JPS5866881A - Surveying equipment by light wave - Google Patents
Surveying equipment by light waveInfo
- Publication number
- JPS5866881A JPS5866881A JP56164279A JP16427981A JPS5866881A JP S5866881 A JPS5866881 A JP S5866881A JP 56164279 A JP56164279 A JP 56164279A JP 16427981 A JP16427981 A JP 16427981A JP S5866881 A JPS5866881 A JP S5866881A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- light wave
- light
- optical path
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S17/36—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、新規な方法によって測量する光波測量機に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light wave surveying instrument that performs surveying using a novel method.
従来の光波測量機は、特定周波数により強度変調された
光波を発射して被測定距離間を往復させ、受光した光波
の位相が光路長に応じて異なることを利用し、この位相
を高精度に計測する、いわゆる固定周波数方式であった
。この場合、通常、受信信号をヘテロダインにより数桁
低い周波数に変換して時間のスケールを拡大17、測定
精度を上げる方法が採用されている。Conventional light wave surveying instruments emit light waves that are intensity-modulated at a specific frequency and travel back and forth between the measured distances, and utilize the fact that the phase of the received light waves differs depending on the optical path length to accurately determine this phase. It was a so-called fixed frequency method. In this case, a method is usually adopted in which the received signal is converted to a frequency several orders of magnitude lower by heterodyne to expand the time scale 17 and improve measurement accuracy.
しかしながら、光路長が光波の波長より長くなると光路
中に存在する波の数が1以上になり、不確定性が生じる
。また、測量する最長光路長を光波の波長に等しくして
おくと、短距離の測量時に位相差が小さくなって測定精
度があがらないという欠点があった。However, when the optical path length is longer than the wavelength of the light wave, the number of waves existing in the optical path becomes one or more, causing uncertainty. Furthermore, if the longest optical path length to be surveyed is set equal to the wavelength of the light wave, there is a drawback that when surveying short distances, the phase difference becomes small and measurement accuracy cannot be improved.
そこで、固定周波数方式では、通常2種類の特定周波数
を使用し、その一つは測定最長距離L1に対応する光路
長に等しい光波波長λ1をもつ周波数で、これを粗信号
とし、他の一つは測定最短距離L2に対応する光路長に
相当する光波波長λ2を持つように選び、これを精信号
とする0そしてこの2種類の信号を切換え、まず、精信
号によりλ2を単位とする位相の高精度計測を行ない、
次いで、粗信号により被測定距離内に含まれるλ2の数
(整数値)を求め、しかる後、演算により全距離を求め
るという手続を踏んでいる。従って、回路構成が極めて
複雑になるとともに、演算時間がかさむため測定時間が
長くかかるという欠点があった。Therefore, in the fixed frequency method, two types of specific frequencies are usually used. is selected to have a light wave wavelength λ2 corresponding to the optical path length corresponding to the shortest measurement distance L2, and this is used as the fine signal 0. Then, these two types of signals are switched, and first, the phase in units of λ2 is determined using the fine signal. Performing high-precision measurements,
Next, the number of λ2 (integer value) included in the distance to be measured is determined from the coarse signal, and then the total distance is determined by calculation. Therefore, there are disadvantages in that the circuit configuration becomes extremely complicated and the calculation time increases, resulting in a long measurement time.
本発明は、上記従来例の欠点を解消するだめに、光強度
変調するだめの周波数を、光波の波長゛が光路長の整数
倍となる周波数まで可変する方式を採用し、回路構成の
簡易化と測定時間の短縮を図るようにした光波測量機を
提供するものである。以下、図面により実施例を詳細に
説明する。In order to solve the above-mentioned drawbacks of the conventional example, the present invention adopts a method in which the frequency of light intensity modulation is varied to a frequency where the wavelength of the light wave is an integral multiple of the optical path length, thereby simplifying the circuit configuration. The present invention provides a light wave surveying instrument designed to shorten measurement time. Hereinafter, embodiments will be described in detail with reference to the drawings.
図は、本発明の一実施例の構成を示したもので、1は特
定周波数f1を発振する発振器、2は可変周波数f2を
発振する発振器、3はf+とf2を混合し、差周波f3
−八−f2を発生させる混合器、4は差周波f3により
光強度変調した光波を発射する光源強度変調器、iは反
射鏡、6は反射鏡5で反射した光波を受光する受光器、
7は増幅器、8は受光信号を周波数f3を参照信号とし
て同期検波する位相検出器、9は増幅器、1oは必要に
応じて時定数処理を行なう時定数回路で、この出力は発
振器2に帰還される。11は演算器、12は表示器であ
る。The figure shows the configuration of an embodiment of the present invention. 1 is an oscillator that oscillates a specific frequency f1, 2 is an oscillator that oscillates a variable frequency f2, and 3 is a mixture of f+ and f2, and a difference frequency f3.
-8- A mixer that generates f2; 4 is a light source intensity modulator that emits a light wave whose light intensity is modulated by the difference frequency f3; i is a reflecting mirror; 6 is a light receiver that receives the light wave reflected by the reflecting mirror 5;
7 is an amplifier; 8 is a phase detector for synchronously detecting the received light signal using frequency f3 as a reference signal; 9 is an amplifier; 1o is a time constant circuit that performs time constant processing as required; the output of this is fed back to the oscillator 2; Ru. 11 is a computing unit, and 12 is a display.
次に、本実施例の動作を説明する。まず、被測定距離り
の一端に光源強度変調器4(および受光器6)を、他端
に反射鏡5をそれぞれ配置する。Next, the operation of this embodiment will be explained. First, the light source intensity modulator 4 (and light receiver 6) is placed at one end of the distance to be measured, and the reflecting mirror 5 is placed at the other end.
特定周波数f、と可変周波数f2との差周波f3−八−
f2を発生させ、これにより光強度変調した光波を光源
強度変調器4から発射し、反射鏡5で反射した光波を受
光器6で受光する。従ってこのときの光路長は2Lとな
る。受光器6の受信出力は増幅後、位相検出器8に加え
られ、f3を参照信号として同期検波される。ここで差
周波f3の光波波長はC1,f3(ただし、Cは光速度
)であるから発射光波に対する受光光波の位相差φはμ
と・f3となる。いま、’/f3> L 、つまり、光
路2L中に光波の節が一つもない低周波数側から八が変
化するようにしアおくと、位相門出器、ヵ、ら。出力は
位相差φに比例するから、φ=πにな;たところで差周
波への変化が止まるようにする。即ち、φ二πにおける
位相検波器8の出力により、発振器2の発振周波数12
を一定にし、このときの差周波f3を演算器11で読み
増り、L二走を演算して距離りを求め、表示器12に表
示することができる。Difference frequency f3-8- between specific frequency f and variable frequency f2
f2 is generated, a light wave whose light intensity is modulated thereby is emitted from the light source intensity modulator 4, and the light wave reflected by the reflecting mirror 5 is received by the light receiver 6. Therefore, the optical path length at this time is 2L. The received output of the photoreceiver 6 is amplified and then applied to the phase detector 8, where it is synchronously detected using f3 as a reference signal. Here, the light wave wavelengths of the difference frequency f3 are C1, f3 (however, C is the speed of light), so the phase difference φ between the received light wave and the emitted light wave is μ
and f3. Now, if we set '/f3>L, that is, 8 changes from the low frequency side where there is no node of light waves in the optical path 2L, then the phase gater, ka, et al. Since the output is proportional to the phase difference φ, the change to the difference frequency should stop when φ=π. That is, the oscillation frequency 12 of the oscillator 2 is determined by the output of the phase detector 8 at φ2π.
is kept constant, the difference frequency f3 at this time is read by the calculator 11, the L two runs are calculated, the distance is determined, and the distance can be displayed on the display 12.
以上述べたように、本発明によれば、測定時間が負帰還
制御系の時定数に依存するだけであるから、従来例ド比
較して大幅に短縮することができるとともに、測定精度
が向上する。また、回路構成も簡単になり、従って安価
であるなど、著しい効果を有するものである。As described above, according to the present invention, since the measurement time only depends on the time constant of the negative feedback control system, it can be significantly shortened compared to the conventional example, and the measurement accuracy is improved. . Furthermore, the circuit configuration is simplified, and therefore the cost is reduced, which has significant effects.
図は、本発明の一実施例の構成を示すブロック図である
。
1 ・・・・・・・・・特定周波数発振器、 2・・・
・・・・・・可変周波数発振器、 3・・・・・・・・
・混合器、 4・・・・・・・・・光源強度変調器、
5・・・・・・・・・反射鏡、 6・・・・・・・・・
受光器、7・・・・・・・・・増幅器、 8・・・・・
・・・・位相検−出器、9・・・・・・・・・増幅器、
10・・・・・・・・・時定数回路、11・・・・・
・・・・演算機、 12・・・・・・・・・表示器。The figure is a block diagram showing the configuration of an embodiment of the present invention. 1...Specific frequency oscillator, 2...
・・・・・・Variable frequency oscillator, 3・・・・・・・・・
・Mixer, 4...Light source intensity modulator,
5・・・・・・・・・Reflector, 6・・・・・・・・・
Photoreceiver, 7...Amplifier, 8...
・・・・Phase detector, 9・・・・・・・・・Amplifier,
10... Time constant circuit, 11...
...Calculating machine, 12... Display device.
Claims (1)
り光強度変調した光波を発射し、被測定距離間を往復さ
せて受光する手段と、発射光波に対する受光光波の位相
差を検出し、これを前記周波数可変手段に帰還する手段
とを具備してなり、光波の波長が光路長の整数倍となる
周波数を求めて距離を測定することを特徴とする光波測
量機。a frequency variable means; a means for emitting a light wave whose intensity is modulated by the output frequency of the frequency variable means; a means for receiving the light by reciprocating it over a distance to be measured; and detecting a phase difference between the received light wave and the emitted light wave; 1. A light wave surveying instrument, comprising means for feeding back to the frequency variable means, and measuring distance by determining a frequency at which the wavelength of the light wave is an integral multiple of the optical path length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56164279A JPS5866881A (en) | 1981-10-16 | 1981-10-16 | Surveying equipment by light wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56164279A JPS5866881A (en) | 1981-10-16 | 1981-10-16 | Surveying equipment by light wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5866881A true JPS5866881A (en) | 1983-04-21 |
Family
ID=15790067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56164279A Pending JPS5866881A (en) | 1981-10-16 | 1981-10-16 | Surveying equipment by light wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5866881A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06289137A (en) * | 1993-04-05 | 1994-10-18 | Hamamatsu Photonics Kk | Optical range finder |
JP2001292105A (en) * | 2000-04-10 | 2001-10-19 | Canon Inc | Optical space transmission device |
JP2007101393A (en) * | 2005-10-05 | 2007-04-19 | Mitsui Eng & Shipbuild Co Ltd | Positional information acquiring device |
JP2011257285A (en) * | 2010-06-10 | 2011-12-22 | Kyosan Electric Mfg Co Ltd | Distance sensor and control method |
JP2012002559A (en) * | 2010-06-15 | 2012-01-05 | Kyosan Electric Mfg Co Ltd | Distance sensor |
-
1981
- 1981-10-16 JP JP56164279A patent/JPS5866881A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06289137A (en) * | 1993-04-05 | 1994-10-18 | Hamamatsu Photonics Kk | Optical range finder |
JP2001292105A (en) * | 2000-04-10 | 2001-10-19 | Canon Inc | Optical space transmission device |
JP4508352B2 (en) * | 2000-04-10 | 2010-07-21 | キヤノン株式会社 | Optical space transmission system |
JP2007101393A (en) * | 2005-10-05 | 2007-04-19 | Mitsui Eng & Shipbuild Co Ltd | Positional information acquiring device |
JP2011257285A (en) * | 2010-06-10 | 2011-12-22 | Kyosan Electric Mfg Co Ltd | Distance sensor and control method |
JP2012002559A (en) * | 2010-06-15 | 2012-01-05 | Kyosan Electric Mfg Co Ltd | Distance sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3307730B2 (en) | Optical measuring device | |
KR100328007B1 (en) | Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry | |
JP6404656B2 (en) | Method and apparatus for tracking / rocking the free spectral range of a resonator and its application to a resonator fiber optic gyroscope | |
US3542472A (en) | Distance measuring apparatus | |
US3523735A (en) | Interferometer system for distance measurement | |
JPS6162885A (en) | Distance/speed meter | |
US3424531A (en) | Distance measuring instrument using a pair of modulated light waves | |
US5210587A (en) | Optical distance measuring apparatus | |
JPS5866881A (en) | Surveying equipment by light wave | |
GB2071905A (en) | Angular velocity sensor based on a ring laser | |
US4183671A (en) | Interferometer for the measurement of plasma density | |
JPH06186337A (en) | Laser distance measuring equipment | |
US7061620B2 (en) | Method and apparatus for three-dimensional object detection | |
JPH0915334A (en) | Laser equipment for measuring distance | |
JPH05323029A (en) | Distance measuring method by light wave range finder | |
JPS6355035B2 (en) | ||
JPS6371675A (en) | Laser distance measuring instrument | |
US4397548A (en) | Distance measuring system | |
JPH11160065A (en) | Optical wave distance measuring instrument | |
SU720298A1 (en) | Device for measuring distance | |
JPS5811565B2 (en) | fiber optic equipment | |
JPS5866880A (en) | Light wave distance measuring meter | |
JPH052075A (en) | Laser doppler speed meter | |
JPS60306A (en) | Range finding method using composite wavelength method | |
SU1645818A1 (en) | Phasic light distance finder |