JPH01119785A - Semiconductor laser distance measuring equipment - Google Patents

Semiconductor laser distance measuring equipment

Info

Publication number
JPH01119785A
JPH01119785A JP62277631A JP27763187A JPH01119785A JP H01119785 A JPH01119785 A JP H01119785A JP 62277631 A JP62277631 A JP 62277631A JP 27763187 A JP27763187 A JP 27763187A JP H01119785 A JPH01119785 A JP H01119785A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
frequency
output
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277631A
Other languages
Japanese (ja)
Inventor
Tomoaki Uno
智昭 宇野
Jiyun Odani
順 雄谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62277631A priority Critical patent/JPH01119785A/en
Publication of JPH01119785A publication Critical patent/JPH01119785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To miniaturize an equipment and allow highly accurate distance measurement by providing a semiconductor laser, an oscillator and a synthesizer. CONSTITUTION:Light emitted from a semiconductor laser 1 is incident on an acoustic optical element 3 through a light isolator 2 and divided into diffracted light 12 and transmitted light 13 different in frequency by the frequency of an oscillator 4. The lights are synthesized 5, one output is output by a photodiode 8, the the other output is reflected by a reflecting mirror 7 through a light transmitting and receiving telescope 6 and detected by a photodiode 9 through the telescope 6 again. The signals of the diodes 8, 9 are amplified 10, 10' respectively and the phase differece is detected by a phase difference meter 11. The phase difference corresponds to optical path difference of two optical paths reaching the diodes 9, 10 after being emitted from the synthesizer 5. Therefore, the equipment can be miniaturized and highly accurate distance measurement is enabled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザを用いた光学的距離測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical distance measuring device using a semiconductor laser.

従来の技術 近年、数mの領域の寸法や距離の測定を短時間に精度良
く行きたいという要求が高まっている。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for measuring dimensions and distances in areas of several meters in a short time and with high precision.

光波干渉を用いた光学的な測距装置は、分解能が高いの
で最近よく使用されるようになっている。
Optical distance measuring devices that use light wave interference have become popular recently because of their high resolution.

従来は、内部鏡ヘリウムネオン(He−Ne)レーザの
1本の発振線内の2本のモードから得られるビートの波
長を利用した測距装置が提案されている。He−Nev
−ザの場合は、可視レーザ(632,8nm)では15
〜30α、赤外レーザ(1153nm)では25〜36
α程度の共振器長の場合に2モ一ド発振する。そして2
モードで発振しているレーザは、モード間の周波数差に
よりビート変調されたビームを放射する。この時のビー
ト周波数fはレーザ管波長りによって決定され、上述の
レーザ管を用いた場合にはfは数百MH2となる。2モ
ードで発振している内部鏡V−ザの場合、そのモードの
偏光方向は互いに直交しているため、ビート信号を得る
には偏光子を、第3図に示すように、その軸が各モード
の偏光方向から45°傾いた状態で挿入する。この変調
波を高速フォトダイオードで検出すると、数百MH2の
正弦波信号が得られる。
Conventionally, a distance measuring device has been proposed that utilizes the wavelength of a beat obtained from two modes within one oscillation line of an internal mirror helium neon (He-Ne) laser. He-Nev
- In the case of visible laser (632,8 nm), 15
~30α, 25-36 for infrared laser (1153nm)
Bimodal oscillation occurs when the resonator length is approximately α. And 2
A laser oscillating in modes emits a beat-modulated beam due to the frequency difference between the modes. The beat frequency f at this time is determined by the wavelength of the laser tube, and when the above-mentioned laser tube is used, f is several hundred MH2. In the case of an internal mirror V-ZA that oscillates in two modes, the polarization directions of the modes are orthogonal to each other, so to obtain the beat signal, the polarizer must be moved so that its axes are aligned with each other, as shown in Figure 3. Insert it at an angle of 45 degrees from the polarization direction of the mode. When this modulated wave is detected by a high-speed photodiode, a sine wave signal of several hundred MH2 is obtained.

このような変調波を利用して距離を測定する方法の概略
を第4図を用いて説明する。第4図において、40は2
モードレーザ、41は偏光子、42はビームスプリッタ
(BS)、43は送・受光用望遠鏡、44は被測定点に
おかれた反射鏡、45はフォトダイオード(PDl)、
46はフォトダイオード(PD2)、47.47は増幅
器、48は周波数カウンタ、49は位相差計である。2
モードレーザ40から出た光束は偏光子41を経てビー
ムスプリッタ42に入射する。ここで2分割されたビー
ムの一方はただちにフォトダイオード(PDI)45へ
入射し、他方は測距の対象となる反射鏡との間を往復し
た後にフォトダイオード(PD2)46に入射し、検出
される。この2つのビームの光路差は、フォトダイオー
ド(、PIh)45からの信号とフォトダイオード(P
D2)46で検出される信号との位相差となって表われ
るので、両信号の位相差から距離を求めることができる
An outline of a method for measuring distance using such a modulated wave will be explained using FIG. 4. In Figure 4, 40 is 2
mode laser, 41 is a polarizer, 42 is a beam splitter (BS), 43 is a transmitting/receiving telescope, 44 is a reflecting mirror placed at the measurement point, 45 is a photodiode (PDl),
46 is a photodiode (PD2), 47.47 is an amplifier, 48 is a frequency counter, and 49 is a phase difference meter. 2
The light beam emitted from the mode laser 40 passes through a polarizer 41 and enters a beam splitter 42 . One of the two divided beams immediately enters the photodiode (PDI) 45, and the other beam travels back and forth between the reflecting mirror that is the object of distance measurement, and then enters the photodiode (PD2) 46 and is detected. Ru. The optical path difference between these two beams is determined by the signal from the photodiode (, PIh) 45 and the photodiode (P
Since it appears as a phase difference with the signal detected by D2) 46, the distance can be determined from the phase difference between both signals.

発明が解決しようとする問題点 前述した2モードレーザのビートを測距に使用する場合
、そのビート周波数fは十分に正確であることが望まれ
る。ところがHe−Heレーザはビート波長安定化を行
なってもIKHz(±2 X 10−6)程度しか安定
せず、精密測距で要求される変調周波数の安定度(1×
1O−8)には及ばないため、周波数による実測が不可
欠であった。またHe−Noレーザ等のガスレーザを用
いると装置が大型化してしまうという欠点があった。
Problems to be Solved by the Invention When the beat of the two-mode laser described above is used for distance measurement, it is desired that the beat frequency f be sufficiently accurate. However, even with beat wavelength stabilization, the He-He laser is only stable at about IKHz (±2 x 10-6), which is lower than the modulation frequency stability (1 x
1O-8), actual measurement using frequency was essential. Furthermore, when a gas laser such as a He-No laser is used, there is a drawback that the apparatus becomes large in size.

問題点を解決するだめの手段 すなわち本発明は、発振周波数安定化した単一縦モード
半導体レーザと、前記半導体レーザの出力光の一部を周
波数変換する手段と、前記半導体レーザの出力光と前記
周波数変換した半導体レーザの出力光を合成する手段と
、前記合成した半導体レーザの2つの出力光の一部のビ
ートを検出する第1の検出手段と、前記合成した半導体
レーザの2つの出力光を被測距物に照射しその反射光の
ビートを検出する第2の検出手段と、前記第1の検出手
段と前記第2の検出手段とのビート信号の位相差を検出
する手段を有することによるもので、特に半導体レーザ
の出力光の一部を周波数変換する手段として音響光学素
子を用いることにより、前述したような問題点を解決す
るものである。
A means for solving the problem, that is, the present invention, includes a single longitudinal mode semiconductor laser whose oscillation frequency is stabilized, a means for converting the frequency of a part of the output light of the semiconductor laser, and a means for converting the frequency of a part of the output light of the semiconductor laser and the output light of the semiconductor laser. means for combining the frequency-converted output lights of the semiconductor lasers, first detection means for detecting a part of the beat of the two output lights of the combined semiconductor lasers, and a means for combining the two output lights of the combined semiconductor lasers; By having a second detection means for irradiating the object to be measured and detecting the beat of the reflected light, and means for detecting a phase difference between the beat signals of the first detection means and the second detection means. In particular, the above-mentioned problems are solved by using an acousto-optic element as a means for converting the frequency of a part of the output light of a semiconductor laser.

作用 本発明の作用は、従来2モ一ド発振するガスレーザを、
単一縦モード発振する半導体レーザに音響光学素子等に
よる周波数変換素子を用いることによって置き換えるも
のである。音響光学素子による光の周波数変換を第2図
を用いて説明する。
Function The function of the present invention is that the conventional bimodal oscillation gas laser is
A semiconductor laser that oscillates in a single longitudinal mode is replaced by a frequency conversion element such as an acousto-optic element. Frequency conversion of light by an acousto-optic element will be explained using FIG. 2.

第2図において、21は入射光、22は透過光、23は
回折光、24は音響光学素子、25は発振器である。f
、の周波数で駆動される音響光学素子に、周波数fの光
21を入射すると、透過光22は周波数fのままである
が、回折光23は周波数がf−シフトしf+f2LCあ
るいは向きによってf−flL)となる。この回折光2
3と透過光22を再び合成してそのビートを検出すると
、2つの光の差周波数はf−となる。ところがこの周波
数は、電気的に発振器25によって作り出されるもので
1×10−8以下の高い安定度を有する。また、近年報
告されているDFB型半導体レーザは発振波長が安定で
かつ数10m程度のコヒーレンス長を持ち、数10m以
下の範囲の高精度な距離の測定に十分用いることができ
る。
In FIG. 2, 21 is incident light, 22 is transmitted light, 23 is diffracted light, 24 is an acousto-optic element, and 25 is an oscillator. f
When light 21 of frequency f is incident on an acousto-optic element driven at a frequency of ). This diffracted light 2
3 and the transmitted light 22 and detect the beat, the difference frequency between the two lights becomes f-. However, this frequency is electrically generated by the oscillator 25 and has a high stability of 1.times.10@-8 or less. Furthermore, the DFB type semiconductor laser that has been reported in recent years has a stable oscillation wavelength and a coherence length of about several tens of meters, and can be used for highly accurate distance measurement in a range of several tens of meters or less.

実施例 本発明の実施例を第1図を用いて説明する。Example An embodiment of the present invention will be described with reference to FIG.

第1図において、1は1.3μm発振波長のDFB型半
導体レーザ、2は光アイソレータ、3は音響光学素子、
4は発振器、5は2人力×2出力の光の合成器、6は送
・受光用望遠鏡、7は被測定点に置かれた反射鏡、8は
フォトダイオード(PD、)、9はフォトダイオード(
PD2)、10゜10’は増幅器、11は位相差計、1
2は音響光学素子による回折光、13は音響光学素子の
透過光、14は鏡、15は鏡である。
In FIG. 1, 1 is a DFB type semiconductor laser with an oscillation wavelength of 1.3 μm, 2 is an optical isolator, 3 is an acousto-optic element,
4 is an oscillator, 5 is a 2-manpower x 2-output light combiner, 6 is a telescope for transmitting and receiving light, 7 is a reflector placed at the measurement point, 8 is a photodiode (PD), and 9 is a photodiode. (
PD2), 10°10' is an amplifier, 11 is a phase difference meter, 1
2 is a diffracted light by the acousto-optic element, 13 is a transmitted light of the acousto-optic element, 14 is a mirror, and 15 is a mirror.

半導体レーザ1から出た光は、光アイソレータ2を経て
音響光学素子3に入射し、発振器4の周波数分だけ周波
数の異なる回折光12と透過13とに分けられる。この
2つの光を、方向性結合器のような合成器5を用いて合
成し、一方の出力をフォトダイオード8で出し、さらに
他方の出力を、送・受光用望遠鏡6を経て反射鏡7で反
射し再び送・受光用望遠鏡6を経てフォトダイオード9
で検出する。2つのフォトダイオードの信号はそれぞれ
増幅器10 、10’で増幅されて、位相差計11によ
ってその位相差を検出する。この位相差が合成器5を出
た後のフォトダイオード8およびフォトダイオード9に
至る2つの光路の光路差に対応する。100MH2の周
波数で音響光学素子を駆動した時には3mの光路差ごと
に2πの位相差が得られる。またスペクトル線幅が10
MHzのDFB型半導体レーザを用いた場合には、so
m程度のコヒーレンス長が得られ、1om程度の距離の
測定に用いることができる。
The light emitted from the semiconductor laser 1 enters the acousto-optic element 3 via the optical isolator 2 and is divided into diffracted light 12 and transmitted light 13 whose frequencies differ by the frequency of the oscillator 4. These two lights are combined using a combiner 5 such as a directional coupler, one output is outputted by a photodiode 8, and the other output is sent to a reflecting mirror 7 via a transmitting/receiving telescope 6. It is reflected and passes through the transmitting/receiving telescope 6 again to the photodiode 9
Detect with. The signals from the two photodiodes are amplified by amplifiers 10 and 10', respectively, and a phase difference meter 11 detects the phase difference. This phase difference corresponds to the optical path difference between the two optical paths that reach the photodiodes 8 and 9 after leaving the combiner 5. When the acousto-optic element is driven at a frequency of 100 MH2, a phase difference of 2π is obtained for every 3 m of optical path difference. Also, the spectral linewidth is 10
When using a MHz DFB type semiconductor laser, so
A coherence length on the order of m can be obtained and can be used to measure distances on the order of 1 om.

なお、実施例に用いた光アイソレータ2は半導体レーザ
1への光の帰還による不安定性を防ぐものでこれを用い
ることにより、より安定な測定が行なえる。また、用い
る半導体レーザの発掘波長は、1.3μm以外の波長で
も何ら本発明の効果を損なうものではない。
Note that the optical isolator 2 used in the example prevents instability due to the return of light to the semiconductor laser 1, and by using this, more stable measurements can be performed. Further, even if the excavation wavelength of the semiconductor laser to be used is other than 1.3 μm, the effects of the present invention will not be impaired in any way.

発明の効果 本発明は、前述した構成により、従来の問題点であった
安定度を改善し、さらに装置を小型化できるという効果
を有する。これは、高精度な測距装置を手軽に使えるよ
うになるという意義を有し、産業上大きな意味を持つも
のである。
Effects of the Invention The present invention has the effect of improving the stability, which was a problem in the prior art, and further making it possible to miniaturize the device due to the above-described configuration. This has the significance of making it possible to easily use a high-precision distance measuring device, and has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザ測距装置の構
成図、第2図は音響光学素子により周波数変換の説明図
、第3図は従来の測距装置に用いるガスレーザ特性の説
明図、第4図は従来の測距装置の構成図である。 1・・・・・・半導体レーザ、2・・・・・・光アイソ
レータ、3・・・・・・音響光学素子、4・・・・・・
発振器、5・・・・・・合成器、6・・・・・・送・受
光用望遠鏡、7・・・・・・反射鏡、8.9・・・・・
・フォトダイオード、11・・・・・・位相差計、12
・・・・・・回折光、13・・・・・・透過光。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名?I
−人射九 22−  透過光 23−一一目所光 24−  音響光学素子 パー 発@器 第 21!!
Fig. 1 is a configuration diagram of a semiconductor laser distance measuring device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of frequency conversion using an acousto-optic element, and Fig. 3 is an explanatory diagram of gas laser characteristics used in a conventional ranging device. , FIG. 4 is a block diagram of a conventional distance measuring device. 1... Semiconductor laser, 2... Optical isolator, 3... Acousto-optic element, 4...
Oscillator, 5...Synthesizer, 6...Telescope for transmitting and receiving light, 7...Reflector, 8.9...
・Photodiode, 11... Phase difference meter, 12
...Diffracted light, 13...Transmitted light. Name of agent: Patent attorney Toshio Nakao and one other person? I
-Human radiation 922- Transmitted light 23-11 Sight light 24- Acousto-optic element par Emitter No. 21! !

Claims (2)

【特許請求の範囲】[Claims] (1)発振周波数安定化した単一縦モード半導体レーザ
と、前記半導体レーザの出力光の一部を周波数変換する
手段と、前記半導体レーザの出力光と前記周波数変換し
た半導体レーザの出力光を合成する手段と、前記合成し
た半導体レーザの2つの出力光の一部のビートを検出す
る第1の検出手段と、前記合成した半導体レーザの2つ
の出力光を被測距物に照射しその反射光のビートを検出
する第2の検出手段と、前記第1の検出手段と前記第2
の検出手段とのビート信号の位相差を検出する手段を有
する半導体レーザ測距装置。
(1) A single longitudinal mode semiconductor laser with a stabilized oscillation frequency, a means for converting the frequency of a part of the output light of the semiconductor laser, and combining the output light of the semiconductor laser and the frequency-converted output light of the semiconductor laser. a first detection means for detecting a part of the beat of the two output lights of the combined semiconductor laser; and a first detection unit that irradiates the object to be measured with the two output lights of the combined semiconductor laser, and detects the reflected light thereof. a second detection means for detecting the beat of the first detection means and the second detection means;
A semiconductor laser ranging device having means for detecting a phase difference of a beat signal with a detecting means.
(2)半導体レーザの出力光の一部を周波数変換する手
段が音響光学素子を用いるものである特許請求の範囲第
1項記載の半導体レーザ測距装置。
(2) The semiconductor laser distance measuring device according to claim 1, wherein the means for frequency converting a part of the output light of the semiconductor laser uses an acousto-optic element.
JP62277631A 1987-11-02 1987-11-02 Semiconductor laser distance measuring equipment Pending JPH01119785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277631A JPH01119785A (en) 1987-11-02 1987-11-02 Semiconductor laser distance measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277631A JPH01119785A (en) 1987-11-02 1987-11-02 Semiconductor laser distance measuring equipment

Publications (1)

Publication Number Publication Date
JPH01119785A true JPH01119785A (en) 1989-05-11

Family

ID=17586121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277631A Pending JPH01119785A (en) 1987-11-02 1987-11-02 Semiconductor laser distance measuring equipment

Country Status (1)

Country Link
JP (1) JPH01119785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502073A (en) * 2012-11-12 2016-01-21 テヒニッシェ ウニヴェルズィテート ハンブルク−ハーブルクTechnische Universitaet Hamburg−Harburg Lidar measurement system and lidar measurement method
JP7026857B1 (en) * 2021-02-26 2022-02-28 三菱電機株式会社 Rider device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502073A (en) * 2012-11-12 2016-01-21 テヒニッシェ ウニヴェルズィテート ハンブルク−ハーブルクTechnische Universitaet Hamburg−Harburg Lidar measurement system and lidar measurement method
JP7026857B1 (en) * 2021-02-26 2022-02-28 三菱電機株式会社 Rider device

Similar Documents

Publication Publication Date Title
US7580132B2 (en) Optical device for measuring a doppler frequency shift
US7139446B2 (en) Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
JPH05264215A (en) Optical interferometer
JPS62235506A (en) Differential plane-mirror interferometer system
US5493395A (en) Wavelength variation measuring apparatus
JPH03180704A (en) Laser interference gauge
Czarske et al. Birefringent Nd: YAG microchip laser used in heterodyne vibrometry
JP2903486B2 (en) Dispersion interferometer
Yokoyama et al. A subnanometre heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He-Ne laser
US4156571A (en) Laser mirror scatter and reflectivity measuring system
JPH06174844A (en) Laser distance measuring apparatus
US5760903A (en) Light measuring apparatus
JPS62233704A (en) Differential plane-mirror interferometer system
JPH01119785A (en) Semiconductor laser distance measuring equipment
JPH06186337A (en) Laser distance measuring equipment
JP3371088B2 (en) Coherent rider
CN114665369A (en) Single-frequency narrow-linewidth medium-wave infrared atomic gas chamber laser and laser interferometer
US7394548B2 (en) Heterodyne laser interferometer using heterogenous mode helium-neon laser and super heterodyne phase measuring method
JP3254477B2 (en) High precision interferometer
Sokolov et al. Femtosecond laser-based absolute rangefinder with the possibility of traceability to the time and frequency standard
JPS60238776A (en) Light wave range finder
JPS6355035B2 (en)
JPS60306A (en) Range finding method using composite wavelength method
JPS5866881A (en) Surveying equipment by light wave