操作之複雜性、不易進行調整與測試之 • 外,同時亦無法有效降低成本,並且在不同的測量過程中, 接收裝置的偏壓會產生變化,如此所造成之相位偏移量是 無法抵消的。 再者,於第四習知技術已知相關遮光器(shutter)技術主 要是利用單雷射光發射器和單雷射光接收裝置來通過遮光 器之開關調節光路,因而不會產生前述技術中之器件不一 致性問題。但由於是利用通過遮光器的方式進行反射,當 遮光器進行的關閉時所產生之不穩定性會引起反射光之不 穩定。此外,由於採用了光纖接收,無形中亦大幅增加成 0757-A21591TWF(N2);E0106036;ALEXLIN 8 1302598 本、提高系統組裝與調試之難度。 【發明内容】 有鑑於此,本發明提供一種測量系統,用以對於位在 一既定位置之一物件進行距離量測。測量系統包括一訊號 產生模組、一第一處理單元、一第二處理單元、一第三處 理單元、一切換單元與一第四處理單元。 Φ 訊號產生模組產生具有一調變頻率之一初始訊號、具 有一本振頻率之一比較訊號與具有一輸出頻率之一參考訊 號。第一處理單元係相對於一參考位置而將初始訊號轉換 為一主訊號與一次訊號,其中,主訊號經由物件之反射而 形成一第一反射主訊號。第二處理單元將第一反射主訊號 轉換為一第一處理訊號。第三處理單元將次訊號轉換為一 第二處理訊號。接收裝置接收來自第二處理單元之第一處 理訊號與來自第三處理單元之第二處理訊號。切換單元可 ⑩ 於一第一位置與一第二位置之間切換,並且當切換單元於 第一位置時,切換單元阻止第一處理訊號運行至接收裝 置,當切換單元於第二位置時,切換單元阻止第二處理訊 號運行至接收裝置。第四處理單元係可在相較於訊號產生 模組之比較訊號之下,第四處理單元分別對於訊號產生模 組之比較訊號與接收裝置所接收到之第二處理單元之第一 處理訊號之間、訊號產生模組之比較訊號與接收裝置所接 收到之第三處理單元之第二處理訊號之間進行處理。 相較於參考訊號之下,當切換單元於第一位置時,比 0757-A21591 TWF(N2);E0106036;ALEXL!N 9 1302598 較訊號與第二處理訊號之混合下產生了具有一第一相位值 之一第一既定訊號,當切換單元於第二位置時,比較訊號 與第一處理訊號之混合下產生了具有一第二相位值之一第 二既定訊號。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉一較佳實施例,並配合所附圖示,作 詳細說明如下: 【實施方式】 第1圖表示本發明測量系統K之示意圖。測量系統K 用以對於位在一既定位置z0之一物件T進行距離的量測。 測量系統K包括一訊號產生模組R、一第一處理單元 U1、一第二處理單元U2、一第三處理單元U3、一接收裝 置4r、一切換單元W、一第四處理單元U4、一第一濾波 模組83、一第二濾波模組84與一鑒相模組9。 訊號產生模組R包括一頻率產生器(frequency source, divider,PLL)1、一第一濾波器(first filter)21、一第二濾波 器(second filter)22與一驅動單元3。於本實施例中,第一 濾波器21與第二濾波器22為LC濾波器(LC filter),特別 是指LC諧振帶通濾、波器;驅動單元3為一雷射光驅動電 路。 頻率產生器1產生一第一調變訊號ΚΠ、一第二調變訊 號c01與一參考訊號r01。第一調變訊號i01在第一濾波器 21之濾波下係由方波轉換為弦波形式之一訊號iOl’,並且 0757-A21591 TWF(N2);E0106036;ALEXLIN 10 1302598 訊號i〇l’再經由驅動單元3之驅動下而產生初始訊號il。 第二調變訊號c01經由第二濾波器22而產生比較訊號cl。 初始訊號il具有一調變頻率Π,比較訊號cl具有一本振 頻率f2,參考訊號r01具有一輸出頻率fl-f2。隨後,初始 訊號il便被傳送至第一處理單元U1。 第一處理單元U1包括一發射裝置4e與一第一轉換裝 置5。來自訊號產生模組R之初始訊號il係耦合到發射裝 φ 置4e上進行調變與輸出。第一轉換裝置5包括一第一光導 管50、一第一光學元件51與一第二光學元件52,其中, 第一光學元件51與第二光學元件52係設置於第一光導管 50之内部。於本實施例中,發射裝置4e為一雷射光發射 器,第一光學元件51為一准直透鏡,第二光學元件52為 一分光鏡。 當發射裝置4e將初始訊號il傳送至第一光學元件51 後形成了一第一光束L1,此第一光束L1在第一光導管50 • 之導引下傳送至第二光學元件52,並且藉由第二光學元件 52之分光功能,將第一光束L1分成一穿透過第二光學元 件52之主訊號Lla與一在第二光學元件52表面反射之次 訊號Lib。主訊號Lla係被發射出系統外部且朝向物件T 之方向,並且在物件T表面之反射下形成了一第一反射主 訊號Lla’。隨後,此第一反射主訊號Lla’被傳送至第二處 理單元U2。次訊號Lib則被導引至系統内部的第三處理單 元U3中。 第二處理單元U2包括一第二轉換裝置6。第二轉換裝 0757-A21591 TWF(N2);E0106036;ALEXLIN 11 1302598 置6包括一第二光導管60與一第三光學元件61。第一反 射主訊號Lla’經由第三光學元件61對光束聚焦後,形成 一第一處理訊號Lla’01。 第三處理單元U3包括一第三光導管70與一第四光學 元件71,並且次訊號Lib經由第四光學元件71全反射之 後,藉由第三光導管60導引出第三處理單元U3。於本實 施例中,第四光學元件71係光學高反射元件,特別是可針 φ 對次訊號Lib之光束的波段達到高反射率的光學元件。 切換單元W係設置於第二處理單元U2之第二光導管 60或第三處理單元U3之第三光導管70之一侧,並且切換 單元W可於一第一位置pi與一第二位置p2之間進行切 換。於本實施例中,切換單元W為一遮光元件(shutter)或 遮光板。 接收裝置4r可分別接收來自第二處理單元U2之第一 處理訊號Lla’01與來自第三處理單元U3之第二處理訊號 φ Llb’01。切換單元W係設置於接收裝置4r與第二處理單 元U2之第二光導管60、第三處理單元U3之第三光導管 70之間。於本實施例中,接收裝置4r為一雷射接收器。 當切換單元W於第一位置pi時,切換單元W可阻止 第一處理訊號Lla’01運行至接收裝置4r,當切換單元W 於第二位置p2時,切換單元W可阻止第二處理訊號Llb’01 運行至接收裝置4r。 第四處理單元U4包括一混頻器81與一放大器82。混 頻器81分別對比較訊號cl與第一處理訊號Lla’01進行混 0757-A21591TWF(N2);E0106036;ALEXL!N 12 1302598 頻,產生第一定頻訊號L2a;或對比較訊號cl與第二處理 訊號Llb’Ol進行混頻,產生第二定頻訊號L2b,第一、第 二定頻訊號L2a 、L2b經由放大器82將信號放大後分別 形成第一既定訊號L3a與第二既定訊號L3b。於本實施例 中,第一既定訊號L3a與第二既定訊號L3b分別為具有頻 率Π -f2之一中頻訊號。 當切換單元W於第二位置p2,比較訊號cl與第一處 φ 理訊號Lla,01混頻後產生了具有一第一相位值φΐ之一第 一既定訊號L3a;當切換單元W於第一位置pi時,比較 訊號cl與第二處理訊號Llb’01混頻後產生了具有一第二 相位值φ2之一第二既定訊號L3b,其中,第一既定訊號 L3a之第一相位值φ 1與第二既定訊號L3b之第二相位值φ2 之間的差值之一半φ2-φ1/2係表示既定位置ζ0與參考位置 ζ1之間的距離φ2-φ1/2。 第一濾波模組84係設置於鑒相模組9與頻率產生器1 • 之間,第二濾波模組83係設置於鑒相模組9與第四處理單 元U4之間。鑒相模組9用以對於通過第二濾波模組84之 參考訊號r01與通過第一濾波模組83之第一既定訊號L3a 或第二既定訊號L3b之間進行比較。於本實施例中,第一 遽波模組83、第二濾波模組84為窄帶濾波電路。 苐2圖表示第1圖之訊號產生模組r中之一頻率產生 器1之電路圖。 頻率產生器1包括一電壓控制晶體振盪器(voltage control X-tal oscillator)101、一晶體振盪器(〇scillat〇r)1〇2、 0757-A21591TWF(N2);E0106036;ALEXLIN 13 1302598 刀頻模組 103 與一鎖相環(phase locked loop) 104 〇 晶體振盪器102之輸出頻率為fl,藉此用以作為系統 的調變頻率。電壓控制晶體振盪器101之輸出頻率為f2, 藉此用以作為本振頻率。為了保證輸出頻率fl、本振頻率 f2之間的穩定頻差,輸出頻率Π之N分頻和本振頻率f2 之Μ分頻係通過鎖相環1〇4進行鎖相,再用鎖相之輸出來 對於電壓控制晶體振盪器101進行控制。頻率之選擇要經 _ 由計算且需滿足fl/N=f2/M=fl-f2,才能保證最後混頻得 到穩定的輸出。於本實施例中,分頻模組103可為特定之 分頻晶片或可由CPLD做可變的數位分頻,而鎖相環1〇4 可為鑒相電路或專用之鎖相晶片(例如:4046鎖相晶片)。 於較佳實施例中,發射裝置4e可採用半導體發光二接 體’例如··鐳射二極體(Laser Diode ; LD);接收裝置4r可 採用光電元件,例如:光二極體(Photo Diode ; PD)或雪崩 光電二極體(Avalanche Photo Diode ; APD),並且可以在雪 • 崩光電二極體内部進行混頻,如此可省去了專用之混頻 器,降低成本與簡化電路。鑒相模組9通常採用類比數位 轉換器採集訊號,進行經由MCU或DSP進行資料之計算 處理。 值得注意的是,由於主訊號Lla與次訊號Lib共用相 同的元器件,而且經處理後之主訊號Lla與次訊號Lib均 與同一個參考訊號r01之間進行比較,除了可以達到良好 的抵消效果之外,並且可以消除經由環境、溫度、使用時 間等各個方面引起的測量偏差。此外,切換單元W是採用 0757-A21591 TWF(N2);E0106036;ALEXL!N 14 1302598 阻擋光束的方式進行操作,不會影響系統之測量精度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限制本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可做更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。139. The invention relates to a measuring system, and more particularly to a measuring system for measuring the distance using a laser. [Prior Art] The range accuracy of the laser phase ranging system can reach the quaternary level. The laser phase ranging system can measure distances from tens of meters to several hundred meters without the aid of an auxiliary object (for example: 稜鏡). With an auxiliary object (prism), the distance measurement capability can reach several hundred meters or even several kilometers. It can be seen that the laser phase ranging system is a powerful ranging tool that can be applied in a multi-quantity measurement market (for example, engineering construction, transportation system, real estate, home DIY, industrial automation, etc.). In addition, the laser phase ranging system is made into a palm-sized product and is powered by a common inspective battery' so that it can be used in everyday life. Φ It can be seen that ranging in the laser phase mode is a fairly mature technology. The main method is to perform signal modulation on the laser light and calculate the actual distance by using the amount of phase information passed by the laser light. The following descriptions will be given for different laser phase ranging techniques. Related single laser light emitters and dual laser light receiving device technologies are known in the first prior art. The laser light emitted by the laser light emitter is split by a beam splitter, wherein the light beam of the main light path is emitted and then reflected on the target = and then reflected to the main receiving device, and the light beam of the auxiliary light path is received by the sub-reflection through the system. The distance received by the device is obtained by comparing the two receiving signals received by the main receiving device and the secondary receiving device 0757-A21591 TWF (N2); E0106036; ALEXL) N η 1302598. However, this technique has the disadvantage that the phase characteristics of the main receiving device and the sub-receiving device cannot be completely identical, except that the main receiving device and the sub-receiving device cannot maintain their stability in addition to the temperature change and the long-term use time. The bias voltages of the primary receiving device and the secondary receiving device are also different. All of the above problems will affect the accuracy of the measured phase information. Related secondary laser light emitters and single laser zero light receiver technology are known in the second prior art, which have the disadvantage that the uniformity of the two laser emitters cannot be achieved. Related three-beam laser emitters and dual-laser light-receiving device technologies are known in the third prior art, which solve the problems of the aforementioned techniques mainly by means of offsetting. The light beams emitted by each illuminator are simultaneously received by the two receiving devices, so that each group of frequency points has four measurements, and then the combination of different frequency points can increase the number of measurements. However, this method not only increases the complexity of the system operation, is difficult to adjust and test, but also can not effectively reduce the cost, and the bias voltage of the receiving device changes during different measurement processes. The offset cannot be offset. Furthermore, it is known in the fourth prior art that the related shutter technique mainly uses a single laser light emitter and a single laser light receiving device to adjust the light path through the switch of the shutter, thereby not generating the device in the aforementioned technology. Inconsistency issues. However, since the reflection is performed by means of a shutter, the instability caused when the shutter is turned off causes the reflected light to be unstable. In addition, due to the use of fiber optic reception, the invisible is also greatly increased to 0757-A21591TWF (N2); E0106036; ALEXLIN 8 1302598, to improve the difficulty of system assembly and debugging. SUMMARY OF THE INVENTION In view of the above, the present invention provides a measurement system for performing distance measurement on an object positioned at a predetermined location. The measurement system includes a signal generation module, a first processing unit, a second processing unit, a third processing unit, a switching unit and a fourth processing unit. The Φ signal generating module generates an initial signal having a modulation frequency, a comparison signal having a local oscillation frequency, and a reference signal having an output frequency. The first processing unit converts the initial signal into a primary signal and a primary signal with respect to a reference position, wherein the primary signal forms a first reflected primary signal via reflection of the object. The second processing unit converts the first reflected main signal into a first processed signal. The third processing unit converts the secondary signal into a second processing signal. The receiving device receives the first processing signal from the second processing unit and the second processing signal from the third processing unit. The switching unit 10 is switchable between a first position and a second position, and when the switching unit is in the first position, the switching unit blocks the first processing signal from running to the receiving device, and when the switching unit is in the second position, switching The unit blocks the second processing signal from running to the receiving device. The fourth processing unit is configured to compare the comparison signal of the signal generation module with the first processing signal of the second processing unit received by the receiving device, respectively, under the comparison signal of the signal generation module. The comparison signal between the signal generation module and the second processing signal of the third processing unit received by the receiving device is processed. Compared with the reference signal, when the switching unit is in the first position, the ratio is 0757-A21591 TWF(N2); E0106036; ALEXL!N 9 1302598 is mixed with the second processing signal to generate a first phase. One of the first predetermined signals, when the switching unit is in the second position, the second comparison signal is generated by the comparison signal and the first processing signal. The above and other objects, features, and advantages of the present invention will become more apparent and understood. A schematic diagram of the inventive measurement system K. The measuring system K is used to measure the distance of an object T located at a predetermined position z0. The measurement system K includes a signal generation module R, a first processing unit U1, a second processing unit U2, a third processing unit U3, a receiving device 4r, a switching unit W, a fourth processing unit U4, and a The first filter module 83, a second filter module 84 and a phase detector module 9. The signal generating module R includes a frequency source (divide, PLL) 1, a first filter 21, a second filter 22, and a driving unit 3. In the present embodiment, the first filter 21 and the second filter 22 are LC filters, in particular, LC resonant band pass filters and waves; the driving unit 3 is a laser light driving circuit. The frequency generator 1 generates a first modulation signal ΚΠ, a second modulation signal c01 and a reference signal r01. The first modulation signal i01 is converted into a sine wave form signal iO1' by the square wave under the filtering of the first filter 21, and 0757-A21591 TWF(N2); E0106036; ALEXLIN 10 1302598 signal i〇l' The initial signal il is generated via the driving of the drive unit 3. The second modulation signal c01 generates a comparison signal cl via the second filter 22. The initial signal il has a modulation frequency Π, the comparison signal cl has a local oscillation frequency f2, and the reference signal r01 has an output frequency fl-f2. Subsequently, the initial signal il is transmitted to the first processing unit U1. The first processing unit U1 comprises a transmitting device 4e and a first switching device 5. The initial signal il from the signal generating module R is coupled to the transmitting device φ 4e for modulation and output. The first conversion device 5 includes a first light guide 50, a first optical element 51 and a second optical element 52, wherein the first optical element 51 and the second optical element 52 are disposed inside the first light guide 50. . In the present embodiment, the transmitting device 4e is a laser light emitter, the first optical element 51 is a collimating lens, and the second optical element 52 is a beam splitter. When the transmitting device 4e transmits the initial signal il to the first optical component 51, a first light beam L1 is formed, which is transmitted to the second optical component 52 under the guidance of the first light guiding device 50, and The first light beam L1 is divided into a main signal L1 penetrating through the second optical element 52 and a sub-signal Lib reflected on the surface of the second optical element 52 by the light splitting function of the second optical element 52. The main signal Lla is emitted outside the system and toward the object T, and a first reflection main signal Lla' is formed under the reflection of the surface of the object T. Subsequently, the first reflected main signal Lla' is transmitted to the second processing unit U2. The secondary signal Lib is routed to the third processing unit U3 inside the system. The second processing unit U2 comprises a second conversion device 6. The second conversion device 0757-A21591 TWF(N2); E0106036; the ALEXLIN 11 1302598 device 6 includes a second light pipe 60 and a third optical element 61. The first reflected main signal Lla' is focused by the third optical element 61 to form a first processed signal Lla'01. The third processing unit U3 includes a third light pipe 70 and a fourth optical element 71, and the secondary signal Lib is totally reflected by the fourth optical element 71, and then guided out of the third processing unit U3 by the third light pipe 60. In the present embodiment, the fourth optical element 71 is an optical high-reflection element, in particular, an optical element in which the wavelength band of the light beam of the sub-signal Lib reaches a high reflectance. The switching unit W is disposed on one side of the second light pipe 60 of the second processing unit U2 or the third light pipe 70 of the third processing unit U3, and the switching unit W is at a first position pi and a second position p2 Switch between. In this embodiment, the switching unit W is a shutter or a visor. The receiving device 4r can receive the first processing signal Lla'01 from the second processing unit U2 and the second processing signal φ Llb'01 from the third processing unit U3, respectively. The switching unit W is disposed between the receiving device 4r and the second light pipe 60 of the second processing unit U2 and the third light pipe 70 of the third processing unit U3. In this embodiment, the receiving device 4r is a laser receiver. When the switching unit W is in the first position pi, the switching unit W can prevent the first processing signal Lla'01 from running to the receiving device 4r. When the switching unit W is in the second position p2, the switching unit W can block the second processing signal Llb. '01 runs to the receiving device 4r. The fourth processing unit U4 includes a mixer 81 and an amplifier 82. The mixer 81 respectively mixes the comparison signal cl with the first processed signal Lla'01 by 0757-A21591TWF(N2); E0106036; ALEXL!N 12 1302598 frequency to generate the first fixed frequency signal L2a; or the comparison signal cl and the first The second processing signal Llb'O1 is mixed to generate a second fixed frequency signal L2b. The first and second fixed frequency signals L2a and L2b amplify the signals via the amplifier 82 to form a first predetermined signal L3a and a second predetermined signal L3b, respectively. In this embodiment, the first predetermined signal L3a and the second predetermined signal L3b are respectively an intermediate frequency signal having a frequency Π -f2. When the switching unit W is in the second position p2, the comparison signal cl is mixed with the first φ signal Lla, 01 to generate a first predetermined signal L3a having a first phase value φ ;; when the switching unit W is at the first When the position pi is mixed, the comparison signal cl is mixed with the second processing signal Llb'01 to generate a second predetermined signal L3b having a second phase value φ2, wherein the first phase value φ 1 of the first predetermined signal L3a is One half of the difference between the second phase value φ2 of the second predetermined signal L3b, φ2-φ1/2, represents the distance φ2-φ1/2 between the predetermined position ζ0 and the reference position ζ1. The first filter module 84 is disposed between the phase detector module 9 and the frequency generator 1 and the second filter module 83 is disposed between the phase detector module 9 and the fourth processing unit U4. The phase discrimination module 9 is configured to compare the reference signal r01 passing through the second filter module 84 with the first predetermined signal L3a or the second predetermined signal L3b passing through the first filter module 83. In this embodiment, the first chopper module 83 and the second filter module 84 are narrowband filter circuits. Fig. 2 is a circuit diagram showing a frequency generator 1 in the signal generating module r of Fig. 1. The frequency generator 1 comprises a voltage control X-tal oscillator 101, a crystal oscillator (〇scillat〇r)1〇2, 0757-A21591TWF(N2); E0106036; ALEXLIN 13 1302598 knife frequency mode. The group 103 and a phase locked loop 104 〇 crystal oscillator 102 have an output frequency of fl, thereby serving as a modulation frequency of the system. The output frequency of the voltage controlled crystal oscillator 101 is f2, thereby serving as the local oscillation frequency. In order to ensure the stable frequency difference between the output frequency fl and the local oscillator frequency f2, the frequency division of the output frequency ΠN and the local frequency f2 are phase-locked by the phase-locked loop 1〇4, and then phase-locked. The output is controlled for the voltage controlled crystal oscillator 101. The choice of frequency is calculated by _ and needs to satisfy fl/N=f2/M=fl-f2 to ensure a stable output for the final mixing. In this embodiment, the frequency dividing module 103 can be a specific frequency-divided chip or can be variable digitally divided by the CPLD, and the phase-locked loop 1〇4 can be a phase-detecting circuit or a dedicated phase-locked chip (for example: 4046 phase-locked wafer). In a preferred embodiment, the emitting device 4e can employ a semiconductor light emitting diode 'Laser Diode (LD); the receiving device 4r can use a photovoltaic element, such as a photodiode (PD) ) or Avalanche Photo Diode (APD), and can be mixed inside the snow-cracking photodiode, which eliminates the need for dedicated mixers, reducing cost and simplifying the circuit. The phase-detecting module 9 usually uses an analog-to-digital converter to collect signals, and performs data calculation processing via an MCU or a DSP. It is worth noting that since the main signal Lla and the sub-signal Lib share the same component, and the processed main signal Lla and the sub-signal Lib are compared with the same reference signal r01, in addition to achieving a good offset effect. In addition, measurement deviations caused by various aspects such as environment, temperature, and usage time can be eliminated. In addition, the switching unit W operates by blocking the beam with 0757-A21591 TWF(N2); E0106036; ALEXL!N 14 1302598, without affecting the measurement accuracy of the system. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached.

0757-A21591TWF(N2);E0106036;ALEXLIN 15 1302598 【圖式簡單說明】 第1圖表示本發明測量系統(κ)之示意圖;以及 第2圖表示第1圖之訊號產生模組(R)中之一頻率產生 器(1)之電路圖。0757-A21591TWF(N2); E0106036; ALEXLIN 15 1302598 [Simplified Schematic] FIG. 1 is a schematic diagram showing a measurement system (κ) of the present invention; and FIG. 2 is a diagram showing a signal generation module (R) of FIG. A circuit diagram of a frequency generator (1).

【主要元件符號說明】 1〜頻率產生器 101〜電壓控制晶體振盪器 102〜晶體振盪器 103〜分頻模組 104〜鎖相環 21〜第一濾波器 22〜第二濾波器 3〜驅動單元 4e〜發射裝置 4r〜接收裝置 5〜第一轉換裝置 50〜第一光導管 51〜第一光學元件 52〜第二光學元件 6〜第二轉換裝置 60〜第二光導管 61〜第三光學元件 cl〜比較訊號 fl〜調變頻率 fl-f2〜輸出頻率 £2〜本振頻率 i01〜第一調變訊號 iOl’〜訊號 il〜初始訊號 K〜測量系統 L1〜第一光束[Description of Main Components] 1 to frequency generator 101 to voltage controlled crystal oscillator 102 to crystal oscillator 103 to frequency dividing module 104 to phase locked loop 21 to first filter 22 to second filter 3 to driving unit 4e~transmitting device 4r~receiving device 5 to first converting device 50 to first light pipe 51 to first optical element 52 to second optical element 6 to second converting device 60 to second light guide 61 to third optical element Cl~ comparison signal fl~ modulation frequency fl-f2~ output frequency £2~ local oscillator frequency i01~first modulation signal iOl'~signal il~ initial signal K~measurement system L1~first beam

Lla〜主訊號Lla ~ main signal

Lla’〜第一反射主訊號Lla'~ first reflection main signal

Lla’01〜第一處理訊號Lla’01~first processing signal

Lib〜次訊號 L2a、L2b〜定頻訊號 pi〜第一位置 p2〜第二位置 R〜訊號產生模組 0757-A21591TWF(N2);E0106036;ALEXLIN 16 1302598 70〜第三光導管 71〜第四光學元件 81〜混頻器 82〜放大器 83〜第一濾、波模組 84〜第二濾波模組 9〜鑒相模組 c01〜第二調變訊號 r01〜參考訊號 T〜物件 U1〜第一處理單元 U2〜第二處理單元 U3〜第三處理單元 U4〜第四處理單元 W〜切換單元 z0〜既定位置Lib~second signal L2a, L2b~ fixed frequency signal pi~first position p2~second position R~signal generation module 0757-A21591TWF(N2); E0106036;ALEXLIN 16 1302598 70~third light pipe 71~fourth optical Element 81 to mixer 82 to amplifier 83 to first filter, wave module 84 to second filter module 9 to phase detector module c01 to second modulation signal r01 to reference signal T to object U1 to first processing Unit U2 to second processing unit U3 to third processing unit U4 to fourth processing unit W to switching unit z0 to a predetermined position

0757-A21591 TWF(N2);E0106036;ALEXLIN0757-A21591 TWF(N2); E0106036; ALEXLIN

Claims (1)

1302598 十、申請專利範圍: 1. 一種測量系統,用以對於位在一既定位置之一物件 進行距離量測,該測量系統包括: 一訊號產生模組,用以產生一初始訊號; 一第一處理單元,將該初始訊號劃分為一主訊號與一 次訊號,其中,該主訊號係用以發出至一參考位置; 一第二處理單元,用以接收參考位置所反射之一第一 $ 處理訊號; 一第三處理單元,接受來自該次訊號之一第二處理訊 號; 一接收裝置,分別接收該第一處理訊號或該第二處理 訊號; 一切換單元,用以控制該接收裝置是接收該第一處理 訊號或該第二處理訊號;以及 一第四處理單元,分別接受該第一處理訊號與該第二 修 處理訊號,以產生一第一相位值及一第二相位值,並藉由 比對該第一相位值與該第二相位值計算出該測量系統與該 參考位置之距離。 2. 如申請專利範圍第1項所述之測量系統,其中,該 訊號產生模組更產生一具有本振頻率之一比較訊號與具有 一輸出頻率之一參考訊號。 3. 如申請專利範圍第2項所述之測量系統,其中,該 參考訊號分別與該第一處理訊號、該第二處理訊號混頻, 以產生該第一相位值及一第二相位值。 0757-A21591 TWF(N2);E0106036;ALEXLIN 18 1302598 …4.如申請專利範圍帛2項所述之測量系統,其中,該 訊號產生模組包括—頻率產生器、—第―渡波器盘一第二 濾波器,該頻率產生器產生一第一調變訊號與—第二碉= 訊號’其中’該第一調賴經由該第—濾波器而產:: 初始訊號,該第二調變訊號經由該第二濾波器而產生該比 較訊號。 5.如申請專利範圍第4項所述之測量系統,其中,該 •訊號f生模組更可包括一光驅動單元,係對於通過該第一 濾波器之該初始訊號進行驅動。 6·如申請專利範圍第4項所述之測量系統,其中,該 第一濾波器與該第二濾波器為LC濾波器。 7·如申請專利範圍第1項所述之測量系統,其中,該 第一處理單元包括一發射裝置與一第一轉換裝置,該發射 I置將该初始訊號傳送至該第一轉換裝置而形成了該主訊 號與該次訊號。 瞻 8·如申請專利範圍第7項所述之測量系統,其中,該 第一轉換裝置包括一第一光學元件,該初始訊號經由該第 一光學元件而形成該主訊號與該次訊號。 9·如申請專利範圍第7項所述之測量系統,其中,該 苐一轉換裝置包括一第一光導管、一第一透鏡與一第一光 學元件,該初始訊號依序經由該第一透鏡、該第一光導管 與該第一光學元件而形成該主訊號與該次訊號。 10·如申請專利範圍第1項所述之測量系統,其中,該 第二處理單元包括一第二轉換裝置,該第二轉換裝置將該 0757-A21591 TWF(N2);E0106036;ALEXLIN 19 1302598 第一反射主訊號轉換為該第一處理訊號。 11. 如申請專利範圍第10項所述之測量系統,其中, 該第二轉換裝置包括一第二光導管與一第二透鏡,該第一 反射主訊號依序經由該第二透鏡與該第二光導管之導引而 形成該第一處理訊號。 12. 如申請專利範圍第1項所述之測量系統,其中,該 第三處理單元包括一第三光導管,該次訊號係經由該第三 φ 光導管之導引而形成該第二處理訊號。 13. 如申請專利範圍第1項所述之測量系統,其中,該 第三處理單元包括一第三光導管與一第二光學元件,該次 訊號依序經由該第二光學元件進行散射、該第二光導管之 導引後形成了該第二處理訊號。 14. 如申請專利範圍第1項所述之測量系統,其中,該 第四處理單元包括一混頻器,用以分別對於該比較訊號與 該第一處理訊號、該第二處理訊號之間進行處理,並產生 φ 一第一既定訊號與一第二既定訊號。 15. 如申請專利範圍第1項所述之測量系統,其中,該 第四處理單元包括一混頻器與一放大器,用以分別對於該 比較訊號與該第一處理訊號、該第二處理訊號之間進行處 理,產生一定頻訊號,並經由該放大器處理後形成一第一 既定訊號與一第二既定訊號。 16. 如申請專利範圍第1項所述之測量系統,更包括一 鑒相模組,用以對於該參考訊號與該第一既定訊號或該第 二既定訊號之間進行比較。 0757-A21591TWF(N2);E0106036;ALEXLIN 20 1302598 17. 如申請專利範圍第1項所述之測量系統,更包括一 第一濾波模組、一第二濾波模組與一鑒相模組,其中,該 鑒相模組用以對該參考訊號與該第一既定訊號或該第二既 定訊號之間進行比較。 18. 如申請專利範圍第1項所述之測量系統,其中,該 切換單元是一遮光元件。 19. 如申請專利範圍第1項所述之測量系統,其中,該 接收裝置更包括一雪崩光電二極體。1302598 X. Patent application scope: 1. A measurement system for measuring distance of an object located at a predetermined position, the measurement system comprising: a signal generation module for generating an initial signal; The processing unit divides the initial signal into a primary signal and a primary signal, wherein the primary signal is used to send to a reference position; and a second processing unit is configured to receive one of the first $processing signals reflected by the reference position a third processing unit receiving a second processing signal from the one of the signals; a receiving device respectively receiving the first processing signal or the second processing signal; a switching unit configured to control the receiving device to receive the The first processing signal or the second processing signal; and a fourth processing unit respectively receiving the first processing signal and the second processing signal to generate a first phase value and a second phase value, and by using a ratio Calculating the distance between the measurement system and the reference position for the first phase value and the second phase value. 2. The measurement system of claim 1, wherein the signal generation module further generates a reference signal having a local frequency and a reference signal having an output frequency. 3. The measurement system of claim 2, wherein the reference signal is mixed with the first processed signal and the second processed signal to generate the first phase value and a second phase value. 0 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 a second filter, the frequency generator generates a first modulation signal and a second 碉=signal 'where the first modulo is generated via the first filter: an initial signal, the second modulation signal is The second filter generates the comparison signal. 5. The measurement system of claim 4, wherein the signal generating module further comprises an optical driving unit for driving the initial signal through the first filter. 6. The measurement system of claim 4, wherein the first filter and the second filter are LC filters. The measuring system of claim 1, wherein the first processing unit comprises a transmitting device and a first converting device, and the transmitting I transmits the initial signal to the first converting device to form The main signal and the signal. The measuring system of claim 7, wherein the first converting means comprises a first optical component, and the initial signal forms the main signal and the secondary signal via the first optical component. The measurement system of claim 7, wherein the first conversion device comprises a first light guide, a first lens and a first optical element, and the initial signal is sequentially passed through the first lens. The first light guide and the first optical component form the main signal and the secondary signal. The measuring system of claim 1, wherein the second processing unit comprises a second converting device, the second converting device is 0757-A21591 TWF(N2); E0106036; ALEXLIN 19 1302598 A reflected main signal is converted into the first processed signal. 11. The measurement system of claim 10, wherein the second conversion device comprises a second light guide and a second lens, the first reflective main signal sequentially passing through the second lens and the second The first processing signal is formed by the guiding of the two light pipes. 12. The measuring system of claim 1, wherein the third processing unit comprises a third light pipe, the second signal is formed by the guiding of the third φ light pipe to form the second processing signal. . 13. The measurement system of claim 1, wherein the third processing unit comprises a third light pipe and a second optical element, the second signal is sequentially scattered via the second optical element, The second processing signal is formed after the guiding of the second light guide. 14. The measurement system of claim 1, wherein the fourth processing unit includes a mixer for performing a comparison between the comparison signal and the first processing signal and the second processing signal, respectively. Processing, and generating φ a first predetermined signal and a second predetermined signal. 15. The measurement system of claim 1, wherein the fourth processing unit includes a mixer and an amplifier for respectively comparing the first signal to the first processing signal and the second processing signal Processing is performed to generate a certain frequency signal, and processed by the amplifier to form a first predetermined signal and a second predetermined signal. 16. The measurement system of claim 1, further comprising a phase detection module for comparing the reference signal with the first predetermined signal or the second predetermined signal. 17. The measuring system of claim 1, further comprising a first filtering module, a second filtering module and a phase detecting module, wherein the measuring system of claim 1 is further included The phase detector module is configured to compare the reference signal with the first predetermined signal or the second predetermined signal. 18. The measurement system of claim 1, wherein the switching unit is a shading element. 19. The measurement system of claim 1, wherein the receiving device further comprises an avalanche photodiode. 0757-A21591TWF(N2);E0106036;ALEXLIN 210757-A21591TWF(N2); E0106036; ALEXLIN 21
TW95142983A 2006-11-21 2006-11-21 Measurement system TWI302598B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95142983A TWI302598B (en) 2006-11-21 2006-11-21 Measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95142983A TWI302598B (en) 2006-11-21 2006-11-21 Measurement system

Publications (2)

Publication Number Publication Date
TW200823434A TW200823434A (en) 2008-06-01
TWI302598B true TWI302598B (en) 2008-11-01

Family

ID=44771137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95142983A TWI302598B (en) 2006-11-21 2006-11-21 Measurement system

Country Status (1)

Country Link
TW (1) TWI302598B (en)

Also Published As

Publication number Publication date
TW200823434A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
US5534992A (en) Optical measuring apparatus
JP5752040B2 (en) Compact optical fiber arrangement for anti-chirp FMCW coherent laser radar
WO2013116963A1 (en) Calibration method and distance measurement device thereof based on phase measurement of double-wavelength laser tube
US9945937B2 (en) Calibration method based on dual-transmitting dual-receiving phase measurement and distance-measuring device thereof
NL1006016C2 (en) Ellipsometer with two lasers.
JP5135587B2 (en) Distance measuring system
EP0475326B1 (en) Distance measuring device
JP6502410B2 (en) Optical microphone system
CN107783145B (en) Confocal F-P cavity-based low speckle noise laser Doppler velocity measurement device and method
JP2000205814A (en) Heterodyne interferometer
CN109084884B (en) Homodyne laser vibration measurement device and vibration detection method thereof
TWI302598B (en) Measurement system
US5760903A (en) Light measuring apparatus
JP2012132711A (en) Interpulse phase shift measurement device, offset frequency controller, interpulse phase shift measurement method, and offset frequency control method
CN106199623B (en) A kind of femtosecond laser intermode beat frequency method range-measurement system
JPS60238776A (en) Light wave range finder
JP3241857B2 (en) Optical rangefinder
CN115102031A (en) Device and method for adjusting output frequency of laser based on atomic transition
JP2011013108A (en) Lightwave distance meter
US20240255642A1 (en) Digital electro-optical phase locked loop in a lidar system
JP5535599B2 (en) Light wave distance meter
JPH0682552A (en) Electrooptical distance measurement
JPH01119785A (en) Semiconductor laser distance measuring equipment
JPH01307640A (en) Gas detecting device
CN115032654A (en) Temperature measurement laser radar based on RTP crystal electro-optical switch

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees